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Adaptive step size for the hybrid Monte Carlo algorithm

Philippe de Forcrand and Tetsuya Takaishi
Swiss Center for Scientific Computing (SCSC), ETH-Zu¨rich, CH-8092 Zu¨rich, Switzerland

~Received 24 September 1996!

We implement an adaptive step-size method for the hybrid Monte Carlo algorithm. The adaptive step size is
given by solving a symmetric error equation. An integrator with such an adaptive step size is reversible.
Although we observe appreciable variations of the step size, the overhead of the method exceeds its benefits.
We propose an explanation for this phenomenon.@S1063-651X~97!09102-2#

PACS number~s!: 02.70.Lq, 11.15.Ha, 12.38.Gc, 02.50.Ng
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I. INTRODUCTION

Simulations including dynamical fermions remain t
most challenging ones for lattice QCD. The standard met
to simulate dynamical fermions is, at the moment, the hyb
Monte Carlo~HMC! algorithm @1#, although it still requires
large amounts of computational time. An alternative meth
to simulate the dynamical fermions is a local multibos
algorithm based on a polynomial approximation of the fer
ion matrix, proposed by Lu¨scher@2#. Much interest has bee
recently devoted to this algorithm@3# to make it as efficient
as the HMC algorithm.

The HMC simulation combines molecular dynami
~MD! evolution with a Metropolis test. In order to obtain th
correct equilibrium, the integrator used in the MD evoluti
must satisfy two conditions; it must be~i! time reversible and
~ii ! area preserving.

One such integrator satisfying these conditions is the le
frog integrator, which is normally used in the HMC simul
tion. Errors of the leapfrog integrator start withO(Dt3),
whereDt is the step size of the integrator. These errors ca
violation of the conservation of the total energy, which mu
be corrected by the Metropolis test at the end of the M
trajectory. LetDH be the energy violation:

DH5Hend2Hbegin, ~1!

whereHbegin (Hend) is the total energy at the beginnin
~end! of the MD trajectory. The Metropolis test accepts
new configuration with a probabilityPprob :

Pprob}min„1,exp~2DH !…. ~2!

In order to maximize acceptance of the Metropolis test
might be preferable to use a higher-order integrator@4#.
However, higher-order integrators do not appear practica
lattice QCD since they require more arithmetic operatio
~force evaluations coming from the fermionic action! than
the simplest low-order integrator, and this overhead exce
the gain in step size.

So far conventional HMC simulations have been p
formed with a fixed step sizeDt during the MD simulation.
The local integration error does not remain constant in
case. When the trajectory approaches an energy ba
(Sef f52 ln detD large!, it is repelled and bounces off. Th
curvature of the trajectory increases, and with it the integ
tion error. This situation becomes more pronounced at sm
551063-651X/97/55~3!/3658~6!/$10.00
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quark mass, since the height of the energy barriers dive
in the presence of zero modes. Therefore we expect a be
ior of the MD trajectory similar to Fig. 1. Varying the ste
size adaptively, keeping the local error constant, may b
good way to obtain a better integrated trajectory and m
result in higher acceptance. Naively it would seem that t
can be accomplished by calculating a local error at (p,U),
wherep5(p1 ,p2 , . . . ) andU5(U1 ,U2 , . . . ) collectively
represent momenta and link variables, respectively, and
by keeping this local error constant. However, this na
scheme is not applicable for the HMC simulation becaus
violates reversibility.

Recently an adaptive step size method with revers
structure was proposed by Stoffer@5#. He constructed a sym
metric error estimator which gives the same error value a
reflected point. The step size is then determined at ev
integration point by demanding that the symmetric error
timator remain constant. Stoffer implemented his method
the Kepler problem and obtained better results than the c
ventional ones. The possibility to apply this adaptive s
size method to the HMC algorithm was stated in Ref.@6#. In
this paper, we implement this method for the HMC simu
tion and examine its cost and its efficiency.

II. CONSTRUCTION OF AN ADAPTIVE STEP SIZE

Here we construct an adaptive step size compatible wi
time-reversible integrator. We follow the idea proposed
Stoffer @5#.

