
PHYSICAL REVIEW E APRIL 1997VOLUME 55, NUMBER 4
Frustration and slow dynamics of granular packings
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Density relaxation in a frustrated lattice gas subject to gravity and vibrations is explored via Monte Carlo
simulations. A comparison to some recent experimental results on compaction of granular media gives good
agreement, and interesting predictions are possible.@S1063-651X~97!15803-2#

PACS number~s!: 05.45.1b, 46.10.1z, 81.20.Ev, 81.05.Rm
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I. INTRODUCTION

Dynamical processes in granular media show fascina
behavior@1–4#. The particular role of disorder and fluctua
tions in granular dynamics has led several authors@1,5–7# to
propose an analogy to frustrated statistical systems suc
spin glasses@8#.

Recently a frustrated lattice gas model has been in
duced to describe static and dynamic properties of gran
materials@9#. This microscopic model is based on an analo
with frustrated percolation@10#, expressed in terms of
Hamiltonian formalism in which disorder and frustration a
key elements. In this statistical model, ‘‘vibrations’’ play th
role of temperature in usual thermal systems@1,11–13#. Its
quenched disorder and the consequent frustration try to
scribe the general physical mechanisms underlying the p
nomenon of ‘‘geometrical’’ frustration known in granula
media. The same model, without the gravitational contri
tion in the Hamiltonian, has been previously related to
physics of the glass transition in glass forming liquids@14#.

Here we describe the combined effects of vibrations a
gravity in this model, and compare them to experimen
data. A well known experiment with granular systems is
compaction of sand. When a box filled with loose pack
sand is shaken at low amplitude, density visibly increa
@15#. If in addition, the density goes beyond a definite thre
old, the mechanical properties of sand abruptly change
the granular structure cannot be sheared any longer witho
volume increase. This phenomenon, very important in pr
tical applications@16#, was observed by Reynolds@17#, and
is referred to as the ‘‘Reynolds’’ or ‘‘dilatancy’’ transition
In the present model an analogy appears between the c
erativity effects underlying the Reynolds transition in gran
lar media and the actual spin glass transition where a div
ing length naturally exists@7,9#.

This paper also analyzes the grain density relaxation
different dynamical situations, and relates our observati
to corresponding phenomena in real experiments. We
that in the present model the logarithmic behavior, kno
from experimental measurements in sequences of taps@15#,
is recovered, and further predictions are possible. We
serve a different dynamical behavior for grain deposition i
single vibration process, where stretched exponentials
551063-651X/97/55~4!/3962~8!/$10.00
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found. The robustness to changes of these structural pro
ties is also analyzed.

II. MODEL

The model we study here is described in@9#, and we
briefly summarize its essential characteristics. It consists
system of particles diffusing on a square lattice whose bo
are characterized by fixed random numberse i j561 ~see
Fig. 1!. On sitei we setni51 if a particle is present and 0
otherwise. Particles are characterized by an internal de
of freedomSi561 and are subjected to the constraint th
whenever two (i and j ) are neighboring, their ‘‘spin’’ must
satisfy the relation

e i j SiSj51, ~1!

i.e., they have to fit the local ‘‘geometrical’’ structure. A
high enough density, particles feel the effects of t
‘‘quenched’’ frustration imposed by the choice of thee i j . In
fact, in resemblance to frustrated percolation@10#, they can
never close a frustrated loop in the lattice because along s
loops the quantity( i , jP loop(e i j SiSj21) cannot be zero@8# as
imposed by the condition of Eq.~1!. In the system there will
then unavoidably be empty sites. The bond variablese i j
model the general effects of geometrical frustration in gra
lar systems due to the shapes and arrangements of part

FIG. 1. Schematic picture of the lattice model considered he
Wavy and straight lines represent the two different kinds of bo
(e i j561). Filled ~empty! circles are present particles with sp
Si511 (Si521).
3962 © 1997 The American Physical Society
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55 3963FRUSTRATION AND SLOW DYNAMICS OF GRANULAR . . .
The internal variablesSi describe local quantities, as rota
tions and positions, which actually determine the geometr
frustration@6,7#.

