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Entropy: Thermodynamic definition and quantum expression
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Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
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Numerous expressions exist in the scientific literature purporting to represent entropy. Are they all accept-
able? To answer this question, we review the thermodynamic definition of entropy, and establish eight criteria
that must be satisfied by it. The definition and criteria are obtained by using solely the general, nonstatistical
statements of the first and second laws presented inThermodynamics: Foundations and Applications@Elias P.
Gyftopoulos and Gian Paolo Beretta~Macmillan, New York, 1991!#. We apply the eight criteria to each of the
entropy expressions proposed in the literature and find that only the relationS52k Trr lnr satisfies all the
criteria, provided that the density operatorr corresponds to a homogeneous ensemble of identical systems,
identically prepared. Homogeneous ensemble means that every member of the ensemble is described by the
same density operatorr as any other member, that is, the ensemble is not a statistical mixture of projectors
~wave functions!. @S1063-651X~97!00904-5#

PACS number~s!: 05.70.Ln, 03.65.2w, 05.30.2d
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INTRODUCTION

In his extensive and authoritative review, Wehrl@2# writes
‘‘It is paradoxical that although entropy is one of the mo
important quantities of physics, its main properties are rar
listed in the usual textbooks on statistical mechanics.’’ W
concur fully with this assessment, and add that the m
characteristics of entropy are rarely listed even in the te
books on thermodynamics, despite the fact that entrop
clearly a thermodynamic~not mechanical! concept.

The lack of specificity has resulted in a plethora of e
pressions purporting to represent the entropy of thermo
namics, and perhaps influenced von Neumann@3# to respond
to Shannon’s question ‘‘What should I call2S i pi lnpi?’’ by
saying ‘‘You should call it ‘entropy’ for two reasons: firs
the function is already in use in thermodynamics under t
name; second, and more importantly, most people d
know what entropy really is, and if you use the word entro
you will win every time!’’

The purposes of this paper are to redress the omissi
and to prove that, of all the known expressions, the only
that represents entropy as a well-defined property of matt
the quantum-theoretic functionalS52kTrr lnr. Even
though the functional is very well known and more oft
than not rejected in statistical quantum mechanics, here
proof is solely thermodynamic, andr is a density operato
that experimentally~in contrast to algebraically! cannot be
decomposed into a statistical mixture of projectors.

The paper is organized as follows. In the second sec
we introduce the first and second laws of thermodynam
and derive from them the concepts of energy and general
available energy as properties of any system~large or small!
in any state~thermodynamic equilibrium or not thermody
namic equilibrium!. In the third section, we present a gene
thermodynamic definition of entropy in terms of energy a
generalized available energy, and discuss its features. In
551063-651X/97/55~4!/3851~8!/$10.00
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fourth section we list eight characteristics of this entro
which are theorems derived from the laws of thermodyna
ics, and which can be used as criteria of acceptance of
analytic expression purporting to represent entropy. In
fifth section we discuss briefly a recent quantum-theore
interpretation of thermodynamics, summarize a number
quantum expressions for entropy that have appeared in
literature, and investigate whether one or more of these
pressions conform with the eight criteria listed in the prec
ing section.

As a result of this investigation, we prove that among t
candidates only the expressionS52kTrr ln r conforms
with all the criteria, provided that the density operatorr
represents the quantum-theoretic probabilities derivable f
a homogeneous ensemble of identical systems, identic
prepared.

The homogeneous ensemble is a generalization of
concept introduced by von Neumann@4#. It is an ensemble of
identical members in which each member is described by
same density operatorr (r>r2) as any other member, tha
is, the ensemble is not a statistical mixture of project
~wave functions!. In other words, experimentally as oppos
to algebraically, the density operator compatible with the
position of thermodynamics in Ref.@1# is not a mixture of
quantum probabilities derived from projectors and class
statistical probabilities introduced because of either ig
rance or lack of interest in the details of the system, or bo
but the seat of quantum-theoretic probabilities only.

