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Numerous expressions exist in the scientific literature purporting to represent entropy. Are they all accept-
able? To answer this question, we review the thermodynamic definition of entropy, and establish eight criteria
that must be satisfied by it. The definition and criteria are obtained by using solely the general, nonstatistical
statements of the first and second laws presentddh@modynamics: Foundations and Applicati¢Bsias P.
Gyftopoulos and Gian Paolo Bereffdlacmillan, New York, 1991]. We apply the eight criteria to each of the
entropy expressions proposed in the literature and find that only the reBtionk Trp Inp satisfies all the
criteria, provided that the density operajorcorresponds to a homogeneous ensemble of identical systems,
identically prepared. Homogeneous ensemble means that every member of the ensemble is described by the
same density operatgr as any other member, that is, the ensemble is not a statistical mixture of projectors
(wave functionk [S1063-651X97)00904-5

PACS numbsg(s): 05.70.Ln, 03.65-w, 05.30—d

INTRODUCTION fourth section we list eight characteristics of this entropy
which are theorems derived from the laws of thermodynam-
In his extensive and authoritative review, Well#) writes  ics, and which can be used as criteria of acceptance of any
“It is paradoxical that although entropy is one of the mostanalytic expression purporting to represent entropy. In the
important quantities of physics, its main properties are rarelfifth section we discuss briefly a recent quantum-theoretic
listed in the usual textbooks on statistical mechanics.” Welnterpretation of thermodynamics, summarize a number of
concur fully with this assessment, and add that the maifluantum expressions for entropy that have appeared in the
characteristics of entropy are rarely listed even in the textlitérature, and investigate whether one or more of these ex-
books on thermodynamics, despite the fact that entropy jpressions conform with the eight criteria listed in the preced-

clearly a thermodynaminot mechanicalconcept. Ing section. . I
The lack of specificity has resulted in a plethora of ex- As a result of this investigation, we prove that among the

pressions purporting to represent the entropy of thermody@and'dateS only the expressidd=—kTrplnp conforms

namics, and perhaps influenced von Neumg@jro respond with all the criteria, provided that the density operajor
to Shannon’s question “What should | caliS. piInp?” by represents the quantum-theoretic probabilities derivable from
(ag] (i

saying “You should call it ‘entropy’ for two reasons: first, a homogeneous ensemble of identical systems, identically

the function is already in use in thermodynamics under thaprepared. . L
The homogeneous ensemble is a generalization of the

name; second, and more importantly, most people don’t

know what entropy really is, and if you use the word entropy%onctgptlmtrodgced. by \r/:_)nhNeurl?aE#]. lkt)'S an densergb(ljebof th
you will win every timel” identical members in which each member is described by the

H 2
The purposes of this paper are to redress the omission32Meé density operatgr(p=p~) as any other member, that

and to prove that, of all the known expressions, the only on s, the ensgmble is not a statistical _mixture of projectors
that represents entropy as a well-defined property of matter i ave fung:t|on§; In other yvords, expenmentglly as'opposed
the quantum-theoretic functionaB=—KkTrplnp. Even to algebraically, the density operator compatible with the ex-

though the functional is very well known and more often position of therm_(_)qunamips in Refl] is_not a mixture Of.
than not rejected in statistical quantum mechanics, here thguantum probab|I.|t_|(_as dgnved from projectors anq cla§S|caI
proof is solely thermodynamic, and is a density operator statistical probapﬂmes mtroduced .because of either igno-
that experimentally(in contrast to algebraicallycannot be rance or lack of interest in the dgtaﬂs of th(_e_system, or both,
decomposed into a statistical mixture of projectors. but the seat of quantum-theoretic probabilities only.

The paper is organized as follows. In the second section
we introduce the first and second laws of thermodynamics, THERMODYNAMICS
and derive from them the concepts of energy and generalized
available energy as properties of any systgange or small
in any state(thermodynamic equilibrium or not thermody-  Many scientists and engineers have expressed concerns
namic equilibrium. In the third section, we present a generalabout the completeness and clarity of the usual expositions
thermodynamic definition of entropy in terms of energy andof thermodynamics. For example, in the preface of his book
generalized available energy, and discuss its features. In tHeoncepts of Thermodynamjd&bert writeg5] “Most teach-

General remarks
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ers will agree that the subject of engineering thermodynamrameters by the vectg8={3,,8,, ... ,Bs. One parameter

ics is confusing to the student despite the simplicity of themay be volumeg; =V, another may be an externally deter-
usual undergraduate presentation.” Again, Tisza stfb¢és mined electric field,3, equal to electric field.

