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Boundedness of attractors in the complex Lorenz model
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Using the properties of a principal fiber bundle associated with the complex Lorenz model phase space, we
introduce a nonsingular base-space representation of the model. This representation enables us to find the
surfaces bounding the attractors in the base space and reveal the interconnection between boundedness prop-
erties and peculiarities of the phase dynamics of complex varidl3é863-651X97)05602-X]

PACS numbg(s): 05.45:+b, 47.27-i, 42.60.Mi

The complex generalization of the Lorenz modeM) In the present paper we propose a new representation for
[1,2] CLM, which contains the total phase evolution in an implicit
) but not in the explicit form. Being in the fiber-bundle rela-
X=—0o(X—Y), tionship with the original one, this representation does not
exhibit singularities at any parameter values, and provides an
y=—(1-i8)y+(r—2)x, (1)  efficient and clear method for studying the properties of the

CLM. In patrticular, it enabled us to analyze the boundedness
. 1 . . of attractors for the CLM and to establish the interconnection
z=—bz+ 5 (X" y+xy"), between this boundedness and the dynamicx @fnd y
phases. At the end of the paper we describe a method to
was introduced by Gibbon and McGuinnds. Formally  derive a similar representation for the general case of a dy-
the complexity of the variables andy (in the LM these namic model characterized by complex variables.
variables are realppears due to the presence of the param- Consider the real functions, v, andw of CLM phase
eter § and the complexity of the parameterr,+ir,. The variables, introduced as
generalization of the LM by Gibbon and McGuinness is,

however, much more meaningful and covers a variety of u=(|x|?>=1ly|*/2 2
dynamic systems described by partial differential equations nd

and possessing a dispersion instability, such as the baroclinft

instability in a heated liquidi3,4] or pulsations in a laséb]. vHiw=x*y. 3)

Equations(1) were intensively studied both as a laser model
and in a more general contepd—12). However, the knowl- Note that forR= (u?+v?+w?)¥2=(|x|2+|y|?)/2, one can
edge of the complex Lorenz mod@LLM) is still far from  write |x|>=R+u and |y|?=R—u. Being considered as the
that achieved for its real counterpart, which fills bogR$  Cartesian coordinates in the Euclidean spRcthe functions
Meanwhile, the CLM has properties that essentially distin-u, v, w, andz provide the projection mapl: H— P. This
guish it from the “real” LM. The most intriguing of them is map projects all the elements of the CLM phase spHce
the phase dynamics of the complex variables. This remarkdiffering only by the common phase factor xnandy, into
able feature has been recognized already in the first investihe same point irP. It is to be noted that for the physical
gations of CLM[3] and then its study was stimulated by the systems described by CLM, e.g., for a la§bt, such ele-
problem of laser field phase dynami&8-12. ments ofH belong to the same physical state. Differentiating
From the technical viewpoint, it is the phase dynamicsggs.(2) and(3) with respect to time and using Eq4) one
that makes it difficult to apply to the CLM the analysis meth- gets the equations of motion for the coordinates of the sys-
ods, which have proved their efficiency in the “standard” tem representative vector in the spae
LM. The known approach to avoid these difficultigs] is

based on the \variable substitutionx=x;exp(®), u=—(oc+1)u+(oc—ri+2v—r,w—(oc— 1R,
y=(xptixz)exp(®) and z=x4, where x;,34 are real,

which yields a closed set of equations of motion %gr, 5 4 v=—(oc+1)v—w—(o—r+2)u+(c+r,—2)R,

and a separate equation for the total phds@he disadvan- (4)
tage of this approach is that the variable substitution is not

one-to-one forx=0, which results in a singularity of equa- w=—(g+1)W+ v +r,(R+u),

tions for X; 534 Sincex regularly takes the zero value at

r,=06=0, this drawback makes the , ; ,representation of z=—bz+v.

the CLM to be ineffective for the analysis of the transition

from the “complex” to “real” behavior. Consider the subspacé¢’ and P’ of the space${ and

P, respectively, such ax{y) e H' and (u,v,w) e P’. Note
that’ is identical toC?> andP’ is equivalent tak3. One can
*Fax: (8452240446. observe that the spacé¢’ and P’ and the madl form a
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principal fiber bundlg13] so thatX’ is the bundle space, .