THERMODYNAMICS

General remarks

Many scientists and engineers have expressed conc
about the completeness and clarity of the usual exposit
of thermodynamics. For example, in the preface of his bo
Concepts of Thermodynamics, Obert writes@5# ‘‘Most teach-
3851 © 1997 The American Physical Society
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ers will agree that the subject of engineering thermodyna
ics is confusing to the student despite the simplicity of
usual undergraduate presentation.’’ Again, Tisza states@6#
‘‘The motivation for choosing a point of departure for a de
vation is evidently subject to more ambiguity than the te
nicalities of the derivation . . . . In contrast to errors in ex
perimental and mathematical techniques, awkward
incorrect points of departure have a chance to survive fo
long time.’’

In response to numerous such concerns, Gyftopoulos
Beretta@1# have composed an exposition in which all ba
concepts of thermodynamics are defined completely
without circular arguments in terms of the mechanical id
of space, time, and force or inertial mass only.

The order of introduction of concepts and principles
system~types and amounts of constituents, forces betw
constituents, and external forces or parameters!; properties;
states; the first law; energy~without work and heat!; energy
balance; classification of states in terms of time evolutio
stable equilibrium states; second law~without temperature,
heat, and entropy!; generalized available energy; entropy
any state, stable equilibrium or not, in terms of energy a
generalized available energy and not in terms of tempera
and heat; entropy balance; fundamental relation for sta
equilibrium states only; temperature, total potentials, a
pressure in terms of energy, entropy, amounts of constitu
and parameters for stable equilibrium states only; the th
law; work in terms of energy; and heat in terms of ener
entropy, and temperature.

All concepts and principles are valid for all systems~mac-
roscopic or microscopic!, and all states~thermodynamic or
stable equilibrium states, and states that are not stable e
librium!.

Definition

We define general thermodynamics or simply thermo
namics as the study of motions of physical constituents~par-
ticles and radiations! resulting from externally applied
forces, and from internal forces~the actions and reaction
between constituents!. This definition is identical to tha
given by Timoshenko and Young about mechanical dyna
ics @7#. However, because of the second law, we will see t
the definition encompasses a much broader spectrum of
nomena than mechanical dynamics.

Kinematics: conditions at an instant in time

In kinematics we give verbal definitions of the terms sy
tem, property, and state so that each definition is valid w
out change in any physical theory, and involves no statis
attributable to lack of information. The definitions includ
innovations. To the best of our knowledge, they violate
theoretical principle and no experimental result.

A systemis defined as a collection ofconstituentssubject
to internal forces, that is, forces between constituents, a
external forces.

Everything that is not included in the system is theenvi-
ronment.

For a system withr constituents, we denote their amoun
by the vectorn5$n1 ,n2 , . . . ,nr%. For a system subject to
external forces described bys parameters we denote the p
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rameters by the vectorb5$b1 ,b2 , . . . ,bs%. One parameter
may be volume,b15V, another may be an externally dete
mined electric field,b2 equal to electric field.

At any instant in time, the amount of each constituent a
the parameters of each external force have specific val
We denote these values byn andb with or without addi-
tional subscripts.

By themselves, the values of the amounts of constitue
and of the parameters at an instant in time do not suffice
characterize completely the condition of the system at t
time. We also need the values of all the properties at
same instant in time. Aproperty is defined as an attribute
that can be evaluated at any given instant in time~not as an
average over time! by means of a set of measurements a
operations that are performed on the system and result
numerical value—thevalue of the property. This value is
independent of the measuring devices, other systems in
environment, and other instants in time.

For a given system, the instantaneous values of
amounts of all the constituents, the values of all the para
eters, and the values of a complete set of independent p
erties encompass all that can be said about the system
given instant in time and about the results of any measu
ments that may be performed on the system at that s
instant in time. We call this complete characterization of t
system at an instant in time thestate of the system. This
definition of state, without change, applies to any branch
physics.

Dynamics: changes of state in time

The state of a system may change in time either spo
neously due to the internal forces or as a result of inter
tions with other systems, or both.

The relation that describes the evolution of the state of
isolated system—spontaneous changes of state—as a func-
tion of time is theequation of motion. Certain time evolu-
tions obeyNewton’s equation, which relates the total force
F on each system particle to its massm and accelerationa so
that F5ma. Other evolutions obey thetime-dependent
Schrödinger equation, that is, the quantum-mechanic
equivalent of Newton’s equation. Other experimentally o
served time evolutions, however, do not obey either of th
equations. So the equations of motion that we have are
complete. The discovery of the complete equation of mot
that describes all physical phenomena remains a subjec
research at the frontier of science—one of the most intri
ing and challenging problems in physics@8#.

