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Critical finite-size-scaling amplitudes of a fully anisotropic three-dimensional Ising model

M. A. Yurishchev
Vasilsursk Laboratory, Radiophysical Research Institute, 606263 Vasilsursk, Nizhny Novgorod Region, Russia

~Received 30 May 1996; revised manuscript received 20 August 1996!

A fully anisotropic simple-cubic Ising lattice in the geometry of periodic cylindersn3n3` is investigated
by the transfer-matrix finite-size-scaling method. In addition to the previously obtained critical amplitudes of
the inverse correlation lengths and singular part of the free energy@M. A. Yurishchev, Phys. Rev. B50,
13 533~1994!#, the amplitudes of the usual~‘‘linear’’ ! and nonlinear susceptibilities and the amplitude of the
second derivative of the spin-spin inverse correlation length with respect to the external field are calculated.
The behavior of critical amplitude combinations~which, in accordance with the Privman-Fisher equations, do
not contain in their composition the nonuniversal metric coefficients and geometry prefactor! are studied as a
function of the interaction anisotropy parameters. A universality domain for the amplitude ratios is found in the
quasi-one-dimensional regime of interactions in the system. In the case of a fullyisotropic three-dimensional
Ising model for which the high precision values of the critical coupling and critical-point free energy are
available, improved estimates are obtained for the following four universal quantities:~1! the amplitude of
spin-spin inverse correlation length,~2! the amplitude of singular part of the free energy,~3! the ratio of the
amplitude of a second derivative of the spin-spin inverse correlation length with respect to the external field to
the usual susceptibility amplitude, and~4! the ratio of the nonlinear susceptibility amplitude to the square of the
linear susceptibility amplitude~i.e., for the finite-size counterpart of the four-point renormalized coupling
constant!. @S1063-651X~97!07303-0#

PACS number~s!: 05.50.1q, 05.70.Jk, 64.60.Fr, 75.10.Hk
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I. INTRODUCTION

In Ref. @1# ~hereafter referred to as I!, the critical finite-
size amplitudes of the inverse correlation lengths and
‘‘singular’’ part of the free energy per spin have been calc
lated for the three-dimensional ferromagnetic Ising model
a simple-cubic lattice with fully anisotropic interactions. Th
amplitudes have been obtained by a finite-size-scaling~FSS!
analysis of the transfer-matrix~TM! data for subsystems hav
ing a shape ofn3n3` cylinders with periodic boundary
conditions in both transverse directions.

The results showed that the ratios of the above crit
amplitudes practically do not depend on the anisotropy
rameterJx /Jz if the second parameterJy /Jx is fixed ~the
parallelepipedsn3n3` are assumed to be stretched alo
the z axis; Jx and Jy are the interaction constants in th
transverse directions of a cylinder, andJz is the interaction
constant in the longitudinal direction!. Furthermore, it has
been found that the amplitude ratios are independent of
second anisotropy parameter,Jy /Jx , in the vicinity of
Jy /Jx51. Unfortunately, a wrong conclusion concerning t
amplitude ratio constancy in the full range of theJy /Jx val-
ues has been made in I.

In addition to the amplitude of the spin-spin inverse c
relation length (As) and the free-energy amplitude (Af), in
the present paper we calculate the amplitudes of linear
nonlinear susceptibilities (Ax and Ax(4), respectively!, as
well as the amplitude of the second derivative of the sp
spin inverse correlation length with respect to the exter
field (Ak

hh9
). The calculations are performed again for t

cyclic clustersn3n3` with the maximum number of lattice
layers in each transverse directionn54 ~i.e., for the sizes of
TMs up to 65 536365 536). Guiding ourselves by the func
551063-651X/97/55~4!/3915~11!/$10.00
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tional equations of Privman and Fisher@2–4#, we construct
from critical amplitudes the combinationsAk

hh9
/Ax and

Ax(4)As /Ax
2 , which, asAs /Af , do not contain the certain

nonuniversal coefficients. The analysis shows that those
plitude ratios are universal with respect to the anisotro
parameterJx /Jz→0 but depend on the parameterJy /Jx .
However, theJy /Jx dependencies exhibit smooth extrem
nearJy /Jx51, and therefore the amplitude ratios have a
cal universality in their vicinity upon the second anisotro
parameter of the model.

In the present paper we find also the values ofAs , Af ,
Ak

hh9
/Ax , andAx(4) /Ax

2 for n52, 3, and 4 in the case of th

fully isotropic simple-cubic Ising lattice by using the ava
able high accurate estimates for the critical point and criti
free energy and give three-point extrapolations for th
quantities.

II. SPATIAL ANISOTROPY AND THE PRIVMAN-FISHER
EQUATIONS

In the case ofd-dimensional cylinders with sizes o
L13L23•••3Ld213`, the Privman-Fisher equations
which allow one to identify for the hyperscaling systems t
universal combinations of critical finite-size amplitude
have the form@2#

k̃~ t,h!5L0
21X~C1tL0

yT ,C2hL0
yh ;L1 /L0 , . . . ,Ld21 /L0!

~1!

and

f̃ ~s!~ t,h!5L0
2dY~C1tL0

yT ,C2hL0
yh ;L1 /L0 , . . . ,Ld21 /L0!.

~2!
3915 © 1997 The American Physical Society
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3916 55M. A. YURISHCHEV
In these equations,k̃ is the inverse correlation length in th
longitudinal direction of the cylinder,f̃ (s) is the singular part
of the free-energy density measured in units of2kBT,
t5(T2Tc)/Tc is the reduced temperature,h is the normal-
ized external field,yT andyh are critical exponents,C1 and
C2 are system-dependent metric factors, andL0 is a scale
length. The FSS functionsX(x1 ,x2 ; l 1 ,l 2 , . . . ) and
Y(x1 ,x2 ; l 1 ,l 2 , . . . ) are universal ~within the limits of a
given universality class! but may depend on the type o
boundary conditions and, as we see, on the aspect r
l i5Li /L0. For the scaling lengthL0, one can take
L05(L1L2•••Ld21)

1/(d21) or put L05min(L1,L2, . . . ,
Ld21), etc.