P’ is the base space, and the structure group(ig,Which Yg= # rrsir(6/2)d¢, 11

acts in the subspack’. This fiber bundle is similar to the

one known from quantum mechanidst] and formed by the  where the integral is taken iR’ along the contour composed
Hilbert space of state vectors, the density matrix space, angl the trajectory and the geodesic. One can see that the right-
the corresponding projection map. The similarity becomesand side of Eq(11) is nothing but half the solid angle
clearer by identifying the “state vector{X) for the CLM  subtended by the contour. Thus the evolution of the complete
with the pair of complex numbers(y) e H' and noting that  phase ofX), that is y4+ y4, may be reconstructed from the
IX|?=R+u and|y|?=R~-u are just the diagonal elements trajectory inP, determined by Eqs(4). So, one may use
and v+iw is the off-diagonal one for the corresponding these equations instead of H@) for studying the CLM.
“density matrix.” Since H and P are both obtained from To demonstrate the benefit of using E¢#), let us con-

H' and P’ by their direct product on the same set of sjder a surfac& in P given by the equation

variable values, the triplet{,P,IT) also forms a fiber

bundle. The remarkable property of the fiber bundles E)

(H',P',I1) and (H,P,I1) is that the evolution irt{ may be Q:q(u,v,w,z)=au+pw+ HWR=0, (12)
extracted from the trajectory iR. Indeed, it was provefl4]

that if the evolution of the state vector obeys the connectiony . = —|6/[(20)2+ 6212 and B=20/[(20)?

+ 6% If one restricts himself by the subspa@ee P, Q is
the two-dimensional semicone with the top in the origin and
_ the symmetry axis along the unit vectar,Q,3); the cosine
';hsen the phasey(t) ard (X(0)|X(1))] may be calculated of the angle between the axis and the generator of the cone is
equal to*+ o depending on the sign af. For 6>0 the cone
spreads towards the positive valueswofand negativeu; at
Yg= — 3€ rrAsds, (6)  5=0 it is merely the planew=0; if §<0, the surface
spreads towards the negative part of thexis and the posi-
whereA is tive one of theu axis. Note thaty is positive in the interior
cone for6>0 and negative fo6<<O.
. (X(s)|d/ds[X(s)) Consider the time derivative

S (9X(s)y @

Im((X|X))=0, (5)

q=(f,Vq), (13)
(|y denotes the standard scalar producttérandI'T is the a=(tve

closed contour i’ composed by the segmeiit of the  \yneref is the phase velocity vector iA. It follows from Eq.

trajectory between two states and any cue which  (13) that a trajectory, which goes through the given point on
pIrOJeICtSdontO t_hedgiOdehSIC A’. Since 1t‘hlrs1 phase is com- the surfaceQ, is directed “inside” or “outside” it, respec-
pletely determined by the geometry of the contour, it was, o iy , . .
called the geometric pha$ed]. For the CLM the state vec- Stlvely, if g take;s the positive or .negatlve va_lue at thIS. point.
tor may be made to obey E@5) by means of the gauge Let us see thaf] has the same sign at all points @f Using

transformation Egs.(4), one gets
Xy— [ X)exp(iyy), 8 . )
X)=Xexdive ® 4=~ o+ Da-[a(o- D~ prl[u+ 3R],
where the “dynamics phase?y is given by the following
equation[12]; (note thatq=0 on Q). Let 5>0. In this case the value
CXIF) u+(d/|8|)R is non-negative at the surfad®@. Thus, for
7d:f Im|——| dt’, (9) a(o—1)— Br,<(>)0 the trajectories on the surfagare
o [(X[X) t tangent to it or directed towards the regigr (<)O0.