Many features of the complete equation of motion ha
already been discovered. These features provide not
guidance for the discovery of the complete equation but a
a powerful alternative procedure for analyses of many tim
dependent, practical problems. Two of the most general
well-established features are captured by the conseque
of the first and second laws of thermodynamics discus
later.

Energy and energy balance

Energy is a concept that underlies our understanding o
physical phenomena, yet its meaning is subtle and difficul
grasp. It emerges from a fundamental principle known as
first law of thermodynamics.
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The first law asserts that any two states of a system m
always be the initial and final states of a weight proce
Such a process involves no net effects external to the sys
except the change in elevation betweenz1 and z2 of a
weight, that is, solely a mechanical effect. Moreover, fo
given weight, the value of the expressionMg(z12z2) is
fixed only by the end states of the system, whereM is the
mass of the weight, andg the gravitational acceleration.

The main consequence of this law is that every sys
A in any stateA1 has a property calledenergy, with a value
denoted by the symbolE1 ~Ref. @1#, Sec. 3.4, pp. 32 and 33!.
The energyE1 can be evaluated by a weight process t
connectsA1 and a reference stateA0 to which is assigned an
arbitrary reference valueE0 so that

E15E02Mg~z12z0!. ~1!

Energy is shown to be an additive property~Ref. @1#, Sec.
3.6, pp. 34 and 35!, that is, the energy of a composite syste
is the sum of the energies of its subsystems. Moreover,
also shown that energy has the same value at the final tim
at the initial time if the system experiences a zero-net-ef
weight process, and that energy remains invariant in tim
the process is spontaneous~Ref. @1#, Sec. 3.7, pp. 35–37!. In
either of the last two processes,z25z1 andE(t2)5E(t1) for
time t2 greater thant1, that is, energy isconserved. Energy
conservation is a time-dependent result. In Ref.@1#, this re-
sult is obtained without use of the complete equation of m
tion.

Energy can be transferred between systems by mean
interactions. Denoting byEA← the amount of energy trans
ferred from the environment to systemA in a process tha
changes the state ofA from A1 to A2, we can derive the
energy balance. This derivation is based on the additivity o
energy and energy conservation~Ref. @1#, Sec. 3.8, pp. 37
and 38!, and reads

~E22E1!systemA5EA←. ~2!

In words, the energy change of a system must be accou
for by the energy transferred across the boundary of the
tem.

Types of states

Because the number of independent properties of a sys
is infinite even for a system consisting of a single parti
with a single translational degree of freedom—a single v
able that fixes the configuration of the system in space—
because most properties can vary over a range of values
number of possible states of a system is infinite. The disc
sion of these states is facilitated if they are classified i
different categories according to time evolutions. This cl
sification brings forth many important aspects of physi
and provides a readily understandable motivation for the
troduction of the second law of thermodynamics.

The classification consists of unsteady states, ste
states, nonequilibrium states, and equilibrium states~Ref.
@1#, Sec. 4.1, pp. 53–58!. An equilibrium stateis one that
does not change as a function of time while the system
isolated—a state that does not change spontaneously. Anun-
stable equilibrium stateis an equilibrium state that may b
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caused to proceed spontaneously to a sequence of en
different states by means of a minute and short-lived in
action that has only an infinitesimal effect on the state of
environment. Astable equilibrium stateis an equilibrium
state that can be altered to a different state only by inte
tions that leave net effects in the environment of the syst
These definitions are identical to the corresponding defi
tions in mechanics but include a much broader spectrum
states than those encountered in mechanics. The bro
spectrum is due to the second law discussed later.

Starting either from a nonequilibrium state or from a
equilibrium state that is not stable, experience shows th
system can transfer energy out and affect a mechanical e
without leaving any other net changes in the state of
environment. In contrast, starting from a stable equilibriu
state, experience shows that a system cannot affect the
chanical effect just cited. This impossibility is one of th
most striking consequences of the first and second law
thermodynamics.

