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Coarsening of surface structures in unstable epitaxial growth
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Fachbereich Physik, Universit&GH Essen, D-45117 Essen, Germany
(Received 22 November 1996

We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-
dependent surface current. We derive scaling relations for the late stage of growth, where power law coars-
ening of the mound morphology is observed. For the lateral size of mounds we gbt&ifi with z=4. An
analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height
correlation function, while the direct numerical solution of the continuum equation shows conventional scaling
with z=4, independent of the shape of the surface curf&#063-651X97)12203-§

PACS numbeg(s): 05.70.Ln, 68.55-a, 02.30.Jr, 68.35.Fx

[. INTRODUCTION cluding Sec. V the mean-field correlation functions are com-
pared to numerical simulations of the full growth equation,
On many crystal surfaces step edge barriers are observead the special character of the mean-field approximation is
that prevent interlayefdownward hopping of diffusing ada- pointed out.
toms[1,2]. In homoepitaxy from a molecular beam this leads
to a growth instability that can be understood on a basic Il. CONTINUUM EQUATION FOR MBE
level: Adatoms form islands on the initial substrate and mat- . ) )
ter deposited on top of them is caught there by the step edge Under conditions typical of molecular beam epitaxy
barrier. Thus a pyramid structure of islands on top of island$MBE), evaporation and the formation of bulk defects can be
develops. neglected. The height(x,t) of the surface above the sub-
At late stages of growth pyramids coalesce and form largétrate plane then satisfies a continuity equation,
“mounds.” Their lateral size¢ is found experimentally to
increase according to a power law in timé;-t'# with dH+V-Jsutacd H} =F, @)
z=2.5—-6 depending on the material and, possibly, deposi-
tion conditions used. A second characteristic is the slope o
the mounds’ hillsides, which is observed to either approach
a constantoften referred to as a “magic slope” since it does
not necessarily coincide with a high symmetry plape to
increase with time as~t“ [3,4]. The surface widtHor the

hereF is the incident mass flux out of the molecular beam.
ince we are interested in large scale features we neglect
fluctuations inF (“shot noise”) and in the surface current
(“diffusion noise”). In general, the systematic current
Jsurtacedepends on the whole surface configuration. Keeping
! . only the most important terms in a gradient expansion, sub-
height of the mounds then grows aSWN.Sgth with tracting the mean heiglit =Ft, and using appropriately res-
B=1izta, Wherea'=0 for the case of magic slopes. caled units of height, distance, and tifiies], Eq. (1) attains
On a macroscopic level these instabilities can be undert-he dimensionless form
stood in terms of a growth-induced, slope-dependent surface
current[5,6]. Since diffusing adatoms preferably attach to dh=—(V?3)2h—V.[f(Vh?)Vh]. 2
steps from the terracbelow rather than fromabove the
current is uphill and destabilizing. The concentration of dif- [We follow the common practice and disregard contributions
fusing adatoms is maintained by the incoming particle flux;to the current that arevenin h, such asV(Vh)?, though
thus, the surface current is a nonequilibrium effect. they may well be relevant for the coarsening behavior of the
The macroscopic view is quantified in a continuum surface[8,14].] The linear term describes relaxation through
growth equation, which has been proposed and studied bydatom diffusion driven by the surface free enefd],
several group$7—-13. The goal of the present contribution while the second nonlinear term models the nonequilibrium
is to obtain analytic estimates for the scaling exponents angurrent[5,6]. Assuming in-plane symmetry, it follows that
scaling functions of this continuum theory. This paper is or-the nonequilibrium current i¢antjparallel to the local tilt
ganized as follows: in the next section we briefly introducevh, with a magnitudef(Vh?) depending only on the mag-
the continuum equations of interest. A simple scaling ansatzijtude of the tilt. We consider two different forms for the
presented in Sec. Ill, leads to scaling relations and inequalfunction f(Vh?): (i) Within a Burton-Cabrera-Frank-type
ties for the exponents 4/a, andB. In Sec. IV we present a theory[4,12,14, for small tilts the current is proportional to
solvable mean-field model for the dynamics of the height{vh|, and in the opposite limit it is proportional {&h| 2.
height correlation function. Up to logarithmic corrections, This suggests the interpolation formuld7] f(s?)
the relations of Sec. IIl are corroborated. Finally, in the con-=1/(1+s?). Since we are interested in probing the depen-
dence on the asymptotic decay of the current for large slopes,