We want to study this system in presence of ‘‘extern
vibrations’’ and ‘‘gravity.’’ So we define a dynamics in ou
model as a random diffusion of particles on a square lat
tilted by 45° ~see Fig. 1! in such a way as to preserve th
constraints of Eq.~1!. The particles attempt a move upwa
with probability P2 and downward with P1 ~with
P11P251). The move is made only if the internal degre
of freedom satisfy Eq.~1!. Similarly a spin flips with prob-
ability one if there is no violation of Eq.~1!, and does not flip
otherwise. In the absence of vibrations, the effect of grav
imposesP250. When vibrations are switched on,P2 be-
comes finite. The crucial parameter which controls the
namics and the final density is the ratiox(t)5P2(t)/P1(t)
which describes the amplitude of the vibration.

This model can be described in terms of the followi
Hamiltonian in the limitJ→` ~see@9#!

2H5(̂
i j &

J~e i j SiSj21!ninj1m(
i
ni , ~2!

whereSi561 are spin variables,ni50 and 1 occupancy
variables, ande i j561 quenched interactions associat
with the bonds of the lattice. Hamiltonian~2! opens the way
to a definite correspondence with disordered magnetic
tems as spin glasses, and was actually proven to under
spin glass transition at high density~or low temperature!
@14,18#. Here we just note that it reduces in them→` limit
to the usual6J Ising spin glass@8#, and in the limitJ→` to
a version ofsite frustrated percolation@10,14#. When the
particle number is fixed, the configuration space of the s
tem obtained in this last limit is the same as that of
frustrated lattice gas introduced at the beginning of this s
tion.

The Monte Carlo simulations of the model describ
above are performed on a tilted lattice with periodic boun
ary conditions along thex axis and rigid walls at bottom an
top. After fixing the random quenchede i j on the bonds, a
random initial particle configuration is prepared by random
inserting particles of given spin into the box from its top a
then letting them fall down, with the described dynam
(P250), until the box is filled. The two basic Monte Car
moves~the spin flip and particle hopping! are done in ran-
dom order. To obtain an initial low density configuration w
do not allow particle spins to flip in this preparation proce
The state prepared in this way has a density of about 0.
which corresponds to a random loose packing particle in
dimensions.

III. SIMULATING VIBRATIONS

As already mentioned, we study the effects of ‘‘vibr
tion’’ by using a finite value forP2. It is experimentally
known that sand, randomly poured into a box, reaches hig
density states after shaking. Let us explore this phenome
in our model.
al
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A. Density relaxation in a single ‘‘tap’’

As first we choose to decrease the initial ra
x05P2(t50)/P1(t50) in time according a linear law a
x(t)5x0(12t/t)u(t2t) and t.0, wheret is the duration
of the vibration or the inverse velocity of quenching~we take
x051). This process corresponds, in the magnetic analo
to a quench of the system from a high temperature st
With this procedure the systems attains a final ‘‘static’’ co
figuration which is defined by the criterion that during
fixed time t reposenothing changes any longer. In our simul
tion we fixedt repose5330 much longer than any intrinsic tim
in absence of vibration. Timet is measured in such a wa
that one unit corresponds to one single average update o
particles and all spins of the lattice.

The data we present in this section were obtained in a
of size 1003200, and their states have been averaged o
32–512 different$e i j % configurations~according to the value
of t). These values, as those used below, are chosen to
trol finite size effects on our Monte Carlo data as much
possible. They are large enough to say that our results
strongly robust to size changes.

