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Fundamentals of traffic flow
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~Received 27 September 1996!

From single-vehicle data a number of empirical results concerning the density dependence of the velocity
distribution and its moments, as well as the characteristics of their temporal fluctuations, have been determined.
These are utilized for the specification of some fundamental relations of traffic flow and compared with
existing traffic theories.@S1063-651X~97!05402-0#

PACS number~s!: 47.20.2k, 89.40.1k, 47.50.1d, 47.55.2t
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For prosperity in industrialized countries, efficient traffi
systems are indispensable. However, due to an overal
crease of mobility and transportation during the last yea
the capacity of the road infrastructure has been reac
Some cities like Los Angeles and San Francisco already
fer from daily traffic collapses and their environmental co
sequences. About 20% more fuel consumption and air po
tion is caused by impeded traffic and stop-and-go traffic.

For the above-mentioned reasons, several models for f
way traffic have been proposed, microscopic and mac
scopic ones~for an overview cf. Ref.@1#!. These are used fo
developing traffic optimization measures such as on-ra
control, variable speed limits, or rerouting systems@1#. For
such purposes, the best models must be selected and
brated to empirical traffic relations. However, some relatio
are difficult to obtain, and the lack of available empiric
data has caused some stagnation in traffic modeling.

Further advances will require a close interplay betwe
theoretical and empirical investigations@2#. On the one hand
empirical findings are necessary to test and calibrate the v
ous traffic models. On the other hand, some hardly mea
able quantities and relations can be reconstructed by m
of theoretical relations.

Therefore, a number of fundamental traffic relations w
be presented in the following. Until now, little is know
about the velocity distribution of vehicles, its variance
skewness. A similar thing holds for the functional form
the velocity-density relation or the variance-density relat
at high densities. Empirical results have also been miss
for the fluctuation characteristics of the density or avera
velocity. These gaps will be closed in the following. A
though the data vary in detail from one freeway stretch
another, the essential conclusions are expected to be un
sal.

In a recent paper@3#, it has been shown that the traffi
dynamics in neighboring lanes is strongly correlated. The
fore, it is possible to treat the total freeway cross section
an overall way. Consequently, we will only discuss the pro
erties of thelane averagesof macroscopic traffic quantities
The empirical relations have been evaluated from single
hicle data of the Dutch two-lane freeway A9 between Ha
lem and Amsterdam~for a sketch, cf. Fig. 1 in Ref.@3#!.
These data were detected by induction loops at disc
placesx of the roadway and include the passage timesta(x),
velocitiesva(x), and lengthsl a(x) of the single vehiclesa.
Consequently, it was possible to calculate the numberN(x,t)
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of vehicles which passed the cross section at locationx dur-
ing a time interval [t2T/2,t1T/2], the traffic flow

Q~x,t !:5N~x,t !/T, ~1!

and the macroscopicvelocity moments

^vk&:5
1

N~x,t ! (
t2T/2<ta~x!,t1T/2

@va~x!#k. ~2!

Small values ofT are connected with large statistical vari
tions of the data, but large values can cause biased result
k>2 @3#. Values between 0.5 and 2 min seem to be the b
compromise@1#. Thevehicle densitiesr(x,t) were calculated
via the theoretical flow formula

Q~x,t !5r~x,t !V~x,t !. ~3!

Other evaluation methods@4# are discussed in Ref.@1#.
We start with the discussion of the grouped empirical v

locity distributionP(v;x,t), which was obtained in the usua
way,

P~v l ;x,t !:5
n~x,v l ,t !
N~x,t !

. ~4!

Here,n(x,v l ,t) denotes the number of vehicles that pass
cross section atx between timest2T/2 and t1T/2 with a
velocity vP[v l2D/2,v l1D/2). The class interval length
was chosenD55 km/h.

In theoretical investigations, the velocity distribution
P(v;x,t) has mostly been assumed to have the Gaus
form @5–7#

PG~v;x,t !:5
1

A2pU~x,t !
expS 2

@v2V~x,t !#2

2U~x,t ! D . ~5!

