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Integrability of the square-triangle random tiling model
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Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
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It is shown that the square-triangle random tiling model is equivalent to an asymmetric limit of the three
coloring model on the honeycomb lattice. The latter model is known to be timg¢ @pdel atT=0 and
corresponds to the integrable model connected to the aﬁﬁﬁd_ie algebra. Thus it is shown that the weights
of the square-triangle random tiling satisfy the Yang-Baxter equation, albeit in a singular limit of a more
general model. The three coloring model for general vertex weights is solved by an algebraic Bethe ansatz.
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I. INTRODUCTION are integrable and a canonical way to diagonalize the transfer

matrix via the algebraic Bethe ansdt¥3]. The matrix of

Random tt)'“n% mgglels have ?alned_ rene\élved_llﬂterest In th%oltzmann weight$12], however, is not invertible, which is
past years by the discovery of quasicrysfdls They pro- necessary to obtain commutativity of the transfer matrix. In

vide an example of the entropic stability of structures whosgy,;q paper we show that the square-triangle random tiling

diffraction pattern has a rotational symmetry which is incom-i,qe| is a singular limit case of a more general model obey-
patible with periodicity. As such they offer an explanation of g the Yang-Baxter equation.

the existence of quasicrystalline alloy®]. In analogy with

the diamond covering used to describe the ground state con- Il. THE MODEL

figurations of the triangular Ising antiferromagr&{, ran-

dom tilings can be described by a domain wall structure. The We shall consider a vertex model on the square lattice,
difficulty is that there is more than one type of domain wall, Whose Boltzmann weights are denoted by

in contrast to the diamond covering. This fact makes it much

more difficult to solve the model by coordinate Bethe ansatz, B

as was tried for the octagonal square-rhombus tilibig Wi-

dom([5], however, succeeded in reducing the diagonalization Wk, a; B, vlu) = & v
of the transfer matrix to a set of coupled nonlinear equations
using the Bethe ansatz for the square-triangle random tiling
model. This random tiling can exhibit a twelvefold rotational
symmetry if the area fractions of squares and triangles arEach edge of the lattice can be in one of three different
both equal to 1/2. For example, a two-dimensional binarystates, 1,2, and 3. The partition function of the model is
alloy of Lennard-Jones atoms, whose equilibrium state is given by

twelvefold quasicrystal, is well approximated by a random

tiling of the plane by squares and triangléd. Also, high z=> I wii), )
resolution lattice images of twelvefold quasicrystals in NiCr config. " i

and NiV alloys[7,8] show atomic positions at vertices of , . . .

tilings containing primarily squares and triangles. We referWhere we sum over all comjgt_;ra‘uons Wh'Ch are weighted by
the reader tq9] for more background information on the the product over the vertices of their local Boltzmann

square-triangle random tiling and its physical applications. yveightsW(i). The explicit form of the weights can be found

Shortly after the Bethe ansatz solution, Kalufl®] was in Table I. The model can be written in terms of the V\ieights
able to find a closed expression for the entropy as a functiofVo(#@:8,v) associated with the affine Lie algebeg!,
of the domain wall densities in part of the phase diagramvhich can be found ifi14-16.
using Widoms equations. More recently a solution of an oc-
tagonal random tiling has also been found]. W(u,a;B8,v|u)=0,, Wo(u',a;8,v'[u)O,,, (3
Being solvable by coordinate Bethe ansatz, it is natural to
look for solutions of the Yang-Baxter equatifit?] for these  where O=diag{x;,X,,X3}. The weightsWy(«,v;B,v) sat-
models. This would provide an answer to why these modelisfy the star-triangle or Yang-Baxter equatitviBE) [12],

@

«

> Wol, v, m"[o—u)Wo( ", a; v, 1" [0)Wo( ", y; B,v' [u)

non

Vi,V

= > Wy, a; 7, 0" Wy, 7; 8, 1" [0)Wo( ", v"; 0", 1" [o—u). (4)

no_n

ViV
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Equation(4) can be written more elegantly by defining the
operatord._(u) j—1 times N—j times

. et e e i,
L](u)uu=I®"'®I®L(U);W®I®"'®I’ @

(I—(u),uv)aBZWO(/-L!a;IB!Vlu)v
wherel is the identity onC3. The partition function(2) on a
La(u): Va®(3—V,e03, V=~C3, (5) lattice of sizeNXM can then be written as

