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Universality in invariant random-matrix models: Existence near the soft edge

E. Kanzieper and V. Freilikher
The Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
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We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement
and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations
follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-
matrix models should display universal eigenvalue correlations in the soft-edge scaling limit.
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[. INTRODUCTION limit. To provide an answer to this question, we first quote
some results for the Gaussian unitary ensem@&JE),
Unitary-invariant random-matrix models appear in manywhich has received the most study near the soft edge, and
physical theories including nuclear physics, string theorythen we turn to the consideration of eigenspectra of two
guantum chaos, and mesoscopic physics. They are constrongly non-Gaussian ensembles of random matrices asso-

pletely defined by the joint distribution function ciated with quartic and sextic confining potentials.
1 In the soft-edge scaling limit, the GUE is characterized by
P[H]= Z—exp{—TrV[H]} 1) the Airy two-point kernel[7]
N
. AI(S)AI'(s")—Ai(s")AiI'(s)
of the entries of th&l X N Hermitian matrixH. In Eq. (1) the Keue(s,s')= , ©)

: . : . s—s'
function V[ H] is referred to as the “confinement potential”

and it should provide the existence of the partition functlonWhose spectral properties were studied in detail in RaJf.

Zn- A remarkab!e featu.rga of this rar_1dom matrix model IS Ag consequence of Eq?), the scaled density of states,
that, under certain conditions, a particular form of the con-

' : . . unlike in the case of bulk scaling limit, cannot be taken as
finement potential exerts no influence on the local elgenvalugeing approximately constant and changes in accordance
correlations in théulk scaling limit. More precisely, there is

- . . : with the Airy law
a class of strong, even confining potentisli), increasing y

at least as fast al| at infinity, for which the two-point d |2 _
kernel in the bulk of the eigenvalue spectrum follows the VGUE(S):(d_Al(S)) —s[Ai(s)]? (43
. : o s
sineform in the largeN limit [1-4]:
sif7(s—s')] with asymptotes
Kpu($:8") = ————— 2
m(S—Ss') 32

JIs|  cog4|s|*%3)
Bt B e .

This striking property, known as local universality, leads to T 47|s| ST

the conclusion about universality of arbitramypoint corre- VeUue(S) =) (4b)

jation _functions Ry(sy. . .. S) =defK(s,.s)T ;-1 _exp(4s%%3), s 4o,

(n>1) in the local regime. In contrast, the global character- 8ms

istics of the eigenspectrum, such as the density of states or

one-point Green’s function, display a great sensitivity to the Qur following treatment of non-Gaussian random matrix
details of confinement potentigB]. ensembles with strong level confinement will be built upon

Less is known about eigenvalue correlations nearstfe  the orthogonal polynomial techniqi®], allowing us to ex-
edge which is of special interest in the matrix models of press the two-point kernel for the ran(_jom-matnx ensemble
two-dimensional quantum gravifig]. In the early studye]  defined by Eq(1) through the polynomial®y(s) orthogo-
the behavior of the density of states near the tail of eigen?@ ©on the whole real axis with respect to the weight
value support has been explored. The authors of faf. €XP{—2V(e);. We fix the polynomialsP, satisfying the
showed that there is a universal crossover from a nonzerrée-term recurrence formula
density of states to a vanishing density of states that is inde- eP.—a ..P .. +a.P )
pendent of the confining potential in the soft-edge scaling noSn+itntl T @ntn-l
limit. Whereas the universal behavior of the density of state
in the soft-edge scaling limit has been proven, (fwgposed
universality ofn-point correlations has not yet been consid- o
ered. - -

The problem we address in this work is whether the ei- f % dePu(#)Pn(e)exp=2V(e)}= dun- ©
genvalue correlations in ensembles of large random matrices
also possess a universal behavior in the soft-edge scalifidnder these conditions the two-point kernel reads

%0 be orthonormal,
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In(e ) Yn—1(e)— In(e) Yn-1(e")

g’ —¢

(D

Kn(e,e')=ay

where[10] ay=ky_1/ky [ky is a leading coefficient of the
orthogonal polynomialPy(e)] and the wave functions
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2

d- . -
gD — 18D}ty (1) =0 (13

in the asymptotic limitN>1. When deriving this equation
we supposed the characteristic energy scéléN)=

yn(e) =Pn(e)exp{—V(e)} have been introduced. Inasmuch |din gy (t)/dt| 2 of the variation ofiy(t) to be much smaller
as our concern is with the matrices of large dimensiongnan the band edgd), .

