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Density relaxation in a frustrated lattice gas subject to gravity and vibrations is explored via Monte Carlo
simulations. A comparison to some recent experimental results on compaction of granular media gives good
agreement, and interesting predictions are posdiBi#063-651X97)15803-3

PACS numbse(s): 05.45+b, 46.10+z, 81.20.Ev, 81.05.Rm

I. INTRODUCTION found. The robustness to changes of these structural proper-
ties is also analyzed.
Dynamical processes in granular media show fascinating
behavior[1-4]. The particular role of disorder and fluctua- Il. MODEL
tions in granular dynamics has led several authbys—7] to

propose an analogy to frustrated statistical systems such %S_The model _vve_study he_re IS descrlpe_d (81, and we
spin glasse$s]. riefly summarize its essential characteristics. It consists of a

Recently a frustrated lattice gas model has been intro§y3tem of particles diffusing on a square lattice whose bonds

. . . . are characterized by fixed random numbers=+1 (see
duced to describe static and dynamic properties of granula’gig' 1). On sitei we Zetnizl if a particle is gisent (and 0

m.ater|als[9]. This microscopic model is baseq onan analogyotherwise. Particles are characterized by an internal degree

with frustrated percolatiori10], expressed in terms of @ f freaqoms =+ 1 and are subjected to the constraint that

Hamiltonian formah_sm m_w_hlch dlsord?‘r _and _frust”ratlon are\henever two i andj) are neighboring, their “spin” must

key elements. In thls_ statistical model, “vibrations” play the satisfy the relation

role of temperature in usual thermal systefisl1-13. Its

guenched disorder and the consequent frustration try to de- €;iSS=1, (2)

scribe the general physical mechanisms underlying the phe-

nomenon of “geometrical” frustration known in granular i-€., they have to fit the local “geometrical” structure. At

media. The same model, without the gravitational contribulligh enough density, particles feel the effects of the

tion in the Hamiltonian, has been previously related to the duenched” frustration imposed by the choice of thg. In

physics of the glass transition in glass forming liquidg]. ~ fact, in resemblance to frustrated percolatjag], they can
Here we describe the combined effects of vibrations and'€Ver close a frustrated loop in the lattice because along such

gravity in this model, and compare them to experimental!OODS the quantiti®; ; c joop( €SS — 1) cannot be zerfB] as

data. A well known experiment with granular systems is theImposed by the condition of Eg1). In the system there will

compaction of sand. When a box filled with loose packedthen unavoidably be empty sites. The band yangbslgs
i . BN model the general effects of geometrical frustration in granu-
sand is shaken at low amplitude, density visibly increase

[15]. If in addition, the density goes beyond a definite threshif‘ar systems due to the shapes and arrangements of particles,

old, the mechanical properties of sand abruptly change and
the granular structure cannot be sheared any longer without a
volume increase. This phenomenon, very important in prac-
tical applicationd 16|, was observed by Reynold47], and |
is referred to as the “Reynolds” or “dilatancy” transition.
In the present model an analogy appears between the coop-
erativity effects underlying the Reynolds transition in granu-
lar media and the actual spin glass transition where a diverg-
ing length naturally exist§7,9].

This paper also analyzes the grain density relaxation in
different dynamical situations, and relates our observations
to corresponding phenomena in real experiments. We find I
that in the present model the logarithmic behavior, known
from experimental measurements in sequences of[tHfs FIG. 1. Schematic picture of the lattice model considered here.
is recovered, and further predictions are possible. We obwavy and straight lines represent the two different kinds of bonds
serve a different dynamical behavior for grain deposition in & ;= +1). Filled (empty circles are present particles with spin
single vibration process, where stretched exponentials a®=+1 (S=-1).
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The internal variabless, describe local quantities, as rota-

tions and positions, which actually determine the geometrical Og';z o
frustration[6,7]. 077 .’