After a vibration cycle has been applied as describ
above, the system presents final densities which clearly
pend on the value of thet of the vibrations. As depicted in
Fig. 2, the final ‘‘static’’ bulk densityrs(t), defined as the
mean density in the lower 25% of the box, increases asy
totically with t, reaching an ideal maximal density valu
rm whent→` ~from our data we have roughlyrm'0.79).
From the data in Fig. 2 one sees that a characteristic valu
t exists, below which vibrations do not affect the finalrs .
For our system size this valuet* corresponds to abou
t*'23102.

During the dynamical process described above, we h
recorded the time dependence of the mean bulk den
r(t,t), measured as the mean density in the lower 25%
the box at timet as depicted in Fig. 3. Att50 the density
starts from the initial low value defined by our preparati
rule r i50.518. With increasing time, it approaches a defin
plateau which corresponds to the ‘‘static’’ limitrs(t). It is
evident that this process takes places on time scales w
depend drastically ont. In contrast to the functional form
proposed by other models~see, for instance, those quoted

FIG. 2. Final bulk densityrs(t), in static configurations, as a
function of the logarithm durationt of the vibration, for a box of
size 1003200. A characteristic vibration durationt*'23102 ap-
pears, below which the final densityrs is not affected by the vibra-
tions.
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3964 55NICODEMI, CONIGLIO, AND HERRMANN
@19–21#!, our data are reasonably well fitted by a Ferm
Dirac function

r~ t,t!5rs~t!2@rs~t!2r i #~11e2t0 /t0!/@11exp„~ t

2t0!/t0…#, ~3!

where rs(t)5 limt→`r(t,t). These fits are shown by th
dashed line in Fig. 3 (r i50.518 is the initial state density!.
The two fitting parameterst0 and t0 are reported in Fig. 4
They undergo a change of behavior att;t* :

t0~t!5t, , t0~t!5t/t11t, if t,t* ,

t0~t!5~t/t2!
a1a,t0~t!5~t/t2!

a1b if t.t* , ~4!

where t,526, t250.5, t,548, t151.15, t250.02, and
a50.6 (a5212 andb525). t* is actually defined as the

FIG. 3. Bulk densityr(t,t) relaxation, in a single vibration
process~a single ‘‘tap’’!, as a function of log timet for different
values of the vibration durationt ~from left to right
t51.643100, 1.643101, 1.643102, 6.563102, 1.643103, and
1.643104). The density starts from a definite valuer i50.518,
which depends on the preparation process of the initial config
tion, and grows to the final valuers(t) reported in Fig. 2. Dashed
lines are fits using Eq.~3!, and bold continuous lines are stretch
exponential fits according to Eq.~5!, as explained in the text. Thei
parameters are respectively reported in Figs. 4 and 6.

FIG. 4. Parameterst0 andt0 of fits from Eq.~3! for the density
relaxation after a single ‘‘tap’’ depicted in Fig. 3, as a function
the logarithm of the vibration durationt. Their ~power law! behav-
ior abruptly changes att* , the characteristic vibration duration be
low which the finalrs is not affected. The two superimposed curv
are fits described in Eq.~4!.
-

intersection point of the two curves in Eq.~4!. The data for
the density relaxation may be rescaled according to Eq.~3!,
and the scaling plot is given in Fig. 5. This picture reve
that, although the data scale well with respect to the varia
(t2t0)/t0, for long times the simple master function pro
vided by Eq.~3!, which implies an exponential relaxation
seems to show a small but systematic deviation from
Monte Carlo~MC! data. These observations lead us to
better fits in this long time region and our data seem w
fitted by a ‘‘stretched exponential’’ form

r~ t,t!5rs~t!2 f @rs~t!2d0#exp@2„~ t2t0!/t0…
b#, ~5!

as shown in Fig. 3 with the bold continuous lines. In Eq.~5!
d0 is an initial arbitrary density~we taked050.60) above
which we actually make the fit. This is a four parameter
however, we find that one can take the factorf equal to
f51.3 and the exponentb52.3 as independent oft. The
parameterst0 and t0 of Eq. ~5! have moreover nearly the
same behavior as a function oft as the ones described abov
for the parameters of Eq.~3! ~see Fig. 6!. Also in this case
Eq. ~4! approximately holds@actually t,562, t250.2,
a5219, and a50.67 for t0(t), and t,525, t151.6,
t250.0008,b5256, anda50.42 for t0(t)#. The relaxation

a-

FIG. 5. Bulk densityr(t,t) relaxation, in a single vibration
process, given in Fig. 3, rescaled according to Eq.~3!, which is the
continuous line in this picture, as a function of rescaled tim
(t2t0)/t0.

