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Coarsening of surface structures in unstable epitaxial growth

Martin Rost* and Joachim Krug
Fachbereich Physik, Universita¨t GH Essen, D-45117 Essen, Germany

~Received 22 November 1996!

We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-
dependent surface current. We derive scaling relations for the late stage of growth, where power law coars-
ening of the mound morphology is observed. For the lateral size of mounds we obtainj;t1/z with z>4. An
analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height
correlation function, while the direct numerical solution of the continuum equation shows conventional scaling
with z54, independent of the shape of the surface current.@S1063-651X~97!12203-6#

PACS number~s!: 05.70.Ln, 68.55.2a, 02.30.Jr, 68.35.Fx
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I. INTRODUCTION

On many crystal surfaces step edge barriers are obse
that prevent interlayer~downward! hopping of diffusing ada-
toms@1,2#. In homoepitaxy from a molecular beam this lea
to a growth instability that can be understood on a ba
level: Adatoms form islands on the initial substrate and m
ter deposited on top of them is caught there by the step e
barrier. Thus a pyramid structure of islands on top of islan
develops.

At late stages of growth pyramids coalesce and form la
‘‘mounds.’’ Their lateral sizej is found experimentally to
increase according to a power law in time,j;t1/z with
z.2.526 depending on the material and, possibly, depo
tion conditions used. A second characteristic is the slope
the mounds’ hillsidess, which is observed to either approac
a constant~often referred to as a ‘‘magic slope’’ since it doe
not necessarily coincide with a high symmetry plane! or to
increase with time ass;ta @3,4#. The surface width~or the
height of the mounds! then grows asw;sj;tb with
b51/z1a, wherea50 for the case of magic slopes.

On a macroscopic level these instabilities can be und
stood in terms of a growth-induced, slope-dependent sur
current @5,6#. Since diffusing adatoms preferably attach
steps from the terracebelow, rather than fromabove, the
current is uphill and destabilizing. The concentration of d
fusing adatoms is maintained by the incoming particle fl
thus, the surface current is a nonequilibrium effect.

The macroscopic view is quantified in a continuu
growth equation, which has been proposed and studied
several groups@7–13#. The goal of the present contributio
is to obtain analytic estimates for the scaling exponents
scaling functions of this continuum theory. This paper is
ganized as follows: in the next section we briefly introdu
the continuum equations of interest. A simple scaling ans
presented in Sec. III, leads to scaling relations and inequ
ties for the exponents 1/z, a, andb. In Sec. IV we present a
solvable mean-field model for the dynamics of the heig
height correlation function. Up to logarithmic correction
the relations of Sec. III are corroborated. Finally, in the co
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cluding Sec. V the mean-field correlation functions are co
pared to numerical simulations of the full growth equatio
and the special character of the mean-field approximatio
pointed out.

II. CONTINUUM EQUATION FOR MBE

Under conditions typical of molecular beam epita
~MBE!, evaporation and the formation of bulk defects can
neglected. The heightH(x,t) of the surface above the sub
strate plane then satisfies a continuity equation,

] tH1¹•Jsurface$H%5F, ~1!

whereF is the incident mass flux out of the molecular bea
Since we are interested in large scale features we neg
fluctuations inF ~‘‘shot noise’’! and in the surface curren
~‘‘diffusion noise’’!. In general, the systematic curre
Jsurfacedepends on the whole surface configuration. Keep
only the most important terms in a gradient expansion, s
tracting the mean heightH5Ft, and using appropriately res
caled units of height, distance, and time@13#, Eq. ~1! attains
the dimensionless form

] th52~¹2!2h2¹•@ f ~¹h2!¹h#. ~2!