“The motivation for choosing a point of departure for a deri- At any instant in time, the amount of each constituent and
vation is evidently subject to more ambiguity than the techthe parameters of each external force have specific values.
nicalities of the derivatin . ... In contrast to errors in ex- We denote these values yand g with or without addi-
perimental and mathematical techniques, awkward an§onal subscripts.

incorrect points of departure have a chance to survive for a BY themselves, the values of the amounts of constituents
long time.” and of the parameters at an instant in time do not suffice to

n respone o numerous suchconcerrs, Gyopoulos arfISEEZE Cometel e condr of e sy o
Beretta[1] have composed an exposition in which all basic ame instant in time. Aropertyis defined as an attribute

concepts of thermodynamics are defined completely ananat can be evaluated at any given instant in timet as an

without cm_:ular arguments in terms of the mechanical 'dea%verage over timeby means of a set of measurements and
of space, time, and force or inertial mass only.

X , o __operations that are performed on the system and result in a
The order of introduction of concepts and principles iS, merical value—thesalue of the property This value is

system(types and amounts of constituents, forces betweethgependent of the measuring devices, other systems in the
constituents, and external forces or paramgtgnoperties;  environment, and other instants in time.
states; the first law; energyvithout work and heat energy For a given system, the instantaneous values of the
balance; classification of states in terms of time evolutionsamounts of all the constituents, the values of all the param-
stable equilibrium states; second ldwithout temperature, eters, and the values of a complete set of independent prop-
heat, and entropy generalized available energy; entropy of erties encompass all that can be said about the system at a
any state, stable equilibrium or not, in terms of energy andjiven instant in time and about the results of any measure-
generalized available energy and not in terms of temperatun@ents that may be performed on the system at that same
and heat; entropy balance; fundamental relation for stablénstant in time. We call this complete characterization of the
equilibrium states only; temperature, total potentials, andystem at an instant in time theate of the system. This
pressure in terms of energy, entropy, amounts of constituentefinition of state, without change, applies to any branch of
and parameters for stable equilibrium states only; the thirgbhysics.
law; work in terms of energy; and heat in terms of energy,
entropy, and temperature. Dynamics: changes of state in time

All concepts and principles are valid for all systefnsac-
roscopic or microscopj¢ and all stategthermodynamic or
stable equilibrium states, and states that are not stable eq
librium).

The state of a system may change in time either sponta-
Ln_eously due to the internal forces or as a result of interac-
tions with other systems, or both.

The relation that describes the evolution of the state of an
isolated system-spontaneous changes of statas a func-
tion of time is theequation of motionCertain time evolu-

We define general thermodynamics or simply thermody+tions obeyNewton's equationwhich relates the total force
namics as the study of motions of physical constituépés-  F on each system particle to its mamsand acceleration so
ticles and radiations resulting from externally applied that F=ma. Other evolutions obey thdime-dependent
forces, and from internal force@he actions and reactions Schralinger equation that is, the quantum-mechanical
between constituents This definition is identical to that equivalent of Newton's equation. Other experimentally ob-
given by Timoshenko and Young about mechanical dynamserved time evolutions, however, do not obey either of these
ics[7]. However, because of the second law, we will see thatquations. So the equations of motion that we have are in-
the definition encompasses a much broader spectrum of pheemplete. The discovery of the complete equation of motion

Definition

nomena than mechanical dynamics. that describes all physical phenomena remains a subject of
research at the frontier of science—one of the most intrigu-
Kinematics: conditions at an instant in time ing and challenging problems in physid].