Let us turn in Eqs.~1! and~2! to the dimensionless quan
tities, which are immediately defined by the parameters o
subsystem Hamiltonian. Let the elementary cell of a simp
cubic lattice have the sizes ofa13a23•••3ad and let the
subsystem ‘‘frame’’ be a cylindern13n23•••3nd213`,
whereni is a number of spins in thei th transverse direction
We will, however, restrict ourselves to the case of cylind
with square cross section, i.e.,n15n25•••5nd215n.
Then Li5nai , k̃5ad

21kn , and f̃ (s)5(a1a2•••ad)
21f n

(s) ,
where kn and f n

(s) are, respectively, the dimensionless i
verse correlation length and singular part of the free ene
per site.~Below, however, we will often omit, for brevity
the word ‘‘dimensionless.’’! In the new variables the
Privman-Fisher equations can be written as

kn~ t,h!5n21GX~C1tn
yT,C2hn

yh;a2 /a1 , . . . ,ad21 /a1!
~3!

and

f n
~s!~ t,h!5n2dGY~C1tn

yT,C2hn
yh;a2 /a1 , . . . ,ad21 /a1!,

~4!

whereG5G(a2 /a1 , . . . ,ad21 /a1 ,ad /a1) is the geometry
prefactor. We assume that at least two lattice spacings in
system are finite and nonzero; without loss of generality,
take them asa1 andad .

One obtains from Eqs.~3! and ~4! that

As5nkn~0,0!5GX~0,0;a2 /a1 , . . . ,ad21 /a1!, ~5!

Af5ndf n
~s!~0,0!5GY~0,0;a2 /a1 , . . . ,ad21 /a1!, ~6!

and analogously for the dimensionless critical finite-si
scaling amplitudes of the derivatives ofkn(t,h) or f n

(s)(t,h).
The geometry-prefactor form depends on the choice

L0. The prefactor is defined with exactness up to some m
tiplicative function of a2 /a1 , . . . ,ad21 /a1, inasmuchas
such a function can be introduced into the scaling functi
X andY or, vice versa, taken out from them. We will, how
ever, setG51 for the fully isotropic model.

In order to be able to employ the FSS theory, the ‘‘latti
spacings’’ai must be chosen so that in the vicinity of th
phase transition point the bulk correlation lengt
j̃1 , . . . ,j̃d along all the different spatial directions becom
equal among themselves:j̃15 j̃25•••5 j̃d . Such a rescal-
ing of lattice spacings can be made for systems with
ios
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isotropic critical exponentn of the bulk correlation lengths
i.e., whenj i5j0

( i )t2n ~Refs. @5–7#!. The choice ofai com-
pletes, in principle, the process of expressing the quant
entering into the Privman-Fisher equations via ‘‘micr
scopic’’ parameters—the interaction constants of the Ham
tonian. Note that the situation is paradoxical to a cert
extent: in order to use the FSS theory for extracting inform
tion about a bulk system from properties of its finite su
systems, one must know before the correlation-length am
tudes of the bulk system.

In the two-dimensional anisotropic Ising lattice, which
a limited case (Jy50) of the three-dimensional Ising mode
under question, the dimensionless bulk correlation leng
for T.Tc are @8# ~see also, e.g., Ref.@9#!

jx~Jx /kBT,Jz /kBT!5jz~Jz /kBT,Jx /kBT!

51/ln@coth~Jx /kBT!exp~22Jz /kBT!#.

~7!

@WhenT,Tc , the correlation length expressions differ fro
Eq. ~7! by the factor21/2, which is, however, unessentia
for the present considerations.# According to the isotropy
requirement,axjx5azjz and therefore for the square Isin
lattice @5# ~see also@6,10,11#!

G5
az
ax

5 lim
T→Tc

jx
jz

5FsinhS 2Jz
kBTc

D G21

, ~8!

where the critical temperatureTc is determined by the equa
tion

sinhS 2JxkBTc
D sinhS 2Jz

kBTc
D51 . ~9!

Equations~8! and~9! in parametric form yield the geometr
factorG(Jx /Jz). Note that up to date the anisotropy facto
have been found for many exactly solved two-dimensio
models of statistical physics@12–14#.

In the three-dimensional space, Eqs.~3! and ~4! are writ-
ten as

kn~ t,h!5n21GX~C1tn
yT,C2hn

yh;ay /ax! ~10!

and

f n
~s!~ t,h!5n23GY~C1tn

yT,C2hn
yh;ay /ax!. ~11!

Due to the shape parameteray /ax , the scaling functions
depend on the coupling ratios, and therefore Eqs.~10! and
~11! do not allow the existence of any universal amplitu
combinations. An obvious exception, however, is given
the case when the interactions in the transverse direction
the parallelepipedn3n3` are equal among themselves. O
physical grounds, it is clear thatax5ay by this, and conse-
quently the critical amplitude combinations that do not co
tain C1, C2, andG will not depend upon the interactio
constants in the system.
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55 3917CRITICAL FINITE-SIZE-SCALING AMPLITUDES OF . . .
III. FORMULAS FOR THE SUSCEPTIBILITIES AND FOR
THE INVERSE CORRELATION-LENGTH DERIVATIVE

For the amplitude ratioAk
hh9
/Ax , it follows from Eqs.~3!

and ~4! that

Ak
hh9

Ax
5

khh9

nd21xn
, ~12!

wherekhh9 5]2kn /]h
2, while xn5]2f n /]h

25]2f n
(s)/]h2 is

the susceptibility of the system (f n denotes the dimension
less free energy per lattice site!. Taking into account tha
As5nkn , one finds for the second amplitude combinatio

Ax~4!As

Ax
2 5

xn
~4!kn

nd21xn
2 , ~13!

wherexn
(4)52]4f n /]h

4 is a nonlinear susceptibility. Thus
the problem is to carry out the calculation ofkhh9 andxn

(4) for
periodic cylindersn3n3` at h50 since the method of cal
culatingkn andxn was already done in I.

