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Completely integrable nonlinear Schrödinger type equations on moving space curves
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Using the Lamb formalism, we show that some completely integrable homogeneous and inhomogeneous
nonlinear Schro¨dinger~NLS! type equations such as derivative NLS, extended NLS, higher-order NLS, inho-
mogeneous NLS, circularly and radially symmetric NLS, and generalized inhomogeneous radially symmetric
NLS equations can be related to certain types of moving helical space curves.@S1063-651X~97!06903-1#

PACS number~s!: 03.40.Kf, 02.40.2k, 11.10.Lm, 68.10.2m
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I. INTRODUCTION

It is well known that nonlinear science plays an importa
role in explaining many phenomena in science . After
discovery of solitons in 1967 by Zubusky and Kruskal@1#,
while solving the Korteweg–de Vries equation numerical
a continuous search has been going on to identify this ex
ing concept in all areas of science exhibiting nonlinear
havior. Solitons have emerged as a paradigm for nonlin
phenomena in a variety of fields such as hydrodynam
nonlinear optics, plasmas, biological molecules, solid s
physics, and certain field theories@2#. The experimental veri-
fication of solitons has also been reported from the ab
areas. Presently there are hundreds of nonlinear partial
ferential equations~NPDE! that have soliton solutions or a
low soliton-type properties. The Korteweg–de Vries~KdV!,
the modified KdV, the nonlinear Schro¨dinger~NLS!, and the
sine-Gordon equations are some of the prototype equat
that frequently appear in nonlinear science. The abo
mentioned equations are classified as completely integr
equations, which have certain important properties:~i! the
linear eigenvalue equation also known as Lax pair,~ii !
N-soliton solutions,~iii ! an infinite number of integrals o
motion, and~iv! a Hamiltonian structure.

There are many nonlinear problems in physics that can
described@3# in terms of a three-dimensional vector fieldtW of
unit magnitude, normalized such thattW• tW51. For example
~i! the propagation of light in a twisted optical fiber is studi
@4# in terms oftW(x), a function of one spatial variablex, the
distance along the fiber.~ii ! The time evolution of the~nor-
malized! classical spin vector at a cite in the continuum v
sion of a one-dimensional Heisenberg spin chain is descr
@5# by tW(x,y), a function of two variables, one spatial and t
other temporal; ~iii ! the vector field in the ~211!-
dimensional O~3! nonlinear sigma model@6# in field theory
is described bytW(x,y,z). There exists a connection betwee
this sigma model and two-dimensional~2D! antiferromag-
nets, which in turn is relevant in the study of high-Tc super-
conductors.

In this Brief Report, we will consider many examples
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which geometric considerations yield a NLS family of equ
tions. Lamb@7# investigated the connection between sin
Gordon and Hirota equations with that of the motion of t
moving helical space curves and also derived the linear
genvalue problem from the Ricaati equation. This is an
tension of a result obtained by Hasimoto@8#, who showed
that the intrinsic equation governing the curvature and t
sion of an isolated thin vortex filament moving witho
stretching in an incompressible inviscid fluid can be reduc
to the NLS equation. Recently, it has been shown that
time evolution of the space curve is associated with a g
metric phase and also discussed the application of this
malism to the classical, continuous, antiferromagne
Heisenberg spin chain@9#. In an intriguing recent paper
Goldstein and Patrich@10# related integrable evolution equa
tions from the modified KdV hierarchy to motions of close
curves in a plane, and also the Serret-Frenet equations
shown to be equivalent@11# to the Ablowitz-Kaup-Newell-
Segur~AKNS! @12# scattering problem at zero eigenvalu
Doliwa and Santini@13# have shown that the elementary ge
metric properties of the motion of a space curve select h
archies of different integrable dynamical systems depend
on the dimensionality (N) of the sphere. In their formulation
N52 gives the modified KdV hierarchy,N53 gives the
NLS hierarchy, andN.3 gives multicomponent generaliza
tions of the above hierarchies admitting a 333 eigenvalue
problem. From the above investigations, it is clear that
derivative and inhomogeneous NLS-type equations have
been reported. In recent years many NLS-type equati
have been derived from different physical and mathemat
considerations. Then the obvious question arises of whe
these equations can also be related to space curves. The
aim of this paper is to answer this question and to der
various solitons possessing NLS-type equations from
moving helical space curve. It is shown that the derivat
NLS equation admitting a Kaup-Newell@14# or Wadati-
Kono-Ichikawa ~WKI ! @15# eigenvalue problem, the ex
tended NLS equation admitting a 333 eigenvalue problem
and different inhomogeneous NLS equations admitting no
sospectral eigenvalue can also be related to the moving
lical space curve.