Many features of the complete equation of motion have

In kinematics we give verbal definitions of the terms SYS-Jireadv been discovered. These features provide not onl
tem, property, and state so that each definition is valid with- y ' b y

out change in any physical theory, and involves no Statis’ticgwdance for the discovery of the complete equation but also

attributable to lack of information. The definitions include & powerful alternative procedure for analyses of many time-

) ; . dependent, practical problems. Two of the most general and
innovations. To the best of our knowledge, they violate no .

. L . well-established features are captured by the consequences
theoretical principle and no experimental result.

A systenis defined as a collection @bnstituentsubject of the first and second laws of thermodynamics discussed

to internal forces that is, forces between constituents, andlater'
external forces

Everything that is not included in the system is #mevi- Energy and energy balance

ronment Energy is a concept that underlies our understanding of all
For a system withr constituents, we denote their amounts physical phenomena, yet its meaning is subtle and difficult to
by the vectorn={n,,n,, ... n}. For a system subject to grasp. It emerges from a fundamental principle known as the

external forces described lsyparameters we denote the pa- first law of thermodynamics.
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The first law asserts that any two states of a system mayaused to proceed spontaneously to a sequence of entirely
always be the initial and final states of a weight processdifferent states by means of a minute and short-lived inter-
Such a process involves no net effects external to the systegttion that has only an infinitesimal effect on the state of the
except the change in elevation between and z, of a  environment. Astable equilibrium statds an equilibrium
weight, that is, solely a mechanical effect. Moreover, for astate that can be altered to a different state only by interac-
given weight, the value of the expressidMg(z;—2;) is  tions that leave net effects in the environment of the system.
fixed only by the end states of the system, whites the  These definitions are identical to the corresponding defini-
mass of the weight, and the gravitational acceleration.  tjons in mechanics but include a much broader spectrum of

The main consequence of this law is that every SysteMates than those encountered in mechanics. The broader
A in any stateA, has a property callednergy with a value  gpecirym is due to the second law discussed later.
denoted by the symbd; (Ref.[1], Sec. 3.4, pp. 32 and 33 Starting either from a nonequilibrium state or from an

The energyE, can be evaluated by a weight process thatyjjjibrium state that is not stable, experience shows that a
coqnectsAl and a reference staf, to which is assigned an system can transfer energy out and affect a mechanical effect
arbitrary reference valu, so that without leaving any other net changes in the state of the
E,=Ey—Mg(z,—2p). (1) ~ environment. In contrast, starting from a stable equilibrium
state, experience shows that a system cannot affect the me-
Energy is shown to be an additive propefRef.[1], Sec.  chanical effect just cited. This impossibility is one of the
3.6, pp. 34 and 35that is, the energy of a composite systemmost striking consequences of the first and second laws of
is the sum of the energies of its subsystems. Moreover, it ithermodynamics.
also shown that energy has the same value at the final time as
at the initial time if the system experiences a zero-net-effect Generalized available energy
weight process, and that energy remains invariant in time if
the process is spontaneoii®ef.[1], Sec. 3.7, pp. 35-37In
either of the last two processes=z,; andE(t,) =E(t4) for
time t, greater thart,, that is, energy ixonservedEnergy
conservation is a time-dependent result. In R&f, this re-
sult is obtained without use of the complete equation of mo
tion.
Energy can be transferxed between systems by means
interactions. Denoting b¥"™~ the amount of energy trans- one stable equilibrium state.

ferred from the environment to systein a process that : _ .
y P The existence of stable equilibrium states for the condi-

changes the state & from A; to A,, we can derive the i ified and therefore th q1 t be d
energy balanceThis derivation is based on the additivity of lons specified an eretore the second law cannot be de-

. rived from the laws of mechanics. Within mechanics, the
Zﬂgrgg Znn% (?ggfjiy conservatiéRef. [1], Sec. 3.8, pp. 37 stability analysis yields that among all the allowed states of a

system with fixed values of amounts of constituents and pa-
(E,—E,) —EA— ) rameters, the only stable equilibrium state is that of lowest
2 T1/systemA ' energy. In contrast the second law avers the existence of a

In words, the energy change of a system must be accountetjable equilibrium state for each value of the energy. As a

for by the energy transferred across the boundary of the sy€sult, for every system the second law implies the existence
tem. of a broad class of states in addition to the states contem-

plated by mechanics.