N>1, only the asymptotes of the wave functioflg are
needed and also a meaning&daling limit should be con-

The solution to Eq(13) can be written through the Airy
function y(x)=Ai(x) satisfying the differential equation

structed. Quite generally, this can be done by passing fromy»(y) —xy(x)=0:

the initial energy variable to a new scaled variablg that
remains finite alN—«: e=¢g(N,s)=¢&5. Then the scaled
two-point kernel is determined by the formula

deg

K(S,S,): lim KN(SSYSS’)E' (8)

N— oo

II. QUARTIC CONFINEMENT POTENTIAL

In(t) = ANAI[1(18DF) 3]

One can check that the conditiop(N)~O(N %9 <D, is
fulfilled. The coefficient\ entering Eq.(14) still remains
unknown.

To compute the two-point kernel E¢f), we have to cor-
rectly determine the asymptotic behavior @f_,(t). This
can be done by means of the asymptotic analysis of the exact

(14)

We choose the quartic confinement potential in the formyelation Eq.(10), which in the largeN limit comes down to

V(e)=13&*. In this case the differential equation fgr,(&)
[the indexn is an arbitrary positive integécan be obtained
by Shohat's methofi11,12:

d? d d _
@wn(‘g)_ Eln(Pn(a) E‘/’n(s)_"Qn(S)wn(s)_ol
(99
en(e)=ap, +an+e?, (9b)
4
Qn(a>=(6sz—4s‘3— ;fs) + 402 4y(e) gn_1(e)+1
2 2
—4a2s%—4et— " f8)>. (90

Herea, is the recursion coefficient entering the correspond-an
ing three-term recurrence formula for the given set of or-
thogonal polynomials. Also, the following exact relation

takes place:

dn(e)+ yn(e)[V' () +4eal]
4an‘Pn(8)

Un-1(e)= (10

A “ 1 d.
Un—1 (D =)+ 3_Dﬁ alﬁN(t)- (15

It is convenient to define the soft-edge scaling limit as

8S:DN+ (16)

S
(18D) %

Then the two-point kernel Eq7) and the density of states
K(eg,eg) are given by the formulas

3 1/3
K(ss,gs,):x§(§D§> Kgue(s,s') (179
d
3 1/3
v(ss)=xﬁ(§Dﬁ) veue(s), (17h)

respectively. The latter expression provides a possibility to
determine the unknown constaxy, by fitting the soft-edge
density of states Eq17b) to the bulk density of statdg}]

Hereafter we shall be interested in the behavior of the

wave functiony,, near the soft band edde, in the limit

n=N>1. In this case the end point of the spectrum

Dn=2ay, where[13]

1/4
an= 1—2) [1+O(N"?)] (11
and
on(e)=2a%+e2+O(N" ), (12

Let us move the spectrum origin to its end pobyf,,
making the replacement e=Dy+t, and denote
In(t) = yp(e—Dy). It is straightforward to show that this
function obeys the equation

2
N €s

3
Vpul €s) = - 1_(DN 1+2

85 2
D—N) } 18

taken near the end point of the spectrum BEdp) provided
1<s<D3?. Equations(18), (17b), (16), and (4b) yield the
value\?=(12Dy)*®. Now, making use of Eqg17a), (16),
and (8), we arrive at the following expressions for the two-
point kernel in the soft-edge scaling limit:

Ksoit(5:8") =Kgue(s,s'). (19
Thus we conclude that the two-point kernel and the density
of states, computed for the random-matrix ensemble with the
quartic confining potential in the soft-edge scaling limit, co-
incide exactly with those for the GUE.