To solve these problems, we use, as in I, the TM te
nique. The matrix elements of TM,V, are given by

^S11,S12, . . . ,SnnuVuS118 ,S128 , . . . ,Snn8 &

5 )
i , j51

n

exp@ 1
2Kx~Si jSi11 j1Si j8Si11 j8 !1 1

2Ky~Si jSi j11

1Si j8Si j118 !1KzSi j Si j8 1 1
2h~Si j1Si j8 !#. ~14!

Here the spin variablesSi j take the values61; Sin115Si1
and Sn11 j5S1 j for all i , j51,2, . . . ,n; Ka5Ja /kBT
(a5x,y,z). The matrixV is real, symmetric, and dense, ha
ing all its elements positive. The dimensionless free ene
per spin equals
io
by
-

y

f n5
1

n2
lnL1 , ~15!

whereL1 is the largest eigenvalue ofV. Further, the dimen-
sionless spin-spin inverse correlation length in the longitu
nal direction of a parallelepipedn3n3` is

kn5 ln~L1 /L2!, ~16!

whereL2 denotes the second largest eigenvalue of the
trix V.

In order to derive the exact formulas for the zero-fie
derivatives of the free energy and inverse correlation leng
we will use perturbation theory. For this one expands the T
in powers ofh:

V5V1hV11h2V21h3V31h4V41O~h5!. ~17!

Let us use the symmetry of the model~in this context see
I!. V is invariant under the transformations of the gro
T`C2v (T is a group of translations in the transverse dire
tions of a cyclic barn3n3` andC2v is the point group
generated by two symmetry planes going through
middles of opposite faces of the system!. Turn in Eq.~17! to
the basis of the identity irreducible representation of
groupT`C2v . Expansion~17! preserves the above form bu
now its terms are blocks corresponding to the indicated r
resentation. Both eigenvaluesL1 and L2 lie in the given
block V. Take now into consideration the symmetryZ2 ~a
group of spin inversions!. The matricesV, V2, andV4 are
symmetrical and the matricesV1 andV3 are antisymmetrical
~i.e., they change sign! under the spin inversion operation
Going by means of a similarity transformation into a ne
basis in which the original representation of the group
completely reducible, one obtains from Eq.~17!
Ṽ5S V~1! 0

0 V~2!D 1hS 0 V1
~12!

V1
~21! 0

D 1h2S V2
~1! 0

0 V2
~2!D 1h3S 0 V3

~12!

V3
~21! 0

D 1h4S V4
~1! 0

0 V4
~2!D 1O~h5!. ~18!
t

-
am-

en-
For definiteness we suppose that the subblocksV(1), V2
(1) ,

andV4
(1) correspond to the identity irreducible representat

of the groupZ2. Denote the sizes of these subblocks
N13N1 and the sizes of the subblocksV(2), V2

(2) , andV4
(2)

by N23N2. Then, the matricesV1
(12) and V3

(12) have sizes
N13N2; V1

(21) andV3
(21) are found by transposingV1

(12) and
V3
(12) , respectively. The numbersN1 andN2 can be obtained

from a group-theoretical analysis. For the 2323` cluster,
N155 and N252 ~Ref. @15#!; for the 3333` cluster,
N15N2518 ~Ref. @15#!; and for 4343`, N15787 and
N25672 ~Ref. @1#!. Further, letl i

(1) andc i be the eigenval-
n
ues and corresponding eigenvectors of matrixV(1); let
l1
(1)5l1 be the largest eigenvalue of the blockV(1) and

consequently of the ‘‘nonperturbed’’ transfer matrixV. Due
to the Perron theorem,l1 is nondegenerate. Finally, le
l i
(2) and w i be the eigenpairs ofV(2); l1

(2) is the largest
eigenvalue of blockV(2). Note thatl1

(2) is also nondegener
ate if we do not take the extreme cases, which can be ex
ined separately.

Using the stationary perturbation theory for a nondeg
erate level, we find the largest eigenvalue ofV with accuracy
up to the terms of second order inh:
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L15l11Fc1
1V2

~1!c11 (
k51

N2 ~c1
1V1

~12!wk!
2

l12lk
~2! Gh21O~h4!.

~19!

From here, the expression for the initial~zero-field! suscep-
tibility follows as

xn5
2

n2l1
Fc1

1V2
~1!c11 (

k51

N2 ~c1
1V1

~12!wk!
2

l12lk
~2! G . ~20!

The given formula, obtained by the perturbation-theo
method, differs in a form from the one derived in I using t
fluctuation-dissipation relation, but it is equivalent to it a
yields the same values of the susceptibility.
y

In an analogous way, one obtains the following expr
sion for the second largest eigenvalue ofV:

L25l1
~2!1Fw1

1V2
~2!w11 (

k51

N1 ~ck
1V1

~12!w1!
2

l1
~2!2lk

~1! Gh21O~h4!.

~21!

From Eqs.~16!, ~19!, and~21! we get the work formula for
the second derivative of the spin-spin inverse correlat
length at pointh50:
khh9 52H 1l1
Fc1

1V2
~1!c11 (

k51

N2 ~c1
1V1

~12!wk!
2

l12lk
~2! G2

1

l1
~2! Fw1

1V2
~2!w11 (

k51

N1 ~ck
1V1

~12!w1!
2

l1
~2!2lk

~1! G J . ~22!