. . : Z=TryT(w". ®)
The auxiliary labeh is introduced for later convenience. We
shall omit it if there is no confusion on which spatéu) Furthermore. we define tHe matrix as
acts. In this language the vertex stazhe(ga= 1,2,3) aréa rep- '
resented by the standard basis of C°. V,=V,=C" are .
so-called a)l/inIiary spaces, cor?espondinga to ltjhe horizontal (R(U_u)“V)“B_WO(M’a”B’V|U_u)'
edges of a vertex. The transfer matfix E/3F1T(u)w ona
lattice of horizontal sizeN can be written in terms of the
local operatord ,(u) (5) as

Rap(v —U): V@ Vy—V,0Vy. 9)

Here too, the Roman labetsandb indicate on which aux-
iliary spaceR is acting. Greek labels will be used to indicate

matrix elements. The YBE4) can be written as
, Ta(u): V,oH—V,0H,

N
Ta(u)= ( [1 oZLiw)
: (R(v =) )y [L (V) 0 L(U) 1,

N
H=® CSy T(u)zTraTa(u) (6) :[L(U)VV"L(U),LL/.L”](R(U_u),u"y")v”v/l (10)
=1
where summation over repeated indices is understood. Each

. . . i i 3
The trace is taken only over the auxiliary space matrix struc€lementL(u),,, of L(u) is an operator acting of”®. We
ture. The operatorkl(u) act asL,(u) on thejth factor in ~ Shall regardR(u—v) as a 9<9 matrix which is given ex-
H and as the identity on all other factors plicitly in Table I. In a compact notation the YBE.O) can
' be written as an operator equation on the tensor product

V,®V,®C3. It then assumes the guise
TABLE |. Boltzmann weightdV andR matrix corresponding to a= b g

the weights W,. Here we use the abbreviationg,=sinhQ\), Rup(v— U)[La(0)@Lo(W)]=[Ly(U)& L o(v)Rap(v — )
a a a a .

s;=sin(u), s,=sinhu+N\). (11)
Wit pisps ) =X+, From Eq.(11) we obtain the YBE for the matriq(u) as
W(sz,v: 1, U) =X, %, €7 U596 Vsink()), defined in Eq.(6).
W(L2;2,4u) =Xiys “sinf(w), Rap(v = W[ Ta(0) @ To(W)]=[To(W) & Ta(v) IRap(v =)
W(1,3;3,1u) =x3y, 2sinh(u), (12
W(2,3;3,4u) = X2y Zsinh(u), From expressiort8) for the partition sum one sees that the
leading term is given by the largest eigenvalueZofor the
W(2,1;1,2u) =x3y3sinh(u), sake of completeness we give the explicit diagonalization of
”a the transfer matrix using the algebraic Bethe ansatz in the
W(3,1;1,3u) =x3y3sinf(u), Appendix. This is just a special case of the trigonometric

W(3,2:2,3u) =3y 2sinh(u), case of Kulish and Reshetikh[d7].

s; O 0 0O O 0 0 0 11l. HONEYCOMB LATTICE
,2 . .

0y;s; 0 €0 0 0 0 0 As was already shown by ReshetikHibg], at a special
0 0 vy, 0 0 0 ds, 0 O value of the spectral parametey the model defined by the
0 els. 0 26 0 0 o 0 o welghtsWO chtonz_es on the honeycomb_ lattice. In this sec-

0 Yss1 tion we rederive this result for the model in Table I. Consider

Ru=[0 0 0s 0 0 00 the operators
0 0 0 Ovy;%; 0 é'sq 0
0 0 €%, 0 0 0 y2, 0 0 OL(u)O7: C3eV—Ve (3, (13
0 0 0 0 0 e, 0 yis 0 _ _ _
0 Yt where 7 is the permutation operator ii®®C3 (recall that

0 0 0 0 0 0 0 O0s V=03, 1(e,®ez)=ez0e,. The eigenvectors of

OL(u)Or are given by
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_ 1 B v

_ N
ey—\/ﬁ(xﬁyyeﬁoea—yy X, "e,®€p), 3 5
— 1 Lo —_— sinh(2A\)E,
f gy =——=(Y ,Xg€50€,1TY "X, €€e,0€3)