The existence of stable equilibrium states for various con-
ditions of matter has many theoretical and practical conse-

Because the number of independent properties of a systefuences. One consequence is that, starting from a stable
is infinite even for a system consisting of a single particleequilibrium state of any system, no energy is available to
with a single translational degree of freedom—a single vari-affect a mechanical effect while the values of the amounts of
able that fixes the configuration of the system in space—andonstituents and parameters of the system experience no net
because most properties can vary over a range of values, tlthangegRef.[1], Sec. 4.5, pp. 64 and B5This consequence
number of possible states of a system is infinite. The discusgs often referred to as the impossibility of the perpetual mo-
sion of these states is facilitated if they are classified intdion machine of the second kindPMM2). In some exposi-
different categories according to time evolutions. This clastions of thermodynamics, it is taken as the statement of the
sification brings forth many important aspects of physicssecond law. In this exposition, it is only one aspect of both
and provides a readily understandable motivation for the inthe first and the second laws.
troduction of the second law of thermodynamics. Another consequence is that not all states of a system can

The classification consists of unsteady states, steadye changed to a state of lowest energy by means of a me-
states, nonequilibrium states, and equilibrium stafesf.  chanical effect. This is a generalization of the impossibility
[1], Sec. 4.1, pp. 53—-58An equilibrium stateis one that of a PMM2. In essence, it is shown that a novel important
does not change as a function of time while the system iproperty exists which is calledeneralized adiabatic avail-
isolated—a state that does not change spontaneouslynAn ability and denoted b (Ref.[1], Sec. 5.5, pp. 77—-80The
stable equilibrium statés an equilibrium state that may be generalized adiabatic availability of a system in a given state

The existence of stable equilibrium states is not self-
evident. It was recognized by Hatsopoulos and Kedi#h

as the essence of all correct statements of the second law.
Gyftopoulos and BerettéRef.[1], Chap. 4, pp. 53—66&con-

cur with this recognition, and state tsecond lawas follows
(simplified versiom: Among all the states of a system with a
gifven value of energy, and given values of the amounts of
constituents and the parameters, there exists one and only

Types of states
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represents the optimum amount of energy that can be exR, a reference statéd,, with energyE, and generalized
changed between the system and a weight in a weight pravailable energ;ﬂg‘, to which is assigned a reference value
cess. Like energy, this property is well defined for all sys-S,, and the expression
tems and all states, but unlike energy it is not additiwef.
[1], Sec. 5.3.8, p. 75

In striving to define an additive property that captures the S C_R[(El_ Eo)_(ﬂ?_ﬂg)], 5)
important features of generalized adiabatic availability, Gyf-
topoulos and Beretta introduce a special reference systemherecy is a well-defined positive constant that depends on
called areservoir, and discuss the possible weight processesghe auxiliary reservoiR only. Entropy S is shown to be
that the composite of a system and the reservoir may expéndependent of the reservoiRef. [1], Sec. 7.4, pp. 108—
rience. Thus they disclose a third consequence of the first12), that is,Sis a property of systerA and the reservoir is
and second laws, that is, a limit on the optimum amount ofwxiliary and is used only because it facilitates the definition
energy that can be exchanged between a weight and a corof S. It is also shown tha® can be assigned absolute values
posite of a system and a reservBir-the optimum mechani- that are non-negative, and that vanish for all the states en-
cal effect. They call the optimum valugneralized available countered in mechanid®&ef.[1], Sec. 9.8, pp. 137 and 138
energy(Ref.[1], Sec. 6.8, pp. 95—-97denote it byQR, and Because energy and generalized available energy satisfy
show that it is additivéRef.[1], Sec. 6.9.6, pp. 98 and B9 relations(3) and(4), the entropy defined by E@5) remains
It is a generalization of the concept of motive power of fireinvariant in any reversible adiabatic processAgfand in-
introduced by Carnot. It is a generalization because he asteases in any irreversible adiabatic procesA.cfhese con-
sumed that both systems of the composite acted as reservoitkisions are valid also for spontaneous processes and for
with fixed values of their respective amounts of constituentszero-net-effect interactions. The latter features are known as
and parameters, whereas Gyftopoulos and Beretta do not utfee principle of nondecrease of entrofBoth a spontaneous
this assumption. The definition of a reservoir is given in Ref.process and a zero-net-effect interaction are special cases of
[1], Sec. 6.3, pp. 87 and 88. an adiabatic process of systefn