FIG. 6. Parameters of the stretched exponential fit,t0 and t0
@see Eq.~5!#, from the fit of density relaxation in the long tim
region of a single vibration process, as a function of the logarit
of the vibration durationt. Their behavior is analogous to the on
described in Fig. 4.
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55 3965FRUSTRATION AND SLOW DYNAMICS OF GRANULAR . . .
process here explored corresponds experimentally to the
sity relaxation after a single application of vibrations to t
box ~a single ‘‘tap’’!.

B. Sequences of taps

In connection to recent experiments on compaction
namics in granular media, we also studied the phenomen
density relaxation during a sequence of taps. Experiment
a ‘‘tap’’ is the shaking of a container filled with grains b
vibrations of given duration and amplitude. In the followin
MC simulations, each single tap is a process in which vib
tions are applied, to our particle on the lattice, according t
law x(t)5x05const fortP@0,t# and then the system is le
to find a stationary state for a timet reposein which x(t)50.
So heret is the duration of the vibration. After each tap w
measure the static bulk density of the systemr(tn) (tn is the
nth tap number!. We repeat the tapping sequence for diffe
ent values of the tap amplitudex0 and fixed durationt ~see
Fig. 7!. For this Monte Carlo experiment, which was ve
CPU-time consuming, we considered a system of s
30360, averaged over 32 differente i j configurations, and fix
t536.69.

To describe experimental observations about grain den
relaxation under a sequence of taps a logarithmic law
proposed in Ref.@15#:

r~ tn!5r`2Dr` /@11Bln~ tn /t111!#. ~6!

This law has proved to be satisfied very well by relaxat
data in the present model@9#, which can be excellently res
caled with experimental data using this four parameter fi
shown in Fig. 8.

In addition our MC data allow us to give more insight in
the parameters of Eq.~6!. After a few manipulations, Eq.~6!
may be transformed into

r~ tn!5r`2 ln~c!~r`2r0!/ ln~ tn /t01c!, ~7!

where ln(c)51/B, t05t1 /c, and we have written in explici
form the asymptotic variation in density as the difference
a final asymptotic value (r`) and an initial value (r0), i.e.,
Dr`5r`2r0.

FIG. 7. Static bulk densityr(tn) from our MC data as a function
of tap numbertn , for tap vibrations of amplitudex051.031024,
5.031024, 1.031023, 2.031023, 5.031023, 7.031023,
1.031022, 2.031022, 5.031022, 0.1, 0.5 ~from bottom to top!,
and durationt53.283101. The continuous curves are logarithm
fits from Eq.~7!, the parameters of which are given in Fig. 9.
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We find that for a sequence of our MC taps of fixed d
ration t and amplitudex0, Eq. ~7! is an excellent fit even
fixing the parameterc51.3 as independent ofx0 ~we now
work at fixedt) and imposing that the fit function passes
tn50 in r050.7388, i.e., the measured static initial sta
density of our system, obtained from the prepared rand
starting configuration letting the particles just go down a
their spin flip according the given rules. In this way we c
reduce to just two the parameters to optimize in the fits w
Eq. ~6!. The phenomenological parameterc may be inter-
preted as the ratio of two typical times in the syste
(c5t1 /t0), and the finding that it is constant with the vibra
tion amplitudex0 in the range exploredx0P@1.0 1024,0.5#
suggests that in our model these are proportional to e
other.