Generalized available energy

The existence of stable equilibrium states is not se
evident. It was recognized by Hatsopoulos and Keenan@16#
as the essence of all correct statements of the second
Gyftopoulos and Beretta~Ref. @1#, Chap. 4, pp. 53–66! con-
cur with this recognition, and state thesecond lawas follows
~simplified version!: Among all the states of a system with
given value of energy, and given values of the amounts
constituents and the parameters, there exists one and
one stable equilibrium state.

The existence of stable equilibrium states for the con
tions specified and therefore the second law cannot be
rived from the laws of mechanics. Within mechanics, t
stability analysis yields that among all the allowed states o
system with fixed values of amounts of constituents and
rameters, the only stable equilibrium state is that of low
energy. In contrast the second law avers the existence
stable equilibrium state for each value of the energy. A
result, for every system the second law implies the existe
of a broad class of states in addition to the states cont
plated by mechanics.

The existence of stable equilibrium states for various c
ditions of matter has many theoretical and practical con
quences. One consequence is that, starting from a st
equilibrium state of any system, no energy is available
affect a mechanical effect while the values of the amounts
constituents and parameters of the system experience n
changes~Ref. @1#, Sec. 4.5, pp. 64 and 65!. This consequence
is often referred to as the impossibility of the perpetual m
tion machine of the second kind~PMM2!. In some exposi-
tions of thermodynamics, it is taken as the statement of
second law. In this exposition, it is only one aspect of bo
the first and the second laws.

Another consequence is that not all states of a system
be changed to a state of lowest energy by means of a
chanical effect. This is a generalization of the impossibil
of a PMM2. In essence, it is shown that a novel importa
property exists which is calledgeneralized adiabatic avail-
ability and denoted byC ~Ref. @1#, Sec. 5.5, pp. 77–80!. The
generalized adiabatic availability of a system in a given st
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represents the optimum amount of energy that can be
changed between the system and a weight in a weight
cess. Like energy, this property is well defined for all sy
tems and all states, but unlike energy it is not additive~Ref.
@1#, Sec. 5.3.8, p. 75!.

In striving to define an additive property that captures
important features of generalized adiabatic availability, G
topoulos and Beretta introduce a special reference sys
called areservoir, and discuss the possible weight proces
that the composite of a system and the reservoir may e
rience. Thus they disclose a third consequence of the
and second laws, that is, a limit on the optimum amount
energy that can be exchanged between a weight and a
posite of a system and a reservoirR—the optimum mechani-
cal effect. They call the optimum valuegeneralized available
energy~Ref. @1#, Sec. 6.8, pp. 95–97!, denote it byVR, and
show that it is additive~Ref. @1#, Sec. 6.9.6, pp. 98 and 99!.
It is a generalization of the concept of motive power of fi
introduced by Carnot. It is a generalization because he
sumed that both systems of the composite acted as reser
with fixed values of their respective amounts of constitue
and parameters, whereas Gyftopoulos and Beretta do no
this assumption. The definition of a reservoir is given in R
@1#, Sec. 6.3, pp. 87 and 88.

For anadiabatic process~Ref. @1#, Sec. 12.1, pp. 168–
173! of systemA only, it is shown that the energy chang
E12E2 of A and the generalized available energy chan
V1

R2V2
R of the composite ofA and reservoirR satisfy the

following relations ~Ref. @1#, Sec. 6.9, pp. 97–99!. If the
adiabatic process ofA is reversible,

E12E25V1
R2V2

R. ~3!

If the adiabatic process ofA is irreversible,

E12E2,V1
R2V2

R. ~4!

A process isreversible if both the system and its environ
ment can be restored to their respective initial states. A p
cess isirreversible if the restoration just cited is impossible

It is noteworthy that energy and generalized available
ergy are defined for any state of any system, regardles
whether the state is steady, unsteady, equilibrium, none
librium, or stable equilibrium, and regardless of whether
system has many degrees of freedom or one degree of
dom, or whether the size of the system is large or small.