Calculating the largest eigenvalueL1 up to the terms of fourth order inh, we find the following result~suited for
programming! for the initial nonlinear susceptibility:

xn
~4!5

12

n2l1
F 1l1

Q222~Q11Q21Q31Q41Q52Q61Q72Q8!G , ~23a!

with

Q5c1
1V2

~1!c11 (
k51

N2 ~c1
1V1

~12!wk!
2

l12lk
~2! ,

Q15c1
1V4

~1!c1 , Q25 (
k52

N2 ~c1
1V2

~1!ck!
2

l12lk
~1! , Q352(

k51

N2 ~c1
1V1

~12!wk!~c1
1V3

~12!wk!

l12lk
~2! ,

Q452(
k51

N2

(
l52

N1 ~c1
1V1

~12!wk!~wk
1V1

~21!c l !~c l
1V2

~1!c1!

~l12lk
~2!!~l12l l

~1!!
,

Q55 (
k51

N2

(
l51

N2 ~c1
1V1

~12!wk!~wk
1V2

~2!w l !~w l
1V1

~21!c1!

~l12lk
~2!!~l12l l

~2!!
, ~23b!

Q65c1
1V2

~1!c1(
k51

N2 ~c1
1V1

~12!wk!
2

~l12lk
~2!!2

,

Q75 (
k51

N2

(
l52

N1

(
m51

N2 ~c1
1V1

~12!wk!~wk
1V1

~21!c l !~c l
1V1

~12!wm!~wm
1V1

~21!c1!

~l12lk
~2!!~l12l l

~1!!~l12lm
~2!!

,

Q85 (
k51

N2 ~c1
1V1

~12!wk!
2

~l12lk
~2!!2

(
l51

N2 ~c1
1V1

~12!w l !
2

l12l l
~2! .
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Explicit expressions for the matrix elements of subbloc
V1
(12) , V2

(1) , V2
(2) , V3

(12) , andV4
(1) are given in the Appendix

Notice that the full eigenproblems for the matricesV(1) and
V(2) were solved by means of theC library function pair
tred2 and tqli@16#. All calculations were carried out on
personal computer IBM PC-486 with the operating syst
FreeBSD.

IV. BEHAVIOR OF THE CRITICAL AMPLITUDE RATIOS

As already noted in Sec. II, the FSS amplitude combi
tions normally should depend on the interaction ratios, wh
change the shape of a subsystem. This is in agreement
basic ideas of the renormalization-group theory.

We will consider how the amplitude combinations beha
versus the interaction anisotropy parameters in the th
dimensional Ising model. To eliminate as effectively as p
sible nonuniversal quantities from the critical FSS amplitu
combinations, it is natural to consider the behavior of su
combinations, which do not include in its composition t
nonuniversal metric and geometry factors. In other words
is reasonable to base again our choice of combinations on
Privman-Fisher equations.

For a clustern3n3`, the values of linear and nonlinea
susceptibilities and derivativekhh9 are taken at critical tem

FIG. 1. Amplitude ratioAk
hh9
/Ax vs the anisotropy paramete

Jx /Jz by different fixed values ofJy /Jx . Periodic cylinder
4343` at critical temperaturesTc

(3,4) .
s

-
h
ith

e
e-
-
e
h

it
he

peratures, which were determined by the (n21,n) cluster
pair, i.e., through the equation

~n21!kn21~Tc
~n21,n!!5nkn~Tc

~n21,n!!. ~24!

Since we are able to perform the calculations for subsyst
with n<4, this allows us to have two independent iteratio
with (2,3) and (3,4) pairs@a degenerate pair (1,2) was elim
nated from the consideration due to its anomalies@17##. Two
steps of converging iterations give already a possibility
extract valuable information about tendencies in the cha
of quantities with increasingn.

The results for the critical temperatures and critical F
amplitude ratiosAk

hh9
/Ax and Ax(4)As /Ax

2 depending on

Jx /Jz andJy /Jx in the cases of both cluster pairs (2,3) a
(3,4) are collected in Table I.

Let us first discuss the behavior of amplitude rati
againstJx /Jz . Figure 1 @18# shows the dependencies o
Ak

hh9
/Ax on Jx /Jz at different fixed values ofJy /Jx . If

Jy /Jx50, the barn3n3` is reduced to statistically inde
pendent strips. In two-dimensional space, the dependenc
an anisotropy parameter must be, as follows from Eqs.~3!
and ~4!, absent. TheJy /Jx50 plot given in Fig. 1 confirms
this: in the case of the (3,4) approximation, the ra
Ak

hh9
/Ax is unchanged within the relative root-mean-squa

error 0.08%. We expect the constancy of amplitude ra
also atJy /Jx51. The corresponding line shown in Fig. 1 ca
be considered as a straight one with an accuracy 0.3
Importantly, the analogous error for the (2,3) pair
0.45%. Thus, the deviations versusJx /Jz fall asn increases.

For intermediate fixed values ofJy /Jx , the amplitude ra-
tio has weak but still quite detectible dependence aga
Jx /Jz . As seen in Fig. 1, variances are most essential in
range 1021&Jy /Jx<1. Now the amplitude ratio dependenc
does not tend to disappear with increasingn. For example,
whenJy /Jx50.1, the mean values and the root-mean-squ
uncertainties~the latter are shown in parentheses! for the
quantity Ak

hh9
/Ax in the range 1023<Jx /Jz<1 equal

1.37(2) and 1.35(2) for the pairs (2,3) and (3,4), resp
tively.

A similar picture is observed for theAx(4)As /Ax
2 ~see

Table I! and for theAs /Af ~Table I of Ref.@1#!. As a whole
one can conclude that the critical FSS amplitude combi
tions that do not contain the nonuniversal factorsC1, C2, and
G display a tendency to the universality under the anisotro
parameterJx /Jz when this is small~i.e., by a quasi-one-
dimensional nature of interactions in the system!.