For anadiabatic procesgRef.[1], Sec. 12.1, pp. 168— The entropy created as a system proceeds from one state
173 of systemA only, it is shown that the energy change to another during an irreversible process is cakedropy
E,—E, of A and the generalized available energy changegenerated by irreversibilitylt is positive. The entropy non-
QR— QR of the composite oA and reservoilR satisfy the ~decrease is a time-dependent result. In the exposition of ther-
following relations (Ref. [1], Sec. 6.9, pp. 97-991f the modynamics in Ref.1], this result is obtained without use of

adiabatic process ok is reversible, the complete equation of motion.
Because both energy and generalized available energy are
E,—E,=0%-0f%. (3)  additive, Eq.(5) implies that entropy is also additivéRef.
[1], Sec. 7.2.2, pp. 103 and 104
If the adiabatic process & is irreversible, Like energy, entropy can be transferred between systems
by means of interactions. Denoting I8}~ the amount of
E,—E,<QR-0%. (4)  entropy transferred from systems in the environment to sys-

tem A as a result of all interactions involved in a process in

A process isreversibleif both the system and its environ- which the state oA changes fron\; to A,, we derive a very
ment can be restored to their respective initial states. A proimportant analytical tool, thentropy balancéRef.[1], Sec.
cess idgrreversibleif the restoration just cited is impossible. 7.3, pp. 106—108 that is,

It is noteworthy that energy and generalized available en-
ergy are defined for any state of any system, regardless of (S2—S1)systema= S+ S, (6)
whether the state is steady, unsteady, equilibrium, nonequi- . ) .
librium, or stable equilibrium, and regardless of whether theVhe€reSir is non-negative. A positiv&,, represents the en-
system has many degrees of freedom or one degree of frefOPY generated spontaneously within systanin the time
dom, or whether the size of the system is large or small. interval fromt; to t, required to affect the chgnge fro_m state

Detailed discussions of properties of stable equilibrium®: O StateA,. Spontaneous entropy generation within a sys-
states, such as the fundamental relation, temperature, tot@m occurs if the system is in a nonequilibrium state in which
potentials, and pressure, and of different interactions, such d8€ internal system dynamics precipitate the natural tendency

work and heat, are given in Rdfl], Chaps. 8—12. towards stable equilibrium. _ _
The dimensions of5 depend on the dimensions of both

ENTROPY energy andcg. It turns out that the dimensions aof are
independent of mechanical dimensions, and are the same as
Definition those of temperaturéRef. [1], Sec. 9.7, pp. 136 and 1B7

A systemA in any stateA; has many properties. Two of Temperature is defined later.

these properties are enerfy and generalized available en-
erngie with respect to a given auxiliary reservét These
two properties determine a third property calkaropy de- It is shown that among the many states of a system that
noted by the symbds. It is a property in the same sense thathave given values of the ener@y the amounts of constitu-
energy is a property, or momentum is a property. For a statentsn, and the parametefs, the entropy of the unique stable
Ai, S; can be evaluated by means of an auxiliary reservoiequilibrium state that corresponds to these values is larger

Stable equilibrium states
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than that of any other state with the same vales, and  of the concept, we recall contrary statements by Meixner

B (Ref.[1], Sec. 8.2, pp. 119 and 12@nd can be expressed [17]: “A careful study of the thermodynamics of electrical
as a function networks has given considerable insight into these problems

and also produced a very interesting result: the nonexistence
S=S(E.n,p). (7)  of a unique entropy value in a state which is obtained during
an irreversible process. ., | would say | have done away
with entropy”; and Caller{18]: “it must be stressed that we
postulate the existence of the entropy only for equilibrium
states and that our postulate makes no reference whatsoever
to nonequilibrium states.”

