PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Fundamentals of traffic flow
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From single-vehicle data a number of empirical results concerning the density dependence of the velocity
distribution and its moments, as well as the characteristics of their temporal fluctuations, have been determined.
These are utilized for the specification of some fundamental relations of traffic flow and compared with
existing traffic theories.S1063-651X97)05402-(

PACS numbgs): 47.20—-k, 89.40+k, 47.50+d, 47.55-t

For prosperity in industrialized countries, efficient traffic of vehicles which passed the cross section at locatidar-
systems are indispensable. However, due to an overall iring a time interval {—T/2,t+T/2], thetraffic flow
crease of mobility and transportation during the last years,
the capacity of the road infrastructure has been reached. QX 1): =N, /T, )
Some cities like Los Angeles and San Francisco already suf- . .
fer from daily traffic collapses and their environmental con-and the macroscopreelocity moments

sequences. About 20% more fuel consumption and air pollu- 1
tion is caused by impeded traffic and stop-and-go traffic. <Uk>; = [va(X)]k. 2)
For the above-mentioned reasons, several models for free- N(X, ) t—Tre<tto<t+T/2

way traffic have been proposed, microscopic and macro- . o i
scopic onegfor an overview cf. Ref[1]). These are used for Small values ofT are connected with large statistical varia-
developing traffic optimization measures such as on-ramHO”S of the data, but large values can cause biased results for
control, variable speed limits, or rerouting systefis For =2 [3]. Values between 0.5 and 2 min seem to be the best
such purposes, the best models must be selected and cdieMpromisg1]. Thevehicle densitiep(x,t) were calculated
brated to empirical traffic relations. However, some relations/ia the theoretical flow formula

are difficult to obtain, and the lack of available empirical = OV(x.t 3

data has caused some stagnation in traffic modeling. QXD =p(X.HV(X.1). )

Furtr_ler advance;lwnl_reqmre a close interplay betweerbther evaluation methodd4] are discussed in Refl].
theoretical and empirical investigatiof&. On the one hand, We start with the discussion of the grouped empirical ve-

empirical findings are necessary to test and calibrate the varj- .~ > " " i ; : .
ous traffic models. On the other hand, some hardly measu!g)Clty distributionP(v;x,t), which was obtained in the usual

able quantities and relations can be reconstructed by means™"’
of theoretical relations.

Therefore, a number of fundamental traffic relations will P(v,;x,t):=
be presented in the following. Until now, little is known

about the velocity distribution of vehicles, its variance OrHere n(x,v; 1) denotes the number of vehicles that pass the
k . A similar thing holds for the f ional fi f Pl . .
skewness. A similar thing holds for the functional form o cross section ax between times—T/2 andt+T/2 with a

the velocity-density relation or the variance-density relatloré/elocity velv—A2p,+Al2). The class interval length

n(x,v;,t)

N(x,t) @

at high densities. Empirical results have also been missin hosem =5 km/h
for the fluctuation characteristics of the density or averag als cﬂ(])se t'_5| m .t' i th locity distributi
velocity. These gaps will be closed in the following. Al- n e(r)]re ica |n|vei|ga lons, ed ve %C' y r']s rioution
though the data vary in detail from one freeway stretch toP(U’X’t) as mostly been assumed to have the Gaussian
another, the essential conclusions are expected to be univJP-rm [5-7
sal.

In a recent papef3], it has been shown that the traffic Po(vix,t): = 1 l{— [v—V(x.)]?

