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Critical finite-size-scaling amplitudes of a fully anisotropic three-dimensional Ising model
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A fully anisotropic simple-cubic Ising lattice in the geometry of periodic cylindexan X « is investigated
by the transfer-matrix finite-size-scaling method. In addition to the previously obtained critical amplitudes of
the inverse correlation lengths and singular part of the free enéfigyA. Yurishchev, Phys. Rev. B0,
13 533(1994)], the amplitudes of the usuéllinear” ) and nonlinear susceptibilities and the amplitude of the
second derivative of the spin-spin inverse correlation length with respect to the external field are calculated.
The behavior of critical amplitude combinatiofwhich, in accordance with the Privman-Fisher equations, do
not contain in their composition the nonuniversal metric coefficients and geometry prefaet@tudied as a
function of the interaction anisotropy parameters. A universality domain for the amplitude ratios is found in the
guasi-one-dimensional regime of interactions in the system. In the case of #shiligpic three-dimensional
Ising model for which the high precision values of the critical coupling and critical-point free energy are
available, improved estimates are obtained for the following four universal quantitiethe amplitude of
spin-spin inverse correlation lengttg) the amplitude of singular part of the free ener@), the ratio of the
amplitude of a second derivative of the spin-spin inverse correlation length with respect to the external field to
the usual susceptibility amplitude, at® the ratio of the nonlinear susceptibility amplitude to the square of the
linear susceptibility amplitudéi.e., for the finite-size counterpart of the four-point renormalized coupling
constank [S1063-651X97)07303-0

PACS numbegps): 05.50+q, 05.70.Jk, 64.60.Fr, 75.10.Hk

I. INTRODUCTION tional equations of Privman and FisH&-4], we construct
from critical amplitudes the combinationAK;;h/AX and

In Ref. _[1] (hereafter _referred to ag, It_he critical finite- AX<4)A5/A)2(, which, asA/A;, do not contain the certain
size amplitudes of the inverse correlation lengths and theonuniversal coefficients. The analysis shows that those am-
“singular” part of the free energy per spin have been calcu-pjitude ratios are universal with respect to the anisotropy
lated for the three-dimensional ferromagnetic Ising model orparameterJ, /J,—0 but depend on the parametay/Jy .

a simple-cubic lattice with fully anisotropic interactions. The However, theJ, /J, dependencies exhibit smooth extrema

amplitudes have been obtained by a finite-size-scdf®)  nearJ, /J,=1, and therefore the amplitude ratios have a lo-

analysis of the transfer-matr{{M) data for subsystems hav- cal universality in their vicinity upon the second anisotropy

ing a shape ohXnXo cylinders with periodic boundary parameter of the model.

conditions in both transverse directions. In the present paper we find also the valuesAgf A,
The results showed that the ratios of the above criticaAKﬁh/AX, andAX(4)/A)2( for n=2, 3, and 4 in the case of the

amplitudes practically do not depend on the anisotropy pafy|ly isotropic simple-cubic Ising lattice by using the avail-

rameterJ,/J, if the second parametel,/Jy is fixed (the  aple high accurate estimates for the critical point and critical

parallelepipedsiXnx are assumed to be stretched alongfree energy and give three-point extrapolations for these

the z axis; J, and J, are the interaction constants in the quantities.

transverse directions of a cylinder, adgis the interaction

constant in the Iongitudin_al direct.ianFurthermore, it has || spATIAL ANISOTROPY AND THE PRIVMAN-EISHER

been found that the amplitude ratios are independent of the EQUATIONS

second anisotropy parameted,/J,, in the vicinity of

Jy134=1. Unfortunately, a wrong conclusion concerning the In the case ofd-dimensional cylinders with sizes of

amplitude ratio constancy in the full range of thg/J, val- Ly XLyX.-- XLy X, the Privman-Fisher equations,

ues has been made in |I. which allow one to identify for the hyperscaling systems the
In addition to the amplitude of the spin-spin inverse cor-universal combinations of critical finite-size amplitudes,

relation length A) and the free-energy amplitudé\(), in  have the forn{2]

the present paper we calculate the amplitudes of linear and

nonlinear susceptibilities A, and A ), respectively, as ®(t,h)=Lg ™X(C4tLYT,CohL2M Ly /Lo, . .. La—1/Lo)

well as the amplitude of the second derivative of the spin- )

spin inverse correlation length with respect to the external

field (AKﬁh)' The calculations are performed again for theand

cyclic clustersmaXx n X« with the maximum number of lattice  _
layers in each transverse directiors 4 (i.e., for the sizes of ~ f9(t,h)= LadY(CltLgT,Czh L3"Ly/Lo, - . La—1/Lo).
TMs up to 65 536& 65 536). Guiding ourselves by the func- (2
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In these equationss is the inverse correlation length in the isotropic critical exponent of the bulk correlation lengths,
longitudinal direction of the cylinderf® is the singular part i.e., When§i=§8)t‘” (Refs.[5-7]). The choice ofa; com-