Let H be the Hamiltonian of our system,

FIG. 1. Schematic behavior of a molecular dynamics traject
in configuration space. detD is the determinant of the Dirac matrix
3658 © 1997 The American Physical Society



n

te

is-
ce

tio
t
a
e

ym

D

ize

es
.
r

he
e

tor

ld
ur
an

the

ere.

ic

55 3659ADAPTIVE STEP SIZE FOR THE HYBRID MONTE CARLO . . .
H5
1

2( pi
21S~U !, ~3!

wherepi are momenta,U are gauge links, andS(U) consists
of a gauge partSg(U) and a fermionic partSf(U),

S~U !5Sg~U !1Sf~U !, ~4!

Sg~U !5b( S 12
1

Nc
Re TrUplaqD , ~5!

Sf~U !5f†~DD†!21f, ~6!

whereNc is the number of colors,f is a pseudofermion
vector andD511kM is the Wilson fermion matrix, with
k the hopping parameter.

Call T(Dt) a one-step integrator. It maps momenta a
link variables (p,U) onto (p8,U8),

T~Dt !:~p,U !→~p8,U8!. ~7!

If this one-step integrator is reversible, then it satisfies

T~2Dt !:~p8,U8!→~p,U !. ~8!

In this study, we use the leapfrog integrator as our one-s
integrator. In terms of the time evolution operators@4,7#, the
one-step integratorT(Dt) can be written as

T~Dt !5expFDt2 LS 12( pi
2D G exp@DtL„S~U !…#

3expFDt2 LS 12( pi
2D G , ~9!

whereL(•) is the linear operator which is given by the Po
son bracket@7#. The one-step integrator requires one for
evaluation represented by exp@DtL„S(U)…#. The fermionic
part of the force depends on the solution of a linear equa
of the typeDx5f, which is obtained iteratively at grea
expense of computer time. Thus force evaluations domin
the computation, and the cost of our algorithm can be m
sured in units of force evaluation.

Now we define a symmetric error estimator,

ES~p,U:Dt !5e~p,U:Dt !1e~p8,U8:2Dt !, ~10!

wheree(p,U:Dt) is a local error at (p,U) when the system
is integrated by some integrator with a step sizeDt, and the
integrator maps (p,U) on (p8,U8). The local error is as-
sumed to increase monotonically withDt. We will define the
local error later. If the integrator is reversible, Eq.~10! is
obviously symmetric under the exchange:

~p,U,Dt !↔~p8,U8,2Dt !. ~11!

Namely, this means

ES~p,U:Dt !5ES~p8,U8:2Dt !. ~12!

The adaptive step size is then determined by solving a s
metric error equation,

ES~p,U:Dt !5T. ~13!
d
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The toleranceT should be kept constant during the M
simulation. The adaptive step size determined by Eq.~13!
takes the same value at the reflected point (2p8,U8). There-
fore we find that an integrator with the adaptive step s
determined by Eq.~13! is reversible.

Any local error can be defined provided that it increas
monotonically withDt. Our local error is defined as follows

First, we integrate (p,U) by the two-step integrato
T2(Dt) and the one-step integratorT(2Dt).

T2~Dt !:~p,U !→~p8,U8!, ~14!

T~2Dt !:~p,U !→~ p̃8,Ũ8!. ~15!

If Dt is not too large, (p8,U8) and (p̃8,Ũ8) should be close
to each other. We define the local error at (p,U) by

e~p,U:Dt !5(
m,x

4,V S 12
1

Nc
Re TrU8m

† ~x!Ũm8 ~x! D Y ~4V!,

~16!

whereV is the volume of the lattice. One could also use t
momenta in the definition of the local error. Similarly, w
integrate (p8,U8) by T2(2Dt) andT(22Dt) in the inverse
time direction,

T2~2Dt !:~p8,U8!→~p,U !, ~17!

T~22Dt !:~p8,U8!→~ p̃,Ũ !. ~18!

Since the integrator is reversible, the calculation of Eq.~17!
is not needed. The local error at (p8,U8) is also defined like
Eq. ~16!,

e~p8,U8:2Dt !5(
m,x

4,V S 12
1

Nc
Re TrUm

† ~x!Ũm~x! D Y ~4V!

