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Completely integrable nonlinear Schralinger type equations on moving space curves
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Using the Lamb formalism, we show that some completely integrable homogeneous and inhomogeneous
nonlinear Schrdinger (NLS) type equations such as derivative NLS, extended NLS, higher-order NLS, inho-
mogeneous NLS, circularly and radially symmetric NLS, and generalized inhomogeneous radially symmetric
NLS equations can be related to certain types of moving helical space cL®1€63-651X97)06903-]

PACS numbds): 03.40.Kf, 02.40-k, 11.10.Lm, 68.10-m

[. INTRODUCTION which geometric considerations yield a NLS family of equa-
tions. Lamb[7] investigated the connection between sine-
It is well known that nonlinear science plays an importantGordon and Hirota equations with that of the motion of the
role in explaining many phenomena in science . After themoving helical space curves and also derived the linear ei-
discovery of solitons in 1967 by Zubusky and Kruska], genvalue problem from the Ricaati equation. This is an ex-
while solving the Korteweg—de Vries equation numerically, t€nsion of a result obtained by Hasimd®)], who showed

a continuous search has been going on to identify this excilt—hat the intrinsic equation governing the curvature and tor-

ing concept in all areas of science exhibiting nonlinear beSion of an isolated thin vortex filament moving without

havior. Solitons have emerged as a paradigm for nonlineattretching in an incompressible inviscid fluid can be reduced

phenomena in a variety of fields such as hydrodynamicst,,o the NLS equation. Recently, it has been shown that the

nonlinear optics, plasmas, biological molecules, solid statdMe evolution of the space curve is associated with a geo-
physics, and certain field theori]. The experimental veri- Metric phase and also discussed the application of this for-
fication of solitons has also been reported from the abov@'@lism to the classical, continuous, antiferromagnetic

areas. Presently there are hundreds of nonlinear partial diff€iSenberg spin chaif9]. In an intriguing recent paper,
ferential equationéNPDE) that have soliton solutions or al- Goldstein and PatrichiL0] related integrable evolution equa-

low soliton-type properties. The Korteweg—de VriggiV), tions from the modified KdV hierarchy to motions of closed

the modified KdV, the nonlinear Schdimger(NLS), and the = CUrVes in a plane, and also the Serret-Frenet equations are

sine-Gordon equations are some of the prototype equatior!oWn to be equivalerjtil] to the Ablowitz-Kaup-Newell-

that frequently appear in nonlinear science. The aboveS€9ur(AKNS) [12] scattering problem at zero eigenvalue.

mentioned equations are classified as completely integrablg0!iwa and Santin13] have shown that the elementary geo-

equations, which have certain important propertiésthe metr_ic properties of_the motion of a space curve select hi_er-
linear eigenvalue equation also known as Lax péir) archies of different integrable dynamical systems depending

N-soliton solutions,(iii) an infinite number of integrals of on the d_|menS|onaI|tyI_‘ﬂ_) of the sphere. In thelrfor_mulatlon,
motion, and(iv) a Hamiltonian structure. N=2 gives the modified _KdV hlerarchw=3 gives the

There are many nonlinear problems in physics that can b&/LS hierarchy, andN>3 gives multicomponent generaliza-
described3] in terms of a three-dimensional vector figlof tions of the above hierarchies admitting &3 eigenvalue

) ) ) .. problem. From the above investigations, it is clear that the
unit magnitude, normalized such thatt=1. For example  gerivative and inhomogeneous NLS-type equations have not
(i) the propaga;uon of light in a twisted optical fiber is studied peen reported. In recent years many NLS-type equations
[4] in terms oft(x), a function of one spatial variable the  have been derived from different physical and mathematical
distance along the fibetii) The time evolution of thénor-  considerations. Then the obvious question arises of whether
malized classical spin vector at a cite in the continuum ver-these equations can also be related to space curves. The main
sion of a one-dimensional Heisenberg spin chain is describegim of this paper is to answer this question and to derive
[5] by t(x,y), a function of two variables, one spatial and the various solitons possessing NLS-type equations from the
other temporal; (iii) the vector field in the (2+1)- moving helical space curve. It is shown that the derivative
dimensional @) nonlinear sigma moddk] in field theory ~ NLS equation admitting a Kaup-Newell4] or Wadati-
is described by((x,y,z). There exists a connection between Kono-Ichikawa (WKI) [15] eigenvalue problem, the ex-

this sigma model and two-dimension&D) antiferromag- tendeq NLS (_equation admitting a3 eigenvalue p'ro_blem, '
nets, which in turn is relevant in the study of high-super- and dlﬁerent_ inhomogeneous NLS equations admlttlng_ noni-
conductors. sospectral eigenvalue can also be related to the moving he-