of the free-energy density measured in units okgT, pletes, in principle, the process of expressing the quantities
t=(T—T.)/T. is the reduced temperature,is the normal- entering into the Privman-Fisher equations via ‘“micro-
ized external fieldy; andy,, are critical exponents;; and  scopic” parameters—the interaction constants of the Hamil-
C, are system-dependent metric factors, éndis a scale tonian. Note that the situation is paradoxical to a certain
length. The FSS functionsX(Xy,X5;l1,l5,...) and extent:in order to use the FSS theory for extracting informa-
Y(Xq1,%Xp:11,15, ...) areuniversal (within the limits of a  tion about a bulk system from properties of its finite sub-
given universality clagsbut may depend on the type of Systems, one must know before the correlation-length ampli-
boundary conditions and, as we see, on the aspect ratidgdes of the bulk system.

li=Li/Lo,. For the scaling lengthL,, one can take In the two-dimensional anisotropic Ising lattice, which is
Lo=(LiLy--Lg_ )@Y or put Lo=min(LyLy, ..., a limited case J,=0) of the three-dimensional Ising model
Lq_q), etc. under question, the dimensionless bulk correlation lengths

Let us turn in Eqs(1) and(2) to the dimensionless quan- for T>T. are[8] (see also, e.g., Ref9])
tities, which are immediately defined by the parameters of a
subsystem Hamiltonian. Let the elementary cell of a simple-£,(J, /kgT,J,/KgT)=&,(J,/kgT,J, /kgT)
cubic lattice have the sizes af Xa,X - - - Xay and let the
subsystem “frame” be a cylinden; X n,X - - - Xng_;X%, = In[coth(J,/kgT)exp( —2J,/kgT)].

wheren; is a number of spins in thigh transverse direction. (7
We will, however, restrict ourselves to the case of cylinders

with square cross §elct|0n, L€ N =Np=---= ”dffs”- [WhenT<T,, the correlation length expressions differ from
Then Li=na;, k=ag'k,, and f&=(aja,---a4) Y,  Eq.(7) by the factor— 1/2, which is, however, unessential

where k,, and fff) are, respectively, the dimensionless in-for the present consideratiofhsAccording to the isotropy
verse correlation length and singular part of the free energyequirementa,¢,=a,&, and therefore for the square Ising
per site.(Below, however, we will often omit, for brevity, lattice[5] (see alsd6,10,11)

the word “dimensionless.)’ In the new variables the

Privman-Fisher equations can be written as a, & 23,\1°*
G=a—=lim§—= sinf‘(k_l_” , (8)
kn(t,N)=n"1GX(C tn¥1,Cohn'ha,/ay, . . . ag_1/ay) X ToTc52 Blc
()
where the critical temperatufg. is determined by the equa-

and tion
f§15>(t,h)=n—dGY(CltnyT,Czhnvh;azlal, ..8g-1/aq), _ 23, \ . 27, _, ©

(4) sin KaTe sin KeTo) L
whereG=G(a,/a, ...aq4-1/21,84/2,) is the geometry

prefactor. We assume that at least two lattice spacings in thgduations(8) and(9) in parametric form yield the geometry
system are finite and nonzero; without loss of generality, wa@ctor G(Jx/J;). Note that up to date the anisotropy factors
take them as, anda. have been found for many exactly solved two-dimensional

One obtains from Eqg3) and (4) that models of statistical physid42-14.
In the three-dimensional space, E3). and(4) are writ-

A=nk,(0,00=GX(0,0;a,/ay, ... a4_1/a;), (5 ©Nas

—n-1 y Yh-
A=n%(0,00=GY(0,0:a,/a;, . . . ag_1/a1), (6) kn(t.h) =n""GX(C,tn*1,Cohvay fay) - (10)

and analogously for the dimensionless critical finite-size-2Nd
scaling amplitudes of the derivatives of(t,h) or f (J)(t,h).

The geometry-prefactor form depends on the choice of fﬁf)(t,h)zn‘3GY(CltnyT,Czhnyh;ay/ax). (11
Lo. The prefactor is defined with exactness up to some mul-
tiplicative function of a,/ay, ...,aq-1/a;, inasmuchas pye to the shape parametey/a,, the scaling functions

such a function can be introduced into the scaling function%epend on the coupling ratios, and therefore Eg§) and

X andY or, vice versa, taken out from them. We will, how- (11) do not allow the existence of any universal amplitude

ever, setG=1 for the fully isotropic model. combinations. An obvious exception, however, is given by
In order to be able to employ the FSS theory, the “latticethe case when the interactions in the transverse directions of

spacings”a; must be chosen so that in the vicinity of the the parallelepiped x nx « are equal among themselves. On

Eha.se lransition pOint the bulk correlation |engthSphysica| groundS, it is clear tha&: ay by thiS, and conse-