Equation (7) is called thefundamental relation(Ref. [1],
Sec. 8.3, pp. 120-124

The fundamental relation is analytic in each of its vari-
ablesE, n, and B (Ref. [1], Sec. 8.3, pp. 120-124and
concave with respect to energiRef. [1], Sec. 9.4, pp. 131

and 132, that is,

CHARACTERISTICS OF ENTROPY
#°S ) o . .
SE2 <0. (8) From the discussions in the preceding section and our
I Inp knowledge of classical thermodynamics, we conclude that

Moreover, the fundamental relation is used to define othe"riny expression that purports to represent the entropy of ther-

properties of stable equilibrium states, suchtemperature ?th)_/namlcs mystl hat\lle at I(faast tthet;‘loll?vlvllng_ elgh_t ﬁ?ar‘."‘c'
T (Ref.[1], Chap. 9, pp. 127—142 tz:z ics or, equivalently, conform to the following eight cri-
1 [4S (1) The expression must be well defined for every system
T7I3E g (9  (large or s_ma?l, and every statéstable equilibrium or not
’ stable equilibrium
total potentialsu; for i=1,2,...,r (Ref.[1], Chap. 10, pp. (2) The expression must be invariant in all reversible
147-15 adiabatic processes, and increase in any irreversible adiabatic
11

process.

(3) The expression must be additive for all systems and all
states.

(4) The expression must be non-negative, and vanish for
andpressure p(Ref.[1], Chap. 11, pp. 157-162 all the states encountered in mechanics.
(5) For given values of energy, amounts of constituents,
pzT[ﬁ—S for B;=V=(volume. (12) and parameters, one and only one state must correspond to

N|enp the largest value of the expression.
_ (6) For given values of the amounts of constituents and

equilibrium state appear in the necessary conditions for SYSsquilibrium states must be concave and smooth.
tems to be in mutual stable equilibrium, such as the tempera- (7) For a compositeC of two subsystems\ and B, the
turte etqulallty(F\’I_(if.gl]f Slec.89.2,l%p.2 129 iﬂg 1thle gtzl expression must be such that the entropy maximization pro-
potential equalitRef.[1], Sec. 10.2, pp. and 16@n cedure forC [criterion no.(5)] yields identical thermody-

the pressure equalltYR_e_f. [1], Sec. 11.2, pp. 157-159 namic potentialgfor example, temperature, chemical poten-
Moreover, these equalities are the bases for the measure-

, ials, and pressujdor all three system#, B, andC.
ments ofT, w;’s, andp. S )

(8) For stable equilibrium states, the expression must re-
duce to relations that have been established experimentally
_ _ and that express the entropy in terms of the values of energy,

The concept of entropy introduced here differs from andamounts of constituents, and parameters, such as the rela-
is more general than that of many textbooks. It does notions for ideal gases.
involve the concepts of temperature and heat; it is not re- |t js noteworthy that, except for criteriel) and (4), we
stricted to large systems; it applies to macroscopic as well agan establish the remaining six criteria by reviewing the defi-

microscopic systems, including a system with one spin, or ition of entropy of classical thermodynamics.
system with one particle with only or{translationgl degree

of freedom; it is not restricted to stabl¢hermodynamig

equilibrium states; it is defined for both stable equilibrium QUANTUM EXPRESSIONS FOR ENTROPY
(thermodynamic equilibriumn and not stable equilibrium

states because energy and generalized available energy areEver since the enunciation of the first and second laws of
defined for all states; and most certainly, it is notthermodynamics by Clausius about 130 years ago, all expres-
statistical—it is a property of matter. These assertions arsions for entropy that are not based on temperature and heat
valid because here the postulates or laws of thermodynamidgvolve probabilities. Invariably, the probabilities are statis-
from which the concept of entropy originates do not involvetical (as opposed to inherent to the nature of physical phe-
the concepts of temperature and heat, are not restricted eitheomeng, and are introduced as a means to partially over-
to large systems or to stable equilibrium states or both, andome the enormous computational and informational
are not statistical. To emphasize the difference and generalitifficulties resulting from the complexity of the “actual

S

(?—ni for i=1,2,...r, (10

mi=—T

E.n,B

Comment
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state” (classical or quantujnof a large system. Thus each  TABLE I. Criteria satisfied and not satisfied by known expres-
expression of entropy is usually construed as a subjectiveions for entropy.
measure of information rather than an analytical descriptior —
of an objective property of matter. Criterion