L : - . c(v;x,1): ex

dynamics in neighboring lanes is strongly correlated. There- V21O (X,1) 20(x,t)
fore, it is possible to treat the total freeway cross section in
an overall way. Consequently, we will only discuss the prop-Here, V(x,t):=(v) denotes theaverage velocityand
erties of thelane average®f macroscopic traffic quantities. ©(x,t):={([v—V(x,t)]%) denotes thevelocity variance As-
The empirical relations have been evaluated from single vesumption(5) has been made for two reasons: First, it allows
hicle data of the Dutch two-lane freeway A9 between Haarus to derive approximate fluid-dynamic traffic equations
lem and Amsterdantfor a sketch, cf. Fig. 1 in Ref{3]).  from a gas-kinetic level of descriptidi5—7]. Second, ana-
These data were detected by induction loops at discretlytical results for the velocity distribution are not yet avail-
placesx of the roadway and include the passage ting€g), able, even for the stationary and spatially homogeneous case.
velocitiesv ,(x), and lengthg ,(x) of the single vehiclesr. =~ Therefore, the question is whether the Gaussian approxima-
Consequently, it was possible to calculate the nuniex;t) tion is justified or not. Figure 1 gives a positive answer, at

). 5
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FIG. 1. Comparison of empirical velocity distributions at differ-
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FIG. 3. Density dependence of the skewngss: 1-min data;

ent densities—) with frequency polygons of grouped Gaussian ¢ : respective mean valueghe large variation of the 1-min data at

velocity distributions with the same mean value and varignrgeA

low densities is due to the small number of vehicles that pass a

significant deviation of the empirical relations from the respectivecross section during the time intervei=1 min, whereas the large
discrete Gaussian approximations is only found at a density ofariation of their mean values at high densities comes from the few

p=40 vehicles/km lane, where the temporal averages dveP
min may have been too long due to rapid stop-and-go wWEBigEf.
the mysterious “knee” ap~40 veh/km in Fig. 5.

1-min data, over which it could be averaged. The 1-min data of the
skewness scatter around the zero ljre) and mostly lie between
—0.5 and 0.5.

least for the average velocity distribution at small and me-This can be interpreted as a dimensionless measure of asym-
dium densities. In particular, bimodal distributions are notmetry (cf. Fig. 2. Figure 3 shows that the skewness mainly

observed8].

An investigation of theemporal evolutiorof the velocity

varies between-0.5 and 0.5. The deviation from zero is
neither systematic nor significant, so that the skewness is

distribution is difficult due to the large statistical fluctuations normally negligible. This indicates that even the time-
(which come from the fact that only a few vehicles per ve-dependent velocity distribution is approximately Gaussian
locity class pass the observed freeway cross section duringhaped9].

the short time period’). Therefore, we will study a macro-

Now we will investigate how the average velociyand

scopic (aggregated quantity instead, namely, the temporal the varianceO depend on the vehicle densipy(cf. Figs. 4

variation of theskewness

(=T _ (03)-3()%) + 2(0)°

X,t):=
R T TP [0,
(6)
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FIG. 2. Velocity distributions P.(v):={1—y[3(v—V)/

02— (v-V)%0°%?/6}Pg(v) with the same average velocity
and varianceO, but different values of the skewnesé—: y=0;
—— y=1/2; - y=1; --- . y=2). Obviously, a skewness 0f{<0.5

and 5. The problem is that the data for high vehicle densities
are missing. However, for computer simulations of traffic
dynamics, the corresponding functional relations need to be
specified. This can be done by means of theoretical results.
For the average velocity and variance on freeways with
speed limits, recent gas-kinetic traffic modgtg imply the
following implicit equilibrium relations(indicated by a sub-
scripte), if the skewness is neglectédf. Fig. 3:

7(p)[1—p(p)]pOc(p)

Ve(p)=Vo= 1-p/pmax—pTVelp) ’ 0
and
Oe(p)=A(p)[Ve(p)*+Oe(p)], e,
A(p)Ve 2
Ouip)= el ®)

Here,V, denotes thewverage desired speddr free speey
7(p) is the effective density-dependenrtaxation timeof ac-
celeration maneuvers, ampdp) means therobability of im-
mediate overtakingMoreover, p,,,, denotes themaximum
vehicle density T, the reaction time and A(p) with
0=<A(p)<1 therelative individual velocity fluctuatioduring
the time intervalr(p) [1,6].
According to relation(8), the equilibrium variance van-

only leads to minor changes compared to the Gaussian distributioishes when the average velocity becomes zero. This consis-