we consider the generalization
*Fax: +49-201-183 2120. Electronic address: marost@theo-
phys.uni-essen.de f(s?)=1/(1+]s|*"”) [model(i)]. (3)
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Sincey=1 also in the extreme case of complete suppression We start our reasoning with the time dependence of the
of interlayer transporf12,16], physically reasonable values width
of v are restricted toy=1. (ii) Magic slopes can be incor- 1
porated into the continuum description by letting the non- -+ . o> .. 2 2 2
equilibrium current change sign at some nonzerqi/®,10. Za‘W (0= =({[AhCOT)+{Vh(x DT VA1)
A simple choice, which places the magic slopes&t 1, is
2y _ 2 5T
f(s9=1-s" [model(i)] @ Clearly 1,=0. Since we expect the width to increase with
a microscopic calculation of the surface current for a modefime, we obtain the inequalities
exhibiting magic slopes has been reported by Amar and )
Famlly [17] 0= 5 W (t)S|2 (8)
The stability properties of a surface with uniform slope d
m are obtained by inserting the ansath(x,t) an
=m-x+ €(X,t) into Eq.(2) and expanding to linear order in 1,=<I,. 9
€. One obtains
The first conclusion can be drawn even without the scal-
de=[vdf +v 97 —(VH)?]e, (5  ing assumption: For moddii) and model(i) with y=1,
i o (Vh)?f(Vh?) has an upper bound, and so hasTherefore
whered) (d,) denotes the partial derivative paraliperpen- 5 \w2<const. We conclude that the increase of the width
diculan to the tilt m. The coefficients are v () cannot be faster thart’2if it is caused by a destabiliz-

= —(d/dlml)lmlf(mz)_and v, =—f(m?). If one of themis jng nonequilibrium current on a surface with step edge bar-
negative, the surface is unstable to fluctuations varying in thgjg s

corresponding direction: variations perpendiculamtowill Assuming scaling we estimaté;~(s/&)? and d,w?

grow when the current is uphilwhenf>0), while varia- 2/t~ (s£&?/t. For model (i) we further have I,

tions in the direction ofn grow when the current is an in- __¢2¢(s?)~s!=7. |n terms of the scaling exponenis and

creasing function of the tilt. Both models have a change iny; jnequality(8) yields 2 (a+ 1/z) — 1< a(1— ), while the

the sign ofy : model(i) at|m| =y~ " and modelii) at  gecond inequality9) leads to 2— 2/z<a(1— y). Combin-

Im|=1/\/3. For model(i) », <0 always, corresponding to ing both inequalities we have

the step meandering instability of Bales and Zangwill

[13,1§. In contrast, for modeii) the current is downhill for 1+y 1 1 1+vy

slopes/m|>1, and these surfaces are absolutely stable. T, AS S5 T 5
In this work we focus on singular surfaces=0, which

are unstable in both models; coarsening behavior of vicinal To proceed we note that an upper bound on the lateral

surfaces has been studied elsewHd/@. The situation en- mound sizef can be obtained from the requirement that the

visioned in the rest of this paper is the following: for solu- mounds should be stable against the Bales-Zangwill step me-

tions of the partial differential equatiof2) we choose a flat andering instabilityf13,18: Otherwise they would break up

surface with small random fluctuationrgx) as the initial into smaller mounds. From E¢5) it is easy to see that, for

condition. Mostly the initial fluctuations will be uncorrelated the large slopes of interest here, fluctuations of a wavelength

in space, though the effect of long range initial correlations isexceeding ET/W are unstable. Since— v, =f(s?)