We want to study this system in presence of “external 07'65
vibrations” and “gravity.” So we define a dynamics in our —_ *
model as a random diffusion of particles on a square lattice £ 076

tilted by 45° (see Fig. 1in such a way as to preserve the Q0735 .

constraints of Eq(1). The particles attempt a move upward 075

with probability P, and downward with P; (with 0.743 N
P,+P,=1). The move is made only if the internal degrees 007-;‘5‘ o ee o0

of freedom satisfy Eq(1). Similarly a spin flips with prob- w0 10° 100 10° 10° 10° 10°

ability one if there is no violation of Eq1), and does not flip T

otherwise. In the absence of vibrations, the effect of gravity

imposesP,=0. When vibrations are switched oR, be- FIG. 2. Final bulk densityp(7), in static configurations, as a
comes finite. The crucial parameter which controls the dy{function of the logarithm duration of the vibration, for a box of
namics and the final density is the rati¢t) = P,(t)/P(t) size 100 200. A characteristic vibration duratiorf ~2x 10? ap-
which describes the amplitude of the vibration. pears, below which the final densipy is not affected by the vibra-

This model can be described in terms of the followingtons-
Hamiltonian in the limitJ—c (see[9]) A. Density relaxation in a single “tap”

As first we choose to decrease the initial ratio
Xo=P,(t=0)/P4(t=0) in time according a linear law as
_H:“E) ‘](fijsisi_:I-)”injjL:“Ei Ni, (2 x(t)=xo(1—t/7)6(7—1t) andt>0, wherer is the duration

. of the vibration or the inverse velocity of quenchifvge take
Xo=1). This process corresponds, in the magnetic analogy,
to a quench of the system from a high temperature state.
With this procedure the systems attains a final “static” con-
figuration which is defined by the criterion that during a

where S==*1 are spin variablesp;=0 and 1 occupancy
variables, ande;j==1 quenched interactions associated

with the bonds of the lattice. Hamiltonig@) opens the wa ) ! : :
4@ op y dixed timet,epos0nothing changes any longer. In our simula-

to a definite correspondence with disordered magnetic sy fixed _ 330 h h Lo T
tems as spin glasses, and was actually proven to undergof“gn we fixedtepose much longer than any intrinsic time

spin glass transition at high densiter low temperature N absence_of vibration. Time is m_easured in such a way
[14,18. Here we just note that it reduces in the-oo limit that_one unit corre;ponds to one single average update of all
to the usuatt J Ising spin glas$8], and in the limitJ— o to particles and all spins O.f the_ Iatt|c§. . :

a version ofsite frustrated percolatiori10,14. When the The data we present in this section were obtained in a box

particle number is fixed, the configuration space of the sys2f Sizé 100<200, and their states have been averaged over

tem obtained in this last limit is the same as that of the32—212 differen{e;;} configurationgaccording to the value

frustrated lattice gas introduced at the beginning of this sec! 7)- These values, as those used below, are chosen to con-

tion. trol finite size effects on our Monte Carlo data as much as
The Monte Carlo simulations of the model describedPossible. They are large enough to say that our results are

above are performed on a tilted lattice with periodic bound-Strongly robust to size changes. , ,

ary conditions along the axis and rigid walls at bottom and __ After a vibration cycle has been applied as described

top. After fixing the random quenched; on the bonds, a above, the system presents final densities which clearly de-
. J : Jetn oA

random initial particle configuration is prepared by randomlyP€nd on the value of the of the vibrations. As depicted in

inserting particles of given spin into the box from its top andF19- 2. the final “static” bulk densitypy(7), defined as the
then letting them fall down, with the described dynamics™ean density in the lower 25% of the box, increases asymp-

(P,=0), until the box is filled. The two basic Monte Carlo totically with 7, reaching an ideal maximal density value
moves(the spin flip and particle hoppipre done in ran- Pm When7—o (from our data we have roughly,~0.79).

dom order. To obtain an initial low density configuration we From the data in Fig. 2 one sees that a characteristic value of
do not allow particle spins to flip in this preparation process.” €Xists, below which vibrations do not affect the final.