II. MOTION OF THE FILAMENT: LAMB FORMALISM

From the elementary presentation of curve theory,
know that the motion of a twisted curve may be described
d

3785 © 1997 The American Physical Society



th
ria

on

t t

m

or
lu

in

io

ria
bi

the
. In

l
rve

ei-
ain
ily
ve.
he
let
om

a
bles,
ua-
n-
-

fer-
d
op-
is
ves-
ob-

e

the
cal
se

3786 55BRIEF REPORTS
specifying the curvature and torsion of each point on
curve as a function of time. At each instant the spatial va
tions of the unit tangent, normal and binormal vectorstW,nW ,
andbW , respectively, are given by the Serret-Frenet equati

tWs5knW , ~1!

bW s52tnW , ~2!

nW s5tbW 2k tW. ~3!

The subscripts denote partial derivatives with respec
arc length parameters. The curvaturek and torsiont are
now functions of time as well ass. Combining Eqs.~2! and
~3!, we get

~nW 1 ibW !s1 i t~nW 1 ibW !52k tW. ~4!

Supposet→t0 in regions of the curve that are remote fro
the disturbances of interest, then Eq.~4! takes the form

NW s1 i t0NW 52c tW, ~5!

where

NW 5~nW 1 ibW !expF i E
2`

s

ds8~t2t0!G
and

c5kexpF i E
2`

s

ds8~t2t0!G .
.

As c is a function of bothk andt, it provides a complete
description of the twisted curve. It is for this quantity,
functions closely related to it, that various nonlinear evo
tion equations will be generated. Equation~1! in terms of
NW andc can be written as

tWs5~1/2!~c*NW 1cNW * !, ~6!

where * indicates complex conjugate. Then the linearly
dependent vectorsNW ,NW * , and tW satisfy the relations
NW •NW *52, NW • tW5NW * • tW5NW •NW 50.

It is more convenient to describe the temporal evolut
of the curve in terms oftW,NW , andNW * instead oftW,nW , andbW .
Following the procedure used by Hasimoto, the time va
tion of NW ,NW * , and tW may also be expressed as linear com
nations of these vectors, i.e.,

NW t5aNW 1bNW *1g tW, ~7!

tW t5lNW 1mNW *1n tW. ~8!

Using the above relations and multiplying Eqs.~7! and~8!

by NW and tW, yieldsa1a*50, b5n50, andg522m. So,

NW t5 iRNW 1g tW, ~9!

tW t52~1/2!~g*NW 1gNW * !, ~10!
e
-

s

o

-

-

n

-
-

whereR(s,t) is real. Equating theNW st andNW ts as obtained
from Eqs.~5! and~9! as well astWst and tW ts from Eqs.~6! and
~10! one finds

c t1gs1 i ~t0g2Rc!50, ~11!

Rs5~1/2!i ~gc*2g*c!. ~12!

The indeterminacy property of Eqs.~11! and ~12!, three
equations for five functions, may be used to specialize
functions so as to yield various types of space curves
particular, if the auxiliary functionsR and g can be ex-
pressed in terms ofc and its spatial variables, then Eqs.~11!
and ~12! will provide an evolution equation for the spatia
and time variation of the curvature and torsion of the cu
expressed throughc.

Using the above procedure, Lamb@7# derived sine-
Gordon and Hirota equations and constructed the linear
genvalue problem from Serret-Frenet equations. The m
aim of this paper is to derive a completely integrable fam
of NLS-type equations from the moving helical space cur
The construction of the Lax pair, soliton solutions, and t
equivalent spin chains will be published elsewhere. Now
us discuss the derivation of other types of equations fr
Eqs. ~11! and ~12!. As the terms involvingc or cs are
readily removable from the resulting equations, through
simple change of the dependent and independent varia
we will not consider the above terms in the resulting eq
tion. Also, for simplicity, we assume that the integration co
stant from Eq.~12! and t050 are zero for our further dis
cussion.

III. CONNECTION WITH OTHER NLS-TYPE EQUATIONS

Mixed derivative nonlinear Schro¨dinger equation. This
equation explains nonlinear propagation of an Alfve´n wave
with a small nonvanishing number@14,15#. It is also relevant
in the discussion of the deformed continuous Heisenberg
romagnet@16# and in the study of two-photon self-induce
transparency and ultrashort light pulse propagation in an
tical fiber @17#. The complete integrability properties of th
equation have been already explained from the above in
tigations. It should be noted that the linear eigenvalue pr
lem of this equation is in the form of Kaup-Newell@14# and
WKI @15# type. To derive this equation, we assum
g5 fc1 i e1cs , R52(e1/2)ucu2, and f5e2ucu2. Inserting
the forms ofg,R, and f in Eqs.~11! and ~12!, we get

c t1 i e1@
1
2 ucu2c1css#1e2@2ucu2cs1c2cs* #50. ~13!

The above equation in the limite250 reduces to the well-
known completely integrable NLS equation.