We discuss now the behavior of the amplitude ratios a
function of the second anisotropy parameter, name
Jy /Jx . In I the amplitudes of the inverse correlation lengt
and the free energy have been calculated forJy /JxP@0,1#.
The amplitudeAf was found from a set of two equations,

f n5 f `1n2dAf , ~25!

with n53 and 4@‘‘background’’ f ` is a second unknown
variable in Eq.~25!#. In this paper we prolong such calcula
tions toJy /Jx54 and use not only the (3,4) pair but also th
(2,3) one, to observe the evolution with increasingn. The
results are shown in Fig. 2. It can be seen from the figure
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3920 55M. A. YURISHCHEV
when the parameterJy /Jx increases from zero, the rati
As /Af first increases monotonically from some finite valu
which decreases with growth of cluster size. Then
As /Af attains a smooth maximum nearJy /Jx51. Lastly, the
ratio As /Af falls monotonically asJy /Jx becomes large.

It follows from the obtained data that the values
As /Af are equal among themselves forJy /Jx and
(Jy /Jx)

21 and this is better the smallerJx /Jz . Clearly, the
source of theJy /Jx↔(Jy /Jx)

21 symmetry is caused by th
~approximate! Jx /Jz independence of amplitude ratios. Th
inversion symmetry leads in turn to an existence of ex
mum atJy /Jx51. Inasmuchas the extremum~maximum! is
smooth, there is a local universality under the second ani
ropy parameterJy /Jx . We conclude that in the domai
0,Jx /Jz!1 anduJy /Jx21u!1 there exists a complete un
versality of the amplitude ratioAs /Af . Note also that in the
maximum region both curves go quite near one another; s
a neighborhood characterizes the arrived convergenc
,
e

-

t-

ch
of

(2,3) and (3,4) approximations.
We make the quantitative comparison of our data in

two-dimensional case. Space dimensionalityd changes dis-
continuously from 3 to 2 in the limitJy /Jx→0. This leads in
turn to a finite jump in values ofAs /Af at Jy /Jx501 and
Jy /Jx50. Using Eq.~25! one finds for the (n21,n) pair that

~As /Af !05
n~n21!~2n21!

3n~n21!11
~As /Af !01, ~26!

where the subscripts 0 and 01 denote the values a
Jy /Jx50 and 01, respectively. Hence, recalculating the va
ues at Jy /Jx501 to the values atJy /Jx50, we obtain
(As /Af)053.0143 for the (2,3) pair in the cas
Jx /Jz51023. For the (3,4) pair at the same value
Jx /Jz , (As /Af)053.0087. In the two-dimensional Ising la
tice, the exact valueAs /Af53 ~in Fig. 2, it is shown by the
TABLE I. Critical-point amplitude ratiosAk
hh9
/Ax andAx(4)As /Ax

2 as a function of anisotropy parametersJx /Jz andJy /Jx . Approxi-

mations by cluster pairs (2,3) and (3,4).

(2,3) pair (3,4) pairJy/Jx Jx/Jz
kBTc /Jz Ak

hh9
/Ax Ax(4)As /Ax

2 kBTc /Jz Ak
hh9
/Ax Ax(4)As /Ax

2

01 1.0 2.367640 0.65214 1.92695 2.320811 0.48946 1.44560
0.5 1.699790 0.65173 1.92388 1.662411 0.48991 1.44730
0.1 0.921068 0.65279 1.92832 0.910794 0.49034 1.44919
0.01 0.513815 0.65309 1.92968 0.510586 0.49039 1.44940
0.001 0.345015 0.65310 1.92972 0.343461 0.49039 1.44940

0.1 1.0 2.845802 1.34451 3.60933 2.817633 1.32110 3.48345
0.5 1.979483 1.35368 3.62760 1.959011 1.34212 3.54079
0.1 1.024601 1.38006 3.70054 1.019932 1.35995 3.59108
0.01 0.550499 1.38661 3.71950 0.549216 1.36225 3.59760
0.001 0.362466 1.38685 3.72021 0.361871 1.36233 3.59781

0.5 1.0 3.819394 1.65412 4.55222 3.739735 1.67447 4.59324
0.5 2.533705 1.65621 4.54634 2.487136 1.68196 4.61381
0.1 1.211125 1.67095 4.59073 1.199032 1.68882 4.63492
0.01 0.611620 1.67545 4.60591 0.608159 1.68976 4.63782
0.001 0.390357 1.67564 4.60656 0.388821 1.68979 4.63793

1.0 1.0 4.685960 1.68710 4.67454 4.581044 1.70507 4.70713
0.5 3.024529 1.68407 4.64512 2.960469 1.71114 4.72047
0.1 1.366300 1.69711 4.68102 1.350375 1.71743 4.73841
0.01 0.658794 1.70231 4.69869 0.654587 1.71832 4.74101
0.001 0.410971 1.70256 4.69953 0.409173 1.71835 4.74110

1.5 1.0 5.418190 1.68220 4.66797 5.310630 1.69188 4.66481
0.5 3.442977 1.67334 4.61261 3.368233 1.69831 4.67598
0.1 1.494583 1.68607 4.64298 1.475982 1.70726 4.70162
0.01 0.695761 1.69307 4.66651 0.691216 1.70870 4.70596
0.001 0.426622 1.69344 4.66777 0.424737 1.70875 4.70612

2.0 1.0 6.068336 1.66945 4.63471 5.975643 1.66826 4.58676
0.5 3.819394 1.65412 4.55222 3.739735 1.67447 4.59324
0.1 1.608392 1.66577 4.57383 1.587593 1.68729 4.63016
0.01 0.727256 1.67510 4.60471 0.722535 1.68970 4.63763
0.001 0.439633 1.67563 4.60652 0.437724 1.68979 4.63792



d
n
f

55 3921CRITICAL FINITE-SIZE-SCALING AMPLITUDES OF . . .
FIG. 2. Amplitude ratios
As /Af ~averaged over Jx /Jz
5$1,1021,1022,1023%) as a func-
tion of Jy /Jx . Shown are the ap-
proximations by (2,3) and (3,4)
cluster pairs—dashed and soli
lines, respectively. Open circle o
the ordinate axis is a value o
As /Af ~53! for the two-
dimensional Ising model.
s
to

s

g

de

4)

il-
nal
open circle on the ordinate axis!. Consequently, the error i
reduced from 0.48% to 0.29% by going from (2,3)
(3,4) pair.