Here, V(x,t):5^v& denotes theaverage velocity and
U(x,t):5^[v2V(x,t)] 2& denotes thevelocity variance. As-
sumption~5! has been made for two reasons: First, it allo
us to derive approximate fluid-dynamic traffic equatio
from a gas-kinetic level of description@5–7#. Second, ana-
lytical results for the velocity distribution are not yet ava
able, even for the stationary and spatially homogeneous c
Therefore, the question is whether the Gaussian approxi
tion is justified or not. Figure 1 gives a positive answer,
3735 © 1997 The American Physical Society
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3736 55BRIEF REPORTS
least for the average velocity distribution at small and m
dium densities. In particular, bimodal distributions are n
observed@8#.

An investigation of thetemporal evolutionof the velocity
distribution is difficult due to the large statistical fluctuatio
~which come from the fact that only a few vehicles per v
locity class pass the observed freeway cross section du
the short time periodT!. Therefore, we will study a macro
scopic ~aggregated! quantity instead, namely, the tempor
variation of theskewness

g~x,t !:5
^@v2V~x,t !#3&

@U~x,t !#3/2
5

^v3&23^v&^v2&12^v&3

@U~x,t !#3/2
.

~6!

FIG. 1. Comparison of empirical velocity distributions at diffe
ent densities~—! with frequency polygons of grouped Gaussi
velocity distributions with the same mean value and variance~--!. A
significant deviation of the empirical relations from the respect
discrete Gaussian approximations is only found at a density
r540 vehicles/km lane, where the temporal averages overT52
min may have been too long due to rapid stop-and-go waves@3# ~cf.
the mysterious ‘‘knee’’ atr'40 veh/km in Fig. 5!.

FIG. 2. Velocity distributions Pg(v):5$12g[3(v2V)/
Q1/22(v2V)3/Q3/2]/6%PG(v) with the same average velocityV
and varianceU, but different values of the skewnessg~—: g50;
––: g51/2; ---: g51; ••• : g52!. Obviously, a skewness ofugu<0.5
only leads to minor changes compared to the Gaussian distribu
~—!.
-
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This can be interpreted as a dimensionless measure of a
metry ~cf. Fig. 2!. Figure 3 shows that the skewness main
varies between20.5 and 0.5. The deviation from zero
neither systematic nor significant, so that the skewnes
normally negligible. This indicates that even the tim
dependent velocity distribution is approximately Gauss
shaped@9#.

Now we will investigate how the average velocityV and
the varianceU depend on the vehicle densityr ~cf. Figs. 4
and 5!. The problem is that the data for high vehicle densit
are missing. However, for computer simulations of traf
dynamics, the corresponding functional relations need to
specified. This can be done by means of theoretical res
For the average velocity and variance on freeways w
speed limits, recent gas-kinetic traffic models@6# imply the
following implicit equilibrium relations~indicated by a sub-
scripte!, if the skewness is neglected~cf. Fig. 3!:

Ve~r!5V02
t~r!@12p~r!#rUe~r!

12r/rmax2rTrVe~r!
, ~7!

and

Ue~r!5A~r!@Ve~r!21Ue~r!#, i.e.,

Ue~r!5
A~r!Ve~r!2

12A~r!
. ~8!

Here,V0 denotes theaverage desired speed~or free speed!,
t~r! is the effective density-dependentrelaxation timeof ac-
celeration maneuvers, andp~r! means theprobability of im-
mediate overtaking. Moreover,rmax denotes themaximum
vehicle density, Tr the reaction time, and A~r! with
0<A~r!!1 therelative individual velocity fluctuationduring
the time intervalt~r! @1,6#.