@We follow the common practice and disregard contributio
to the current that areeven in h, such as¹(¹h)2, though
they may well be relevant for the coarsening behavior of
surface@8,14#.# The linear term describes relaxation throu
adatom diffusion driven by the surface free energy@15#,
while the second nonlinear term models the nonequilibri
current @5,6#. Assuming in-plane symmetry, it follows tha
the nonequilibrium current is~anti!parallel to the local tilt
¹h, with a magnitudef (¹h2) depending only on the mag
nitude of the tilt. We consider two different forms for th
function f (¹h2): ~i! Within a Burton-Cabrera-Frank-typ
theory@4,12,14#, for small tilts the current is proportional to
u¹hu, and in the opposite limit it is proportional tou¹hu21.
This suggests the interpolation formula@7# f (s2)
51/(11s2). Since we are interested in probing the depe
dence on the asymptotic decay of the current for large slo
we consider the generalization

f ~s2!51/~11usu11g! @model~ i!#. ~3!
-
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55 3953COARSENING OF SURFACE STRUCTURES IN . . .
Sinceg51 also in the extreme case of complete suppress
of interlayer transport@12,16#, physically reasonable value
of g are restricted tog>1. ~ii ! Magic slopes can be incor
porated into the continuum description by letting the no
equilibrium current change sign at some nonzero tilt@6,9,10#.
A simple choice, which places the magic slope ats251, is

f ~s2!512s2 @model~ ii !#; ~4!

a microscopic calculation of the surface current for a mo
exhibiting magic slopes has been reported by Amar
Family @17#.

The stability properties of a surface with uniform slo
m are obtained by inserting the ansatzh(x,t)
5m–x1e(x,t) into Eq. ~2! and expanding to linear order i
e. One obtains

] te5@n i] i
21n']'

22~¹2!2#e, ~5!

where] i (]') denotes the partial derivative parallel~perpen-
dicular! to the tilt m. The coefficients are n i
52(d/dumu)umu f (m2) andn'52 f (m2). If one of them is
negative, the surface is unstable to fluctuations varying in
corresponding direction: variations perpendicular tom will
grow when the current is uphill~when f.0), while varia-
tions in the direction ofm grow when the current is an in
creasing function of the tilt. Both models have a change
the sign ofn i : model~i! at umu5g21/(11g) and model~ii ! at
umu51/A3. For model~i! n',0 always, corresponding to
the step meandering instability of Bales and Zangw
@13,18#. In contrast, for model~ii ! the current is downhill for
slopesumu.1, and these surfaces are absolutely stable.

In this work we focus on singular surfaces,m50, which
are unstable in both models; coarsening behavior of vic
surfaces has been studied elsewhere@13#. The situation en-
visioned in the rest of this paper is the following: for sol
tions of the partial differential equation~2! we choose a flat
surface with small random fluctuationse(x) as the initial
condition. Mostly the initial fluctuations will be uncorrelate
in space, though the effect of long range initial correlation
briefly addressed in Sec. IV. The fluctuations are amplifi
by the linear instability, and eventually the surface enters
late time coarsening regime that we wish to investigate.

III. SCALING RELATIONS
AND EXPONENT INEQUALITIES

In this section we assume that in the late time regime
solution of Eq.~2! is described by a scaling form, namel
that the surfaceh(x,t) at time t has the same~statistical!
properties as the rescaled surfacet2bh(x/t1/z,tt) at time
tt. The equal time height-height correlation functio
G(x,t)[^h(x,t)h(0,t)& then has a scaling form

G~x,t !5w~ t !2g„uxu/j~ t !…, ~6!

where the relevant length scales are the surface w
w(t)5^h(x,t)2&1/2;tb, i.e., the typical height of the
mounds, and their lateral sizej(t);t1/z, given by the first
zero of G. These choices correspond tog(0)51 and
g(1)50. Moreover, they lead to a definition of the typic
slope of mounds ass[w/j;ta with a5b21/z.
n
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We start our reasoning with the time dependence of
width

1

2
] tw

2~ t !52^@Dh~x,t !#2&1^¹h~x,t !2f „¹h~x,t !2…&

[2I 11I 2 . ~7!

Clearly I 1>0. Since we expect the width to increase wi
time, we obtain the inequalities

0< 1
2 ] tw

2~ t !<I 2 ~8!

and

I 1<I 2 . ~9!