Extended NLS equation. The purpose of deriving this
equation is to show that nonlinear systems that admit
333 Lax pair can also be mapped onto the moving heli
space curve. To get this equation, we choo
g5 fc1 i e1cs1e2css, R52(e1/2)ucu21 i (e2/2)(c*cs

2ccs* ), and f52e2ucu2 and obtain

c t1 i e1@
1
2 ucu2c1css#1e2@csss1

9
2 ucu2cs1

3
2c2cs* #50.

~14!
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This equation was first derived by Kodama@18# to explain
the ultrashort pulse propagation in nonlinear optics and
construction ofN-soliton solutions and other integrabilit
properties were also discussed@19,20#. Instead of the above
form of f , if we assumef5(e2/2)ucu2, one can easily re-
cover the Hirota equation derived by Lamb@7#.

Higher-order NLS equation. To derive this equation, the
form of g is assumed to be g5 i e2csss1 i e1cs
1 i (3e2/2)ucu2cs , and R52(e1/2)ucu22(e2/2)(c*css

1ccss* )1(e2/2)ucsu22(3e2/8)ucu2.
With the above choices ofg andR we get

c t1 i e1@2ucu2c1css#1 i e2K50, ~15!

K5@cssss18ucu2css12c2css* 14ucsu2c

16c*cs
216ucu4c#. ~16!

Equation~15! can be mapped from the continuum lim
up to fourth order in the lattice parameter, of the Heisenb
spin chain with biquadratic exchange interaction and a
admitsN-soliton solutions@21#.

Inhomogeneous NLS equation. In recent years, the inves
tigation of the nonlinear dynamics of inhomogeneous s
tems has attracted a lot of attention because these system
considered to be realistic. To our knowledge, so far, inhom
geneous NPDEs from Eqs.~11! and ~12! have not been re
ported. The form of g for this equation is
g5 ih(s)cs1 ihsc, andR52(h/2)ucu22*2`

s hs8ucu2ds8.
In order to identify the integrable soliton possessing s

tem, we assumehss50, i.e.,h5e1s1e2 and obtain

c t1 i ~e1s1e2!@
1
2 ucu2c1css#

1 i e1F2cs1cE
2`

s

ucu2ds8G50. ~17!

The above equation was shown to be equivalent to
site-dependent Heisenberg spin chain@22–25# with linear x
dependence. The interesting nature of this equation is th
admits exploding decay type solitons due to the nonisosp
tral nature of the eigenvalue parameter in the linear eig
value problem.

Circularly symmetric NLS equation. This equation can be
derived from the higher-dimensional isotropic spin cha
@25# and also from the particle and gauge fields@26#. The
equation is of the form

c t1 i e1F12 UcU2c1c rr1
c r

r
2

c

r 2
1cE

0

r ucu2

r 8
dr8G50 ~18!

and the corresponding choices ofg and R are
g5 i (e1 /r )c1 i e1c r ,Rr52(e1 /r )ucu22(e1/2)(ucu2) r .
e

g
o

-
are
-

-

e

it
c-
n-

Using simple coordinate transformations5r 2/4 and
c52c8/r one can establish the connection between E
~17! and ~18!.

Generalized inhomogeneous NLS equation. This equation
can be obtained from the inhomogeneous spherically s
metric Heisenberg ferromagnet in arbitraryn dimensions
@27#. This equation reads as

c t1 i Fh rr2h
n21

r 2
1h r

n21

r Gc1 i Fh n21

r
12h r Gc r

1 ihc rr2 iRc50 ~19!

and choices of g and R are g5 i @h r1h(n21)/r #c
1 ihc r ,Rr52h r ucu22h@(n21)/r #(ucu2)2(h/2)(ucu2) r .

The above equation is integrable if

h~r !5e1r
22~n21!1e2r

2~n22!. ~20!

Here also we find that the transformationc85cn/
(r n21) ands5r n/n transforms formally then-dimensional
spherically symmetric system~19! with the form~20! to Eq.
~17!. Equation~19! is already shown to be one of the solito
possessing systems@27#.

In conclusion, we have shown that the integrable hom
geneous and inhomogeneous NLS family of equations
also be generated from the moving helical space curves
suitably identifying the forms ofg andR. The results pre-
sented in this Brief Report reveal that the nonlinear equati
with different eigenvalue problems, other than the AKN
eigenvalue problem, and the inhomogeneous equations
also be obtained from the Lamb space curve formalis
From the soliton solutions of the above equations, one
also construct the form ofk andt, which in turn will be very
useful for the analysis of the soliton curve and other rela
properties of the space curve. From the above results,
also clear that equations that are not admitting exact solit
can also put in this form. In fact, if we regard the surface
being traced out by a moving space curve, as in the work
Lamb, then it is clear that we will obtain a surface whatev
the equations of motion for the curves, while only spec
types of equations of motion produce exact solitons. On
other hand, it is also interesting to investigate the direct c
nection between moving space curve and more complica
nonlinear equations like the Wadati-Konno-Ichikawa syste
new derivative NLS, and so on. This work is in progress
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