(Ba) YABEBS Fa y La® Ca¥Cp),

V14 et
7 o
f,n=e,®e,, (14 K o
with («,,7) a cyclic permutation of1,2,3. These vectors FIG. 1. Factorization of the weights.

satisfy the eigenvalue equations
o o The partition function does not change if we apply a gauge
OL(u)O7e,=—xXgsinh(u—\)e,, transformation to the weights. If we multiply the weights by
o o the factors shown in Fig. 2 and choobe= —e *%a and
OL(U)O7F () =X, X,SiNN(U+N)f(,, - (15) c=e ?%aand set;=y;=1, we obtain the partition sum of
the fully packed loogFPL) model on the honeycomb lattice
Thus atu= —\ the operatol 7 becomes a projector. [18-21,

Introducing the dual vector?’; with the properties

. Z3%(u=—\)=sinh(\)NMY, nN©), (19
ey~eyr=XaXB§y7:, (16) C
we can writeOLOr atu=—X\ as The sum runs over all dense loop coverilg®f the honey-
comb Iattice.N(C:) is the number of loops in the covering
> C andn=2cosh}) is the loop fugacity
— ol * .
OL(_)‘)OT_S'”“ZA);l €,8y - (17) The edge states may be interpreted as differences modulo

three (going clockwise around each verjelzetween three-

Give they vertices of the honeycomb lattice the weights State Potts variables on the vertices of the triangular lattice. If
€5 -(ez®e,) and the\ vertices the weightse,®e,) e, . the statesA, B andC are interpreted as differences 0,1, and
Graphically, the matrix elementL(—\)7,s)q,, COrfe- 2, the cqrrespo_ndlng Potts moc_iel allows only conf|gurat|o_ns
sponding to the vertex Weing(,u,af;,B,vr—)\), can be ©ON t_he triangle in which two vanab_les are equal and the third
written as a sum over products of two vertices of the honey!S different. The fully ferromagnetic and the completely an-
comb lattice, see Fig. 1. t|ferromagn<_at|c arrangements are th<_an excludgd. This mod_el

It follows that the model on the honeycomb lattice with has competing ferromagnetlc two-spin and antiferromagnetic
the vertex weights given in Fig. Zwhere (123) —  three-spin interactions.
(ABC)] has the same partition function as the model in

Table | atu=—\ on the square lattice. More precisely, IV. SQUARE-TRIANGLE TILING

Take the dual of the honeycomb lattice and associate to

H — S _ _ —HC . . . .
sinh(\) “NMZRF (U= —N)=Z50u(N). (18 each edge of this triangular lattice the corresponding state
hd e C\|/A Y hd
C A B Cc A B
_$2y3e—A/2 _‘Tayle—A/Q x1y2—le)\/2 xly;IeA/Z xzyl—le)\/2 _(L'3y2e_/\/2
ab~t be™! ca™? ba~! cb~! ac™?!
C A B C A B
PN A A PN PN
:,;2:[/3(3'\/2 1‘3y1e'\/2 _xlyé'le—*/2 _xlys—le—/\/2 _nyl—le—-A/Z’ x3y2e)‘/2
ba~! cb™! ac™! ab~? be?! ca~!

FIG. 2. Vertex configurations on the honeycomb lattice. On the first line their weights and on the second line the gauge transformations
are given.
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+/\0 A+ o/~ A~ 0/\o A+ was done by Baxtef22] whose method can be generalized

/_\ /0\ /+\ /_\ /0\ /Jr\ slightly to obtain Eqs(21) and(22). For our purposes, taking
the limit x—0, it is more convenient to use Baxter's vari-

ables. This can be accomplished by making the following

v 4&0/_ _\% _\_/_ v v substitutions:

FIG. 3. Face configurations on the triangular lattice correspond- ) 1 ) 2
ing to the vertex configurations in Fig. 2. xsinh(u;™) xsinh(u;”)
S‘:sinr‘(u“)ﬂx) BT sinh(u'?+\) " @3

. . i M
variable of the honeycomb lattice. Relabel the states of the
horizontal axis byA, B, C — 0, +, —, on the ascending i o . .
diagonal byA, B, C — +, —, 0 and on the descending Qn taking the limitx—0 we arrlve.at the followmg expres-
diagonal byA, B, C — —, 0, +. The partition sum(18) is  Sions for the Be’_[he ansatz equatl_ons anql_the_ e_lgen_value of
then equal to the partition sum of a model on the triangulalthe tra_nsfer matrix of _the square-triangle tiling in its triangu-
lattice with face configurations given in Fig. 3. lar lattice representation