The first conclusion can be drawn even without the sc
ing assumption: For model~ii ! and model~i! with g>1,
(¹h)2f (¹h2) has an upper bound, and so hasI 2. Therefore
] tw

2<const. We conclude that the increase of the wid
w(t) cannot be faster thant1/2 if it is caused by a destabiliz
ing nonequilibrium current on a surface with step edge b
riers.

Assuming scaling we estimateI 1;(s/j)2 and ] tw
2

;w2/t;(sj)2/t. For model ~i! we further have I 2
;s2f (s2);s12g. In terms of the scaling exponentsa and
1/z inequality~8! yields 2(a11/z)21<a(12g), while the
second inequality~9! leads to 2a22/z<a(12g). Combin-
ing both inequalities we have

11g

2
a<

1

z
<
1

2
2
11g

2
a. ~10!

To proceed we note that an upper bound on the lat
mound sizej can be obtained from the requirement that t
mounds should be stable against the Bales-Zangwill step
andering instability@13,18#: Otherwise they would break up
into smaller mounds. From Eq.~5! it is easy to see that, fo
the large slopes of interest here, fluctuations of a wavelen
exceeding 2p/Aun'u are unstable. Since2n'5 f (s2)
;s2(11g), we impose the condition j<2p/Aun'u
;m(11g)/2 or, in terms of scaling exponents,

1

z
<
11g

2
a. ~11!

Hence the first relation in Eq.~10! becomes an equality
~which was previously derived for the one-dimensional ca
@4#!, and the second relation yields

z>4, a5
2

z~11g!
<

1

2~11g!
,

b<
31g

4~11g!
@model~ i!#. ~12!

For model~ii ! we assume that the slopes approaches its
stable values51 ass;12t2a8 with a8.0. The estimate
of the last term in Eq.~7! then becomesI 2;s2(12s2)
.12s2;t2a8. Thus inequality~8! yields 2/z21<2a8,
and from Eq.~9! it follows that22/z<2a8. As for model
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3954 55MARTIN ROST AND JOACHIM KRUG
~i! the next estimation usesj<2p/Aun'u with un'u512s2

;t2a8. Again we obtain the inverse of the second of t
above inequalities, viz., 1/z<a8/2. Altogether this yields

1

z
5

a8

2
5b<

1

4
@model~ ii !#. ~13!

We now summarize the general results obtained in
section. In addition to the bound on the temporal increas
the surface width,w(t),const3t1/2, the scaling ansatz
yields an upper bound on the increase of the lateral len
scale, j(t),const3t1/4, valid for both models. A more
elaborate approximation, to be presented in the next sec
predicts the above inequalitites@~12!,~13!# to hold as equali-
ties ~up to logarithmic corrections!.

IV. SPHERICAL APPROXIMATION

We consider the time dependence of the equal t
height-height correlation function defined above:

] tG~x,t !522D2G~x,t !22¹^h~0,t ! f „¹h~x,t !2…¹h~x,t !&,
~14!

whereD5¹2 is the Laplace operator. In order to obtain
closed equation forG(x,t) we replacef (¹h2) by f (^¹h2&)
in the second term on the right-hand side. This approac
inspired by the spherical ‘‘largen’’ limit of phase ordering
kinetics@19#, and will be referred to as the spherical appro
mation. The argument off is then easily expressed in term
of G:

^¹h~x,t !2&52D^h~x,t !2&52DG~0,t !, ~15!

and the closure of Eq.~14! reads

] tG~x,t !522D2G~x,t !22 f „uDG~0,t !u…DG~x,t !.
~16!

Since we consider dynamics that are isotropic in subst
space, and also isotropic distributions of initial condition
G(x,t) will only depend onuxu andt. Consequently we con
sider the structure factorS(k,t) as a function ofk5uku and
t, which satisfies

] tS~k,t !522@k42 f „a~ t !…k2#S~k,t !. ~17!

Here we have defined the functiona(t) through

a~ t !5@2pd/2/G~d/2!#E
0

`

dk kd11S~k,t !, ~18!

andd denotes the surface dimensionality (d52 for real sur-
faces!. The formal solution of Eq.~17! then reads

S~k,t !5S0~k!expF22tk412k2E
0

t

ds f„a~s!…G . ~19!