In this Brief Report, we will consider many examples in lical space curve.
Il. MOTION OF THE FILAMENT: LAMB FORMALISM

*Electronic address: ponz@itp.uni-hannover.de and From the elementary presentation of curve theory, we
annalib@sirnetm.ernet.in know that the motion of a twisted curve may be described by
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specifying the curvature and torsion of each point on theyhereR(s,t) is real. Equating the:]st and ,\]ts as obtained

curve as a function of time. At each instant the spatial Variafrom Egs.(5) and(9) as well ast.. andf.. from Egs.(6) and
. . . > - - t t -
tions of the unit tangent, normal and binormal vectons,  (10) one finds ® °

andb, respectively, are given by the Serret-Frenet equations

o It ysti(roy—Ry) =0, (11
ts= kN, (1)
Rs=(112)i (yy* —v* ). (12
bg=—mn, (2) _ _
The indeterminacy property of Eq6ll) and (12), three
Re=1b— «f. 3 equations for five functions, may be used to specialize the

functions so as to yield various types of space curves. In
The subscripts denote partial derivatives with respect t@articular, if the auxiliary function®R and y can be ex-

arc length parametes. The curvaturex and torsionr are ~ Pressed in terms af and its spatial variables, then E¢s1)

now functions of time as well as. Combining Eqs(Z) and and (12) will prOVIde an evolution equatlon for the Spatla|

(3), we get and time variation of the curvature and torsion of the curve
expressed througth.
(n+ib)s+ir(n+ib)=—«t. (4) Using the above procedure, Lam{y] derived sine-

Gordon and Hirota equations and constructed the linear ei-
Supposer— 7 in regions of the curve that are remote from genvalue problem from Serret-Frenet equations. The main

the disturbances of interest, then E4) takes the form aim of this paper is to derive a completely integrable family
. . of NLS-type equations from the moving helical space curve.
Ngt+iToN=—yt, (5  The construction of the Lax pair, soliton solutions, and the

equivalent spin chains will be published elsewhere. Now let
us discuss the derivation of other types of equations from
Egs. (1) and (12). As the terms involving# or i are
readily removable from the resulting equations, through a
simple change of the dependent and independent variables,
and we will not consider the above terms in the resulting equa-
tion. Also, for simplicity, we assume that the integration con-
stant from Eq.(12) and ;=0 are zero for our further dis-
cussion.

where

N=(ﬁ+i6)ex+f ds'(7— 7o)

Y= Kexr{i J_S ds'(7— 7o)

I1l. CONNECTION WITH OTHER NLS-TYPE EQUATIONS
As ¢ is a function of bothk and r, it provides a complete . o ] . ] )
description of the twisted curve. It is for this quantity, or ~Mixed derivative nonlinear Schdm_ger equation This
functions closely related to it, that various nonlinear evolu-€guation explains nonlinear propagation of an Atfugave

N and ¥ can be written as in the discussion of the deformed continuous Heisenberg fer-

romagnet[16] and in the study of two-photon self-induced
e * ] N transparency and ultrashort light pulse propagation in an op-
ts= (L2 PN+ yYN"), © tical fiber[17]. The complete integrability properties of this

where * indicates complex conjugate. Then the linearly in-€guation have been already explained from the above inves-

D > . . tigations. It should be noted that the linear eigenvalue prob-
dependent vectorsN,N”, and t satisfy the relations lem of this equation is in the form of Kaup-New¢ll4] and

N- N’f =2, N't:N*'F:N'NZO- . . WKI [15] type. To derive this equation, we assume
It is more .convenlenat Eo descpbg the temeoEaI evoJutlony:f¢+i€1¢s, R= —(51/2)|¢|2, and f= 62|¢|2_ Inserting
of the curve in terms of ,N, andN* instead oft,n, andb. the forms ofy,R, andf in Egs.(11) and(12), we get
Following the procedure used by Hasimoto, the time varia-
tion of N,N*, andt may also be expressed as linear combi- itiel 5| Y12+ wsd + € 2| |2 s+ P yE1=0. (13
nations of these vectors, i.e.,
The above equation in the limét,= 0 reduces to the well-

N;=aN+ BN* + yt, (7)  known completely integrable NLS equation.
Extended NLS equatioriThe purpose of deriving this
t,=AN+ uN* + pt. (8)  equation is to show that nonlinear systems that admit the