Now let x; '=x,=x3=x'2 and y;=y,=y;=x"Y2 If
x=0 the faces wh a 0 on altthree edges vanish. In that case n2
the states+ and — can be regarded as rotation angles of SJN=(—)”1‘1H (sj‘l—t;l),
edges with respect to a fixed triangular lattice. Take these v=1
angles=* 7/12 and wipe out every edge with state 0. In this ny
way the model maps onto the square triangle random tiling H (skfl_t;l):(_)nzfl, (24)
model. The state 0 corresponds to the diagonal of a square. k=1

The eigenvalue expressi@A28) in the limit u= —\ be-
comes

Ny N2
A=((—)“2+H sk)H ty. (25
k=1 v=1
n i (1)
A(—k)=xnl+”zsinﬁ—x)“‘ﬁ smhi—lf)k)
k=1 sinh(u+\) These equations can be solved analogously to the original
solution of the square-triangle random tiling by Kalugli®].

"2 sinh(u{?+2\)
X —_—
i=1 sinh(u{®+\) V. CONCLUSION

| _ ) We have made a connection between the recently solved
i N 2 smk(uf ) square-triangle random tiling model and a known solvable
+x"2sinh(—\) |1;[1 Snu@+n) (200 Jattice model. It follows from Table | and the substitution
' yi=x"12 that the R matrix for the square-triangle tiling
(x=0) is either singular or contains infinite elements. As a
The Bethe ansatz equatiof26) and(A27), for the two sets ~ 'esult the transfer matrix of the square-triangle tiling model
of momenta, become is a limit of a family of commuting transfer matrices, but is
itself not a member of such a family. For any finitiehough
the R matrix is invertible, which implies integrability via the
Ny sink(u}z)—u(kl)) ) sint(u}2>—uf2>+)\) ] Yang-Baxter equation for this more general model. The
x", square-triangle random tiling thus is a singular limit of a

U2y D L U@ — @) I ) .
k=1 SINA(U;™ — Ui+ A )i#j=1 sinf(u; ™ —uj™ =) model which is integrable in the usual sense. To obtain the

weights of the square-triangle model one has to take the limit
u— —N\ first and then takex—0. These two limits do not
and commute.

One final point can be made about the robustness of inte-
grability. The square-triangle tiling has been solved in three

(21)

sinh(u{™+x) |\ " N " sinh(uft —u + 1) different ways. One is that of Widom and Kalug®,10], the
sinh(u(D) = 2k—1 sinhiu@—uP—x) second can be found {123] and the third one in this paper.
J - ] k . . . .

#] All these methods only differ in their choice of representa-
. tion, which of course should not influence integrability.

"2 sinh(u{™ —uf?—\) 22 g y

=1 sinh(u{? —uj?)
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APPENDIX A: A(u): VOH—-VP2H, B(u): VVeH—-VOgH,

DIAGONALIZATION OF THE TRANSFER MATRIX
We write the matrix T(u) as an operator on C(u): V@eoH—-VPeH, D(u): VPVeH-VVeH.
(VOeVD) o H=Ve™H, (A2)
A(u) B(u) VO=( andVM=(? are the subspaces ®f corresponding
T(u)= Cw) D) (A1) to the natural embedding ¢ in (3. The R matrix has the
following form on the standard basis ofv{a V()

The entries ofT (u) act on the following spaces: (VP V),

sinh(lu+N\) 0 0 0
0 sinfu)U, > e'sinh(A)1 VO 0
R = . . . A
ab(U) 0 e Usinh(\)1©O@  sinh(u)U, 0 (A3)
0 0 0 R (u)
1(0)(1) 1(1)(0)
Here, VPV — viDev® —, v0gVD are canonical isomorphisms and
y; 0
U= 5] (A4)
0 vy;

With the notationU , we denote the operator that actslasn the space\/gl) and trivial everywhere else. The reduced matrix
RD: viVe vV ve V(Y has the same structure as the Rlmatrix

sinhflu+N\) 0 0 0
o 0 y1 2sinhu)  e’sinh(\) 0
Rab(U)= 0 e Usinh\) y3sinhu) 0 ' (AS)
0 0 0 sintfu+\)

