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Adaptive step size for the hybrid Monte Carlo algorithm
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We implement an adaptive step-size method for the hybrid Monte Carlo algorithm. The adaptive step size is
given by solving a symmetric error equation. An integrator with such an adaptive step size is reversible.
Although we observe appreciable variations of the step size, the overhead of the method exceeds its benefits.
We propose an explanation for this phenomen&1.063-651X%97)09102-2
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[. INTRODUCTION quark mass, since the height of the energy barriers diverges
in the presence of zero modes. Therefore we expect a behav-

Simulations including dynamical fermions remain theior of the MD trajectory similar to Fig. 1. Varying the step
most challenging ones for lattice QCD. The standard methodize adaptively, keeping the local error constant, may be a
to simulate dynamical fermions is, at the moment, the hybridgood way to obtain a better integrated trajectory and may
Monte Carlo(HMC) algorithm[1], although it still requires result in higher acceptance. Naively it would seem that this
large amounts of computational time. An alternative methodcan be accomplished by calculating a local error @i,
to simulate the dynamical fermions is a local multibosonwherep=(p;,p,,...) andU=(U,,U,, ...) collectively
algorithm based on a polynomial approximation of the ferm-represent momenta and link variables, respectively, and then
ion matrix, proposed by [scher[2]. Much interest has been by keeping this local error constant. However, this naive
recently devoted to this algorithfi3] to make it as efficient scheme is not applicable for the HMC simulation because it
as the HMC algorithm. violates reversibility.

The HMC simulation combines molecular dynamics Recently an adaptive step size method with reversible
(MD) evolution with a Metropolis test. In order to obtain the structure was proposed by Stoffé&]. He constructed a sym-
correct equilibrium, the integrator used in the MD evolution metric error estimator which gives the same error value at a
must satisfy two conditions; it must §8 time reversible and reflected point. The step size is then determined at every
(i) area preserving. integration point by demanding that the symmetric error es-

One such integrator satisfying these conditions is the leagimator remain constant. Stoffer implemented his method for
frog integrator, which is normally used in the HMC simula- the Kepler problem and obtained better results than the con-
tion. Errors of the leapfrog integrator start with(At®),  ventional ones. The possibility to apply this adaptive step
whereAt is the step size of the integrator. These errors caussize method to the HMC algorithm was stated in Réf. In
violation of the conservation of the total energy, which mustthis paper, we implement this method for the HMC simula-
be corrected by the Metropolis test at the end of the MDtion and examine its cost and its efficiency.
trajectory. LetAH be the energy violation:

Il. CONSTRUCTION OF AN ADAPTIVE STEP SIZE
AH=Hend_Hbegim 1)

) o Here we construct an adaptive step size compatible with a
where Hyegin (Hend is the total energy at the beginning (ime reversible integrator. We follow the idea proposed by
(end of the MD trajectory. The Metropolis test accepts a Stoffer[5].

new configuration with & probabilit§pop: Let H be the Hamiltonian of our system,
Pprop®min(l,exg —AH)). (2 .

tra]ectory
In order to maximize acceptance of the Metropolis test, it
might be preferable to use a higher-order integrdidl
However, higher-order integrators do not appear practical for
lattice QCD since they require more arithmetic operations
(force evaluations coming from the fermionic actidhan
the simplest low-order integrator, and this overhead exceeds
the gain in step size.

So far conventional HMC simulations have been per-
formed with a fixed step sizAt during the MD simulation.
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The local integration error does not remain constant in this \\\\mm\\l\lllml\l\\l\\l\\\l\\\l\l\\\\l\\\\\\\\ .
case. When the trajectory approaches an energy barrier defD=0...-"”
(Se1= —IndeD large, it is repelled and bounces off. The
curvature of the trajectory increases, and with it the integra- FIG. 1. Schematic behavior of a molecular dynamics trajectory

tion error. This situation becomes more pronounced at smalh configuration space. dgtis the determinant of the Dirac matrix.
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1 ) The tolerance7 should be kept constant during the MD
H= 52 pi+S(U), (3)  simulation. The adaptive step size determined by @8
takes the same value at the reflected poinp(,U’). There-
wherep; are momental) are gauge links, ang(U) consists fore we find that an integrator with the adaptive step size

of a gauge parg,(U) and a fermionic parg(U), determined by Eq(13) is reversible.
Any local error can be defined provided that it increases
S(U)=S4(U) +S(U), (4)  monotonically withAt. Our local error is defined as follows.