Over the past two decades, a different point of view hag=ntropy
been developed consistent with the idea that entropy is 8xpression (1) (20 @ @ G © @O (@
property of matter. Hatsopoulos and Gyftopoul&® ob-

Y Y N
served that the von Neumann concept of a homogeneo%{D v v v v N
ensemble of identical systems that represents a density op- v v v v v N
eratorp equal to a projectofevery member of the ensemble _~
is described by the same projectpk p?, or the same wave SR i i i i i i $ v

function as any other membecan be readily extended to
density operators that are not projectéesery member of

the ensemble is described by the same density operator, |, ye jight of this point of view, and the eight criteria of

2 . .
p>p°, as any other member, that is, the ensemble is not g5 hreceding section, we conclude tiat expressions for
stgt|st|cal_m|xture of projectoys This extension is accom- eniropy based on temperature and heat are not acceptable
plished without any changes of the quantum-theoretic postie .4 se they are restricted to thermodynamic or stable equi-

lates about observabl_es, measurgme_nt results, and Values,lf?)frium states onlyib) expressions for entropy proposed in
observables. An identical conclusion is reached by other sCayistical classical mechanics are not acceptable because

entists[19]. . L. o .. .. they are based on statistic@ubjective rather than quantal
One benefit of the observation just C|t§d is the ellmlnatlon(inheren) probabilities, and the resulting entropy is not a
of the mon__strosr[y of the concept of mixed state that con-property of matter: an€c) expressions for entropy proposed
cemned Schrdinger[20] and Park21]. __in statistical quantum mechanif22,23 that depend on vari-
Another even more important benefit is Fhat the extensionyjas other than the eigenvaluespoére not acceptable be-
results in a unified quantum theory which encompasseg, e they fail criterion(2) for processes in which the
within a_smgle structure of_concepts and mathem_atlcal_ rPehanges op are unitary. Accordingly, some quantum func-
resentatives both mechanics and thermodynamics withoy,ais that are proposed in the literature and that are candi-

any peed for statist.i(.:adsubjective or informationalprob- dates as possible expressions for entropy are the following.
abilities[10]. The unified theory applies to all systems, small 11,4 Darazy entropy[24]

or large, including a one spin system, and all states, un-

steady, steady, nonequilibrium, equilibrium, and stdtier- 1

modynami¢ equilibrium. So=51a_7 (TP~ 1), (13
Next, Hatsopoulos and Gyftopoulos postulated that the

special class of unitary transformations @fvith respect to  \wherea>0, a#1.

time obey the von Neumann equation of motion The Hartley entropy25]
d_ i L Sy=kInN(p), (14)
Fra g (12

whereN(p) is the number of positive eigenvalues mf
The infinite norm entropy

for both isolated system$iamiltonian operatorsl indepen- S. = —kin|p| (15)
dent of timg and nonisolated systentslamiltonian opera- =

tors H explicitly d_ependent on time It is noteworthy that wherel|p|..= Pges= (the largest eigenvalue @f).

Eq. (12) must be introduced as a postulate because, experi- The Rayi entropy[26]

mentally as opposed to algebraically pathat represents a

homogeneous ensemble cannot be construed as a statistical k

mixture of projectors and therefore E(L2) cannot be de- Sr=1_, In(Trp%), (16)
rived from the Schrdinger equation.

As is well known, the processes described by @Q) are  \yperea> 0, a#1.
reversible adiabatic. However, neither do all reversible adia- The yvon Neumann entrof27]
batic processes correspond to unitary transformationg of
with respect to time, nor are all adiabatic processes revers- S,=—kTrplnp. (17)
ible. Accordingly, as an equation of motion of physics, Eq.

(12) is incomplete[8]. Its completion is one of the most Applying criteria (1)—(8) of the preceding section to ex-
challenging outstanding problems of contemporary physicspressiong13)—(17), we find the results listed in Table I.