Our results for the density relaxation are shown in Fig.
and the values of the two fitting parametersr` andt0 in Fig.
9. The parametert0, at fixedt536.69, seems to be a simp
power law of the vibration amplitudex0:

FIG. 8. Experimental data from Knightet al. ~square! and our
MC data~circle! on density relaxationr(tn) in a sequence of taps
as a function of tapping numbertn , rescaled according to the loga
rithmic function given in Eq.~6!.

FIG. 9. Fit parametersr` andt0 for density relaxation from Eq.
~7!, as a function of vibration amplitudex0. t0(x0) seems to be well
described by two simple power laws.
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3966 55NICODEMI, CONIGLIO, AND HERRMANN
t0~x0!5~x0 /X!2g. ~8!

For low x0 the exponents areg51 andX50.26, but data
show a crossover to g50.6 and X53.9 above
x0*'431023. The law which linksr` to x0 appears to be
less simple. A possible fit for intermediate values ofx0 is

r`~x0!5r21/~x0 /X11K !, ~9!

with r50.776,K570, andX15431024. To show the qual-
ity of the fit, our Monte Carlo data corresponding to 11 d
ferent time series in a range of four orders of magnitude
the vibration amplitudex0 (x0P@1.0 1024,0.5#), rescaled
according to Eq.~7! with these given two parameters value
are presented in Fig. 10.

As stated above and proved in@15#, Eq. ~7! gives a good
four parameter fit for experimental data about density rel
ation in a tapping sequence. Interestingly we find, moreo
that it is possible to produce a good quality fit for these d
also with the parameterc considered as a constant. Our pr
vious analysis, based on four experimental time series f
Knight et al. @15# ~their lower capacitor measurements!,
shows thatc is bounded in a short interval. The average ov
the previous values ofc of the four series givesc51.4, and
with this fixed parameter we produced a good fit of data fr
Ref. @15#. The fit is shown in Fig. 11 for these experimen
data, and its three parameters depicted in Fig. 12. For the
intermediate vibration amplitude series it is also possible
produce excellent fits with just two parameters, fixingr0 to
the actual experimentally measured initial configuration d
sity. A fit of experimental data withc51.3 is just slightly
poorer. It would be interesting to analyze other experimen
data after the insight of these theoretical results, and to
duce measurements to better understand the limits of
presented model and test its main forecasts.

It is a well known fact, in granular media, that the pro
erties of the system in a given configuration strongly dep
on its preparation and past history. Specifically, if you ma
a transformation, closing a loop in the parameters spac
the system, the final state strongly depends on the detai
the path and not just on the final values of the paramet
Previous data show that this occurs in this lattice model t

FIG. 10. Our MC data~circles! of the density relaxation in a
sequence of taps of fixed amplitude and duration rescaled acco
to Eq. ~7! with two parameters~given in Fig. 9!, as a function of
rescaled tap numbertn /t0. Equation ~7! gives the muster curve
2 ln(c)/ln(x1c) with c51.3, drawn as a continuous line.
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We performed also another Monte Carlo experiment w
our frustrated lattice gas model, which concerns short
quences of taps in which the vibration amplitudex0 is varied
at fixed amplitude incrementDx0 holding constant their du-
ration t. The process actually consists in a sequence
2m21 taps, of amplitudex1 • • • xn • • • x2m21, from an
initial amplitude xi505x1 to a maximal amplitude
xf50.65xm and then back again toxi505x2m21: more
precisely, the sequence of amplitudes
xn5xi1(n21)Dx0 if n<m and xn5xf2(n2m)Dx0 if
n.m ~see Fig. 13!. This analysis allows us, moreover, to te
the validity of our previous findings about the universality
the relaxation processes described by Eq.~7!.