First, we integrate §,U) by the two-step integrator

1 2 _ ;
Sg(U)=BE 1 N_Re T prag| ) T<(At) and the one-step integratd2At).
’ T2(AD:(p,U)—(p',U"), (14
Si(U)=¢"(DD") "¢, (6) o~
T(2At):(p,U)—(p’,U’). (15

where N, is the number of colors¢p is a pseudofermion _
vector andD =1+ M is the Wilson fermion matrix, with If At is not too large, §’,U’) and {’,U’) should be close
« the hopping parameter. to each other. We define the local error pt) by

Call T(At) a one-step integrator. It maps momenta and

link variables f,U) onto (p',U’), o

1 ~
e(p,U:At) =D, 1-Re TM’L(x)u;(x))/(4V),
M, X Cc

T(AD:(p,U)—(p",U"). () (16)

If this one-step integrator is reversible, then it satisfies whereV is the volume of the lattice. One could also use the
T(—At):(p’,U)—(p,U). (8  Momenta in the definition of the local error. Similarly, we
integrate p’,U’) by T?(—At) andT(— 2At) in the inverse
In this study, we use the leapfrog integrator as our one-steppme direction,
integrator. In terms of the time evolution operatpts?], the 5
one-step integratof(At) can be written as To(=At):(p",U")—(p,V), 17

T(At):exp{%L(%z plz) exd AtL(S(U))] T(=2A0:(p",UD = (p.U). (18
Since the integrator is reversible, the calculation of @4)
At (1 5 is not needed. The local error gt’(U") is also defined like
XEX[{?L<§E P ”, (9 Eq. (16),
whereL () is the linear operator which is given by the Pois- i 1 ~
son bra(ck)e[7]. The one—pstep integrator rgequiresyone forcee(p"U/Z_At):% 1- N—CRe TIUIL(X)UM(X)) / (4V)
evaluation represented by ¢xgL (S(U))]. The fermionic (19

part of the force depends on the solution of a linear equation
of the type Dx= ¢, which is obtained iteratively at great In the case of the leapfrog integrator of E§), we need four
expense of computer time. Thus force evaluations dominatforce evaluations to construct the symmetric error estimator
the computation, and the cost of our algorithm can be meaEg, instead of just two for the evolutiohi?(At).
sured in units of force evaluation. Equation(13) is a nonlinear equation. In general, it should
Now we define a symmetric error estimator, be solved numerically, e.g., by iterative bisection. With our
definition of the symmetric error estimator, however, we can
Es(p,U:At)=e(p,U:At)+e(p',U":=At), (100  anticipate the scaling behavior of E@.3) and use it to ac-
celerate convergence. The vector potentials evolved by the

wheree(p,U:At) is a local error at§,U) when the system leapfrog integrator hav®(At?) errors

is integrated by some integrator with a step sie and the

integrator maps §,U) on (p’,U’). The local error is as- A=A +O(At3). (20)

sumed to increase monotonically witit. We will define the «

local error later. If the integrator is reversible, E4O) is  Therefore,

obviously symmetric under the exchange:

U'TU" =exp(—iA/\ iA/N 21

(p.U,At)(p',U’,—At). (1D SXP(~ 1Ak a) EXIALN ) @)
~1i 3 6

Namely, this means ~1+ic A oO(AL) +daph ok gO(AL ()2'2)

Es(p,U:A)=E4(p",UT:—AD). (12 where\,, are SU3) generators, and, andd,; are some

The adaptive step size is then determined by solving a synf€al constants whose explicit values are not important here.
metric error equation, Taking Re and Tr of Eq.22) and substituting it into EqEL6)
and (19), we find that in the leading order the symmetric
Es(p,U:At)="T. (13 error estimator starts wit®(At®). This behavior is verified
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FIG. 2. Symmetric erroEg versus adaptive step sizet,, for
two configurations of size 4at k=0.230. The straight lin€Eg
= At is shown for comparison.

numerically, as illustrated in Fig. 2: £t is not too large, the
symmetric error estimator behaves likgx= Atf\. This prop-
erty is used for solving Eq.13). Choose some initialt,
for the step size and calculalgy =Eg(Ata,). If Aty does
not satisfy the symmetric error equati¢h3) then input the
second trial valué\t,,, which is the solution of

R
nl—/|=61n .
Ex Atag

(23

TABLE I. Run parameters.

Case B Size K Traj. length  Tolerance£5%)

A 00 4 0.215 0.8 104
B 00 4 0.230 0.4 810°°
C 54 4 0.162 1.0 10°
D 00 & 0.215 0.3 107

coming from the fermionic part. The effect of changing the
quark mass can be obtained by comparing c#sesd B,

that of changing the volume by comparidgand D. The
adaptive step size is determined by the symmetric error equa-
tion (13), with the tolerance set as per Table |. The adaptive
step sizes are summed up from the beginning of the trajec-
tory and when the total trajectory length becomes greater
than the trajectory length of Table I, a Metropolis test is
performed.