The initial conditionS0(k) reflects the disorder in the initia
configuration of Eq.~1! ~see Fig. 1!. It consists of fluctua-
tions at early times, i.e., the first nucleated islands, fr
which mounds will later develop. Simulations of micro
scopic models for MBE on singular surfaces at submo
is
of

th

n,

e
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-
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-

layer coverages@20# indicate the following shape ofS0(k):
From a hump at some finite wave number, corresponding
the typical distancel D between island nuclei, it falls off to
zero for k→`. For k→0 it goes down to afinite value
c.0.

At late times the hump inS(k,t) persists, situated at som
kmax near the maximum of the exponential in Eq.~19!. It
belongs to a lateral length scalej, denoting the typical dis-
tance of neighboring mounds. For late timeskmax will go to
zero, so we need only considerS0(k) neark50. In fact for
the leading contribution tokmax ~and the leading power in
j) we only needS0(k)[c. More detailed remarks on th
case limk→0S0(k)50 and on the presence of long range co
relations in the initial stage can be found at the end of t
section. The particular value ofc has no influence on the
coarsening exponent, so we takeS0(k)5(2p)2d/2, which
corresponds toG(x,t50)5d(x).

To follow the analysis, note thata(t) is a functional~18!
of S(k,t), and on the other hand it is used for the calculati
of S(k,t). This imposes a condition of self-consistency
the solution, which we write as follows

db

dt
5 f S @2/2d/2G~d/2!#E

0

`

dk kd11exp@22tk412k2b~ t !# D .
~20!

We used the initial conditions motivated above, and
shorthandb(t)5*0

t ds f„a(s)…. The integral can be evalu
ated, yielding forb(t) the differential equation

db

dt
5 f S d2 ~4t !2~d12!/422d/2D2~d12!/2~2b/At !exp

b2

4t D ,
~21!

whereD denotes a parabolic cylinder function@21#. Equation
~21! cannot be solved explicitly, but for the late time beha

FIG. 1. Comparison of numerical integration of Eq.~1! and the
spherical approximation described in Sec. IV, both for model~i!
with g51. The main figure shows a scaling plot of the correlati
functionG(uxu,t) with the first zero andG(0,t) rescaled to unity.
For largeuxu the approximate solution differs from the full model b
more pronounced oscillations. The inset shows the evolution of
first zero ofG, also indicating best fits to the formt1/z ~full dynam-
ics! and (t/ lnt)1/z ~spherical approximation!.
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55 3955COARSENING OF SURFACE STRUCTURES IN . . .
ior we can use an asymptotic approximation forD, since its
argumentb/At→` for t→`. To see this, note that Eq.~21!
is of the form

db

dt
5 f S t2~d12!/4FS b

At D D . ~22!

Therefore, ifb/At remained bounded, for larget the argu-
ment of f in Eq. ~21! would be close to 0, and Eq.~21!
would approximately bedb/dt. f (0)51. This is in contra-
diction to the assumptionb,const3At, which therefore
cannot be true.

For larget ~and largeb/At) we then approximate Eq.~21!
by

db

dt
5 f SA p

2d21

~4t !2~d12!/4

G~d/2! S b

At D
d/2

exp
b2

2t D . ~23!

This shows thatb/At must grow more slowly than an
power of t: If b;t1/21e thendb/dt;te21/2, whereas the ar-
gument in f would increase exponentially, dominated by
term exp(t2e). For both choices~3! and~4! of f the right-hand
side of Eq.~21! would decrease much faster than the left
even become negative.

Depending on the choice of the current functionf we get
different asymptotic behaviors in the leading logarithmic
crease ofB5b2/(2t). We first consider the case~ii !, where
f (s2)512s2. Here Eq.~21! reads

t
dB

dt
52B1A2Bt~12C~ ii !B

d/4t2~d12!/4expB!, ~24!

whereC(ii) is a constant without any interest. None of t
terms must increase with time as a power oft. Hence asymp-
totically the term in brackets must vanish, which requir
that expB;t(d12)/4. The leading behavior ofB is therefore

B.
d12

4
lnt. ~25!