A qualitatively similar picture takes place for the ratio
Ak

hh9
/Ax and Ax(4)As /Ax

2 ~Figs. 3 and 4!. Here again the

amplitude ratios have finite values atJy /Jx501 that vanish
with increasingn according to the 1/n law. There is again a
monotonic increase for small values ofJy /Jx , a broad maxi-
mum nearJy /Jx51, and then a monotonic decrease by lar
Jy /Jx . The inversion symmetryJy /Jx↔(Jy /Jx)

21 applies
again.
e

Let us compare the results for the discussed amplitu
ratios in the two-dimensional limit. Since

~Ak
hh9
/Ax!05n~Ak

hh9
/Ax!01, ~27!

taking from Table I the values atJy /Jx501, one finds that
(Ak

hh9
/Ax)0 equals 1.959 and 1.962 for the (2,3) and (3,

approximations, respectively~the point Jx /Jz51023 has
been used!. These values are in good agreement with ava
able estimates of the amplitude ratio for the two-dimensio
isotropic Ising models,Ak

hh9
/Ax51.9521.96 ~Ref. @19#!.
-

e

n

FIG. 3. Average amplitude ra
tio Ak

hh9
/Ax vs Jy /Jx ; periodic

cylinder 4343` at critical tem-
peraturesTc

(3,4) . Full circle on the
ordinate axis corresponds to th
Ak

hh9
/Ax at Jy /Jx501, while

open one is a value of that ratio i
the two-dimensional Ising lattice.
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FIG. 4. The same as in Fig. 3
but for the amplitude ratio
Ax(4)As /Ax
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One can argue analogously for the combinat
Ax(4)As /Ax

2 , calculation being carried out by the formula

~Ax~4!As /Ax
2!05n~Ax~4!As /Ax

2!01. ~28!

Taking from Table I the necessary data, we find that
Jx /Jz51023 the ratio (Ax(4)As /Ax

2)055.7892 and 5.7976
for the pairs (2,3) and (3,4), respectively. These results
in excellent agreement with the valu
Ax(4)As /Ax

255.797 28(5) following from the calculation
@20#.

We discuss now a reason that could lead to a disapp
ance of the parameterJx /Jz from scaling functions for the
system with the dominant intrachain interactio
(Jz@Jx ,Jy). The bulk correlation-length amplitude is a fun
tion of the interaction constants. Le
j0
(x)5f(Jx /kBTc ,Jy /kBTc ,Jz /kBTc). In a lattice that is in-
t

re

r-

finite in all three directions, the functionf(x,y,z) is
symmetrical under the replacement of its second and t
arguments:f(x,y,z)5f(x,z,y). Moreover, f(0,y,z)50
which means the absence of correlations in the direc
along which there are no interactions. Let the expansion
the first argument begin from a termx in some powerq. In
accordance with physical reasoning, it is apparent that in
infinite lattice the amplitudej0

(y) has the same functiona
form as j0

(x) but, of course, with replaced argument
j0
(y)5f(Jy /kBTc ,Jx /kBTc ,Jz /kBTc). Further, the critical
temperature of a quasi-one-dimensional Ising model is gi
by @21#

kBTc /Jz52F lnS Jz
Jx1Jy

D2 lnlnS Jz
Jx1Jy

D1O~1!G21

.

~29!
ee-
the
r-
te
TABLE II. Estimates of the universal critical amplitude combinations for the fully isotropic thr
dimensional simple-cubic Ising lattice in the geometry of infinitely long cyclic parallelepipeds with
square cross section. For all quantities, with the exception ofAf , the three-point extrapolations were pe
formed by the Shanks’ transform~Ref. @24#!. In the case ofAf as a realistic estimate, the last term of fini
sequence has been taken.

n As Af Ak
hh9
/Ax Ax(4) /Ax

2

2 1.458347 0.451886 1.784594 3.497834
3 1.353169 0.409959 1.763848 3.661609
4 1.302661 0.378507 1.755304 3.759097
` 1.26~5! 0.37~3! 1.749~6! 3.9~2!



li-
m

u

-

f
he

e

-
cy

ity
ry

,
on
s

te
rs

gt
t

re
nd

ng
e

te
ee
e

rgy
cor-

he
te

the

e

n-

trix
n-
of
se

ge-
tion
-
end

re
the

-

ns
pli-

iti-
been
e
the
de

ion
-

55 3923CRITICAL FINITE-SIZE-SCALING AMPLITUDES OF . . .
Due to the fact that a decrease ofkBTc /Jz is logarithmically
slow, the arguments of functionf, Jx /kBTc5(Jx /Jz)Jz /
kBTc and Jy /kBTc5(Jy /Jx)(Jx /Jz)Jz /kBTc , are small for
small Jx /Jz . Expanding the bulk correlation-length amp
tudes in Taylor series and keeping only the leading asy
totical term, we obtain that asJx /Jz→0 the aspect ratio
ay /ax.(Jy /Jx)

2q. The anisotropy parameterJx /Jz did drop
out.