~19!

In the case of the leapfrog integrator of Eq.~9!, we need four
force evaluations to construct the symmetric error estima
ES , instead of just two for the evolutionT2(Dt).

Equation~13! is a nonlinear equation. In general, it shou
be solved numerically, e.g., by iterative bisection. With o
definition of the symmetric error estimator, however, we c
anticipate the scaling behavior of Eq.~13! and use it to ac-
celerate convergence. The vector potentials evolved by
leapfrog integrator haveO(Dt3) errors,

Ãa85Aa81O~Dt3!. ~20!

Therefore,

U8†Ũ85exp~2 iAa8la! exp~ iÃa8la! ~21!

'11 icalaO~Dt3!1dablalbO~Dt6!,
~22!

wherela are SU~3! generators, andca and dab are some
real constants whose explicit values are not important h
Taking Re and Tr of Eq.~22! and substituting it into Eqs.~16!
and ~19!, we find that in the leading order the symmetr
error estimator starts withO(Dt6). This behavior is verified
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numerically, as illustrated in Fig. 2: ifDt is not too large, the
symmetric error estimator behaves likeES}DtA

6 . This prop-
erty is used for solving Eq.~13!. Choose some initialDtA1
for the step size and calculateES15ES(DtA1). If DtA1 does
not satisfy the symmetric error equation~13! then input the
second trial valueDtA2, which is the solution of

lnS TES1
D5 6 lnS DtA2

DtA1
D . ~23!

If further trials are necessary, the following approximati
can be used@5#:

lnS DtA3
DtA2

D5
ln~DtA2 /DtA1!

ln~ES2 /ES1!
lnS TES2

D . ~24!

This recurrence is continued until Eq.~13! is satisfied to
sufficient accuracy, and then a new configuration (p8,U8) is
stored. Note that two strategies are available, just like for
stopping criterion of the linear solver in the force calculatio
either the initial guessDtA1 is invariant under time-reversa
~e.g., it is equal to the average step size!, and the accuracy to
which Eq.~13! must be satisfied can be set arbitrarily low;
the initial guess makes use of past information~e.g., it is
equal to the previous step size!, and Eq.~13! must be satis-
fied exactly. We use the second method, and take the p
ous result as our initial guess. We then solve Eq.~13! to
within 5%. Since we do not solve Eq.~13! exactly, we intro-
duce a tiny, controllable source of irreversibility in the d
namics: the step size under time reversal could be diffe
by about165%;1%. For this exploratory study, we have n
considered this aspect further.

III. EFFICIENCY

We examine the method for full QCD (Nc53) at several
parameters (b,k,volume) listed in Table I. We choseb50
in several instances, to eliminate the gauge part of the ac
and hopefully to be more sensitive to the energy barr

FIG. 2. Symmetric errorES versus adaptive step sizeDtA, for
two configurations of size 44 at k50.230. The straight lineES

}DtA
6 is shown for comparison.
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coming from the fermionic part. The effect of changing t
quark mass can be obtained by comparing casesA andB,
that of changing the volume by comparingA andD. The
adaptive step size is determined by the symmetric error eq
tion ~13!, with the tolerance set as per Table I. The adapt
step sizes are summed up from the beginning of the tra
tory and when the total trajectory length becomes grea
than the trajectory length of Table I, a Metropolis test
performed.

Figure 3 shows histograms of the adaptive step size
b50.0,k50.215, and 0.230~casesA andB in Table I!. The
distribution remains strongly peaked. This is also true
casesC andD. The average step size^DtA& and its relative
variance are summarized in Table II, where the relative v
ances is defined by

s25
1

N(
i51

N S DtAi
^DtA&

21D 2. ~25!

As the quark massmq decreases, the energy barriers in pha
space become higher and sharper, so that one would ex
the variation of the step size to increase. Indeed this is w
happens, and the relative variance in casesA andB increases
roughly like 1/mq , wheremq}(k

212kc
21) andkc51/4 at

b50. On the other hand, as the volume increases, the r
tive variance seems to decrease sharply, like 1/AV or faster
~see casesA andD). Perhaps this can be explained by co
sidering the relative fluctuations of the effective acti
2 ln detD: as the volume increases, the relative fluctuatio

TABLE I. Run parameters.