briefly addressed in Sec. IV. The fluctuations are amplified~s~(1*7) we impose the condition ggz,n-/\/m

by the linear instability, and eventually the surface enters the- (12 or, in terms of scaling exponents,

late time coarsening regime that we wish to investigate.

a. (10

1 1+vy 11
_$_
I1l. SCALING RELATIONS z 2 @ (12)
AND EXPONENT INEQUALITIES
Hence the first relation in Eq(10) becomes an equality

In this section we assume that in the late time regime theyyhich was previously derived for the one-dimensional case
solution of Eq.(2) is described by a scaling form, namely, [4]), and the second relation yields

that the surfacéh(x,t) at timet has the saméstatistical

properties as the rescaled surface®h(x/7'7 rt) at time 2 1
7t. The equal time height-height correlation function z=4, a= 2(1+ ) = 2(1+ )"
G(x,t)=(h(x,t)h(0t)) then has a scaling form
3+y
G(x,t)=w(t)?g(|x|/ (1)), 6 < i].
(X, D) =w(t)“g(|x[/&(1)) (6) B< 414 Lmodel()] (12)

where the relevant length scales are the surface width . .
W(t)=(h(x,t)2>1/2~t'3, ie., the typical height of the For model(ii) we assume that_the slo;seapproach_es its
mounds, and their lateral sizgt)~t'? given by the first Stable values=1 ass~1—t"“ with «'>0. The estimate
zero of G. These choices correspond @(0)=1 and Of the last term in Eq.(7) then becomed,~s*(1-s?)
g(1)=0. Moreover, they lead to a definition of the typical ~1-s2~t~*, Thus inequality (8) yields 2£—1<-a’,
slope of mounds as=w/&~t* with a=B—1/z. and from Eq.(9) it follows that —2/z<—«’. As for model
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(i) the next estimation uses<2x/\[v,| with |v, |=1—¢? 12 . . . .
~te, Again we obtain the inverse of the second of the ] 100 |
above inequalities, viz., 2& «'/2. Altogether this yields 8
0.8 - 0262 1
Lo 1 i L
Y =B< 2 [model(ii)]. (13 0.6 s ~og 1028 ] ]

0.4

We now summarize the general results obtained in this

section. In addition to the bound on the temporal increase of 02 A 100 e 100007
the surface width,w(t)<const'? the scaling ansatz 0 vav

yields an upper bound on the increase of the lateral length 02| |
scale, £(t)<constxt¥4 valid for both models. A more '

elaborate approximation, to be presented in the next section, -0.4 : : : :

predicts the above inequalitit¢€l2),(13)] to hold as equali- 0 2 4 6 8 10

ties (up to logarithmic corrections , o ,
FIG. 1. Comparison of numerical integration of Ef) and the

spherical approximation described in Sec. IV, both for madel
IV. SPHERICAL APPROXIMATION with y=1. The main figure shows a scaling plot of the correlation
We consider the time dependence of the equal timdunction G(|x],t) with the first zero anFIB(O,t) rescaled to unity.
height-height correlation function defined above: For large|x| the approx_|ma_1te solutlor_1 differs from the full mpdel by
more pronounced oscillations. The inset shows the evolution of the
3,G(x,t)= —ZAZG(X,t)—2V(h(0,t)f(Vh(x,t)Z)Vh(x,t)), first zero ofG, also indicating best fits to the fortd” (full dynam-
(14) ics) and ¢/Int)*? (spherical approximation

whereAsz_is the Laplace operator. Inzorder to obztain alayer coverage$20] indicate the following shape d8y(K):
closed equation fo6(x,t) we replacef(Vh) by f((Vh%))  From a hump at some finite wave number, corresponding to
in the second term on the right-hand side. This approach igne typical distance’p, between island nuclei, it falls off to
inspired by the spherical “larga” limit of phase ordering  zero for k—o. For k—0 it goes down to dinite value
kinetics[19], and will be referred to as the spherical approxi-¢>0Q.
mation. The argument df is then easily expressed in terms At late times the hump iS(k,t) persists, situated at some
of G: Kmax Near the maximum of the exponential in EQ9). It
belongs to a lateral length scafe denoting the typical dis-
N 2y _
(Vh(x,)%)=—Ach(x,t)%)=—AG(01), (15 tance of neighboring mounds. For late times,, will go to

and the closure of Eq14) reads zero, so we need only considgg(k) neark=0. In fact for
the leading contribution td,. (and the leading power in
3G (x,t)=—2A%G(x,t)— 2f|AG(0))AG(x,1). &) we only needSy(k)=c. More detailed remarks on the