&, ... & along all the different spatial directions become quently the critical amplitude combinations that do not con-

equal among themselve§;=¢,=---=£4. Such a rescal- tain C;, C,, and G will not depend upon the interaction

ing of lattice spacings can be made for systems with theonstants in the system.
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Ill. FORMULAS FOR THE SUSCEPTIBILITIES AND FOR
THE INVERSE CORRELATION-LENGTH DERIVATIVE

For the amplitude rati@\Kﬁh/AX, it follows from Eqgs.(3)
and(4) that

A

Khh Khh
=—gq-71 12
AX n 1Xn ( )

where ki, = d%ky/9h?, while x,=d%f,/dh?=*f/sh? is

the susceptibility of the systent { denotes the dimension-
less free energy per lattice siteTaking into account that
As=nk,, one finds for the second amplitude combination

AvaAs X0 kn 13
A)Z( nd~ 1)(§ '

where x(¥= - 5*f,/oh* is a nonlinear susceptibility. Thus,
the problem is to carry out the calculationff,, and x\* for
periodic cylindermxXnXx«~ ath=0 since the method of cal-
culating x,, and x, was already done in I.

To solve these problems, we use, as in |, the TM tech-

nigue. The matrix elements of TM;, are given by

<81118121 et vSnn|V|SilISZ’LZ' e vSr,m>

n
:ﬂl ex 3K(S S+ 1)+ S S/ 1)) + 3Ky(S;;Sj 11

+8Sj+1)+K;S; S +3h(S; +S)1.

Here the spin variable§;; take the valuest1; S, ;=S
and §,;,;=S;; for all i,j=1,2,...,n; K,=J,/kgT

(14

(@=Xx,y,2). The matrixV is real, symmetric, and dense, hav-
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fa=zMnAy, (19

whereA ; is the largest eigenvalue df Further, the dimen-
sionless spin-spin inverse correlation length in the longitudi-
nal direction of a parallelepipedxX nXx oo is

anln(Al/Az), (16)

where A, denotes the second largest eigenvalue of the ma-
trix V.

In order to derive the exact formulas for the zero-field
derivatives of the free energy and inverse correlation length,
we will use perturbation theory. For this one expands the TM
in powers ofh:

V=V+hV;+h?V,+h3V;+h%V,+0(h%. (17

Let us use the symmetry of the moded this context see

I). V is invariant under the transformations of the group
TAC,, (T is a group of translations in the transverse direc-
tions of a cyclic bamXnx«~ andC,, is the point group
generated by two symmetry planes going through the
middles of opposite faces of the systefurn in Eq.(17) to

the basis of the identity irreducible representation of the
groupT/\C,, . Expansion(17) preserves the above form but
now its terms are blocks corresponding to the indicated rep-
resentation. Both eigenvalues; and A, lie in the given
block V. Take now into consideration the symmefty (a
group of spin inversions The matricesV, V,, andV, are
symmetrical and the matricds, andV; are antisymmetrical
(i.e., they change sigrunder the spin inversion operation.
Going by means of a similarity transformation into a new

ing all its elements positive. The dimensionless free energypasis in which the original representation of the group is

per spin equals

0o v
v oo

~ (V@ 0 vy
V= +h 2

0o V@

For definiteness we suppose that the subblogks, V(Zl),

0V

completely reducible, one obtains from EG7)

+0(h®). (18)

v

ues and corresponding eigenvectors of matd¥); let

andV{" correspond to the identity irreducible representation\{¥’=\; be the largest eigenvalue of the blowk® and
of the groupZ,. Denote the sizes of these subblocks byconsequently of the “nonperturbed” transfer matkix Due

N; X N; and the sizes of the subblock&?), V{2 andVv{?
by N,xN,. Then, the matrice&/{*? and V§? have sizes
N1 X Ny; VY and VY are found by transposing{*? and
V{? | respectively. The numbeh; andN, can be obtained
from a group-theoretical analysis. For th&2X« cluster,
N,=5 and N,=2 (Ref. [15]); for the 3xX3Xx cluster,
N;=N,=18 (Ref. [15]); and for 4x4Xo, N;=787 and
N,=672 (Ref.[1]). Further, let\{) and ¢; be the eigenval-

to the Perron theorem), is nondegenerate. Finally, let
A and ¢; be the eigenpairs o¥/®; \{?) is the largest
eigenvalue of block/(?. Note that\ {2 is also nondegener-
ate if we do not take the extreme cases, which can be exam-
ined separately.