According to relation~8!, the equilibrium variance van
ishes when the average velocity becomes zero. This con
tency condition is not met by every traffic model~cf. Ref.
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FIG. 3. Density dependence of the skewnessg ~•: 1-min data;
L: respective mean values!. The large variation of the 1-min data a
low densities is due to the small number of vehicles that pas
cross section during the time intervalT51 min, whereas the large
variation of their mean values at high densities comes from the
1-min data, over which it could be averaged. The 1-min data of
skewness scatter around the zero line~—! and mostly lie between
20.5 and 0.5.
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@10#!. In addition, we expect that the average velocity va
ishes at the maximum vehicle densityrmax. Therefore, in the
limit r→rmax, we must have the proportionality relation

t~r!@12p~r!#r
A~r!Ve~r!2

12A~r!
}12

r

rmax
2rTrVe~r!,

~9!

the proportionality factor beingV0. Whereas the overtaking
probabilityp~r! is expected to vanish forr→rmax, the relax-
ation time t~r! and the fluctuation parameterA~r! are as-
sumed to remain finite @11#. Therefore, the ansatz
Ve~r!}~12r/rmax!

b leads tob51 and

Ve~r!5
rmax2r

Tr~rmax!
2 for r'rmax. ~10!

This is a very interesting discovery, since many research
believed that the average velocity approaches ther axis hori-
zontally. In addition, we find thatUe~r!}~12r/rmax!

2 for
r→rmax.

Our remaining task is to specify the parametersrmax and
Tr . From other measurements, it is known thatrmax lies
between 160 and 180 vehicles per kilometer and lane@12#.

FIG. 4. Relation between average velocity and density@•: 1-min
data;L: respective mean values; —: fit function for the equilibriu
relationVe~r!#. The speed limit is 120 km/h~––!.

FIG. 5. Density dependence of the standard deviationAQ of the
vehicle velocities@•: 1-min data;L: respective mean values; —: fi
function for the equilibrium relationAQe(r)#.
-

rs

The reaction timeTr for expected events is at least 0.7 s@13#.
A good fit of the data results for

rmax5160 vehicles/km lane, Tr50.8 s ~11!

~cf. Fig. 4!. In addition, we can conclude from Eq.~7! that
the velocity-density relationVe~r! of a multilane freeway
should start horizontally, since the probability of overtaki
p~r! should approach the value 1 at very small densit
r'0.

However, it is not only possible to reconstruct the fun
tional forms of the velocity-density relationVe~r! and the
variance-density relationUe~r!. From these, we can also de
termine the dependence of the model functionsA~r! and
t~r!@12p~r!# by means of the theoretical relations~7! and
~8!. The result for the diffusion strengthA~r! is depicted in
Fig. 6.

Finally, we will investigate the temporal fluctuations o
the empirical vehicle densityr(x,t). Until now, most related

FIG. 6. Density dependence of the fluctuation strengthA~r!,
which is a measure of the relative velocity variation during a tim
interval t~r!. Its maximum at medium densities indicates that v
locity fluctuations are particularly large in the region of unstab
traffic flow.

FIG. 7. The power spectrum of the time-dependent vehicle d
sity r(x,t) follows a power law with exponentd52.0 at very small
frequenciesn, but it is flat over large parts of the frequency rang
corresponding to awhite noise.
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studies have presented theoretical or simulation results. It
been claimed that the power spectrumr̂(x,n) of the density
r(x,t) obeys apower law

r̂~x,n!}n2d, i.e., log r̂~x,n!5C2d log n. ~12!

For d, the values 1.4@14#, 1.0 @15#, or 1.8 @16# have been
found. The empirical results in Fig. 7 indicate that the exp
nent d is 2.0 at small frequenciesn, otherwise 0.0. Taking
into account the logarithmic frequency scale, we can c
clude that the power spectrum is flat for the most part of
frequency range. This corresponds to awhite noise. Analo-
gous results are found for the power spectrum of the ave
velocity V(x,t) @1#.
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In summary, we found that the velocity distribution
approximately Gaussian distributed and that its skewnes
negligible. We were able to reconstruct the velocity-dens
relation Ve~r! and the variance-density relationUe~r! by
means of theoretical results. This allowed the determina
of some density-dependent model parameters. The fluc
tions of the vehicle density could be approximated by
white noise, although a power law with exponent 2.0 w
found at small frequencies. All these results are necessar
realistic traffic simulations.

The author is grateful to Henk Taale and the Ministry
Transport, Public Works and Water Management for supp
ing the freeway data.
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