(16) case lim_,Sy(k) =0 and on the presence of long range cor-
relations in the initial stage can be found at the end of this
Since we consider dynamics that are isotropic in substratgection. The particular value af has no influence on the
space, and also isotropic distributions of initial conditions,coarsening exponent, so we takg(k) =(27) %2, which
G(x,t) will only depend onx| andt. Consequently we con- corresponds t&(x,t=0)= 5(X).

sider the structure factd(k,t) as a function ok= k| and To follow the analysis, note thai(t) is a functional(18)
t, which satisfies of S(k,t), and on the other hand it is used for the calculation
oA 2 of S(k,t). This imposes a condition of self-consistency on
aS(k,t)=—2[k" = f(a(t)k]S(k,b). 17) the solution, which we write as follows

Here we have defined the functi@rft) through

& %=f([2/2d/2F(d/2)]dek K tex — 2tk + 2k2b(t)]>.
a(t)=[27-rd’2/1“(d/2)]fodkkd”S(k,t), 1g dt 0 o

andd denotes the surface dimensionaligy=2 for real sur-

- We used the initial conditions motivated above, and the
faces. The formal solution of Eq(17) then reads

shorthandb(t) = f§ds f(a(s)). The integral can be evalu-
ated, yielding forb(t) the differential equation

S(k,t)=So(k)eX[{ —2tk*+ 2sztds f@a(s))|. (19
0

2

b d b
— =f| o (4t) " (d+2lap—di2p —b/\t)exp—]|,
The initial conditionSy(k) reflects the disorder in the initial dt 2( ) (a2l Vo p‘ﬁ

configuration of Eq(1) (see Fig. 1 It consists of fluctua- (21
tions at early times, i.e., the first nucleated islands, from

which mounds will later develop. Simulations of micro- whereD denotes a parabolic cylinder functifl]. Equation
scopic models for MBE on singular surfaces at submono{21) cannot be solved explicitly, but for the late time behav-
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ior we can use an asymptotic approximation fbrsince its
argumentb/ \t— o for t—o. To see this, note that E¢R1)

is of the form
@:f = (d+2)/4p B
dt \/f ’

Therefore, ifb/+\/t remained bounded, for largethe argu-
ment of f in Eqg. (21) would be close to 0, and Ed21)
would approximately belb/dt=f(0)=1. This is in contra-
diction to the assumptiob<constx \t, which therefore
cannot be true.

For larget (and largeb/\t) we then approximate E¢21)
by

(22

db
==

T (4t)~(@+2m4 [ d/2 b2
( T di2) (ﬁ) esz_t)' (23

This shows thatb/\t must grow more slowly than any
power oft: If b~tY?"€ thendb/dt~t¢~ Y2 whereas the ar-

2d—l

gument inf would increase exponentially, dominated by a

term exp(®). For both choice$3) and(4) of f the right-hand

side of Eq.(21) would decrease much faster than the left or

even become negative.
Depending on the choice of the current functiowe get

different asymptotic behaviors in the leading logarithmic in-

crease oB=b?/(2t). We first consider the cadé), where
f(s?)=1—s2. Here Eq.(21) reads

dB
— =

it —B+2Bt(1-C;;B¥t @+ 2MexmB), (24)

where C; is a constant without any interest. None of the

terms must increase with time as a powet.dflence asymp-
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The asymptotic form ob(t) gives us the following time
dependence of the coarsening surface structure: Inserting
b(t) into the expression for the structure fact(k,t) (19)
we obtain for each timé a wave number