Case b Size k Traj. length Tolerance (65%)

A 0.0 44 0.215 0.8 1024

B 0.0 44 0.230 0.4 831026

C 5.4 44 0.162 1.0 1026

D 0.0 84 0.215 0.3 1027

FIG. 3. Histograms of adaptive step sizeDtA , for 4
4 lattices at

k50.215 and 0.230. The logarithmic scale shows the increase
k of the relative variance.
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TABLE II. Results of the adaptive step-size method and fixed step sizeDtHMC of the HMC algorithm.
^traj. length& stands for the average total trajectory length. The fixed step sizeDtHMC is determined so that it
gives the same acceptance as the adaptive step size method.

Case ^DtA& s ~%! ^(Traj. length)& Acceptance~%! DtHMC

A 0.0911~3! 3.3 0.91 36~2! 0.0897~13!
B 0.0431~1! 5.6 0.44 57~2! 0.0419~09!
C 0.0673~1! 0.8 1.08 87~2! 0.0688~80!
D 0.03281~2! 0.6 0.33 63~2! 0.0328~10!
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decrease, so that the system tends to stay at some av
distance from the energy barriers, rather than bouncing
them.

From the schematic picture of Fig. 1, it is expected t
the approach of an energy barrier causes a reduction in
adaptive step size, and at the same time an increase in
number of iterations taken by the solver to converge. Fig
4 showsDtA versus the number of iterations in the solve
the expected anticorrelation between them can be obser
and becomes more pronounced as the quark mass is red

In order to compare the adaptive method with the conv
tional HMC algorithm, we define the efficiency of the ada
tive method as follows.

First, find the fixed step sizeDtHMC of the HMC simula-
tion which gives the same acceptance as the adaptive
size method. The total trajectory length of the HMC simu
tion is set to the average total trajectory leng
^(trajectory length)& of the corresponding adaptive step-si
method’s case. We performed the HMC simulations w
several step sizes and determined the corresponding step
of the HMC algorithm by interpolating those results. T
results of the corresponding step size are summarize
Table II. For the acceptance of the adaptive step-s
method, see Table II.

Then, define the gain by

gA5^DtA&/DtHMC . ~26!

FIG. 4. Number of iterations in the solver~BiCGg5) versus
adaptive step size.
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When gA.1, the adaptive step size method really tak
larger steps on average, without compromising the acc
tance. However the real efficiency of the method can only
assessed by taking into account the overhead of determi
the adaptive step-size, since additional force evaluations
necessary.

From the definition of our symmetric error estimator Eq
~14!–~19!, we know that one construction ofES needs four
force evaluations. CallRT the average number of trial step
needed to solve Eq.~13!. After 4RT force evaluations, we
have determined the step sizeDtA and use the integrato
T2(DtA) @Eq. ~14!# to advance the dynamics by two ste
DtA . Therefore the cost of the method is 2RT force evalua-
tions per step, compared with 1 force evaluation per step
standard HMC.

Real efficiency will be achieved if the number of forc
evaluations per unit time decreases, i.e., if 2RT,gA . Results
for the gaingA and the cost 2RT are summarized in Table III
For all cases we studied, real efficiency is not achieved.

It is disappointing to see how small the gainsgA are. The
reason for such small gains can be understood by conside
the behavior of the Hamiltonian. The dependence of the
ergy violation at each step with the step size is, in gene
nonlinear. Therefore it is not necessary that a small lo
error correspond to a proportionally small energy violati
of the Hamiltonian. Figure 5 showsuDHu, the absolute value
of the energy violation after one integration step, versus
local errorES . The two clusters of points correspond to fixe
step sizesDt50.04 and 0.08. No strong correlation betwe
ES andDH can be observed. This is further evidenced by
dashed lines, which are the result of fitting to a scaling l
A^DH2&5ES

b : for the larger step size,b is almost zero.
Therefore, it becomes clear that fixingES and varyingDt
adaptively cannot have a strong effect on the accepta
which solely depends onDH.