The state prepared in this way has a density of about 0.5180" OUr System size this value* corresponds to about

which corresponds to a random loose packing particle in wd “23 10°. _ .
dimensions. During the dynamical process described above, we have

recorded the time dependence of the mean bulk density
p(t,7), measured as the mean density in the lower 25% of
the box at timet as depicted in Fig. 3. At=0 the density
starts from the initial low value defined by our preparation
As already mentioned, we study the effects of “vibra- rule p;=0.518. With increasing time, it approaches a definite
tion” by using a finite value forP,. It is experimentally plateau which corresponds to the “static” limit(7). It is
known that sand, randomly poured into a box, reaches highegvident that this process takes places on time scales which
density states after shaking. Let us explore this phenomenatiepend drastically orr. In contrast to the functional form
in our model. proposed by other mode(see, for instance, those quoted in

Ill. SIMULATING VIBRATIONS
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FIG. 3. Bulk densityp(t,7) relaxation, in a single vibration FIG. 5. Bulk densityp(t,7) relaxation, in a single vibration

process(a single “tap”), as a function of log time for different ~ process, given in Fig. 3, rescaled according to By.which is the
values of the vibration durations (from left to right continuous line in this picture, as a function of rescaled time
7=1.64x10°, 1.64<10", 1.64< 107, 6.56x1(%, 1.64<10% and  (t—to)/o.
1.64x10%. The density starts from a definite valyg=0.518,
which depends on the preparation process of the initial configuralntersection point of the two curves in E@l). The data for
tion, and grows to the final valuey(7) reported in Fig. 2. Dashed the density relaxation may be rescaled according to(8).
lines are fits using Eq:3), and bold continuous lines are stretched and the scaling plot is given in Fig. 5. This picture reveals
exponential fits according to E¢b), as explained in the text. Their that, although the data scale well with respect to the variable
parameters are respectively reported in Figs. 4 and 6. (t—tg)/ 7o, for long times the simple master function pro-
vided by Eq.(3), which implies an exponential relaxation,
[19-21)), our data are reasonably well fitted by a Fermi-seems to show a small but systematic deviation from the

Dirac function Monte Carlo(MC) data. These observations lead us to try
—tn/m better fits in this long time region and our data seem well
p(t,7)=ps(7) = [ps(7) = pi](1+e "0/ 70)/[1+expl((t fitted by a “stretched exponential” form
—to)/ 70)], 3

p(t,7)=ps(7) = flps(7) — dolexd — (t—to)/ 70)’], (5)

as shown in Fig. 3 with the bold continuous lines. In Es).
do is an initial arbitrary densitfwe taked,=0.60) above
which we actually make the fit. This is a four parameter fit;
however, we find that one can take the facfoequal to
f=1.3 and the exponeng=2.3 as independent of. The
parametersr, andty of Eq. (5) have moreover nearly the
_ o _ « . . same behavior as a function ofas the ones described above
To(7) = (7l 72) "+ Ate(7) = (7/tx)"+b if 7>7%, (4) for the parameters of Eq3) (see Fig. 6. Also in this case
where 7_=26, 7,=0.5, t_=48, t,=1.15, t,=0.02, and Eq. (4) approximately holds[actually 7.=62, 7,=0.2,

«=0.6 (a=—12 andb=—5). r* is actually defined as the &= 19, and «a=0.67 for 7o(7), and t-=25, t,=1.6,
t,=0.0008,b= —56, anda=0.42 forty(7)]. The relaxation

where p(7) =lim_.p(t,7). These fits are shown by the
dashed line in Fig. 34;=0.518 is the initial state densjty

The two fitting parameters, andty are reported in Fig. 4.
They undergo a change of behaviorrat 7*:

To(7)=7-, to(n)=7lti+to if 7<7*,
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FIG. 4. Parameters, andt, of fits from Eq.(3) for the density
relaxation after a single “tap” depicted in Fig. 3, as a function of  FIG. 6. Parameters of the stretched exponentialrfitand t,
the logarithm of the vibration duration Their (power law behav-  [see Eq.(5)], from the fit of density relaxation in the long time
ior abruptly changes at*, the characteristic vibration duration be- region of a single vibration process, as a function of the logarithm
low which the finalp, is not affected. The two superimposed curves of the vibration duratiorr. Their behavior is analogous to the one
are fits described in Ed4). described in Fig. 4.
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FIG. 7. Static bulk density(t,) from our MC data as a funggion FIG. 8. Experimental data from Kniglet al. (square and our
of tap numbert,,, for tap vibrations of amplitude&,=1.0x10"",  MC data(circle) on density relaxatiop(t,) in a sequence of taps,

50x107%, 1.0x107% 20x10°°% 5.0x107% 7.0<10°% a5 a function of tapping numbes, rescaled according to the loga-
1.0x10°?, 2.0<10°% 5.0<10°?, 0.1, 0.5(from bottom to top, ithmic function given in Eq(6).

and durationr=3.28x 10'. The continuous curves are logarithmic

fits from Eq.(7), the parameters of which are given in Fig. 9. . .
We find that for a sequence of our MC taps of fixed du-

process here explored corresponds experimentally to the defation  and amplitudex,, Eq. (7) is an excellent fit even
sity relaxation after a single application of vibrations to thefixing the parametec=1.3 as independent of, (we now

box (a single “tap”). work at fixed) and imposing that the fit function passes at
t,=0 in pg=0.7388, i.e., the measured static initial state
B. Sequences of taps density of our system, obtained from the prepared random

In connection to recent experiments on compaction dystarting configuration letting the particles just go down and
namics in granular media, we also studied the phenomena #feir spin flip according the given rules. In this way we can
density relaxation during a sequence of taps. Experimentalljeduce to just two the parameters to optimize in the fits with
a “tap” is the shaking of a container filled with grains by EQ. (6). The phenomenological paramemay be inter-
vibrations of given duration and amplitude. In the following Preted as the ratio of two typical times in the system
MC simulations, each single tap is a process in which vibra{C= 71/7,), and the finding that it is constant with the vibra-
tions are applied, to our particle on the lattice, according to dion amplitudex, in the range explored,<[1.0 10 4,0.5]
law x(t)=x,=const forte[0,7] and then the system is let suggests that in our model these are proportional to each
to find a stationary state for a time,,,scin which x(t) =0. other. _ _ o
So herer is the duration of the vibration. After each tap we  Our results for the density relaxation are shown in Fig. 7,
measure the static bulk density of the systeft),) (t, is the  and the values of the two fitting parametprsand 7, in Fig.
nth tap number We repeat the tapping sequence for differ- 9. The parametet,, at fixed7=36.69, seems to be a simple
ent values of the tap amplitudg and fixed durationr (see ~ Power law of the vibration amplitucds:

Fig. 7). For this Monte Carlo experiment, which was very
CPU-time consuming, we considered a system of size

30% 60, averaged over 32 differeaf configurations, and fix 0
7=36.69. 10’
To describe experimental observations about grain density - .
relaxation under a sequence of taps a logarithmic law was 107 .
proposed in Ref[15]: o' Se
p(th)=po—Ap. [[1+BIn(t,/74+1)]. (6) 107 ey
This law has proved to be satisfied very well by relaxation %o
data in the present modg9], which can be excellently res- 0776 .
caled with experimental data using this four parameter fit as 0.774 e
shown in Fig. 8. 0.772 g
In addition our MC data allow us to give more insight into g 077 '
the parameters of E@6). After a few manipulations, Ed6) S-o768 !
may be transformed into 0766 o%e
0.764 . .
p(ty)=p—In(C)(p— po)/In(t,/mo+C), (7 002 0T 100 10 10
X,

where In€)=1/B, o= 7, /c, and we have written in explicit

form the asymptotic variation in density as the difference of FIG. 9. Fit parameters.. and 7, for density relaxation from Eq.
a final asymptotic valueg.) and an initial value §o), i.e.,  (7), as a function of vibration amplitudgy. 7o(xo) seems to be well
Ap.=p.—po. described by two simple power laws.