Using the stationary perturbation theory for a nondegen-
erate level, we find the largest eigenvaluéafith accuracy
up to the terms of second orderln
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N
2( + (12)(‘0)

In an analogous way, one obtains the following expres-
PV g+ > ——— @
k=1 1_)\k

h2+0(h%). sion for the second largest eigenvaluelof
(19

Al:)\l—’_

From here, the expression for the initi@kero-field suscep- 1
tibility follows as (Vi p1)?
y A=\ +| ¢ V(2)€01+2 —l’i@ )\(11) h?+0(h*).
k=1 -
Ny (l//+ (12) k)2 ! k (21)

v +.
Y1 Vs i )\1_)“((2)

= 2 20
Xn_nZAl . ( )
The given formula, obtained by the perturbation-theory
method, differs in a form from the one derived in | using the From Egs.(16), (19), and(21) we get the work formula for
fluctuation-dissipation relation, but it is equivalent to it andthe second derivative of the spin-spin inverse correlation
yields the same values of the susceptibility. length at pointh=20:

Khh 2{

Calculating the largest eigenvalue; up to the terms of fourth order ih, we find the following result(suited for
programming for the initial nonlinear susceptibility:

1

WiV 09| (iVi¥e?
yivLy, +2 o7 VP o1t Elw
k= 1 Kk

2
=N NE

} . (22

(4) 12

=i,

1
)\—IQZ_2(Q1+Q2+Q3+Q4+Q5_Q6+Q7_Q8)}7 (23a

with

N2 (l/f 12) 2

1 Pk

= * RLC L A
Q=1 V5'ia < AP

(1 V20 (7 V52 )
N—A ’

Np (1) )2

N (1 V5 )

Q=i V& y,, Qz—z —)\1 _)\(1k :
17 Ak

22

N2 X (g VP e (e V) (4 VD i)
Q4 22 2 )\ _)\(kZ))()\l_)\l(l)) !

Ny N +y(12) (2) (21)
3 (41 Vi <Pk)(90k ﬁD|)(<P| Vi)
QS_kZl 21 A=AP) (A1 —\?) ' (230

< (WiViPen?

Qe=17 V (l)lﬁlEl W

Ny N3 Np 12) (21) (12) (21)
B (1 VI o) (o VI 9) (9 V2 ) (o Vi 1)
SEPIPIP M=M= M) =D ’

< (VP 00?E (9 ViPe)?

Qs_z E

(A —>\<2>)2 = MNP
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peratures, which were determined by the—(1,n) cluster

Jolde=1 pair, i.e., through the equation
y!ux~

(N—1) k-1 (T M) =i (T, (24)

0.2 Since we are able to perform the calculations for subsystems
—~ 15 with n<4, this allows us to have two independent iterations,
) with (2,3) and (3,4) pairka degenerate pair (1,2) was elimi-
0.1 nated from the consideration due to its anomdlied]. Two
A" steps of converging iterations give already a possibility to
__hh extract valuable information about tendencies in the change
Ax of quantities with increasing.
The results for the critical temperatures and critical FSS
0.05 amplitude ratiosAKﬁh/AX and AX(4)AS/A)2( depending on
N Jx 13, andJ, /J, in the cases of both cluster pairs (2,3) and
10 (3,4) are collected in Table I.
' Let us first discuss the behavior of amplitude ratios
againstJ,/J,. Figure 1[18] shows the dependencies of
Axﬁh/Ax on J,/J, at different fixed values ofl,/J,. If

Jy13,=0, the barnXnx is reduced to statistically inde-
pendent strips. In two-dimensional space, the dependence on
an anisotropy parameter must be, as follows from E8p.
and(4), absent. Thel,/J,=0 plot given in Fig. 1 confirms
this: in the case of the (3,4) approximation, the ratio
Axﬁh/Ax is unchanged within the relative root-mean-square

error 0.08%. We expect the constancy of amplitude ratios
— . N also at),/J,=1. The corresponding line shown in Fig. 1 can
-3 -2 -1 0 be considered as a straight one with an accuracy 0.31%.
10 10 10 10 o
Jyldy Importantly, the ana]ogous error for the (2,3) pair is
0.45%. Thus, the deviations versiig J, fall asn increases.
_ _ _ For intermediate fixed values df /J,, the amplitude ra-
FIG. 1. Amplitude ratioA,r /A, vs the anisotropy parameter tjo has weak but still quite detectible dependence against
J«/1J, by different fixed values ofJy/J,. Periodic cylinder J /J,. As seen in Fig. 1, variances are most essential in the
4x4x at critical temperature$>9 . range 10'<J,/J,<1. Now the amplitude ratio dependence
does not tend to disappear with increasmgFor example,
Explicit expressions for the matrix elements of subblockswhenJ, /J,=0.1, the mean values and the root-mean-square
v vl v Vi) andviY are given in the Appendix. uncertainties(the latter are shown in parenthesésr the
Notice that the full eigenproblems for the matridés) and  quantity A A, in the range 103<J,/J,<1 equal

V@ were solved by means of th@ library function pair  1.37(2) and 1.35(2) for the pairs (2,3) and (3,4), respec-
tred2 and tqli[16]. All calculations were carried out on a tjvely.

personal computer IBM PC-486 with the operating system A gimilar picture is observed for théx(4)AS/A)2( (see

0.02

FreeBSD. Table ) and for theA./A; (Table | of Ref.[1]). As a whole
one can conclude that the critical FSS amplitude combina-
IV. BEHAVIOR OF THE CRITICAL AMPLITUDE RATIOS tions that do not contain the nonuniversal facl@gsCz, and