3X 3 Lax pair can also be mapped onto the moving helical
Using the above relations and multiplying E¢B.and(8)  space curve. To get this equation, we choose
by N andt, yields a+a* =0, B=v=0, andy=—2u. So, y=fy+iehstehss, R=—(e/2)|P|*+i(e2)(* s
) L —¥), andf=2¢,|4|? and obtain
N,=iRN+ vf, 9)
i L Yetiel |20+ sd + €a dssst 3| 12t 39295 1=0.
t;=—(1/2)(y* N+ yN*), (10 (14
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This equation was first derived by Kodafis8] to explain
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Using simple coordinate transformatios=r2/4 and

the ultrashort pulse propagation in nonlinear optics and the&y=2¢'/r one can establish the connection between Egs.
construction ofN-soliton solutions and other integrability (17) and(18).

properties were also discussg®,20. Instead of the above

form of f, if we assumef=(e,/2)|¢|% one can easily re-
cover the Hirota equation derived by LarfiB.

Higher-order NLS equatianTo derive this equation, the

form of y is assumed to be y=ieyihssstie€ifs
+i(3€/2)| Y1, 2c':md R= —(261/2)|</f|2—(ez/2)(¢* s
+ s + (€212)| 9| *— (3€2/8) | .

With the above choices of andR we get

dtien[ 2|12 Y+ g +i€,K=0, (19
K=[thsssst 8| ¢|2¢ss+ 2¢2¢§s+ 4| ¢s|2¢
+64* Y5+ 6]yl Y], (16)

Equation(15) can be mapped from the continuum limit,
up to fourth order in the lattice parameter, of the Heisenberan

Generalized inhomogeneous NLS equatibinis equation
can be obtained from the inhomogeneous spherically sym-
metric Heisenberg ferromagnet in arbitrany dimensions
[27]. This equation reads as

n—1 n—1 1
WT+277r U

i ti i i

+ing —iRy=0
and choices ofy and R are y=i[n,+n(n—=21)/r]y
i Re=— el gl>= gL (= 1) 1(1¢1%) — () (|91, -

The above equation is integrable if

(19

p(r)=e;r 20"V gr (172, (20)

Here also we find that the transformatiop’ ="/
—1) ands=r"/n transforms formally then-dimensional

spin chain with biquadratic exchange interaction and als%pherically symmetric systef19) with the form (20) to Eq.

admitsN-soliton solutiond21].

Inhomogeneous NLS equatidn recent years, the inves-
tigation of the nonlinear dynamics of inhomogeneous sys-

(17). Equation(19) is already shown to be one of the soliton
possessing systenp27].
In conclusion, we have shown that the integrable homo-

tems has attracted a lot of attention because these systems 8&heous and inhomogeneous NLS family of equations can

considered to be realistic. To our knowledge, so far, inhomo

geneous NPDEs from Egéll) and (12) have not been re-
ported. The form of y for this equation is

y=in(s) s +insy, andR=—(7/2)|]?— [ . o] p|?dS’.

also be generated from the moving helical space curves by
suitably identifying the forms ofy and R. The results pre-
sented in this Brief Report reveal that the nonlinear equations
with different eigenvalue problems, other than the AKNS

In order to identify the integrable soliton possessing SYSeigenvalue problem, and the inhomogeneous equations can

tem, we assumey, =0, i.e., p=€,S+ €, and obtain
piti(es+e) 3| Y1 Y+ sl

=0.

S
+ieg 245t dff |4]?ds’

site-dependent Heisenberg spin chg@—25 with linear x

dependence. The interesting nature of this equation is that{
admits exploding decay type solitons due to the nonisospeci
tral nature of the eigenvalue parameter in the linear eigen:

value problem.
Circularly symmetric NLS equatiofThis equation can be

derived from the higher-dimensional isotropic spin chain

[25] and also from the particle and gauge fie[@§]. The
equation is of the form

b

1 yl®
§‘¢‘2¢+¢rr+7—r—z+¢ ——dr

ol

itie =0 (18

and the corresponding choices off and R are
y=i(er/r)ytierty ,Re=—(er/n)|*— (e/2) (|41, -

also be obtained from the Lamb space curve formalism.
From the soliton solutions of the above equations, one can
also construct the form of and~, which in turn will be very
useful for the analysis of the soliton curve and other related
properties of the space curve. From the above results, it is
also clear that equations that are not admitting exact solitons
can also put in this form. In fact, if we regard the surface as
%eing traced out by a moving space curve, as in the work of
amb, then it is clear that we will obtain a surface whatever
e equations of motion for the curves, while only special
ypes of equations of motion produce exact solitons. On the
other hand, it is also interesting to investigate the direct con-
nection between moving space curve and more complicated
nonlinear equations like the Wadati-Konno-Ichikawa system,
new derivative NLS, and so on. This work is in progress.
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