3966 NICODEMI, CONIGLIO, AND HERRMANN 55

0.62

0.61

(Ip(tn)l'poo)./(pool_p())
pty)

tn/ To

FIG. 11. Experimental data from Kniglt al. on grain density
nrelaxationp(tn) in a sequence of taps for four different values of
\brations amplitude, as a function of the tap sequence number
t, . The continuous superimposed lines are fits according t47g.
fixing the parametet to a constant value=1.4. The parameters of
the fit are reported in Fig. 12.

FIG. 10. Our MC data(circles of the density relaxation in a
sequence of taps of fixed amplitude and duration rescaled accordi
to Eq. (7) with two parameterggiven in Fig. 9, as a function of
rescaled tap numbetr, /7. Equation(7) gives the muster curve
—In(c)/In(x+c) with c=1.3, drawn as a continuous line.

7o(X0) = (Xo/X) 7. (®) We performed also another Monte Carlo experiment with
our frustrated lattice gas model, which concerns short se-
guences of taps in which the vibration amplitudgs varied

at fixed amplitude incremenkx, holding constant their du-
ration 7. The process actually consists in a sequence of
2m—1 taps, of amplitudex; - - - X, - - - Xo;—1, from an
initial amplitude x;=0=x; to a maximal amplitude
x;=0.6=X,, and then back again t&=0=X,,_1: More

with r =0.776,K =70, andX,;=4x 10"%. To show the qual- Precisely. ~ the = sequence  of  amplitudes s
ity of the fit, our Monte Carlo data corresponding to 11 dif- X=X+ (n=1)AX, if n<m and x,=x;—(n—-m)Ax, if

ferent time series in a range of four orders of magnitude i}~ ™M (S€€ Fig. 18 This analysis allows us, moreover, to test
the vibration amplitudex, (xoe[1.0 107%,0.5]), rescaled the validity of our previous findings about the universality of

according to Eq(7) with these given two parameters values, (e relaxation processes described by 0. _
are presented in Fig. 10. Our data for the system described above of siz& G0,

As stated above and proved[ib5], Eq. (7) gives a good ayeraged over 32 diffgremi configurations, are depicted in
four parameter fit for experimental data about density relaxFi9: 14 for three different values of (7=3.67x 1,
ation in a tapping sequence. Interestingly we find, moreover3-6 /X 10", and 3.6%1() and four different values of
that it is possible to produce a good quality fit for these data o (Axo=0.025, 0.05, 0.1, and 0.2). We find that these
also with the parametar considered as a constant. Our pre-data may be described by a law formally equal to &g,
vious analysis, based on four experimental time series from
Knight et al. [15] (their lower capacitor measurements p(X)=p=—In(C)(p=—po)/IN(X/ xo+C), (10

shows that is bounded in a short interval. The average over here th — i intc=13. th |
the previous values af of the four series gives=1.4, and where the constart 1S set again ta=1.5, theé same value

with this fixed parameter we produced a good fit of data fromused before in E¢(7). Here, in Eq(10), the equivalent time

Ref.[15]. The fit is shown in Fig. 11 for these experimental variablex is chosen to ba=xj, for the increasing ramp, and
data, and its three parameters depicted in Fig. 12. For the two

For low x, the exponents are=1 and X=0.26, but data
show a crossover toy=0.6 and X=3.9 above
x5 ~4x10"3. The law which linksp.. to X, appears to be
less simple. A possible fit for intermediate valuesxgfis

P(Xo) =1 —1(Xo /X1 +K), 9

intermediate vibration amplitude series it is also possible to 07 { .
produce excellent fits with just two parameters, fixjmgto 0.68 1o 0.
the actual experimentally measured initial configuration den- 0.66 10'
sity. A fit of experimental data witlt=1.3 is just slightly 8064 Q8 - 10°
poorer. It would be interesting to analyze other experimental <™ Jw’ 107
data after the insight of these theoretical results, and to pro- 0.62 . . 102
duce measurements to better understand the limits of the 06| 102 5
presented model and test its main forecasts. 0.58 10