G display a tendency to the universality under the anisotropy
As already noted in Sec. II, the FSS amplitude combinaparameterJ, /J, when this is small(i.e., by a quasi-one-
tions normally should depend on the interaction ratios, whichjimensional nature of interactions in the system
change the shape of a subsystem. This is in agreement with We discuss now the behavior of the amplitude ratios as a
basic ideas of the renormalization-group theory. function of the second anisotropy parameter, namely,
We will consider how the amplitude combinations behavey, /J, . In | the amplitudes of the inverse correlation lengths
versus the interaction anisotropy parameters in the thregind the free energy have been calculated Joid, e [0,1].

dimensional Ising model. To eliminate as effectively as pos-The amplitudeA; was found from a set of two equations,
sible nonuniversal quantities from the critical FSS amplitude

combinations, it is natural to consider the behavior of such fo="f.+n 9A;, (25

combinations, which do not include in its composition the

nonuniversal metric and geometry factors. In other words, itvith n=3 and 4[“background” f., is a second unknown

is reasonable to base again our choice of combinations on thariable in Eq.(25)]. In this paper we prolong such calcula-

Privman-Fisher equations. tions toJ, /J,=4 and use not only the (3,4) pair but also the
For a clustemX nXx«, the values of linear and nonlinear (2,3) one, to observe the evolution with increasimgThe

susceptibilities and derivativey,, are taken at critical tem- results are shown in Fig. 2. It can be seen from the figure that
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when the parameted,/J, increases from zero, the ratio (2,3) and (3,4) approximations.
A./A; first increases monotonically from some finite value, We make the quantitative comparison of our data in the
which decreases with growth of cluster size. Then theéwo-dimensional case. Space dimensionatitghanges dis-
Ag/A¢ attains a smooth maximum nedy/J,=1. Lastly, the  continuously from 3 to 2 in the limid, /J,— 0. This leads in
ratio Ag/A; falls monotonically asl, /J, becomes large. turn to a finite jump in values ol /A; at Jy/Jx=O+ and

It follows from the obtained data that the values of J,/J,=0. Using Eq.25) one finds for theif—1,n) pair that
As/A; are equal among themselves fal,/J, and
(Jy/JX)*1 and this is better the smalldr /J,. Clearly, the n(n—1)(2n—1)
source of theJy/Jx<—>(Jy/Jx)‘l symmetry is caused by the (AS/Af)Ozw
(approximate J, /J, independence of amplitude ratios. The
inversion symmetry leads in turn to an existence of extre-
mum atJ, /J,=1. Inasmuchas the extremumaximun) is where the subscripts 0 and*Odenote the values at
smooth, there is a local universality under the second anisotl,/J,=0 and 0, respectively. Hence, recalculating the val-
ropy parameterd,/J,. We conclude that in the domain ues atJy/JX:O+ to the values atl,/J,=0, we obtain
0<J,/J,<1 and|J,/J,—1|<1 there exists a complete uni- (As/Af)=3.0143 for the (2,3) pair in the case
versality of the amplitude ratid./A;. Note also that in the J4/J,= 10°3. For the (3,4) pair at the same value of
maximum region both curves go quite near one another; such/J,, (As/As)o=3.0087. In the two-dimensional Ising lat-
a neighborhood characterizes the arrived convergence dice, the exact valudg/A;=3 (in Fig. 2, it is shown by the

(As/Ap)o+, (26)

TABLE I. Critical-point amplitude ratiosﬂ\,(ﬁh/AX and AX(4>AS/A)2( as a function of anisotropy parameteks'J, andJ,/J, . Approxi-
mations by cluster pairs (2,3) and (3,4).

