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Universality in invariant random-matrix models: Existence near the soft edge
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The Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-Ilan University, Ramat-Gan 52900

~Received 21 October 1996!

We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement
and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations
follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-
matrix models should display universal eigenvalue correlations in the soft-edge scaling limit.
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PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

Unitary-invariant random-matrix models appear in ma
physical theories including nuclear physics, string theo
quantum chaos, and mesoscopic physics. They are c
pletely defined by the joint distribution function

P@H#5
1

ZN
exp$2TrV@H#% ~1!

of the entries of theN3N Hermitian matrixH. In Eq.~1! the
functionV@H# is referred to as the ‘‘confinement potentia
and it should provide the existence of the partition funct
ZN . A remarkable feature of this random matrix model
that, under certain conditions, a particular form of the co
finement potential exerts no influence on the local eigenva
correlations in thebulk scaling limit. More precisely, there i
a class of strong, even confining potentialsV(«), increasing
at least as fast asu«u at infinity, for which the two-point
kernel in the bulk of the eigenvalue spectrum follows t
sine form in the large-N limit @1–4#:

Kbulk~s,s8!5
sin@p~s2s8!#

p~s2s8!
. ~2!

This striking property, known as local universality, leads
the conclusion about universality of arbitraryn-point corre-
lation functions Rn(s1 , . . . ,sn)5det@K(si ,sj )# i , j51, . . . ,n
(n.1) in the local regime. In contrast, the global charact
istics of the eigenspectrum, such as the density of state
one-point Green’s function, display a great sensitivity to
details of confinement potential@3#.

Less is known about eigenvalue correlations near thesoft
edge, which is of special interest in the matrix models
two-dimensional quantum gravity@5#. In the early study@6#
the behavior of the density of states near the tail of eig
value support has been explored. The authors of Ref.@6#
showed that there is a universal crossover from a nonz
density of states to a vanishing density of states that is in
pendent of the confining potential in the soft-edge scal
limit. Whereas the universal behavior of the density of sta
in the soft-edge scaling limit has been proven, the~supposed!
universality ofn-point correlations has not yet been cons
ered.

The problem we address in this work is whether the
genvalue correlations in ensembles of large random matr
also possess a universal behavior in the soft-edge sca
551063-651X/97/55~3!/3712~4!/$10.00
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limit. To provide an answer to this question, we first quo
some results for the Gaussian unitary ensemble~GUE!,
which has received the most study near the soft edge,
then we turn to the consideration of eigenspectra of t
strongly non-Gaussian ensembles of random matrices a
ciated with quartic and sextic confining potentials.

In the soft-edge scaling limit, the GUE is characterized
theAiry two-point kernel@7#

KGUE~s,s8!5
Ai ~s!Ai 8~s8!2Ai ~s8!Ai 8~s!

s2s8
, ~3!

whose spectral properties were studied in detail in Ref.@8#.
As a consequence of Eq.~3!, the scaled density of state
unlike in the case of bulk scaling limit, cannot be taken
being approximately constant and changes in accorda
with the Airy law

nGUE~s!5S ddsAi ~s! D 22s@Ai ~s!#2 ~4a!

with asymptotes

nGUE~s!5H Ausu
p

2
cos~4usu3/2/3!

4pusu
, s→2`

1

8ps
exp~4s3/2/3!, s→1`.

~4b!

Our following treatment of non-Gaussian random mat
ensembles with strong level confinement will be built up
the orthogonal polynomial technique@9#, allowing us to ex-
press the two-point kernel for the random-matrix ensem
defined by Eq.~1! through the polynomialsPN(«) orthogo-
nal on the whole real axis with respect to the weig
exp$22V(«)%. We fix the polynomialsPn satisfying the
three-term recurrence formula

«Pn5an11Pn111anPn21 ~5!

to be orthonormal,

E
2`

1`

d«Pn~«!Pm~«!exp$22V~«!%5dnm . ~6!

Under these conditions the two-point kernel reads
3712 © 1997 The American Physical Society
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KN~«,«8!5aN
cN~«8!cN21~«!2cN~«!cN21~«8!

«82«
, ~7!

where@10# aN5kN21 /kN @kN is a leading coefficient of the
orthogonal polynomialPN(«)# and the wave functions
cN(«)5PN(«)exp$2V(«)% have been introduced. Inasmuc
as our concern is with the matrices of large dimensio
N@1, only the asymptotes of the wave functionscN are
needed and also a meaningfulscaling limit should be con-
structed. Quite generally, this can be done by passing f
the initial energy variable« to a new scaled variables that
remains finite asN→`: «5«(N,s)5«s . Then the scaled
two-point kernel is determined by the formula

K~s,s8!5 lim
N→`

KN~«s ,«s8!
d«s
ds

. ~8!

