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Effects of impurities in random sequential adsorption on a one-dimensional substrate
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We have solved the kinetics of random sequential adsorption of likr@aers on a one-dimensional disor-
dered substrate for the random sequential adsorption initial condition and for the random initial condition. The
jamming limits 6(«c,k’ k) at a fixed length of lineak-mers have a minimum point at a particular density of the
lineark’-mer impurity for both cases. The coverage of the surface and the jamming limits are compared to the
results for Monte Carlo simulation. The Monte Carlo results for the jamming limits are in good agreement with
the analytical results. The continuum limits are derived from the analytical results on lattice substrates.
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Random sequential adsorptiGRSA) of lineark-mers on  cently, the kinetics of RSA on a two-dimensional disordered
a lattice is a model of nonequilibrium deposition processsubstrate with point impurities has been studied by [Lle®
[1-3]. The lineark-mers are deposited at random, sequen-using a Monte Carlo method. In the present work we studied
tially and irreversibly on a substrate without diffusion andthe RSA of lineark-mers on a one-dimensional disordered
detachment. The incoming particles do not overlap previsubstrate for the random sequential adsorption initial condi-
ously deposited particles. The adhesion of colloidal particlesion and for the random initial condition.
to the solid substrate serves as an experimental realizations Let the initial density ok’-mer impurities beg. Initially,
of RSA [4,5]. The surface coverages converge to the jamk’-mer impurities of density, are adsorbed randomly and
ming limits at long times. The RSA of lined-mers on a sequentially on an empty one-dimensional substrate. Con-
one-dimensional lattice has been exactly solved by variousider the elapsed timg at which the density ok’-mer im-
methods[6,7]. The kinetics of RSA on a one-dimensional purities is p,. Let P,(t;k") denote the probability thain
disordered substrates occupied with pgint impurities hasonsecutive sites are empty. Tkemers are adsorbed on a
been studied numerically by Milesic and Sratic [8], and  clean surface. The rate equations for these probabilities are
solved analytically by Ben-Naim and Krapivs@]. Re- [1,2,9

m—1
—(K' =M+ 1P (tk) =2 P i(tk), m=k’ @
dP(t;k") =1
Tat = -
—(M—k' +1)Py(t;k') =2 >, Ppyj(tk), m=k’ 2
i=1
|
The first term on the right-hand side corresponds to the k=1 4 ot
k’-mer fully covering them-site sequencenf<k’) or filling a(t:k')=expg (k' —1)t—2 >, . (4)
it (m=k'). The second term describes the probabilities of j=1 J
deposition events in which the-site sequence is made non-
empty by a partial overlap by the incomitkg-mer. Set the The coverage bk’-mers is given by
trial solutionP,(t;k’) as
6(t;k’)=1—Py(t,k") (5)
Pn(t;k'sm)=a(t;k")e ™, (3
¢ k'—1 l_e,ju
=k’fduex —u-2> —. (6)
where 0 =1 J

The elapsed timg, is defined as the time that the coverages
*Electronic address: jwlee@craft.camp.clarkson.edu of the surface reaches the initial density of the impuritigs,
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t S i-e 0K’ k) =1=Py(t;k',k) an
p0=k’f du ex —u—ZZ j (7)
0 =1 t
=p0+ka(t0;k’)e_kt0f du

If k'=1, then ty=—In(1—py). Therefore, the probability 0

Pm(to,k"=1) is given by y 22 (1—e 1) it 1
P(to.K'=1)=(1=po)™ ®) A B

This result is consistent with the previous result of Ben-Naim

and Krapivsky[9]. Whenk'=

Pm(to,k’

The probabilityP,(t;k’,k) for adsorption of a&k-mer on a
substrate occupied initially witk’-mer impurities of density
po, follows the same rate equations of E@b. and (2) with
k' replaced byk. Let us the initial density of impurities i,
and consider the trial solution fd?,(t;k’,k) for m=k,