. 141.61.820222426 1416182022242.6 14161.82022242.6

It is a well known fact, in granular media, that the prop-
erties of the system in a given configuration strongly depend
on its preparation and past history. Specifically, if you make FiG. 12. Fit parameters from E@7) for the experimental data
a transformation, closing a loop in the parameters space @ff Knight et al. on grain density relaxation presented in Fig. 11.
the system, the final state strongly depends on the details ghe parameters are reported as a functionydfy=1.4, 1.8, 2.3,
the path and not just on the final values of the parametersnd 2.7, the ratio of the peak acceleration of a tap,to g=9.81
Previous data show that this occurs in this lattice model toom/s?, the gravitational accelerationyE a/g).
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FIG. 13. This picture depicts the sequence of amplituglef 20795 3 om
the second kind of tapping sequence we study in the paper, as a <J, 0.79 ﬂo.vss
function of the tapping numbemn. Here the amplitude is linearly 0785 T 076
increased and then decreased with fixed single “tap” duration 078 %@(::E 0755
and amplitude incremerior decrementAx,. 0T 008 0& o5 oz 0T o oo o1 o1 o2
Xg AXO

to be x=x;—x, for the decreasing ramp, respectively. The

starting density valuepg is set, as in Eq(7), equal to FIG. 15. Parameters of data fits, from E@0), for the density
po=0.7388=p(x;) to fit the increasing amplitude ramp of rglaxatlon Qescrlbeq in Fig. 14. !_ef;b;c and y, for data in lower
the sequencedower wings of Fig. 14, and top(x;) for the wings of Flg. 14, W|th_r=3.67 (circles, 3.67x 10" (square, and
decreasing amplitude ranppper wings of Fig. 14 3.67x 107 (triangles. Right: analogously for upper wings.

The fits of our data with Eq(10) are the superimposed o ) ) )
continuous curves in Fig. 14, and the fitting parameter&ally it 1S possible to study the part|<2:Ie mean square displace-
p.(1,AX,) and xo(7,Ax,) are reported in Fig. 15. Our MentR(t)=((1/N)Z;(ri(t)—r;(0))). A very interesting
Monte Carlo data rescaled according Etp) are reported in phenomenon is observed f_or _densmes close_ to thg maximal
Fig. 16. value p,,: R?(t) shows deviations from the linear time de-

The characteristics of the present tapping sequence aR€ndence typical of standard Brownian diffusive motion and
very different from the others presented before, and so thBrésents an inflection point as depicted in Fig. 17 for a sys-
good quality of this last scaling confirms the stability of the &M Of size 3 32. This signals the existence of two char-
structure for the relaxation represented by &. Moreover, ~ acteristic time regimes for particle motidas already argued
the finding that in our model the constanseems very ro- in [19).

bust to changes in the tapping process is surprising. _From the long time behavior ¢&“(t) ~Dt we extract the
diffusion coefficientD(p), which goes to zero at about
IV. DIEEUSIVITY PROPERTIES pPm, Signaling a localization transition in which particles are

confined in local cages and the macroscopic diffusionlike

To characterize the state of the packing and its capabilitprocesses are suppress@ge Fig. 18 This phenomenon
for internal rearrangement, we studied particle self-may also be described in a different wayy, is the density
diffusivity at fixed global density by setting=1. Specifi- above which it becomes impossible to obtain a macroscopic
rearrangement of the particle positions without increasing the
system volume, i.e., the density at which macroscopic shear
in the system is impossible without dilatancy. This then
seems to correspond to the quoted Reynolds transition in real
granular media.