Similarly we treat case~i!, using the asymptotic behavio
f (s2).(s2)2g/2 for larges2. Equation~21! then becomes

t
dB

dt
52B1C~ i!t

~g/2!~d12!/411/2B2~g/2!d/411/2exp@2~g/2!B#.

~26!

Again the powers oft in the last term must cancel, yieldin

B.S d12

4
1
1

g D lnt. ~27!

There is a noteworthy correspondence between model~i!
and~ii !: The solution of~ii ! is the limitg→` of the solution
of ~i!. In this sense, a current that vanishes at a finite slop
equivalent to a positive shape functionf (s2) decreasing
faster than any power ofs. The same correspondence appl
also on the level of the inequalities derived in Sec. III, as c
be seen by lettingg→` in Eq. ~12! and comparing to Eq
~13!.
r

-

s

is

s
n

The asymptotic form ofb(t) gives us the following time
dependence of the coarsening surface structure: Inse
b(t) into the expression for the structure factorS(k,t) ~19!
we obtain for each timet a wave number

km~ t !5F12 S d12

4
1
1

g D lntt G1/4, ~28!

which has the maximal contribution toS(k,t). It can be in-
terpreted as the inverse of a typical lateral length sc
j;(t/ lnt)1/4. Up to a logarithmic factor, we obtain latera
coarsening with a power 1/4 for both choices off (s2). This
corresponds toz54, which saturates the bound derived
Sec. III.

It is, however, important to note that the resulting stru
ture factor cannot be written in a simple scaling form
S(k,t)5w2km

2dS(k/km), as would be expected ifkm
21 were

the only scale in the problem@19#. Rather, one obtains th
multiscaling form@22#

S~k,t !5L~ t !dw„k/km~ t !…, ~29!

wherew(x)52x22x4, andL(t);t „(d12)/411/g…/d is a second
length scale in the system. In contrast tokm

21 , the exponent
describing the temporal increase ofL(t) doesdepend on the
shape of the current functionf .

Next we discuss the behavior of the typical slope of t
coarsening mounds, given bya(t)5^(¹h)2&. This is ob-
tained directly from Eq.~20!. For model~ii ! a(t) approaches
the stable value~‘‘magic slope’’! s251, with a leading cor-
rection

a~ t !512ḃ~ t !.12
1

2
Ad12

2 S lntt D 1/2. ~30!

Note that the approach to the magic slope is very slow
possible explanation for the common difficulty of decidin
whethera(t) attains a final value or grows indefinitely i
numerical simulations@23#. We further remark that, up to a
logarithmic factor, the inequalitya8<1/2 derived in Eq.~13!
for the exponent describing the approach to the magic sl
becomes an equality within the spherical approximation.

For model~i! the typical slopes diverge as

a~ t !.ḃ22/~11g!.S 8

~d12!/411/g D 1/~11g!S t

lnt D
1/~11g!

,

~31!

consistent with the valuea51/(212g) derived as a bound
in Eq. ~12!. In the limit g→` the slope does not increase
all, which again is comparable to the presence of a sta
slope.

To close this section we briefly comment on the shape
the structure factorS(k,t) and the correlation function
G(x,t) obtained within the spherical approximation. Assum
ing initial correlations as used above,S0(k)[c, the structure
factor is analytical at any timet, as can be seen in Eq.~19!.
The corresponding correlation function therefore dec
faster than any power ofuxu, modulated with oscillations of
wave numberkmax(t).
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3956 55MARTIN ROST AND JOACHIM KRUG
We can also predict the further evolution of long-ran
correlations, assuming that they were initially present.
power-law decay ofG(x,t50) corresponds to a singularit
in S0(k). Suppose the singularity is located at some po
k0.0 ~the power decay ofG is then modulated by oscilla
tions!. Then the singularity will remain present inS(k,t), but
it will be suppressed as exp(2tk0

4) for late times. This implies
that G(x,t) has a very weak power law tail for very larg
uxu, but up to somex0 ~which increases with time! it decays
faster than any power. However, a singularity inS0(k) will
not be suppressed if it lies at the origink050, since then in
Eq. ~19! it is multiplied by unity. In real space, this implie
that a power law decay of correlations without oscillatio
will remain present.