From the relation12) all commutation relations between the opera#B8,C, andD can be obtained. In the sequel we shall
only need the following three of them:

Ap(U)®Bga(v)=sinh(v —u) " sinh(v —u+X\)Ba(v) @ Ay(u) — & ~Usinh( ) Bp(u) @ Ay(v)I D OU L, (AB)
Da(v)®By(u)=sinhv —u) U, Y[ By(u)®D,(v)RY (v —u) — ' ~¥sinh \) 1 QDB (1) @Dy (u)]. (A7)
Ba(U)®By(v)=sinhv—u+\) "*By(v) @ B,(u)RY (v —u). (A8)

The first step in diagonalizin@ is to construct candidates for its eigenvectors. This construction will be outlined below. One
first defines a “pseudovacuumf(®) on which T(u) is upper trigonal,

1
N
FO= ® e,, e =|0 (A9)
j=1 0
It then follows that
x$Vsinh(u+\)NF© * *
Ta(uF©= 0 (x3y3)Nsinh(u)NF(© * . (A10)

0 0 (x3y2)Nsinh(u)NF(©
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FO " sinh(ul” —u+\)
2N N K
oty A(u)=x7"sinnfu+A —u(U
D: v VD (W)=xg"sinfy )kﬂl sinh(uY) —u) wl
B: vV v =
B: v -y Ny ' .
N +[1 sinhu—u®)~TAD(u). (A15)
k=1

FIG. 4. Commutation ruléA7) for n;=2.

F(© therefore is an eigenvector &fu). To obtain more
eigenvectors we make the following ansatz:

F=Bp (Uy))®- - ®By(uf)Fm,

Fmevd...oviPeF©. (A11)
The vectorsF™)" will be found later. Schematically, we
can represent the action of the transfer matrixForas an
(n;+1)XN lattice, see Fig. 4. The stafé? is represented
by N vertical edges and the action of each of Bjéu{") by
a horizontal line. The action dd(u) on the resulting vector

Uple---®U;* and TO(ui{uf"}) are diagonal with ei-
genvaluesu(U) and A™M(u), respectively. For the “un-
wanted terms,” it is easily seen that the terms in which
Bnl(uﬁll)) is replaced byB,, (u) are(up to a common multi-
plicative factoj precisely of the form{(A12) and (A13) with

u anduf!) interchanged and the factor with=n, omitted.
Using the commutation rule fd8(u)B(v) it can be shown
that the same also holds for the terms vaif{u™) replaced
by Bl(u). The “unwanted terms” will therefore cancel if
A(uiM)=0, or

Ny
x3Vu(W)sinh(u P+ 0N T sinhuf® —ul” - 1)
k=1

=—-AD(ub). (A16)

The problem of finding the eigenvecto§?):" of T is
completely analogous to the construction above. It follows

F is given by the upper horizontal line. The commutationfrom the commutation rule:
rule (A7) can now be represented graphically by shifting the

upper line downwards using the YBE?2). In a similar fash-
ion we can get a graphical representation of &§).

RY(v—U)Da(v) ®Dp(U) =Dp(U)®D4(v)RE (v —u)
(A17)

The factors that arise after commutation are given in Fig.
4 by the external vertices. For example, the vertex on the lefand the fact thaRglb) has the same form &R, that T()

of the second diagram of Fig. 4 correspondsRG’(u—
u{¥) and the one on the right to sinh¢u{")~*U_? It fol-
lows from the relationgA6) and (A7) that

ng o (1)

sinh(u”—u+X)

AW F=xPsinu+ N —————
(u) 1 sinh( ) kll sinh(uP—u)

X Bnl(ug]i))@) . '®Bl(u(11))U;ll® . ®U1_1F(1)’nl

+ (unwanted terms (A12)

Ny
Da(wF=]] sinu—u®)~*
k=1
X Bnl(uﬁll))® . .®Bl(u(ll))Tgl)(u;{uf(l)})F(l)’nl
+ (unwanted terms (A13)
The reduced transfer matrix is given by