1/4
: (28)

1
km(t):[z

d+2 1\Int
4yt

which has the maximal contribution ®(k,t). It can be in-
terpreted as the inverse of a typical lateral length scale
£~ (t/Int)Y4 Up to a logarithmic factor, we obtain lateral
coarsening with a power 1/4 for both choicesf¢$?). This
corresponds t@=4, which saturates the bound derived in
Sec. Il

It is, however, important to note that the resulting struc-
ture factor cannot be written in a simple scaling form
S(k,t)=w2k;1d8(k/km), as would be expected Ifrj]l were
the only scale in the problefl9]. Rather, one obtains the
multiscaling form[22]

S(k,t) =L(t)de®m(), (29
whereg(x)=2x2—x*, andL(t) ~t(d+2)4+1/d js 5 second
length scale in the system. In contrastkig', the exponent
describing the temporal increaseldft) doesdepend on the
shape of the current functioin

Next we discuss the behavior of the typical slope of the
coarsening mounds, given by(t)=((Vh)?). This is ob-
tained directly from Eq(20). For model(ii) a(t) approaches
the stable valué‘magic slope”) s?=1, with a leading cor-

rection
I 1 1 /d+2
a)=1-b()=1-5\——

|nt 1/2
n ) (30

totically the term in brackets must vanish, which requires

that ex3~t(*2/4 The leading behavior d8 is therefore

+
B~ ——Int. (25)

Similarly we treat casdi), using the asymptotic behavior
f(s?)=(s?) " for larges®. Equation(21) then becomes

dB
ta =—B+ C(i)t(yIZ)(d+2)/4+ l/ZBf(y/Z)d/4+ lIZeXF{ _ (7/2)8]
(26)

Again the powers of in the last term must cancel, yielding

B d+2+1
=2 "3

Int.

(27)

There is a noteworthy correspondence between madgels
and(ii): The solution of(ii) is the limit y— oo of the solution

Note that the approach to the magic slope is very slow, a
possible explanation for the common difficulty of deciding
whethera(t) attains a final value or grows indefinitely in
numerical simulation$§23]. We further remark that, up to a
logarithmic factor, the inequality’ <1/2 derived in Eq(13)
for the exponent describing the approach to the magic slope
becomes an equality within the spherical approximation.

For model(i) the typical slopes diverge as

8

Ch-20(14y)
a()=b (d+2)/a1 1y

l/(1+7)( t

1U(1+7)
W)

(31

consistent with the value=1/(2+2vy) derived as a bound
in Eq. (12). In the limit y—co the slope does not increase at
all, which again is comparable to the presence of a stable
slope.

To close this section we briefly comment on the shape of
the structure factorS(k,t) and the correlation function

of (i). In this sense, a current that vanishes at a finite slope i&(x,t) obtained within the spherical approximation. Assum-

equivalent to a positive shape functidifs?) decreasing

ing initial correlations as used abo&(k)=c, the structure

faster than any power & The same correspondence appliesfactor is analytical at any timg as can be seen in E(L9).
also on the level of the inequalities derived in Sec. IIl, as canThe corresponding correlation function therefore decays

be seen by lettingy—c0 in Eq. (12) and comparing to Eq.
(13.

faster than any power d&|, modulated with oscillations of
wave numbek,,(t).
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We can also predict the further evolution of long-rangeexperience from phase-ordering kinetics in thén) model
correlations, assuming that they were initially present. Asuggests that the multiscaling behavior obtained above may
power-law decay of5(x,t=0) corresponds to a singularity be an artifact of the spherical approximatid®,22. To ad-
in Sp(k). Suppose the singularity is located at some pointdress this issue, we have carried out a numerical integration
ko>0 (the power decay o6 is then modulated by oscilla- of Eq. (2), with weak uncorrelated noise as the initial condi-
tions). Then the singularity will remain present$tk,t), but  tion. The results indicate conventional scaling behavior in
it will be suppressed as exp(kj) for late times. This implies the late stage of growth, with exponentg=4,
that G(x,t) has a very weak power law tail for very large a=1/(2+2y), which saturate the bounds of Sec. Ill.