Detailed discussions of properties of stable equilibriu
states, such as the fundamental relation, temperature,
potentials, and pressure, and of different interactions, suc
work and heat, are given in Ref.@1#, Chaps. 8–12.

ENTROPY

Definition

A systemA in any stateA1 has many properties. Two o
these properties are energyE1 and generalized available en
ergyV1

R with respect to a given auxiliary reservoirR. These
two properties determine a third property calledentropy, de-
noted by the symbolS. It is a property in the same sense th
energy is a property, or momentum is a property. For a s
A1, S1 can be evaluated by means of an auxiliary reserv
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R, a reference stateA0, with energyE0 and generalized
available energyV0

R , to which is assigned a reference valu
S0, and the expression

S15S01
1

cR
@~E12E0!2~V1

R2V0
R!#, ~5!

wherecR is a well-defined positive constant that depends
the auxiliary reservoirR only. EntropyS is shown to be
independent of the reservoir~Ref. @1#, Sec. 7.4, pp. 108–
112!, that is,S is a property of systemA and the reservoir is
auxiliary and is used only because it facilitates the definit
of S. It is also shown thatS can be assigned absolute valu
that are non-negative, and that vanish for all the states
countered in mechanics~Ref. @1#, Sec. 9.8, pp. 137 and 138!.

Because energy and generalized available energy sa
relations~3! and~4!, the entropy defined by Eq.~5! remains
invariant in any reversible adiabatic process ofA, and in-
creases in any irreversible adiabatic process ofA. These con-
clusions are valid also for spontaneous processes and
zero-net-effect interactions. The latter features are known
the principle of nondecrease of entropy. Both a spontaneous
process and a zero-net-effect interaction are special cas
an adiabatic process of systemA.

The entropy created as a system proceeds from one
to another during an irreversible process is calledentropy
generated by irreversibility. It is positive. The entropy non
decrease is a time-dependent result. In the exposition of t
modynamics in Ref.@1#, this result is obtained without use o
the complete equation of motion.

Because both energy and generalized available energy
additive, Eq.~5! implies that entropy is also additive~Ref.
@1#, Sec. 7.2.2, pp. 103 and 104!.

Like energy, entropy can be transferred between syst
by means of interactions. Denoting bySA← the amount of
entropy transferred from systems in the environment to s
temA as a result of all interactions involved in a process
which the state ofA changes fromA1 toA2, we derive a very
important analytical tool, theentropy balance~Ref. @1#, Sec.
7.3, pp. 106–108!, that is,

~S22S1!systemA5SA←1Sirr , ~6!

whereSirr is non-negative. A positiveSirr represents the en
tropy generated spontaneously within systemA in the time
interval fromt1 to t2 required to affect the change from sta
A1 to stateA2. Spontaneous entropy generation within a s
tem occurs if the system is in a nonequilibrium state in wh
the internal system dynamics precipitate the natural tende
towards stable equilibrium.

The dimensions ofS depend on the dimensions of bo
energy andcR . It turns out that the dimensions ofcR are
independent of mechanical dimensions, and are the sam
those of temperature~Ref. @1#, Sec. 9.7, pp. 136 and 137!.
Temperature is defined later.

Stable equilibrium states

It is shown that among the many states of a system
have given values of the energyE, the amounts of constitu
entsn, and the parametersb, the entropy of the unique stabl
equilibrium state that corresponds to these values is la
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than that of any other state with the same valuesE, n, and
b ~Ref. @1#, Sec. 8.2, pp. 119 and 120!, and can be expresse
as a function

S5S~E,n,b!. ~7!

Equation ~7! is called thefundamental relation~Ref. @1#,
Sec. 8.3, pp. 120–124!.

The fundamental relation is analytic in each of its va
ablesE, n, and b ~Ref. @1#, Sec. 8.3, pp. 120–124!, and
concave with respect to energy~Ref. @1#, Sec. 9.4, pp. 131
and 132!, that is,

F ]2S

]E2G
n,b

<0. ~8!