In light of the above statements the Privman-Fisher eq
tions for the quasi-one-dimensional system (Jx ,Jy!Jz) can
be written as

kn~ t,h!5n21G~Jx /Jz ,Jy /Jx!X~C1tn
yT,C2hn

yh;Jy /Jx!
~30!

and

f n
~s!~ t,h!5n2dG~Jx /Jz ,Jy /Jx!Y~C1tn

yT,C2hn
yh;Jy /Jx!,

~31!

where d5usgn(Jx)u1usgn(Jy)u1usgn(Jz)u. The geometry
prefactor is normalized so thatG(1,1)51 and the depen
denceG(Jx /Jz,0) is given by Eqs.~8! and ~9!.

We know that theJy /Jx↔(Jy /Jx)
21 invariance and the

analyticity of scaling functions leads to the existence o
smooth extremum for the critical amplitude ratios of t
n3n3` parallelepipeds atJy /Jx51. In this context note
that in the case of parallelepipeds with arectangularcross
section,nx3ny3`, one should expect the extrema for th
certain ratios of critical amplitudes atJy /Jx5(ny /nx)

1/q.

V. COMPLETELY ISOTROPIC LATTICE

At present, the critical point of the fully isotropic simple
cubic Ising lattice is located to a high degree of accura
Kc50.221 655(1)~Ref. @22# and references therein!. It is
known also with large accuracy the free energy at critical
f `50.777 90(2), Ref. @23#. On the other hand, we can car
out the calculations for subsystemsn3n3` with three
numbers of lattice layersn52, 3, and 4. This allows one
generally speaking, to perform the three-point extrapolati
for accelerating the convergence and to improve the e
mates of the universal critical amplitudesAs andAf and also
the universal critical amplitude ratiosAk

hh9
/Ax and

Ax(4) /Ax
2 . The results are summarized in Table II.

One can compare our results with the available estima
According to a Monte Carlo simulation on periodic cylinde
n3n3128 with n54, 6, 8, and 10~Ref. @25#!, the critical
FSS amplitude of the spin-spin inverse correlation len
equalsAs51.30(3). OurestimateAs51.26(5) is consisten
with the one above.

Information concerning the absolute amplitude of the f
energy can be extracted from the published data by the i
rect route. Indeed, in accordance with the calculations@26#
carried out in the quantum limit of a three-dimensional Isi
model, As /Af53.671(6). Using the above estimat
As51.30(3) one finds Af50.354(9). The value
Af50.37(3) given in Table II agrees with this estimate. No
that the critical FSS free-energy amplitude of the thr
dimensional Ising lattice with the shape of periodic cub
is equal toAf

cube50.625(5), Ref. @23#. For a comparison note
p-

a-

a

:

:

s
ti-

s.

h

e
i-

-
s

also that in the two-dimensional space the free-ene
amplitudes of periodic Ising strips and squares are equal
respondingly to p/1250.261 799 and ln(21/41221/2)
50.639 911~see, e.g., Ref.@3#!.

We do not know from the literature any estimates for t
universal ratioAk

hh9
/Ax in three dimensions. One can no

that out of all the four quantities discussed in this section,
combinationAk

hh9
/Ax has the best convergence inn.

Finally, for the universal combinationAx(4) /Ax
2 , which is

the finite-size cumulant ratioḡ` , there exists an estimat
only in the order of magnitude:ḡ`;3 ~Ref. @27#, see also
the reviews@3#!. We have succeeded in obtaining this qua
tity to an accuracy of 5%.

VI. CONCLUSIONS

In this paper I have presented large-scale transfer-ma
calculations for different finite-size amplitudes of a fully a
isotropic simple-cubic Ising lattice in the shape
n3n3` bars with periodic boundaries in both transver
directions. The behavior of amplitude combinations~ratios!
that do not contain the nonuniversal metric factors and
ometry prefactor was studied depending on the interac
anisotropy parametersJx /Jz and Jy /Jx . It has been estab
lished that these amplitude ratios practically cease to dep
on the anisotropy parameterJx /Jz→0 and, what is more,
this is true for a wide interval,Jx /Jz&1021.

It was shown that as a function ofJy /Jx the amplitude
ratios have a smooth extremum~maximum! nearJy /Jx51.
As a result, the critical finite-size amplitude combinations a
universal with respect to both anisotropy parameters in
domain 0,Jx /Jz!1 anduJy /Jx21u!1.

A mechanism leading to theJx /Jz independence of cer
tain amplitude ratios was proposed. By this theJx↔Jy in-
variance together with the analyticity of the scaling functio
explains the existence of a smooth extremum in the am
tude combinations atJy /Jx51.

In the case of fully isotropic interactions (Jx5Jy5Jz) for
which the high accuracy values of critical coupling and cr
cal free energy are available, the better estimates have
found for the universal critical finite-size amplitudes of th
spin-spin inverse correlation length and singular part of
free energy per site, as well as for the universal amplitu
ratiosAk

hh9
/Ax andAx(4) /Ax

2 .

APPENDIX: MATRIX ELEMENTS OF V1, V2, V3,
AND V4 IN THE QUASIDIAGONAL

REPRESENTATION OF V

The sizes of upper and lower subblocks in the expans
~18! of TM for a cylindern3n3` are equal among them
selves (N15N2) by oddn and unequal (N1ÞN2) by even
n. Consider the cases of even and oddn separately.

Matrix elements of subblocksV(1) andV(2) for the bars
3333` and 4343` have been done in@15# and I. For the
2323` cluster, subblocksV(1) andV(2) have, respectively,
the sizes 535 and 232 @15#. As for the 4343` cluster,
their matrix elements are given by
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Vi j
~1!5Ai jGi j ~A1a!

and

Vi j
~2!5Ai j G̃i j , ~A1b!

where

Ai j5
max~ni ,nj !

Aninj
exp@ 1

2 ~mi
a1mj

a!Kx1
1
2 ~mi

b1mj
b!Ky#,

~A2!

Gi j5g0
~ i j !12 (

s51

~1/2!n2

gs
~ i j !cosh~2sKz!, ~A3a!

and

G̃i j52 (
s51

~1/2!n2

g̃s
~ i j !sinh~2sKz!. ~A3b!