3714 BRIEF REPORTS 55

IIl. SEXTIC CONFINEMENT POTENTIAL

. . d.
In—1(D) =)+ alﬁN(t)- (27)

6

Now we turn to another ensemble of random matrices that 15D3,

is characterized by the confinement potentiffle) = e®. _ _ _ o

Corresponding wave functiong, satisfy the same differen- It is convenient to define the soft-edge scaling limit as
tial equation(9a), but with [14

| ? H s (128 13
1 5 3| 55L
—__glog T 4 Z Dy | 225
Qn(e) e + 58 T 5¢ N

(28)

5 8s™
&ln(Pn(s)

Then the two-point kernel is

+a? _ 4
n@n(s)(Pnfl(s) € +7Tn(8) 8 mh(e)

15 1/3
K(es,e5) =KD 32) Koue(s's'), (293

PSP S SR (208
¢nle) while the density of states takes the form

Wn(s)zans(an,l-i-an-i-an+l+82), (20b 15, 18
and V(SS) )\ D2 ( 32) VGUE(S)- (ng)

en(e)=a5,1(ah.tan, +an) +af(an, tas+as_y) The fitting arguments, based on the expansion of Eq.

+82(aﬁ+1+aﬁ+32). (200 (29b) and of the bulk density of staté¢d]

Al . . . . D5 &s 2 4

so, the following relatlonshlp holds for arbitrary. Vo £9) = 1— 3+4| 2| +8/ ==

) ) ) ) 16’7T DN DN DN
)+ e)[V'(e)+my(e

a €
n®n(€) near the soft edge (when 1<5<D§), yield

The asymptotic analysis of the solution to the secondAZ=Dy(15/4)3. Combining Eqs(293, (28), and (8), we
order differential equation near the end point of the spectrunend with the following expression for the two-point kernel in
is guite similar to that in the preceding section. Thereforethe soft-edge scaling limit:
we sketch only its main points.

Forn=N>1 the recursion coefficietL5] Ksot(S:S") =Kgue(s,s'). (39

~ E 1/6 Lt O(N-2 22) This formula demonstrates that in the soft-edge scaling limit

an= 10 [ ( )1, the eigenlevel properties for the random-matrix ensemble

with sextic confinement potential are determined by the same

and Airy law that is inherent in GUE.
=6ay+e%(e2+2a%)+ O(N~?), 23
enle)=bayte(e n)FONT) 23 IV. CONCLUDING REMARKS

my(e)=ade(e?+3a3)+ O(N~3), (24)

We have considered the correlations of the eigenlevels
near the soft edge for two strongly non-Gaussian ensembles
able to rewrite the differential equatidf@a) for the function of Iarge randc_)m matrl_ces possessing un_ltary symmetry.and
A . associated with quartic and sextic confinement potentials.
n(t)=yn(e—Dy) in the form Our treatment has been based on the analysis of the second-

2 225 , . order differential equations for the corresponding wave func-
szN(t)—l—ZE;DNtle(t):O, (25 tions near the soft edge. In poth cases it was found that
correlations between appropriately scaled eigenvalues are
universal and characterized by the Airy two-point kernel Eq.
(3), which previously has been found for GUE.

Together with the universal behavior of the density of
states, previously proven in RdB], the consideration pre-
sented gives a strong impression that spectral correlations in

20509\ 13 invariant ensembles of large random matrices with a rather
SR

Introducing the shifted energy variable=Dy+t, we are

assuming that the characteristic energy scaléN)=
|dIngn(t)/dt =t of the variation of Jy(t)=¥n(e—Dy) is
much smaller than the band edDs, .

The solution of Eq(25) takes the form

t (26)  strong and monotonic confinement potential are indeed uni-

In(t) =N GAi
! N versal near the soft edge.

with the coefficient\  that will be determined later by the
same fitting arguments. The assumptip(N) <Dy is obvi-
ously fulfilled. The authors thank Professor Craig A. Tracy for bringing

To get the asymptotic behavior éifN_l(t) in the large-  this problem to our attention. The support of the Ministry of
N limit, we simplify Eq. (21) to Science of IsraelE.K.) is gratefully acknowledged.
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