Our data for the system described above of size 30360,
averaged over 32 differente i j configurations, are depicted i
Fig. 14 for three different values oft (t53.673100,
3.673101, and 3.673102) and four different values of
Dx0 (Dx050.025, 0.05, 0.1, and 0.2). We find that the
data may be described by a law formally equal to Eq.~7!,

r~x!5r`2 ln~c!~r`2r0!/ ln~x/x01c!, ~10!

where the constantc is set again toc51.3, the same value
used before in Eq.~7!. Here, in Eq.~10!, the equivalent time
variablex is chosen to bex5xn for the increasing ramp, and

ing

FIG. 11. Experimental data from Knightet al. on grain density
relaxationr(tn) in a sequence of taps for four different values
vibrations amplitude, as a function of the tap sequence num
tn . The continuous superimposed lines are fits according to Eq.~7!,
fixing the parameterc to a constant valuec51.4. The parameters o
the fit are reported in Fig. 12.

FIG. 12. Fit parameters from Eq.~7! for the experimental data
of Knight et al. on grain density relaxation presented in Fig. 1
The parameters are reported as a function ofg (g51.4, 1.8, 2.3,
and 2.7!, the ratio of the peak acceleration of a tap,a, to g59.81
m/s2, the gravitational acceleration (g5a/g).
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55 3967FRUSTRATION AND SLOW DYNAMICS OF GRANULAR . . .
to be x5xf2xn for the decreasing ramp, respectively. T
starting density valuer0 is set, as in Eq.~7!, equal to
r050.73885r(xi) to fit the increasing amplitude ramp o
the sequences~lower wings of Fig. 14!, and tor(xf) for the
decreasing amplitude ramp~upper wings of Fig. 14!.

The fits of our data with Eq.~10! are the superimpose
continuous curves in Fig. 14, and the fitting paramet
r`(t,Dx0) and x0(t,Dx0) are reported in Fig. 15. Ou
Monte Carlo data rescaled according Eq.~10! are reported in
Fig. 16.

The characteristics of the present tapping sequence
very different from the others presented before, and so
good quality of this last scaling confirms the stability of t
structure for the relaxation represented by Eq.~7!. Moreover,
the finding that in our model the constantc seems very ro-
bust to changes in the tapping process is surprising.

IV. DIFFUSIVITY PROPERTIES

To characterize the state of the packing and its capab
for internal rearrangement, we studied particle se
diffusivity at fixed global density by settingx51. Specifi-

FIG. 13. This picture depicts the sequence of amplitudex0 of
the second kind of tapping sequence we study in the paper,
function of the tapping numbern. Here the amplitude is linearly
increased and then decreased with fixed single ‘‘tap’’ duratiot
and amplitude increment~or decrement! Dx0.

FIG. 14. Density relaxation for a sequence of taps where
amplitude is linearly increased~lower wings! and then decrease
~upper wings!, with fixed single ‘‘tap’’ durationt and amplitude
increment ~or decrement! Dx0. The data are taken fort53.67
~circles!, 3.673101 ~square!, and 3.673102 ~triangles! and, at each
fixed t, for Dx050.025, 0.05, 0.1, and 0.2~from top to bottom of
each series!. Superimposed fits are from Eq.~10!, and their param-
eters are depicted in Fig. 15.
s
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cally it is possible to study the particle mean square displa
ment R2(t)5^(1/N)( i„r i(t)2r i(0)…

2&. A very interesting
phenomenon is observed for densities close to the max
value rm : R

2(t) shows deviations from the linear time de
pendence typical of standard Brownian diffusive motion a
presents an inflection point as depicted in Fig. 17 for a s
tem of size 32332. This signals the existence of two cha
acteristic time regimes for particle motion~as already argued
in @19#!.

From the long time behavior ofR2(t);Dt we extract the
diffusion coefficientD(r), which goes to zero at abou
rm , signaling a localization transition in which particles a
confined in local cages and the macroscopic diffusionl
processes are suppressed~see Fig. 18!. This phenomenon
may also be described in a different way:rm is the density
above which it becomes impossible to obtain a macrosco
rearrangement of the particle positions without increasing
system volume, i.e., the density at which macroscopic sh
in the system is impossible without dilatancy. This th
seems to correspond to the quoted Reynolds transition in
granular media.