) ) ) _ ~ Note, that Eqs(4) are invariant with respect to the trans-
|F) is the right-hand side vector for the first two equations information

Eq. (2).
Calculating the time derivative of the dynamic phase S——8, Ty——Ty, W— —W. (15)

__SRzw=Im(otr=2)(vFiw)] (10)  Therefore, for§<0 the surfaceQ is also a boundary. One

can also prove that every trajectory Thonce enter the re-
gion bounded by the surfac@ (see the Appendjx
Under the conditionv(o—1)— Br,=0 the surfac&) is a
stable manifold as it follows from Ed14). This condition
can be written in the form

one can see that it is the function of the pointAinTo show
that v, may also be extracted fror®, we introduce the
spherical coordinates, 6 and ¢ of the point inP’

U= pCcos, v=psSindcosp, w= psindsing. 1
— O
r2=l’2C=5—. (16)

ExpressingA in Eqg. (6) in terms ofp, #, and ¢, one gets 20
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For 6>0 andr,>r,., and for§<0 andr,<r,. all attrac- quantum-mechanical rule for the transition from the pure-

tors are located within the region &f which corresponds to  state state vectdiX) to the density matrix°=|X)(X|. Al-
the “smaller” part of P’ bounded by the con®. Otherwise,  though this circumstance is well known for the quantum-
all limit sets of trajectories i are situated in the “exte- mechanical Schdinger equation, our treatment of the

rior” of Q. complex Lorenz model shows that the base-space represen-
In the Appendix it is also shown that there exists anothetation may be useful for the analysis of nonlinear models too.
bounding surface irP, which is a spheroics given by the To sum up, we have shown that the phase space of the
equation CLM may be considered as a bundle space for the fiber
_ > o ) bundle (,P,IT). Based on the properties of this fiber bundle
S:2R+(z= 01y =KA(r +0)%, (17 we have demonstrated that the trajectory in the base space

provides the information sufficient to reconstruct the trajec-
tory in the total phase, i.e., the phase evolution. Using the
1 b equations of motion in the base space we have found the
K2=—+ Zma>(a‘1,1). (18)  surfaces bounding the attractors in this space and concluded
that for the laser the curve of the mean phase slope versus
detuning must exhibit a jump at the resonance detuning
LY_alue. Earlier such a jump has been observed in a humerical
experimenf9] and interpreted as a geometric phase manifes-
tation basing on the results of numerical analysis of the CLM
and the formal analogy between the CLM and the Schro
dinger equation[12]. Now this result is obtained in the
closed analytical form based on the fundamental geometrical
dproperties of the CLM. The method to obtain the base-space
representation in the general case of a model with complex
variables is discussed. Using Edg) we hope to analyze
completely the CLM behavior at nonzeéoandr ,; this work
is now in progress.

where

The existence of the bounding surfa@eprovides an im-
portant outcome related to the properties of the phase evol
tion of the state vectofX). First, it means that in the laser
case (,=0) all the attractors are located in the region of
P, whereq>0 for §>0 and in the symmetric region for
56<0. If one restricts oneself by the spaeg, it is the region
within the solid angle subtended by the cope 0. There-
fore, for the trajectory belonging to any attractor, the soli
angle subtended by the contduf [see Eq(6)] is limited by
the bounding cone. In the limi#— =0 the cone turns into
the planew=0, so that the solid angle subtended by the
contour" T tends to the limit valuet 2. Consider now the
behavior of the phase slope time average when the detuning Our work was supported by the State Committee for High
8 changes near the resonance vafize0. If follows from  School of Russia, Grant No. 95-0-2.1-59.

Eq. (11) that such an average contains the mean solid angle

subtended by_ the contoliiT in P’ as the contribution from APPENDIX

the “geometric” part of the total phase. Thus &0 the

curve of the mean phase slofibe frequencyversus detun-
ing exhibits a jump by #Z/7=v, where 7 and v are the
period and the frequency of the amplitude pulsations.

It is to be noted that the CLM is only one model from a
very wide class of those characterized by complex dynamic
variables, for which the physical state is determined up to the
phase factor. The examples are linear and nonlinear Schr
dinger equations, the generalized Ginzburg-Landau equatiorf,
and space-time Maxwell-Bloch equations. In conclusion we s 5 ) )
wish to discuss the general way to realize the base-space Vu=[x[“+]y|*+(z—o—r1)*—=M?*=0, (A2)
approach for such models. First the space of “state vectors”
|X) must be defined with the proper scalar product in it.and the time derivatives
Generally it is the subspace of the total phase space, in which
the symmetry group (1) acts (for the Schrdinger and . o+r\2  (o+ry)?
Ginzburg-Landau equations they are the total spaces them- YM= _2"|X|2_2|y|2_2b(z_ '