Two approaches could be used to improve the efficie
of our scheme.

~i! Decrease the overhead: instead of estimating the e
by comparingT2(Dt) with T(2Dt), one could replace the

TABLE III. Gain gA , average number of trial stepsRT , and
cost per step.

Case gA RT Cost per step (52RT)

A 1.016~15! 2.25 4.50
B 1.029~22! 2.45 4.90
C 1.0~1! 1.13 2.26
D 1.00~3! 1.15 2.30
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latter by an Euler integrator, which requires no addition
force evaluation. Note that the error equation~10! remains
symmetric under the exchange (p,U,Dt)↔(p8,U8,2Dt)
even though the Euler integrator is not time reversible. T
problem we found with that approach is that, for the lar
step sizes used on our small lattices, the error~10! no longer
obeyed a simple scaling law~22! as a function of the step
size. Then the number of iterations needed to solve Eq.~13!
increased, defeating the expected reduction in overhead
larger lattices with smaller step-sizes, this problem would
milder.

~ii ! Change the definition of the error~16!, so that it is
better correlated withuDHu, the energy violation at eac
step. Note thatuDHu itself cannot be chosen, because it do
not increase monotonically with the step-size: in that c
Eq. ~13! admits multiple solutions; the overhead of conve
ing to one of them, and the same one under time-reve
increases considerably. With our definition, Eq.~16!, the er-
ror is only weakly correlated withuDHu, but the situation
again seems to improve with smaller step sizes, on la
lattices ~compare the two dashed lines in Fig. 5!. Nonethe-
less, it would be desirable to control the step size with
more relevant quantity than Eq.~16!, since all that matters in
the end is energy conservation.

FIG. 5. uDHu versus the local errorES , on a 44 lattice at
k50.215. The step size is fixed atDt50.04 and 0.08.DH is the
change in the total energy after one integration step. The do
lines result from fitting to the formA^DH2&5ES

b , and show the
correlation~or absence of! between the two quantities.^DH2& is
obtained by dividing the data in 10 bins and averaging the va
DH2 in each bin.
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Finally, instead of varying the step size, one could va
adaptively the couplings of the HamiltonianH, Eq. ~3!, at
each step, or even include some new operators inH, trying to
tune them so as to best conserve energy. The general
culty with that approach is to find an error Eq.~16!, which
varies monotonically with the couplings ofH.

IV. CONCLUSION

We have implemented an adaptive step-size method
hybrid Monte Carlo simulations, and tested it at several
rameters (b,k,volume). The relative variance of the ste
size increases for small quark masses and small volum
The average step size seems somewhat larger than the
responding fixed step size at the same acceptance. But
gain is more than offset by the overhead of determining
adaptive step size. It seems very difficult to achieve r
gains in efficiency, because conservation of energy, whic
necessary for high Metropolis acceptance in the HMC al
rithm, is poorly correlated with the conventional error go
erning the adaptive step size.

A plausible extrapolation from our results would indica
that the relative variance of the step size scales
mq

21V21/2, i.e., as (mpL)
22, wheremp is the pion mass and

L the physical size of the lattice. This quantity norma
remains constant as the continuum limita→0 of the lattice
theory is taken, so that the relative fluctuations in the ad
tive step sizeDt would tend to a constant. Even if this anal
sis is no more than plausible at this stage, it is clear that
two limits mq→0, V→` have opposite effects on the fluc
tuations ofDt, making it unlikely that such fluctuations be
come very large on present lattice sizes. This observatio
consistent with the limited fluctuations~a factor of 2 or so! in
the number of iterations needed by the solver to compute
force in the largest QCD simulations@8#.

Thus it appears that QCD is much ‘‘easier’’ to simula
than the Kepler problem: in lattice QCD, the force on t
gauge links varies little in magnitude, and the curvature
the molecular dynamics trajectory is rather small. One int
tive explanation is that the QCD force is dominated by sho
range UV contributions, which drown the IR component se
sitive to the energy barrier detD;0.
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