3,03, 343, (2,3) pair , (3,4) pair ,
kgTc/J, Ay 1A A @Al AL kgT./J, Ay 1A, A @A AL
ot 1.0 2.367640 0.65214 1.92695 2.320811 0.48946 1.44560
0.5 1.699790 0.65173 1.92388 1.662411 0.48991 1.44730
0.1 0.921068 0.65279 1.92832 0.910794 0.49034 1.44919
0.01 0.513815 0.65309 1.92968 0.510586 0.49039 1.44940
0.001 0.345015 0.65310 1.92972 0.343461 0.49039 1.44940
0.1 1.0 2.845802 1.34451 3.60933 2.817633 1.32110 3.48345
0.5 1.979483 1.35368 3.62760 1.959011 1.34212 3.54079
0.1 1.024601 1.38006 3.70054 1.019932 1.35995 3.59108
0.01 0.550499 1.38661 3.71950 0.549216 1.36225 3.59760
0.001 0.362466 1.38685 3.72021 0.361871 1.36233 3.59781
0.5 1.0 3.819394 1.65412 455222 3.739735 1.67447 4.59324
0.5 2.533705 1.65621 4.54634 2.487136 1.68196 4.61381
0.1 1.211125 1.67095 4.59073 1.199032 1.68882 4.63492
0.01 0.611620 1.67545 4.60591 0.608159 1.68976 4.63782
0.001 0.390357 1.67564 4.60656 0.388821 1.68979 4.63793
1.0 1.0 4.685960 1.68710 4.67454 4.581044 1.70507 4.70713
0.5 3.024529 1.68407 4.64512 2.960469 1.71114 4.72047
0.1 1.366300 1.69711 4.68102 1.350375 1.71743 4.73841
0.01 0.658794 1.70231 4.69869 0.654587 1.71832 4.74101
0.001 0.410971 1.70256 4.69953 0.409173 1.71835 4.74110
15 1.0 5.418190 1.68220 4.66797 5.310630 1.69188 4.66481
0.5 3.442977 1.67334 4.61261 3.368233 1.69831 4.67598
0.1 1.494583 1.68607 4.64298 1.475982 1.70726 4.70162
0.01 0.695761 1.69307 4.66651 0.691216 1.70870 4.70596
0.001 0.426622 1.69344 4.66777 0.424737 1.70875 4.70612
2.0 1.0 6.068336 1.66945 4.63471 5.975643 1.66826 4.58676
0.5 3.819394 1.65412 4.55222 3.739735 1.67447 4.59324
0.1 1.608392 1.66577 4.57383 1.587593 1.68729 4.63016
0.01 0.727256 1.67510 4.60471 0.722535 1.68970 4.63763

0.001 0.439633 1.67563 4.60652 0.437724 1.68979 4.63792
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FIG. 2. Amplitude ratios
Ag/A; (averaged over J,/J,
={1,101,102,10"3}) as a func-
tion of J,/J,. Shown are the ap-
proximations by (2,3) and (3,4)
cluster pairs—dashed and solid
lines, respectively. Open circle on
the ordinate axis is a value of
Ag/A; (=3) for the two-
dimensional Ising model.

Jyldx

open circle on the ordinate axi<Consequently, the error is Let us compare the results for the discussed amplitude
reduced from 0.48% to 0.29% by going from (2,3) to ratios in the two-dimensional limit. Since
(3,4) pair.

A qualitatively similar picture takes place for the ratios (A IA)o=n(Ar [A )0, 27
Axﬁh/Ax and AX(4)AS/A)2( (Figs. 3 and 4 Here again the . N _
amplitude ratios have finite values 3t/J,=0" that vanish taking from Table | the values &, /J,=0", one finds that
with increasingn according to the 1 law. There is again a (A« /Ao €quals 1.959 and 1.962 for the (2,3) and (3,4)
monotonic increase for small values&f/J,, a broad maxi- approximations, respectivelythe point J,/J,= 103 has
mum neard, /J,=1, and then a monotonic decrease by largebeen used These values are in good agreement with avail-
Jy/Jy. The inversion symmetrylleXH(Jy/Jx)‘l applies  able estimates of the amplitude ratio for the two-dimensional
again. isotropic Ising models,AKﬁh/AX= 1.95-1.96 (Ref.[19]).

|

AKhh

FIG. 3. Average amplitude ra-
tio Ax;;h/Ax vs J,/Jy; periodic
cylinder 4<4 X< at critical tem-
peraturesT®4 . Full circle on the
ordinate axis corresponds to the

-0t i
Ath/AX at J,/J,=07, while
open one is a value of that ratio in
the two-dimensional Ising lattice.

Jyldy
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FIG. 4. The same as in Fig. 3
i but for the amplitude ratio
3 A @ASIAZ .
?
1
0 1 2 3 4

Jyldy

One can argue analogously for the combinationfinite in all three directions, the functiorp(x,y,z) is
AX(4)AS/A)2(, calculation being carried out by the formula  symmetrical under the replacement of its second and third
arguments: ¢(x,y,z) = ¢(x,z,y). Moreover, ¢(0y,z)=0
(Ay@ASIAY) o=n(A @A/ Ad)g . (28)  which means the absence of correlations in the direction
along which there are no interactions. Let the expansion on
Taking from Table | the necessary data, we find that athe first argument begin from a temnin some poweq. In
3 13,=1072 the ratio @A, @As/A%)=5.7892 and 5.7976 accordance with physical reasoning, it is apparent that in the
for the pairs (2,3) and (3,4), respectively. These results arfinite lattice the amplitudet}) has the same functional

in exc;ellent agreement  with the value form as £ but, of course, with replaced arguments:
E‘\Z)Sit)AS/AX=5.797 28(5) following from the calculations fgy):¢(Jy/kBTc1Jx/kBTCxJz/kBTc)- Further, the critical

. _ temperature of a quasi-one-dimensional Ising model is given
We discuss now a reason that could lead to a d|sappea5-y [21]

ance of the parametek,/J, from scaling functions for the
system with the dominant intrachain interaction

(3.>J,,Jy). The bulk correlation-length amplitude is a func- _ z Jz -
tion of the interaction constants. Let KgTc/J,=2In Jit+Jy ~Inln Jxt+Jy +0O(1)
£59= (I /KT, dy/ksTe,J,/kgTe). In a lattice that is in- (29)