If there exist constants of the motions of all the reversible ~ Specifically, the Darczy entropy satisfies criterid) and
adiabatic processes described by Exf), Hatsopoulos and (2) but fails criterion(3)—it is not additive[28]. Accord-
Gyftopoulos[10] concluded that each such constant must béngly, Sy is not acceptable as an expression for entropy.
a functional solely of the eigenvalues @foecause these are ~ The Hartley entropy satisfies criteri&)—(4) but fails cri-
the only guantities that remain invariant in the course of allterion (5). For given values of energl, amounts of con-
unitary transformations with respect to time. stituentsn, and parameterg, many different density opera-
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tors have the same number of positive eigenvalues as thehus the graph 08, = —kInp,,., versusk is neither smooth
density operator that corresponds to the unique stable equior concave because it has a cusgat0 andd?S/dE? is
librium state associated wit, n, andB. Accordingly, many positive and not negative as required by relaii8n Accord-
states have the same value of the Hartley entropy instead @igly, the infinite norm entropy is not acceptable.

only one having the value given by the fundamental relation Next, it can be shown that the R@ entropy satisfies
[Eq. (7)]. It follows that the Hartley entropy is not accept- criteria (1)-(6) but fails criterion(7) [28]. So the Rayi en-

able.

tropy is not acceptable.

It can be easily verified that the infinite norm entropy  The von Neumann entropy satisfies all the criteia-

conforms to criterig1)—(5). To probe criterion(6), we con-
sider a system that has only two energy eigenvaltesand

+¢& (spin system For this system and a given value of the
energyE, we can write the matrix of the density operator

p in the energy representation in the form

X o

Pl=\s 1| - (19

&

where 0=x<1, 6
| 6]2<x—x2,

is a complex number
&* is the complex conjugate af, and sub-

script e denotes the energy representation. The eigenvalu

p; andp, of p satisfy the relations

p1p,=Det(p)=|p|=x—x*—|5]% (19

that is, they are solutions of the quadratic equation

p1t+p,=1,

p?—p+lp/=0. (20)
The largest eigenvalue is given by the relation
p,=3(1=\1-4[p[) (21)

and is a maximum ifp| is a minimum, that is, if §/2=0 and

if x=12
(22

X
Prac) 1 % it x<d.

For |6|2=0 and a given valueE, the density operator is
diagonal in the energy representation, and represents the on

equilibrium operator of the spin system.

such that

(8). So, it is the only known quantum expression of entropy
that is acceptable.

Because the von Neumann entropy appears in practically
every textbook on statistical quantum mechanics, some addi-
tional remarks are necessary here. In statistical quantum me-
chanics, several different derivations®f are given 22,28—

30]. Each of these derivations, however, introduces
hypotheses or axioms which are not consistent with the idea
that entropy is a property of matter. For example, von Neu-
mann’s derivationf22,27] is based on the premise of mixing
dwre stategprojectors. Such a premise leads to contradic-
tions [9,11]. Again, Ochs’s derivatioi28] is based on the
assumptions that the expression for entropy must satisfy the
conditions of “partial isometric invariance” and “subaddi-
tivity,” conditions which are not justified by the laws of
thermodynamics.

For ap that corresponds to a homogeneous ensemble, the
first proof thatS, is the quantum expression for entropy is
given by Hatsopoulos and Gyftopoulps0]. However, cer-
tain features of their derivation are mathematically faulty.
So, the conclusion th&, is the only known quantum ex-
pression for entropy is the result presented here.

CLOSING REMARK

In addition to shedding some light on the meaning of
ntropy as a property of matter, density operators that satisfy
the relationp=p?, and that cannot be decomposed experi-

On the other hand, the energy of the system satisfies th&€ntally (@s opposed to algebraicallinto mixtures of pure

relation
X & ||l—¢
E—Tr(pH)S—Tr(s 1-x|l o 8—8(1_2X)
(23
and therefore
1 E
_[1—— if e<E<O0
2 e
Pmax= 1 (24
—11+—] if O<Ese.
2 e

states open several interesting questions at the frontier of
contemporary physics. Both from the theoretical and the en-
gineering points of view, the most important of these ques-
tions relates to the form of the complete equation of motion,
the equation that applies to all processes, reversible and irre-
versible.
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