II. QUARTIC CONFINEMENT POTENTIAL

We choose the quartic confinement potential in the fo
V(«)5 1

2«
4. In this case the differential equation forcn(«)

@the indexn is an arbitrary positive integer# can be obtained
by Shohat’s method@11,12#:

d2

d«2
cn~«!2F dd«

lnwn~«!G dd«
cn~«!1Qn~«!cn~«!50,

~9a!

wn~«!5an11
2 1an

21«2, ~9b!

Qn~«!5S 6«224«62
4«4

wn~«! D14an
2S 4wn~«!wn21~«!11

24an
2«224«42

2«2

wn~«! D . ~9c!

Herean is the recursion coefficient entering the correspo
ing three-term recurrence formula for the given set of
thogonal polynomials. Also, the following exact relatio
takes place:

cn21~«!5
cn8~«!1cn~«!@V8~«!14«an

2#

4anwn~«!
. ~10!

Hereafter we shall be interested in the behavior of
wave functioncn near the soft band edgeDn in the limit
n5N@1. In this case the end point of the spectru
DN52aN , where@13#

aN5S N12D
1/4

@11O~N22!# ~11!

and

wN~«!52aN
21«21O~N21/2!. ~12!

Let us move the spectrum origin to its end pointDN ,
making the replacement «5DN1t, and denote
ĉN(t)5cN(«2DN). It is straightforward to show that thi
function obeys the equation
s

m

-
-

e

d2

dt2
ĉN~ t !218DN

5 tĉN~ t !50 ~13!

in the asymptotic limitN@1. When deriving this equation
we supposed the characteristic energy scaletv(N)5
udlnĉN(t)/dtu21 of the variation ofĉN(t) to be much smaller
than the band edgeDN .

The solution to Eq.~13! can be written through the Airy
function y(x)5Ai( x) satisfying the differential equation
y9(x)2xy(x)50:

ĉN~ t !5lNAi @ t~18DN
5 !1/3#. ~14!

One can check that the conditiontv(N);O(N25/12)!DN is
fulfilled. The coefficientlN entering Eq.~14! still remains
unknown.

To compute the two-point kernel Eq.~7!, we have to cor-
rectly determine the asymptotic behavior ofĉN21(t). This
can be done by means of the asymptotic analysis of the e
relation Eq.~10!, which in the large-N limit comes down to

ĉN21~ t !5ĉN~ t !1
1

3DN
3

d

dt
ĉN~ t !. ~15!

It is convenient to define the soft-edge scaling limit as

«s5DN1
s

~18DN
5 !1/3

. ~16!

Then the two-point kernel Eq.~7! and the density of state
K(«s ,«s) are given by the formulas

K~«s ,«s8!5lN
2 S 32DN

4 D 1/3KGUE~s,s8! ~17a!

and

n~«s!5lN
2 S 32DN

4 D 1/3nGUE~s!, ~17b!

respectively. The latter expression provides a possibility
determine the unknown constantlN by fitting the soft-edge
density of states Eq.~17b! to the bulk density of states@4#

nbulk~«s!5
DN
3

p
A12S «s

DN
D 2F112S «s

DN
D 2G ~18!

taken near the end point of the spectrum Eq.~16! provided
1!s!DN

5/3. Equations~18!, ~17b!, ~16!, and ~4b! yield the
valuelN

25(12DN)
1/3. Now, making use of Eqs.~17a!, ~16!,

and ~8!, we arrive at the following expressions for the tw
point kernel in the soft-edge scaling limit:

Ksoft~s,s8!5KGUE~s,s8!. ~19!

Thus we conclude that the two-point kernel and the den
of states, computed for the random-matrix ensemble with
quartic confining potential in the soft-edge scaling limit, c
incide exactly with those for the GUE.
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III. SEXTIC CONFINEMENT POTENTIAL

Now we turn to another ensemble of random matrices
is characterized by the confinement potentialV(«)5 1

12«
6.

Corresponding wave functionscn satisfy the same differen
tial equation~9a!, but with @14#

Qn~«!52
1

4
«101

5

2
«42

1

2
«5F dd«

lnwn~«!G
1an

2wn~«!wn21~«!2S «51pn~«!2
d

d« Dpn~«!

22«
pn~«!

wn~«!
~2«21an

21an11
2 !, ~20a!

pn~«!5an
2«~an21

2 1an
21an11

2 1«2!, ~20b!

and

wn~«!5an11
2 ~an12

2 1an11
2 1an

2!1an
2~an11

2 1an
21an21

2 !

1«2~an11
2 1an

21«2!. ~20c!

Also, the following relationship holds for arbitraryn:

cn21~«!5
cn8~«!1cn~«!@V8~«!1pn~«!#

anwn~«!
. ~21!