T WU h =0, "D 4(uRF (u—u) - - RE (u—uld),

THu{uh: ovidevide . ViYeH. (A14)
The “unwanted terms” are similar to EqA12) and (A13)
but now one of theB; hasu instead ofu}l) as its argument.
Provided that the “unwanted terms” vanish, the veckor
will thus be an eigenvector af{u)=A(u) + Tr,D,(u) with
eigenvalueA (u), given by

obeys the YBE
Rap (0 —WITE (0 {uPD o T (Ui {ui))]
= [T (u{uH e TP (0 {uPH IR (v —w).
(A18)
writing T (u;{u(™}) as

a(u)

T {uh = (A19)

b(u))

c(u) d(u)

since R(u) has the same structure &u), we deduce
from Egs.(A6) and (A7) that

a(u)b(v)=sinn(v—u) sinv—u-+\)b(v)a(u)
—& " Usinh ) b(u)a(v)ly; 2, (A20)

d(v)b(u)=y; 2sinhlv—u) " sinh(v —u+\)b(u)d(v)
— " "Usinh(A)b(v)d(u)], (A21)

where nowb(u) andb(v) commute. Defining the “pseudo-
vacuum” FM©) jp Vgll)@). oV as

ny 1
F(l)(o): ® e(l)’ eg_l)z O , (AZZ)

=1
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FL©)

FIG. 5. Action of 7((u) on FWO g F©),

the eigenvectors of (!)(u) are given by

FOn=pyP). .. b(u§]22>) FOOgFO  (A23)

Graphically, the action of (Y)(u) on F(*)'"1 js depicted in
Fig. 5. This diagram arises from Fig. 4 whdn(u) is
dragged down through afi’s and all unwanted diagrams are
discarded. The edges on the diagonal on the left in Fig.
now represent the “pseudo-vacuun”®©) in the space
Vi@ - @V, The action of theb; on F(D( is repre-

sented by building a lattice on this diagonal in the same way

as the operatorB; did onF(©), see Fig. 4. The commutation

rules (A20) and (A21) can then be represented graphically

similarly.
The eigenvaluess ) corresponding to the vectofs23)
are given by

JAN de GIER AND BERNARD NIENHUIS

ny
AD(u)=y, 2”1(x§y§)'\‘y; 2N2gink( u)Nk];[1 sinhlu—uf™+\)

"2 sinh(u{®—u+\)
=1 sinh(u{®—u)

—-2n 2.,2\N,,2n1—2n, __: N
+y2 1(X3y2) y1 ! ZSIHP'(U)

M "2 sinh(u—uf?+\
X k];[l sinh(u—u) x l]:[l S:Er(u——lul@))
(A24)
The eigenvalug.(U) is simply given by
M(U):y;2n1+2n2y2_2n2- (A25)

The “unwanted terms” generated by the action ©f)(u)
on Eqg.(A23) can be read off from EqgA20) and (A21).
Using the commutativity ofb(u) and b(v) they can be
shown to cancel and make E@A23) an eigenvector pre-
cisely when AM(u{®)=0. The numbers{u{?)} therefore
§atisfy the equations

" sinhuf®—ul®) 2 sinh(u{®—uf?+))
k=1 sinh(u{? —uP+ ) =1 sinh(uf® —uf? =)
1#]
Y3

[ 1%
yaxs) \yiys)
Knowing A(u) the first set of equations as given by Eq.
(A16) becomes

(A26)

sinh(u®+0)\ N 3y3\ N[ y3 \ "2 sinh(ul —uP+ 1) 12 sinh(ul™ —uf?—)) e
sinhul™) | | x] yiy3) ik sinuP—ul®—\) i1 sinhu{Y - uf?) (A27)
k]
The eigenvalue combining the expressigA45) and (A24) becomes
N g —_yD_ N i —_yD
_ _ sinfflu—u,”’—N\) Cons -2 sinlu—u,”+\)
A(u)=x2Ny - 2Mt 202y = 2oginn 4 N[ —————— + (x&y2) Ny 2y oginh N[ ————
(U)=X1"Y, Y, h( ) kljl sinh(u—u®) (X5y3)"Y3 7Y, h(u) k1;[1 sinh(u—u)
N2 i (2) N2 o (2)
sinh(lu—u;“—X) _ _ ) sinhflu—u;“+N\)

e+ OBy, 2y 2 sinh( )M ] ' (A28)

=i sinh(u—u?)

=1 sinhlu—u(?)
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