2 2
selves. Then the connectiofb) must be satisfied by means (A3)

of the gauge transformation of the forf® with
_ jﬂ (X|U]x)
Ya= m (X|X) one may refer to the known result for the LM, 2] that this
function is negative at every sphevg, =0 whose radius is

where U is the operatorgenerally nonlinearin the right- ~ 9reater thark (¢+1,). Since the left-hand side of E¢A2)
hand side of the state vector dynamic equation’S negative “inside” the hyperspheréy =0, the negative-
3| X)=U|X). This provides the possibility to calculate the ness ofV,, means that all trajectories go towards the interior
total phase accumulation from the base space data as the swihS. The corresponding bounding surface for invariant sets
of the dynamic and geometric phases; the last one is given bipm P can be obtained from EqAl) by the substitution
Egs.(6) and(7). Finally, the base-space representation of thgx|2+ |y|?=2R, which yields the equation for the spheroid
model may be realized directly along the lines of the(17).

Let us first show that for the CLM the limit sets of trajec-
tories in’H are bounded by the hypersphere

S:|x|2+|y|?+ (z—o—r1)2—K2(o+r,)?=0, (A1)

here K is given in Eq.(18). To prove this consider the
mily of spheres irH

From Eq.(A3) one can see that the function on its right-hand

dt’ (19) side does not depend on the parametessidr ,. Therefore,

t’
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To show that every trajectory, once and forever, come§he cone formq,,(u,v,w) in Eqg. (A5) is a non-negative
into the region bounded by the surfaQe consider the fam- value in the entire spacp if
ily of surfaces

a(o—1)—pBr, .
+ .
qm(u,v,w,z):au+,8w—mRIm a(22+L)=0, {{m(o—1)+Bro]°+(a+m)’[(a+ry)?+r5]}?
(A4)  This inequality is satisfied for
wherem is the parameter antd is a positive constant. At m<m< —a, (AB)

m= — « the surface(A4) coincides with that given by Eq.
(12). We further restrict ourselves by the most important casyhere

o>1, when the unstable behavior of the CLM solutions is

possiblef5]. We also puts>0 for certainty. For ,>r,. we af[(0—1)%=r3—(0+r1)?]—Bry(o—1)
take m= — « and the sign “minus” at the last term of the my = — 2. 2 2
left-hand side of Eq(A4), so that the surfaceg,,=0 are (o= 1)™rat(otry
situated in the region dP whereq=<0. The differentiation of
0, With respect to time gives

The nonempty intervalA6) exists forr,>r,. ando>1. We
now choose the positive constdnin Eqg. (A4) in such a way
that(i) for msm; the surfacey,,=0 to be outside the spher-

Im=~ (ot (aut SW-—mR)+[m(s—1)+ Ar,]u oid given by Eq.(17), and(ii) to make the last term in Eq.

—(a+m)ro,w—(m+a)(a+r,)v (A5) positive within this region. Both the requirements can
be simultaneously satisfied lif is sufficiently large. Indeed,
—[a(c—1)=Bry]R+(m+a)bZ. because the values ofv,w are limited atS, one can choose

L so that form=m; the inequalityq,|s=0 is satisfied; also
it is easy to see that fom;<m< —«a the positiveness of

qmlqm:0 can be preserved simultaneously by the appropriate

choice ofL. Thus forr,>r,. we have the family of the
[a(o—1)— Br,]R— m+a bounding surfaces which evolves from the “exterior” of
2 2 spheroidS at m=m; to the limiting surfaceQ at m=— «.
Each trajectory from the “exterior” ofS intersects conse-
quently each such a surface and finally occur “within” the

At the surfaceq,,=0 this function may be replaced by

Um=[M(o— 1)+ BryJu—(a+m)r,w—(m+a)(oc+ry)v

X[(o+1-2b)Z>+ (oc+1)L]

m+ a surfaceQ.
=qm(U,v,W)— T[(a+ 1-2b)z’+(o+1)L]. Similar consideration can be easily done fgrr,. with
the only difference that now in E¢A4) m changes from 1 to
(A5) —a and the sign “plus” must be taken for the last term.
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