[x|, but up to somex, (which increases with timet decays Let us present the numerical results in more detail: Figure
faster than any power. However, a singularityds(k) will 1 shows a scaling plot 0&(|x|,t) of model (i) with y=1

not be suppressed if it lies at the oridip="0, since then in  for timest=500,600, . .,10000 obtained from the numeri-
Eq. (19 it is multiplied by unity. In real space, this implies cal integration of(2). It is compared at times=1000,
that a power law decay of correlations without oscillations110Q...,10000 to the spherical approximation. The first
will remain present. zero and the width afx|=0 of each curve are rescaled to

Even if Sy(k) is singular ak=0, the scaling laws derived 1. Initial conditions of the approximation were chosen to
above remain valid. Suppose, for example, tBgtk)~k®  coincide with the full dynamics dt=100. The spherical ap-
for k—0. In transforming Eq(19) back to real space, such a proximation ofG takes a slightly different shape—its oscil-
power law singularity can be absorbed into the phase spadstions are more pronounced for larget. We obtained a
factork?~* involved in thek integration. The result is sim- similar scaling plot fory=3 and for modelii).

ply a shift in the dimensionalitygd— d+ o, which affects the The inset shows the evolution of the first zeraGafIn the
prefactors of the scaling laws Eg&8), (30), and (31) for ~ full dynamics it is best approximated by a power law
k,(t) anda(t) but not the powers off/Int. &~ 717 with z=3.85, wherer=t—t,. The spherical approxi-
mation deviates from a power law. Here for late times the
V. CONCLUSIONS best fit is &~ (7/In9)Y? with z=3.87. The beginning of the

time integrationt=0 does not coincide with the exptrapo-
We have presented two approximate ways to predict theated zero of the power lawt, because the mounds take a
late stage of mound coarsening in homoepitaxial growth. Tginjte time to develop out of the initial growth instability.
our knowledge this is the first theoretical calculation of This is taken into account by introducing the additional fit-
coarsening exponents for this problem. ting parametet,. The steepening of the mounfsot shown
Although we have made heavy use of concepts developeg the graph develops with the powes=0.26. Fory=3 in
in phase-ordering kinetids.9], our results cannot be directly mqodel(i) we obtainz=4.18 anda=0.126. For modefii) we
inferred from the existing theories in that field. As was ex-refer to the integrations of Siegeft0], which indicate
plained in detail by Siegeitl0], Eq. (2) rewritten for the ,_4
slopeu=Vh has the form of a relaxation dynamics driven by  Note that the multiscaling behavior & in the spherical
a generalized free energy=VV - 6F(u)/ du. Phase ordering approximation is very weak, in the sense that the curves at
with a conserved vector order paramateis described by a different times do not differ in shape too much. A more
similar form, m=V-VSF(m)/5m, however, it appears that Sensitive test of the scaling behavior of Ed), in order to
the interchange of the order of the differential operatorspin down the difference to the spherical approximation,
from V2 to VV -, may lead to a qualitatively different behav- would be desirable and can be achieved by extracting the
ior [10]. function ¢ [see Eq.(29)] from the data of the numerical
Nevertheless, the results obtained so far must be refinedntegration. Conventional scaling yields=const. Work in
Ideally, one would like to derivequalitiesfor the exponents this direction is currently in progre$@4].
using the scaling ansatz of Sec. Ill. More modestly, it would
be desirable to extend the approach so that the effects of
current functions without in-plane isotropgy®,10] and of .
contributions proportional t& (Vh)? [8,14] on the scaling We thank P. &ilauer, F. Rojas liguez, A. J. Bray, and
behavior can be assessed. C. Castellano for many helpful hints and discussions. This
The main drawback of the spherical approximation inwork was supported by DFG within SFB 23@nordnung
Sec. IV is that it does not predict conventional scaling. Theund grosse Fluktuationen
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