2,to=—In[1+2In(1—p)], and

=2)=e Moa(ty;t'=2). 9

Pn(t:k’ . K) =P, (0)f (t)e ™, (10

wheref,(0)=1 andP,(0)=P(ty;k’). Next we substitute
Eq. (10) into Eg. (2), and solve forf ,(t). We obtain

(1 &) Py j(0)
fn(t)= exp[(k Dt— 22 50 | (12)
Therefore, the probability?(t;k’,k) is given by
Pn(t;k',k)=a(ty;k’)e ™o exr{ —(m—k+1)t
(1-e’ )Pm+1(0)
Z [ PO 12

If k=K', thenP,(0)/P,(0)=e!o. From Eq.(2) the rate
equation forP,(t;k’ k) is given by

dPy(t;k’,k)
—gr = ~kP(tk' k). (13
dt
Solution of P,(t;k’,k) for k=k’ is obtained as
t
Pl(t;k’,k)=P1(0)—ka(to;k’)e*ktof du
0
k—1
1—e v )
Xexr{—u 2> ! —]to},
=1
(14
where
PA(0)=1-K' | “auexg —u- 22 (15

and

a(ty;k')= exp[(k’ 1)to— 22

The coverage fok=k' is obtained as

For k<k’, the initial probabilityP,(0) is obtained from Eq.
(1) as

Pm(o):]-

m—1
[ m+1)+22 vJ]

m{ ;o)

wherev =exp(—t). SubstitutingP,(0) in Eq.(12), we obtain
P.(t;k’,k). Integrating Eq.(13), we calculate the coverage
o(t;k’ k) for k<k’. When k'=1, ty;=—In(1—py), and
a(ty,k'=1)=1. We substitute these values into E48).
The coverage of surface occupied initially with point impu-
rities then follows as

(19

t
O(t;k' =1k)=po+ k(l—po)kJ du
0

k—1

xexp{—u—ZZ
=1

_eiu

(1=po)|. (20

These results are consistent with results of Ben-Naim and
Krapivsky [9]. The jamming limit for the dimer deposition
(k=2) is O k'=1k=2)=1—-(1—-pgexd—2(1—py)]. The
jamming limits have a minimum value
Omin(>, k' =1k=2)=1—e"1/2=0.8160... atp,=3. When
k,:2, t0=—|n[l+% |n(1_Po)]y and a(to,k, :2)
=(1—po)/[1+3 In(1—p)]. Substituting these values into Eq.
(18), we obtain coverages f&’'=2 as

t
0(t;k' =2k)=po+ k(1—p0)e*<k*1>toj exp[ —u
0

,Ju)

- 2 — " e ito|du. (21)
For (k'=2, k=1) the jamming limit is trivially obtained as
0(0;k" =2 k=1)=1. For the deposition of dimer onlk’ =2,

k=2), the jamming limit is consistent with the previous re-

sults as 6(«:k'=2k=2)=1—e ?=0.8646... [6,7]. For

(k'=2, k=3), we obtain the jamming limits by integrating

Eq. (21). The initial elapsed timg, is numerically calculated

by using Eq(7) whenk'>2. Using the time,, we calculate

the coverage from Eq(18). The jamming limits 6(t =co;
=2K) are plotted in Fig. 1. The solid lines in Fig. 1 rep-

resent results obtained by numerical integration of @§).

The symbols in Fig. 1 represent the Monte Carlo results for a
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1.0 I l - ties beu in the continuum limit. Rescale the density accord-
ing to kpg=w and the time akt=17[9]. With the rescaled
density and time remaining finite, we take the lirkit>o of

0.9 - . Egs.(18) and (22). When we take the continuum limit, the
k—oo limit is primary. When the impurities are distributed
randomly and sequentially, we use Ef8). For the case of
point impurities the continuum coverage was already dis-
cussed by Ben-Naim and Krapivskl9]. When k'=2,
to=—In[1+3 In(1—py)]. The continuum coverage is obtained
as

8(co; k, k)