TABLE Il. Estimates of the universal critical amplitude combinations for the fully isotropic three-
dimensional simple-cubic Ising lattice in the geometry of infinitely long cyclic parallelepipeds with the
square cross section. For all quantities, with the exceptioA;ofthe three-point extrapolations were per-

formed by the Shanks’ transfor@Ref. [24]). In the case ofA; as a realistic estimate, the last term of finite
sequence has been taken.

n A, A Ay 1A, A A2

2 1.458347 0.451886 1.784594 3.497834
3 1.353169 0.409959 1.763848 3.661609
4 1.302661 0.378507 1.755304 3.759097
o0}

1.265) 0.373) 1.7496) 3.92)
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Due to the fact that a decreaselgfT./J, is logarithmically — also that in the two-dimensional space the free-energy
slow, the arguments of functiowb, J,/kgT.=(Jy/J,)JI,/ amplitudes of periodic Ising strips and squares are equal cor-
kgTe and Jy, /kgTc=(Jy/3x)(Ix/J;)J, /KT, are small for respondingly to 7/12=0.261799 and In&*+2717)
small J,/J,. Expanding the bulk correlation-length ampli- =0.639 911(see, e.g., Ref3]).

tudes in Taylor series and keeping only the leading asymp- We do not know from the literature any estimates for the
totical term, we obtain that a3,/J,—0 the aspect ratio ynijversal ratioA,» /A, in three dimensions. One can note

~ —-q i i
ay/ay=(Jy/J,) . The anisotropy parametdy/J, did drop that out of all the four quantities discussed in this section, the

out. o .
In light of the above statements the Privman-Fisher equagomb'nat'onAKﬁh/AX has the best canvergencerin
tions for the quasi-one-dimensional systedy ,J,<J,) can Finally, for the universal cg’nbinatiohxm)/Af(, which is
be written as the finite-size cumulant ratig,,, there exists an estimate
only in the order of magnitudeg..~3 (Ref. [27], see also
Kkn(t,h) =n"1G(3,/J,,3y13,)X(Cetn¥T,CohnYh; 3, 13,) the reviewd 3]). We have succeeded in obtaining this quan-

(30 ity to an accuracy of 5%.

and
£9(t,h) =n"9G(3,/d,.,3, 13, Y (Cotn¥T,Cohrdh: J, 13, VI- CONCLUSIONS
(3D In this paper | have presented large-scale transfer-matrix
calculations for different finite-size amplitudes of a fully an-
where d=|sgnQ,)|+|sgn@,)|+[sgn@,)|. The geometry isotropic simple-cubic Ising lattice in the shape of
prefactor is normalized so th&(1,1)=1 and the depen- nxnxo bars with periodic boundaries in both transverse
denceG(J,/J,,0) is given by Eqs(8) and(9). directions. The behavior of amplitude combinatignatios
We know that thel, /J,«(J,/J) ~! invariance and the that do not contain the nonuniversal metric factors and ge-
analyticity of scaling functions leads to the existence of aometry prefactor was studied depending on the interaction
smooth extremum for the critical amplitude ratios of theanisotropy parameterd,/J, andJ,/J,. It has been estab-
nXnXxo parallelepipeds af, /J,=1. In this context note lished that these amplitude ratios practically cease to depend
that in the case of parallelepipeds withrectangularcross  on the anisotropy parametdr/J,—0 and, what is more,
section,n, X ny X, one should expect the extrema for the this is true for a wide interval),/J,<10 1.

certain ratios of critical amplitudes a;,/.]x=(ny/nx)1’q. It was shown that as a function df/J, the amplitude
ratios have a smooth extremufmaximum nearJ, /J,=1.
V. COMPLETELY ISOTROPIC LATTICE As a result, the critical finite-size amplitude combinations are

universal with respect to both anisotropy parameters in the

At present, the critical point of the fully isotropic simple- domain 0<J,/3,<1 and|J,/J,—1|<1.
cubic Ising lattice is located to a high degree of accuracy: A mechanism leading to th&,/J, independence of cer-
K.=0.221 655(1)(Ref. [22] and references thersinit is  tain amplitude ratios was proposed. By this the-J, in-
known also with large accuracy the free energy at criticality'yariance together with the analyticity of the scaling functions
f..=0.777 942), Ref.[23]. On the other hand, we can carry explains the existence of a smooth extremum in the ampli-
out the calculqtlons for subsystermsx nxoo with three  tyde combinations at,/3,=1.
numbers of lattice layera=2, 3, and 4. This allows one, In the case of fully isotropic interactions (= J,=J,) for
generally speaking, to perform the three-point extrapolationgyhich the high accuracy values of critical coupling and criti-
for accelerating the convergence and to improve the estica| free energy are available, the better estimates have been
mates of the universal critical amplitudag andAs and also  found for the universal critical finite-size amplitudes of the
the universal critical amplitude ratiosA,r /A, and  spin-spin inverse correlation length and singular part of the
AX(4)/A)2(' The results are summarized in Table 1. free energy per site, as well as for the universal amplitude