The coefficientsni , mi
a , mi

b , andmi for the periodic cylin-
der 2323` are

ni5$2,8,2,2,2%, mi
a5$4,0,24,24,4%,

mi
b5$4,0,4,24,24%, mi5$4,2,0,0,0%. ~A4!

As in the case of 4343` cluster, the coefficientsgs
( i j ) sat-

isfy again the condition

g0
~ i j !12 (

s51

~1/2!n2

gs
~ i j !5min~ni ,nj !. ~A5!

For gs
( i j ) with sÞ0 one has

11) 01 21) 10 22) 01 31) 00 32) 10 33) 01 41) 00

42) 10 43) 00 44) 01 51) 00 52) 10

53) 00 54) 00 55) 01 . ~A6!

Finally, theg̃s
( i j ) coefficients of a cluster 2323` equal

11) 01 21) 10 22) 01 . ~A7!

Taking~from @15# and I! the basis functions of irreducibl
representations we find the matrix elements of subblo
V1
(12) for bars n3n3` with even n ~i.e., for cylinders

2323` and 4343`):

~V1
~12!! i j5

1
2Ai j ~mjGi j1miG̃i j !, ~A8!

wheremi50 by i.N2; here and below we regard, for defi
niteness,G̃i j50 when i or j.N2. Analogously one evalu-
ates for subblocksV2

(1) andV2
(2) :
s

~V2
~1!! i j5

1

222!
Ai j @~mi

21mj
2!Gi j12mimjG̃i j # ~A9a!

and

~V2
~2!! i j5

1

222!
Ai j @~mi

21mj
2!G̃i j12mimjGi j #.

~A9b!

The matrix elements of subblockV3
(12) are

~V3
~12!! i j5

1

233!
Ai j @mj~3mi

21mj
2!Gi j1mi~mi

213mj
2!G̃i j #.

~A10!

Lastly, for subblockV4
(1) we find

~V4
~1!! i j5

1

244!
Ai j @~mi

416mi
2mj

21mj
4!Gi j

14mimj~mi
21mj

2!G̃i j #. ~A11!

In the case of a clustern3n3` with odd number of
layersn, the formulas are more uniform because the same
of coefficientsgs

( i j ) enters into matrix elements for subblock
of both representations. Introducing the auxiliary quantiti

Hi j
~1 !5 (

s51

~1/2!~n211!

ugs
~ i j !uexp@~2s21!Kzsgn~gs

~ i j !!#

~A12a!

and

Hi j
~2 !5 (

s51

~1/2!~n211!

ugs
~ i j !uexp@2~2s21!Kzsgn~gs

~ i j !!#,

~A12b!

we obtain for even (k) terms of transfer-matrix expansion:

~Vk
~1!! i j5

1

2kk!
Ai j @~mi1mj !

kHi j
~1 !1~mi2mj !

kHi j
~2 !#

~A13a!

and

~Vk
~2!! i j5

1

2kk!
Ai j @~mi1mj !

kHi j
~1 !2~mi2mj !

kHi j
~2 !#,

~A13b!

whereAi j equal~A2! but, of course, with their sets of coe
ficients. By oddk, i.e., for subblocksVk

(12) , the expressions
for the matrix elements have the form

~Vk
~12!! i j5

1

2kk!
Ai j @~mi1mj !

kHi j
~1 !2~mi2mj !

kHi j
~2 !#.

~A14!



n

-

ev

P.
-

in

a

55 3925CRITICAL FINITE-SIZE-SCALING AMPLITUDES OF . . .
@1# M. A. Yurishchev, Phys. Rev. B50, 13 533~1994!.
@2# V. Privman and M. E. Fisher, Phys. Rev. B30, 322 ~1984!.
@3# V. Privman, inFinite Size Scaling and Numerical Simulatio

of Statistical Systems, edited by V. Privman~World Scientific,
Singapore, 1990!; V. Privman, P. C. Hohenberg, and A. Aha
rony, inPhase Transitions and Critical Phenomena, edited by
C. Domb and J. L. Lebowitz~Academic, New York, 1991!,
Vol. 14.

@4# P. Christe and M. Henkel,Introduction to Conformal Invari-
ance and Its Applications to Critical Phenomena, Lecture
Notes in Physics Vol. m16~Springer, Berlin, 1993!.

@5# P. Nightingale and H. Blo¨te, J. Phys. A16, L657 ~1983!.
@6# M. N. Barber, I. Peschel, and P. A. Pearce, J. Stat. Phys.37,

497 ~1984!.
@7# K. Binder and J.-S. Wang, J. Stat. Phys.55, 87 ~1989!.
@8# L. Onsager, Phys. Rev.65, 117 ~1944!.
@9# T. W. Burkhardt and I. Guim, Phys. Rev. B35, 1799~1987!.

@10# J. O. Indekeu, M. P. Nightingale, and W. V. Wang, Phys. R
B 34, 330 ~1986!.

@11# G. Kamieniarz and H. W. J. Blo¨te, J. Phys. A26, 201 ~1993!.
@12# D. Kim and P. A. Pearce, J. Phys. A20, L451 ~1987!.
@13# M. Fujimoto, J. Phys. A26, 2285~1993!; 27, 5101~1994!.
@14# J. D. Noh and D. Kim, Phys. Rev. E53, 3225~1996!.
.

@15# M. A. Yurishchev, J. Phys. Condens. Matter5, 8075~1993!.
@16# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

Flannery,Numerical Recipes in C: The Art of Scientific Com
puting ~Cambridge University, Cambridge, 1992!.

@17# M. Yurishchev and A. Sterlin, J. Phys. Condens. Matter3,
2373 ~1991!.

@18# All figures were plotted using not only the data presented
Table I of this paper and in Table I of the paper@1#, but there
were also extra points taken.
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