(=)

tency condition is not met by every traffic modef. Ref.
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FIG. 4. Relation between average velocity and derfsitg-min FIG. 6. Density dependence of the fluctuation strengtp),

data; ¢ : respective mean values; —: fit function for the equilibrium Which is a measure of the relative velocity variation during a time
relationV(p)]. The speed limit is 120 km/b--). interval 7(p). Its maximum at medium densities indicates that ve-

locity fluctuations are particularly large in the region of unstable

[10]). In addition, we expect that the average velocity van-traffic flow.
ishes at the maximum vehicle density.,. Therefore, in the
limit p—ppay, We must have the proportionality relation  The reaction timd, for expected events is at least 0.[18].
A good fit of the data results for
A(p)Ve(p)? p

mex ) pmax=160 vehicles/km lane, T,=0.8 s (11

the proportionality factor beiny,. Whereas the overtaking
probability p(p) is expected to vanish fgr— ppax, the relax-
ation time 7(p) and the fluctuation parameté(p) are as-
sumed to remain finite[11]. Therefore, the ansatz
Vo(p)*(1—plpman” leads tog=1 and

(cf. Fig. 4. In addition, we can conclude from E/) that
the velocity-density relatioV(p) of a multilane freeway
should start horizontally, since the probability of overtaking
p(p) should approach the value 1 at very small densities

p~0.
Pine— P However, it is not only possible to reconstruct the func-
Ve(p)= T (pm? for p~pmax- (100  tional forms of the velocity-density relatiod.(p) and the
riPma variance-density relatio®.(p). From these, we can also de-

jermine the dependence of the model functigi®) and

This i interesting di i h
is is a very interesting discovery, since many researche S o[1—p(p)] by means of the theoretical relatiof) and

believed that the average velocity approachesthgis hori- . . . . .
zontally. In addition vse find tgaei?p)u(l—zpmmgz for (8). The result for the diffusion strengih(p) is depicted in
' Fig. 6.

P— Pmax- . - . .
Our remaining task is to specify the parametgrs, and ) Flnally,_ Wle w;}lll :nvdestlg_ate the LtJerrjIporaI fluctuatllonsdof
T,. From other measurements, it is known thgt,, lies the empirical vehicle density(x,t). Until now, most relate

between 160 and 180 vehicles per kilometer and [dri.
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FIG. 7. The power spectrum of the time-dependent vehicle den-
FIG. 5. Density dependence of the standard devia{i®nof the sity p(x,t) follows a power law with exponeni=2.0 at very small
vehicle velocitie§ -: 1-min data; ¢ : respective mean values; —: fit frequencies, but it is flat over large parts of the frequency range,
function for the equilibrium relation/® .(p)]. corresponding to avhite noise
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studies have presented theoretical or simulation results. It has In summary, we found that the velocity distribution is
been claimed that the power spectrpifx,») of the density approximately Gaussian distributed and that its skewness is

p(x,t) obeys apower law negligible. We were able to reconstruct the velocity-density
A . A relation V¢ (p) and the variance-density relatiodB.(p) by
p(x,v)xv~ % ie., logp(x,v)=C—35logv. (12) means of theoretical results. This allowed the determination

of some density-dependent model parameters. The fluctua-
For 6, the values 1.414], 1.0[15], or 1.8[16] have been tjons of the vehicle density could be approximated by a
found. The empirical results in Fig. 7 indicate that the expo-white noise, although a power law with exponent 2.0 was
nent s is 2.0 at small frequencies, otherwise 0.0. Taking found at small frequencies. All these results are necessary for
into account the logarithmic frequency scale, we can conrealistic traffic simulations.
clude that the power spectrum is flat for the most part of the

frequency range. This corresponds tevhite noise Analo- The author is grateful to Henk Taale and the Ministry of
gous results are found for the power spectrum of the averageransport, Public Works and Water Management for supply-
velocity V(x,t) [1]. ing the freeway data.
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