T v+ ul2 1—e W
0(7-)=exp(—,u/2)f dv ex —2] dw .
0

. ul2 W
0.5‘— . b (23)

0.0 0.2 0.4 0.6 0.8 In the limit u—0, the coverage converges to the nRe
p number §(©)=R=0.7475...[9,11]. In the limit u—o~, the
coverage approaches zero exponentially accordingotp=
FIG. 1. The jamming limitsé(e2;k,k’) vs the concentration of (#/2)exp(—u/2). Whenk'>2, it is difficult to obtain the ex-
k' =2 impuritiesp for k=3 (@), 4 (O), and 8(0J). The symbols are plicit dependence of the initial timig on py. Thus, fork’ —o

Monte Carlo results, and the lines are analytical results. and k—o, with k’/k finite, we cannot derive the general
expression for the continuum limit whed>2.
one-dimensional lattice of size=10° using periodic bound- When the impurities are randomly distributed, we use Eq.

ary conditions and T0configurational averages. The Monte (22). At k'=2, the continuum coverage is the same as Eq.
Carlo results are in good agreement with the results of nuf23). The general form of the continuum limit in the case of
merical calculations. The appearance of the minimum pointandom initial conditions is derived by the methods of con-
of the jamming limits is consistent with the previous exacttinuous RSA(not included the detailed calculation&Vhen
results[9] and Monte Carlo results8,10] on the adsorption k'—« andk—c, with k’/k=1 finite, we can obtain the con-
of k-mers on a substrate occupied initially with point impu- tinuum limit coverage as

rities. At low densities ofk’-mer impurities, the jamming

limits decrease with increasing,. In this regime effects of

impurities are to reduce the available space Kemners as

compared to the empty substrate. However, at high densities 6(%)=po+(1—po)exp —a)

of k’-mer these quenched impurities are already close to the o att  1—gU

jamming state, so that only a small fraction lofmers is Xf dt ex;{—zf du } (24
adsorbed on the substrate. The minimum point of the jam- 0 @

ming limits decreases with increasing length of tmers.
Another simple solvable case is when the impurities

are distributed randomly, i.e., P,(0)=A" with where a=py[(1—py)! ]. When py=0, continuous RSA is re-

7\:[1+k'7rjpo(1—Po)7l]fl- In this case, we obtaig=0,  covered. When —0 and py—0 such thatpy/l =x=const,
Pm(0)=A", andPp,.{(0)/Py(0)=\". The coverage is ob- then Eq.(23) is recovered. Whep,—1 the coverage is only

tained as slightly higher than the initial coveragef(«)=py+
(pg/l)exp(—a). In the continuum limit the coverage follows
t kol g omiu the algebraic decag(«)—6(t)~t 1.
Otk K)=1-A+ k)\"fodu exr{ —U—ijl j M. In summary, we calculated the jamming limits fomers

on one-dimensional substrates for the random sequential ad-
sorption initial condition and for the random initial condi-

i . o . tion, by solving the appropriate rate equations. The jamming
When k=2, the jamming limit s given as |imjts g(oo;k’ k) show a minimum value at a particular den-
(> k', k=2)=1—\ exp(—2\). This result is the same as for gty of impurities. The Monte Carlo data are in good agree-
the point impurity case. Ak=2, the minimum value of the  ment with the analytical results. The coverage in the con-

jamming  limit is _Bmm(oo,k’,k=2)=1—e’1/2 al  tinuum limit was discussed using the analytical results for
po=K'/(1+k"). The minimum value does not change for the tne |attice models.

length of the impurity.

Using these analytical results for lattice substrates we can This work was supported by Inha University and by the
obtain the coverage for the continuum case. In the continuurBasic Science Institute Program, Ministry of Education,
limit objects of unit length are deposited on a lattice initially Project No. BSRI-96-2430. | wish to thank Professor
occupied by impurities. Let the initial density of the impuri- Vladimir Privman for his careful reading of this manuscript.
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