As shown above, two time regimes for particle motion

0.0

[aYa)
J
= O
&
2
Q— .
4
~
3.
0.0 01 02 03 04 05 06 g
X0 <
N’
FIG. 14. Density relaxation for a sequence of taps where the &
amplitude is linearly increasedower wingg and then decreased 0 1 2 3 4 5 6 7 8
(upper wing$, with fixed single “tap” durationr and amplitude X/XO
increment (or decrement Axy. The data are taken for=3.67
(circles, 3.67x 10" (squarg, and 3.6 107 (triangles and, at each FIG. 16. Density relaxation data from Monte Carlo experiments

fixed 7, for Axy=0.025, 0.05, 0.1, and 0@rom top to bottom of described in Fig. 14, rescaled according to Ef), with the pa-
each series Superimposed fits are from E(.0), and their param- rameters given in Fig. 15. The full line gives the analytic form of
eters are depicted in Fig. 15. Eq. (10).
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FIG. 17. Log-log plot of particle mean square displacement FIG. 18. Log-log plot of diffusivity constar(p) as a function
R2(t) as a function of time at different system densities. FromOf the densityps. It decreases to zero at abquf~0.79.
above the fixed densities apg=0.3057, 0.5771, 0.7412, 0.7734,

0.7814, 0.7823, and 0.7832. A sharp transition, at the maximum VI. CONCLUSIONS
density, to a state with suppressed macroscopic diffusion is clearly
visible. We have studied a frustrated lattice gas linked to a spin

glass and to frustrated percolation, which gives agreement
appear in this model. This corresponds to the known fact thakith the dynamic behavior of granular media. It shows com-
time correlation functions of Hamiltoniai2) have two char-  paction and a typical logarithmic relaxation of density under
acteristic times at high densitiédew temperatureg14]. The  tapping, as found in experimerits5]. It moreover naturally
shorter is linked to the motion of particles inside cages ofsignals a correspondence between the Reynolds transition in
other particles, while the longer corresponds to macroscopigranular media and the spin glass transition in magnetic al-

diffusionlike motion. loys [7,9]. The same model has also been exploited to give
microscopic insight into static stress distributions in disor-
V. SPIN GLASS TRANSITION dered granular systems, where agreement was also found

. _ i . i ) with experimental results9]. Previously, without the gravi-

The densitypr, interestingly coincides with the density at (4tional term in its Hamiltonian, it has been related to the
which the spin glas$SG) transition of Hamiltonian(2) (for  ppysics of the glass transition in glass forming liquids].
J—c°) is located. This would imply that g, the SG cor- A common aspect, from the microscopic point of view,
relation lengthésc diverges, signaling the presence of col-yhich appears in all these seemingly different materials is
lective behavior in the system. In SG this length is infinite iny,e existence of mechanisms leading to frustrations, as
the whole region below the transition when it exists. Onlyquenched disorder of the spin interactions in spin glasses,
some quant|t|e32, agsg or the nonlinear susceptibility steric constraints, and the subsequent grain interlocking in
xs6=[(IN)Zj;gijlav, With g;;=(SniS;n;), present clear granular media or the formation of local arrangements of
divergences at the SG transition. On the contrary, quantitiegyolecules which kinetically prevent all the molecules from
like the specific heat, the linear susceptibility, or the com-reaching the crystalline state in glass-forming liquids. From
pressibility have no divergent critical behavior and look the thermodynamic point of view, the model studied here
quite smooth around the critical point. In two dimensionsciarifies the analogy between the role that vibrations play in
(2D), the SG and the diffusivity transitions occur at the high-non-thermal systems as granular media and role of tempera-

est possible density in the system. In that sense the transitiqfire in thermal systems as spin glasses or glass-forming lig-
in 2D is only “dynamical:” one sees an effective transition jds.

the position of which slowly shifts to larger densities for

longer observation times. We expect the same to occur in 2D

for th_e_ Reynolds transition too. The com_mdem_ce of the SG ACKNOWLEDGMENT

transition and the suppression of self-diffusivity suggest a

correspondence between the Reynolds transition in granular We thank IDRIS for computer time on Cray-T3D, and
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