Moreover, the fundamental relation is used to define ot
properties of stable equilibrium states, such astemperature
T ~Ref. @1#, Chap. 9, pp. 127–142!,

1

T
5F ]S

]EG
n,b

, ~9!

total potentialsm i for i51,2, . . . ,r ~Ref. @1#, Chap. 10, pp.
147–151!,

m i52TF ]S

]ni
G
E,n,b

for i51,2, . . . ,r , ~10!

andpressure p~Ref. @1#, Chap. 11, pp. 157–162!,

p5TF ]S

]VG
E,n,b

for b15V5~volume!. ~11!

The temperature, total potentials, and pressure of a st
equilibrium state appear in the necessary conditions for
tems to be in mutual stable equilibrium, such as the temp
ture equality~Ref. @1#, Sec. 9.2, pp. 129 and 130!, the total
potential equality~Ref. @1#, Sec. 10.2, pp. 149 and 150!, and
the pressure equality~Ref. @1#, Sec. 11.2, pp. 157–159!.
Moreover, these equalities are the bases for the meas
ments ofT, m i ’s, andp.

Comment

The concept of entropy introduced here differs from a
is more general than that of many textbooks. It does
involve the concepts of temperature and heat; it is not
stricted to large systems; it applies to macroscopic as we
microscopic systems, including a system with one spin, o
system with one particle with only one~translational! degree
of freedom; it is not restricted to stable~thermodynamic!
equilibrium states; it is defined for both stable equilibriu
~thermodynamic equilibrium! and not stable equilibrium
states because energy and generalized available energ
defined for all states; and most certainly, it is n
statistical—it is a property of matter. These assertions
valid because here the postulates or laws of thermodyna
from which the concept of entropy originates do not invol
the concepts of temperature and heat, are not restricted e
to large systems or to stable equilibrium states or both,
are not statistical. To emphasize the difference and gener
r
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of the concept, we recall contrary statements by Meix
@17#: ‘‘A careful study of the thermodynamics of electrica
networks has given considerable insight into these proble
and also produced a very interesting result: the nonexiste
of a unique entropy value in a state which is obtained dur
an irreversible process, . . . , I would say I have done awa
with entropy’’; and Callen@18#: ‘‘it must be stressed that we
postulate the existence of the entropy only for equilibriu
states and that our postulate makes no reference whatso
to nonequilibrium states.’’

CHARACTERISTICS OF ENTROPY

From the discussions in the preceding section and
knowledge of classical thermodynamics, we conclude t
any expression that purports to represent the entropy of t
modynamics must have at least the following eight char
teristics or, equivalently, conform to the following eight cr
teria.

~1! The expression must be well defined for every syst
~large or small!, and every state~stable equilibrium or not
stable equilibrium!.

~2! The expression must be invariant in all reversib
adiabatic processes, and increase in any irreversible adia
process.

~3! The expression must be additive for all systems and
states.

~4! The expression must be non-negative, and vanish
all the states encountered in mechanics.

~5! For given values of energy, amounts of constituen
and parameters, one and only one state must correspon
the largest value of the expression.

~6! For given values of the amounts of constituents a
parameters, the graph of entropy versus energy of st
equilibrium states must be concave and smooth.

~7! For a compositeC of two subsystemsA andB, the
expression must be such that the entropy maximization p
cedure forC @criterion no. ~5!# yields identical thermody-
namic potentials~for example, temperature, chemical pote
tials, and pressure! for all three systemsA, B, andC.

~8! For stable equilibrium states, the expression must
duce to relations that have been established experimen
and that express the entropy in terms of the values of ene
amounts of constituents, and parameters, such as the
tions for ideal gases.

It is noteworthy that, except for criteria~1! and ~4!, we
can establish the remaining six criteria by reviewing the d
nition of entropy of classical thermodynamics.

QUANTUM EXPRESSIONS FOR ENTROPY

Ever since the enunciation of the first and second laws
thermodynamics by Clausius about 130 years ago, all exp
sions for entropy that are not based on temperature and
involve probabilities. Invariably, the probabilities are stat
tical ~as opposed to inherent to the nature of physical p
nomena!, and are introduced as a means to partially ov
come the enormous computational and informatio
difficulties resulting from the complexity of the ‘‘actua
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state’’ ~classical or quantum! of a large system. Thus eac
expression of entropy is usually construed as a subjec
measure of information rather than an analytical descrip
of an objective property of matter.