Even ifS0(k) is singular atk50, the scaling laws derived
above remain valid. Suppose, for example, thatS0(k);ks

for k→0. In transforming Eq.~19! back to real space, such
power law singularity can be absorbed into the phase sp
factor kd21 involved in thek integration. The result is sim
ply a shift in the dimensionality,d→d1s, which affects the
prefactors of the scaling laws Eqs.~28!, ~30!, and ~31! for
km(t) anda(t) but not the powers oft/ lnt.

V. CONCLUSIONS

We have presented two approximate ways to predict
late stage of mound coarsening in homoepitaxial growth.
our knowledge this is the first theoretical calculation
coarsening exponents for this problem.

Although we have made heavy use of concepts develo
in phase-ordering kinetics@19#, our results cannot be directl
inferred from the existing theories in that field. As was e
plained in detail by Siegert@10#, Eq. ~2! rewritten for the
slopeu[¹h has the form of a relaxation dynamics driven
a generalized free energy,u̇5¹¹•dF(u)/du. Phase ordering
with a conserved vector order parameterm is described by a
similar form, ṁ5¹•¹dF(m)/dm, however, it appears tha
the interchange of the order of the differential operato
from ¹2 to ¹¹•, may lead to a qualitatively different behav
ior @10#.

Nevertheless, the results obtained so far must be refi
Ideally, one would like to deriveequalitiesfor the exponents
using the scaling ansatz of Sec. III. More modestly, it wou
be desirable to extend the approach so that the effect
current functions without in-plane isotropy@9,10# and of
contributions proportional to¹(¹h)2 @8,14# on the scaling
behavior can be assessed.

The main drawback of the spherical approximation
Sec. IV is that it does not predict conventional scaling. T
o

t

ce

e
o
f

ed

-

,

d.

of

e

experience from phase-ordering kinetics in theO(n) model
suggests that the multiscaling behavior obtained above
be an artifact of the spherical approximation@19,22#. To ad-
dress this issue, we have carried out a numerical integra
of Eq. ~2!, with weak uncorrelated noise as the initial cond
tion. The results indicate conventional scaling behavior
the late stage of growth, with exponentsz54,
a51/(212g), which saturate the bounds of Sec. III.

Let us present the numerical results in more detail: Fig
1 shows a scaling plot ofG(uxu,t) of model ~i! with g51
for times t5500,600,. . . ,10000 obtained from the numer
cal integration of ~2!. It is compared at timest51000,
1100, . . .,10000 to the spherical approximation. The fir
zero and the width atuxu50 of each curve are rescaled
1. Initial conditions of the approximation were chosen
coincide with the full dynamics att5100. The spherical ap
proximation ofG takes a slightly different shape—its osci
lations are more pronounced for largeruxu. We obtained a
similar scaling plot forg53 and for model~ii !.

The inset shows the evolution of the first zero ofG: In the
full dynamics it is best approximated by a power la
j;t1/z with z53.85, wheret5t2t0. The spherical approxi-
mation deviates from a power law. Here for late times t
best fit isj;(t/ lnt)1/z with z53.87. The beginning of the
time integrationt50 does not coincide with the exptrapo
lated zero of the power lawst0, because the mounds take
finite time to develop out of the initial growth instability
This is taken into account by introducing the additional fi
ting parametert0. The steepening of the mounds~not shown
in the graph! develops with the powera50.26. Forg53 in
model~i! we obtainz54.18 anda50.126. For model~ii ! we
refer to the integrations of Siegert@10#, which indicate
z54.

Note that the multiscaling behavior ofG in the spherical
approximation is very weak, in the sense that the curve
different times do not differ in shape too much. A mo
sensitive test of the scaling behavior of Eq.~1!, in order to
pin down the difference to the spherical approximatio
would be desirable and can be achieved by extracting
function w @see Eq.~29!# from the data of the numerica
integration. Conventional scaling yieldsw[const. Work in
this direction is currently in progress@24#.
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