The asymptotic analysis of the solution to the seco
order differential equation near the end point of the spectr
is quite similar to that in the preceding section. Therefo
we sketch only its main points.

For n5N@1 the recursion coefficient@15#

aN5S N10D
1/6

@11O~N22!#, ~22!

and

wN~«!56aN
41«2~«212aN

2 !1O~N21/2!, ~23!

pN~«!5aN
2«~«213aN

2 !1O~N21/3!. ~24!

Introducing the shifted energy variable«5DN1t, we are
able to rewrite the differential equation~9a! for the function
ĉN(t)5cN(«2DN) in the form

d2

dt2
ĉN~ t !2

225

128
DN
9 tĉN~ t !50, ~25!

assuming that the characteristic energy scaletv(N)5
udlnĉN(t)/dtu21 of the variation of ĉN(t)5cN(«2DN) is
much smaller than the band edgeDN .

The solution of Eq.~25! takes the form

ĉN~ t !5lNAi F S 225Dn
9

128 D 1/3tG , ~26!

with the coefficientlN that will be determined later by th
same fitting arguments. The assumptiontv(N)!DN is obvi-
ously fulfilled.

To get the asymptotic behavior ofĉN21(t) in the large-
N limit, we simplify Eq. ~21! to
at

-
m
,

ĉN21~ t !5ĉN~ t !1
16

15DN
5

d

dt
ĉN~ t !. ~27!

It is convenient to define the soft-edge scaling limit as

«s5DN1
s

DN
3 S 128225D

1/3

. ~28!

Then the two-point kernel is

K~«s ,«s8!5lN
2DN

2 S 1532D
1/3

KGUE~s,s8!, ~29a!

while the density of states takes the form

n~«s!5lN
2DN

2 S 1532D
1/3

nGUE~s!. ~29b!

The fitting arguments, based on the expansion of
~29b! and of the bulk density of states@4#

nbulk~«s!5
DN
5

16p
A12S «s

DN
D 2 F314S «s

DN
D 218S «s

DN
D 4G

~30!

near the soft edge ~when 1!s!DN
3 ), yield

lN
25DN(15/4)

1/3. Combining Eqs.~29a!, ~28!, and ~8!, we
end with the following expression for the two-point kernel
the soft-edge scaling limit:

Ksoft~s,s8!5KGUE~s,s8!. ~31!

This formula demonstrates that in the soft-edge scaling li
the eigenlevel properties for the random-matrix ensem
with sextic confinement potential are determined by the sa
Airy law that is inherent in GUE.

IV. CONCLUDING REMARKS

We have considered the correlations of the eigenlev
near the soft edge for two strongly non-Gaussian ensem
of large random matrices possessing unitary symmetry
associated with quartic and sextic confinement potenti
Our treatment has been based on the analysis of the sec
order differential equations for the corresponding wave fu
tions near the soft edge. In both cases it was found
correlations between appropriately scaled eigenvalues
universal and characterized by the Airy two-point kernel E
~3!, which previously has been found for GUE.

Together with the universal behavior of the density
states, previously proven in Ref.@6#, the consideration pre
sented gives a strong impression that spectral correlation
invariant ensembles of large random matrices with a rat
strong and monotonic confinement potential are indeed
versal near the soft edge.
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@1# E. Brézin and A. Zee, Nucl. Phys. B402, 613 ~1993!.
@2# G. Hackenbroich and H. A. Weidenmu¨ller, Phys. Rev. Lett.

74, 4118~1995!.
@3# V. Freilikher, E. Kanzieper, and I. Yurkevich, Phys. Rev. E54,

210 ~1996!.
@4# V. Freilikher, E. Kanzieper, and I. Yurkevich, Phys. Rev. E53,

2200 ~1996!.
@5# D. J. Gross and A. A. Migdal, Phys. Rev. Lett.64, 127

~1990!.
@6# M. J. Bowick and E. Brezin, Phys. Lett. B268, 21 ~1991!.
@7# P. J. Forrester, Nucl. Phys. B402, 709 ~1993!.
@8# C. A. Tracy and H. Widom, Commun. Math. Phys.159,
151 ~1994!.

@9# M. L. Mehta,Random Matrices~Academic, Boston, 1991!.
@10# D. S. Lubinsky, H. N. Mhaskar, and E. B. Saff, Constr. App

4, 65 ~1988!.
@11# J. Shohat, Duke Math. J.5, 401 ~1939!.
@12# P. Nevai, SIAM J. Math. Anal.15, 1177~1984!.
@13# J. S. Lew and D. A. Quarles, Jr., J. Appr. Theory38, 357

~1983!.
@14# R.-C. Sheen, J. Appr. Theory50, 232 ~1987!.
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