Over the past two decades, a different point of view h
been developed consistent with the idea that entropy
property of matter. Hatsopoulos and Gyftopoulos@9# ob-
served that the von Neumann concept of a homogene
ensemble of identical systems that represents a density
eratorr equal to a projector~every member of the ensemb
is described by the same projector,r5r2, or the same wave
function as any other member! can be readily extended t
density operators that are not projectors~every member of
the ensemble is described by the same density oper
r.r2, as any other member, that is, the ensemble is n
statistical mixture of projectors!. This extension is accom
plished without any changes of the quantum-theoretic po
lates about observables, measurement results, and valu
observables. An identical conclusion is reached by other
entists@19#.

One benefit of the observation just cited is the eliminat
of the monstrosity of the concept of mixed state that c
cerned Schro¨dinger @20# and Park@21#.

Another even more important benefit is that the extens
results in a unified quantum theory which encompas
within a single structure of concepts and mathematical r
resentatives both mechanics and thermodynamics with
any need for statistical~subjective or informational! prob-
abilities @10#. The unified theory applies to all systems, sm
or large, including a one spin system, and all states,
steady, steady, nonequilibrium, equilibrium, and stable~ther-
modynamic! equilibrium.

Next, Hatsopoulos and Gyftopoulos postulated that
special class of unitary transformations ofr with respect to
time obey the von Neumann equation of motion

dr

dt
52

i

\
@H,r# ~12!

for both isolated systems~Hamiltonian operatorsH indepen-
dent of time! and nonisolated systems~Hamiltonian opera-
tors H explicitly dependent on time!. It is noteworthy that
Eq. ~12! must be introduced as a postulate because, exp
mentally as opposed to algebraically, ar that represents a
homogeneous ensemble cannot be construed as a stat
mixture of projectors and therefore Eq.~12! cannot be de-
rived from the Schro¨dinger equation.

As is well known, the processes described by Eq.~12! are
reversible adiabatic. However, neither do all reversible ad
batic processes correspond to unitary transformations or
with respect to time, nor are all adiabatic processes rev
ible. Accordingly, as an equation of motion of physics, E
~12! is incomplete@8#. Its completion is one of the mos
challenging outstanding problems of contemporary physi

If there exist constants of the motions of all the reversi
adiabatic processes described by Eq.~12!, Hatsopoulos and
Gyftopoulos@10# concluded that each such constant must
a functional solely of the eigenvalues ofr because these ar
the only quantities that remain invariant in the course of
unitary transformations with respect to time.
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In the light of this point of view, and the eight criteria o
the preceding section, we conclude that~a! expressions for
entropy based on temperature and heat are not accep
because they are restricted to thermodynamic or stable e
librium states only;~b! expressions for entropy proposed
statistical classical mechanics are not acceptable bec
they are based on statistical~subjective! rather than quanta
~inherent! probabilities, and the resulting entropy is not
property of matter; and~c! expressions for entropy propose
in statistical quantum mechanics@22,23# that depend on vari-
ables other than the eigenvalues ofr are not acceptable be
cause they fail criterion~2! for processes in which the
changes ofr are unitary. Accordingly, some quantum fun
tionals that are proposed in the literature and that are ca
dates as possible expressions for entropy are the followi

The Daróczy entropy@24#

SD5
1

212a21
~Trra21!, ~13!

wherea.0, aÞ1.
The Hartley entropy@25#

SH5k lnN~r!, ~14!

whereN(r) is the number of positive eigenvalues ofr.
The infinite norm entropy

S`52k lniri` , ~15!

whereiri`5plargest5 ~the largest eigenvalue ofr).
The Rényi entropy@26#

SR5
k

12a
ln~Trra!, ~16!

wherea.0, aÞ1.
The von Neumann entropy@27#

Sv52kTrr lnr. ~17!

Applying criteria ~1!–~8! of the preceding section to ex
pressions~13!–~17!, we find the results listed in Table I.

Specifically, the Daro´czy entropy satisfies criteria~1! and
~2! but fails criterion ~3!—it is not additive @28#. Accord-
ingly, SD is not acceptable as an expression for entropy.