One can compare our results with the available estimatesatiosA,» /A, andA, @/ AZ.
According to a Monte Carlo simulation on periodic cylinders
nXnx128 withn=4, 6, 8, and 1QRef. [25]), the critical
FSS amplitude of the spin-spin inverse correlanor] length  ApPENDIX: MATRIX ELEMENTS OF Vi, Vy, Vs,
equalsA;=1.3((3). OurestimateA;=1.26(5) is consistent AND V, IN THE QUASIDIAGONAL
with the one above. _ REPRESENTATION OF V

Information concerning the absolute amplitude of the free
energy can be extracted from the published data by the indi- The sizes of upper and lower subblocks in the expansion
rect route. Indeed, in accordance with the calculati®@®  (18) of TM for a cylindernxXnxo are equal among them-
carried out in the quantum limit of a three-dimensional Isingselves N;=N,) by oddn and unequal ;# N,) by even
model, A,/A;=3.6716). Using the above estimate n. Consider the cases of even and oddeparately.
A,=1.30(3) one finds A;=0.3549). The value Matrix elements of subblockg® andV(? for the bars
A;=0.37(3) given in Table Il agrees with this estimate. Note3X 3 X« and 4x 4 X« have been done if15] and I. For the
that the critical FSS free-energy amplitude of the three2Xx2Xx cluster, subblock¥") andV(?) have, respectively,
dimensional Ising lattice with the shape of periodic cubeshe sizes %5 and 2<2 [15]. As for the 4x4 X« cluster,
is equal toA?*®=0.6255), Ref.[23]. For a comparison note their matrix elements are given by
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ViV=A;G;; (Ala)
and
ViP=A;Gij. (Alb)
where
max(n; ,n;) N b b
Ajj=———"exd :(m2+m?)K,+ :(mP+mP)K, ],
1 \/Tn] F[Z i ] X' 2 i ] y]
(A2)
(1/2)n
gl +2 E gWeosh2sK,), (A3a)
and
(1/2)n?
=2 > gWsinh2sK,). (A3b)
s=1

The coefficient:;, m?, mib, andm; for the periodic cylin-
der 2x2Xx are

n={2,8222 mi={4,0-4-44,

mP={4,04-4-4}, m={4,2000. (A4

As in the case of &4 x = cluster, the coefficientg) sat-
isfy again the condition

(1/2)n2

gy +2 321 giV=min(n; ,n;). (A5)

For g{!) with s#0 one has

11) 01 21) 10 22) 01 31) 00 32) 10 33) 01 41) 00
42) 10 43) 00 44) 01 51) 00 52) 10
53) 00 54) 00 55) 01 . (AB)

Finally, theg{") coefficients of a cluster 22X« equal

11) 01 21) 10 22) 01. (A7)

Taking (from [15] and |) the basis functions of irreducible
representations we find the matrix elements of subblocks
for cylinders

V{12 for bars nxnxo with evenn (i.e.,
2X2Xo and 4X4Xx):

(V(llZ))ijZ%Aij(ijij+mi6ij)v (A8)
wherem; =

ates for subblocky(l) and V)

0 byi>N,; here and below we regard, for defi-
nltenessG ;=0 wheni or j>N,. Analogously one evalu-
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1 -
(v<21>)i,-=ﬁAij[(m$+mf)G”+2miijij] (A9a)
and
(2) 1
(V5 )”-:222' [(m +m; )G j+2mim;Gj; 1.

(A9b)

The matrix elements of subblodks'? are

1 _
(V§2), = 5331 A LMy (3m? +m?) Gy +mi(m?+3m?) G, 1.
(A10)
Lastly, for subblockv{}) we find
(Ve =277 Mi [(m+6m?m?+m{)G;;
+4m;m;(m2+ mf)aij]. (A11)

In the case of a clustenXnXo with odd number of
layersn, the formulas are more uniform because the same set
of coefficientsg{)) enters into matrix elements for subblocks
of both representations. Introducing the auxiliary quantities

(1/2)(n%+1)

W= 3

|tV |exd (25— 1)K, sgn(gi!)]
(A12a)

and

(1/2)(n%+1)
HO= 3
s=1

lgi)|exd — (25— 1)K,sgrig{")],
(A12b)

we obtain for evenkK) terms of transfer-matrix expansion:

1 .
(VI =rq AL (my+my) i+ (my = my) H ]
(A13a)

and

1 -
(VI i =i Al (my+my) S = (my = my) HET,
(A13b)
whereA;; equal(A2) but, of course, with their sets of coef-

ficients. By oddk, i.e., for subblocks/(lz) the expressions
for the matrix elements have the form

1 .
Vi) = SR Al (my+my)AHET = (my—my)FH ],
(Al4)
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