As shown above, two time regimes for particle motio

a

e

FIG. 15. Parameters of data fits, from Eq.~10!, for the density
relaxation described in Fig. 14. Left:r` andx0 for data in lower
wings of Fig. 14, witht53.67 ~circles!, 3.673101 ~square!, and
3.673102 ~triangles!. Right: analogously for upper wings.

FIG. 16. Density relaxation data from Monte Carlo experime
described in Fig. 14, rescaled according to Eq.~10!, with the pa-
rameters given in Fig. 15. The full line gives the analytic form
Eq. ~10!.
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3968 55NICODEMI, CONIGLIO, AND HERRMANN
appear in this model. This corresponds to the known fact
time correlation functions of Hamiltonian~2! have two char-
acteristic times at high densities~low temperatures! @14#. The
shorter is linked to the motion of particles inside cages
other particles, while the longer corresponds to macrosco
diffusionlike motion.

V. SPIN GLASS TRANSITION

The densityrm interestingly coincides with the density a
which the spin glass~SG! transition of Hamiltonian~2! ~for
J→`) is located. This would imply that atrm the SG cor-
relation lengthjSG diverges, signaling the presence of co
lective behavior in the system. In SG this length is infinite
the whole region below the transition when it exists. On
some quantities, asjSG or the nonlinear susceptibility
xSG5@(1/N)( i j gi j

2 #av, with gi j5^SiniSjnj&, present clear
divergences at the SG transition. On the contrary, quant
like the specific heat, the linear susceptibility, or the co
pressibility have no divergent critical behavior and lo
quite smooth around the critical point. In two dimensio
~2D!, the SG and the diffusivity transitions occur at the hig
est possible density in the system. In that sense the trans
in 2D is only ‘‘dynamical:’’ one sees an effective transitio
the position of which slowly shifts to larger densities f
longer observation times. We expect the same to occur in
for the Reynolds transition too. The coincidence of the
transition and the suppression of self-diffusivity sugges
correspondence between the Reynolds transition in gran
media, the SG transition in magnetic systems, and
‘‘ideal’’ glass transition in glass-forming systems@7,14#.

FIG. 17. Log-log plot of particle mean square displacem
R2(t) as a function of time at different system densities. Fro
above the fixed densities arers50.3057, 0.5771, 0.7412, 0.7734
0.7814, 0.7823, and 0.7832. A sharp transition, at the maxim
density, to a state with suppressed macroscopic diffusion is cle
visible.
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VI. CONCLUSIONS

We have studied a frustrated lattice gas linked to a s
glass and to frustrated percolation, which gives agreem
with the dynamic behavior of granular media. It shows co
paction and a typical logarithmic relaxation of density und
tapping, as found in experiments@15#. It moreover naturally
signals a correspondence between the Reynolds transitio
granular media and the spin glass transition in magnetic
loys @7,9#. The same model has also been exploited to g
microscopic insight into static stress distributions in dis
dered granular systems, where agreement was also fo
with experimental results@9#. Previously, without the gravi-
tational term in its Hamiltonian, it has been related to t
physics of the glass transition in glass forming liquids@14#.

A common aspect, from the microscopic point of vie
which appears in all these seemingly different materials
the existence of mechanisms leading to frustrations,
quenched disorder of the spin interactions in spin glas
steric constraints, and the subsequent grain interlocking
granular media or the formation of local arrangements
molecules which kinetically prevent all the molecules fro
reaching the crystalline state in glass-forming liquids. Fro
the thermodynamic point of view, the model studied he
clarifies the analogy between the role that vibrations play
non-thermal systems as granular media and role of temp
ture in thermal systems as spin glasses or glass-forming
uids.
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FIG. 18. Log-log plot of diffusivity constantD(r) as a function
of the densityrs . It decreases to zero at aboutrm'0.79.
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