The Hartley entropy satisfies criteria~1!–~4! but fails cri-
terion ~5!. For given values of energyE, amounts of con-
stituentsn, and parametersb, many different density opera

TABLE I. Criteria satisfied and not satisfied by known expre
sions for entropy.

Criterion
Entropy
expression ~1! ~2! ~3! ~4! ~5! ~6! ~7! ~8!

SD Y Y N
SH Y Y Y Y N
S` Y Y Y Y Y N
SR Y Y Y Y Y Y N
Sv Y Y Y Y Y Y Y Y
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tors have the same number of positive eigenvalues as
density operator that corresponds to the unique stable e
librium state associated withE, n, andb. Accordingly, many
states have the same value of the Hartley entropy instea
only one having the value given by the fundamental relat
@Eq. ~7!#. It follows that the Hartley entropy is not accep
able.

It can be easily verified that the infinite norm entro
conforms to criteria~1!–~5!. To probe criterion~6!, we con-
sider a system that has only two energy eigenvalues,2« and
1« ~spin system!. For this system and a given value of th
energyE, we can write the matrix of the density operat
r in the energy representation in the form

@r#«5F x d*

d 12xG
«

, ~18!

where 0<x<1, d is a complex number such tha
udu2<x2x2, d* is the complex conjugate ofd, and sub-
script « denotes the energy representation. The eigenva
p1 andp2 of r satisfy the relations

p11p251, p1p25Det~r!5uru5x2x22udu2, ~19!

that is, they are solutions of the quadratic equation

p22p1uru50. ~20!

The largest eigenvalue is given by the relation

pl 5 1
2 ~16A124uru! ~21!

and is a maximum ifuru is a minimum, that is, ifudu250 and

pmax5H x if x> 1
2

12x if x, 1
2 .

~22!

For udu250 and a given valueE, the density operator is
diagonal in the energy representation, and represents the
equilibrium operator of the spin system.

On the other hand, the energy of the system satisfies
relation

E5Tr~rH !«5TrF x d*

d 12xGF2« 0

0 «
G5«~122x!

~23!

and therefore

pmax55
1

2 F12
E

« G if «<E<0

1

2 F11
E

« G if 0,E<«.

~24!
he
ui-

of
n

es

nly

he

Thus the graph ofS`52k lnpmax versusE is neither smooth
nor concave because it has a cusp at«50 andd2S/dE2 is
positive and not negative as required by relation~8!. Accord-
ingly, the infinite norm entropy is not acceptable.

Next, it can be shown that the Re´nyi entropy satisfies
criteria ~1!–~6! but fails criterion~7! @28#. So the Re´nyi en-
tropy is not acceptable.

The von Neumann entropy satisfies all the criteria~1!–
~8!. So, it is the only known quantum expression of entro
that is acceptable.

Because the von Neumann entropy appears in practic
every textbook on statistical quantum mechanics, some a
tional remarks are necessary here. In statistical quantum
chanics, several different derivations ofSv are given@22,28–
30#. Each of these derivations, however, introduc
hypotheses or axioms which are not consistent with the i
that entropy is a property of matter. For example, von N
mann’s derivation@22,27# is based on the premise of mixin
pure states~projectors!. Such a premise leads to contradi
tions @9,11#. Again, Ochs’s derivation@28# is based on the
assumptions that the expression for entropy must satisfy
conditions of ‘‘partial isometric invariance’’ and ‘‘subadd
tivity,’’ conditions which are not justified by the laws o
thermodynamics.

For ar that corresponds to a homogeneous ensemble
first proof thatSv is the quantum expression for entropy
given by Hatsopoulos and Gyftopoulos@10#. However, cer-
tain features of their derivation are mathematically faul
So, the conclusion thatSv is the only known quantum ex
pression for entropy is the result presented here.

CLOSING REMARK

In addition to shedding some light on the meaning
entropy as a property of matter, density operators that sa
the relationr>r2, and that cannot be decomposed expe
mentally ~as opposed to algebraically! into mixtures of pure
states open several interesting questions at the frontie
contemporary physics. Both from the theoretical and the
gineering points of view, the most important of these qu
tions relates to the form of the complete equation of moti
the equation that applies to all processes, reversible and
versible.
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