Figure 3 shows histograms of the adaptive step size at
B=0.0,k=0.215, and 0.23(casesA andB in Table |). The
distribution remains strongly peaked. This is also true of
cases<C andD. The average step siZAt,) and its relative
variance are summarized in Table I, where the relative vari-
anceo is defined by

(29

As the quark mass, decreases, the energy barriers in phase
space become higher and sharper, so that one would expect
the variation of the step size to increase. Indeed this is what

If further trials are necessary, the following approximationhappens, and the relative variance in casesdB increases

can be used5]:

| (AIAS) ln(AtAQ/AtAl)I ( T)
= nl —1.
Atar IN(Egy/Egp) Es

(24

This recurrence is continued until E@GL3) is satisfied to
sufficient accuracy, and then a new configuratiph,(J’) is

roughly like 1ing, Wheremqoc(x‘l—xc_l) and k.=1/4 at
B=0. On the other hand, as the volume increases, the rela-
tive variance seems to decrease sharply, likg\lbr faster
(see cased andD). Perhaps this can be explained by con-
sidering the relative fluctuations of the effective action
—In deD: as the volume increases, the relative fluctuations

stored. Note that two strategies are available, just like for the - [

stopping criterion of the linear solver in the force calculation:
either the initial guesdt,, is invariant under time-reversal
(e.g., itis equal to the average step $izad the accuracy to
which Eqg.(13) must be satisfied can be set arbitrarily low; or
the initial guess makes use of past informati@ng., it is
equal to the previous step sjzend Eq.(13) must be satis-
fied exactly. We use the second method, and take the previ-
ous result as our initial guess. We then solve Ep) to
within 5%. Since we do not solve E¢L3) exactly, we intro-
duce a tiny, controllable source of irreversibility in the dy-
namics: the step size under time reversal could be different
by abouti5%~1%. For this exploratory study, we have not
considered this aspect further.

Ill. EFFICIENCY

We examine the method for full QCING=3) at several
parameters 8, «,volume) listed in Table I. We chosg=0
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FIG. 3. Histograms of adaptive step sia¢, , for 4% lattices at

in several instances, to eliminate the gauge part of the actiop=0.215 and 0.230. The logarithmic scale shows the increase with
and hopefully to be more sensitive to the energy barrierse of the relative variance.
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TABLE Il. Results of the adaptive step-size method and fixed step/sigg,c of the HMC algorithm.
(traj. length) stands for the average total trajectory length. The fixed stepdizgc is determined so that it
gives the same acceptance as the adaptive step size method.

Case (Atp) o (%) {(Traj. length) Acceptancg%) Atymc

A 0.09113) 3.3 0.91 362) 0.089713)
B 0.04311) 5.6 0.44 512) 0.041909)
C 0.06731) 0.8 1.08 812 0.068880)
D 0.032812) 0.6 0.33 682) 0.032810)

decrease, so that the system tends to stay at some averayfmnen go>1, the adaptive step size method really takes
distance from the energy barriers, rather than bouncing offarger steps on average, without compromising the accep-
them. tance. However the real efficiency of the method can only be
From the schematic picture of Fig. 1, it is expected thatassessed by taking into account the overhead of determining
the approach of an energy barrier causes a reduction in ththe adaptive step-size, since additional force evaluations are
adaptive step size, and at the same time an increase in timecessary.
number of iterations taken by the solver to converge. Figure From the definition of our symmetric error estimator Eqs.
4 showsAt, versus the number of iterations in the solver: (14)—(19), we know that one construction &g needs four
the expected anticorrelation between them can be observefiyrce evaluations. CalR; the average number of trial steps
and becomes more pronounced as the quark mass is reducedéeded to solve Eq13). After 4R; force evaluations, we
In order to compare the adaptive method with the convenhave determined the step size¢, and use the integrator
tional HMC algorithm, we define the efficiency of the adap-T2(At,) [Eq. (14)] to advance the dynamics by two steps
tive method as follows. At,. Therefore the cost of the method iR force evalua-
First, find the fixed step siz&t, ¢ of the HMC simula-  tions per step, compared with 1 force evaluation per step for
tion which gives the same acceptance as the adaptive stegtandard HMC.
size method. The total trajectory length of the HMC simula- Real efficiency will be achieved if the number of force
tion is set to the average total trajectory lengthevaluations per unittime decreases, i.e. B2 g,. Results
((trajectory length) of the corresponding adaptive step-sizefor the gaing, and the cost Ry are summarized in Table Il
method’'s case. We performed the HMC simulations withFor all cases we studied, real efficiency is not achieved.
several step sizes and determined the corresponding step sizelt is disappointing to see how small the gamgare. The
of the HMC algorithm by interpolating those results. The reason for such small gains can be understood by considering
results of the corresponding step size are summarized ithe behavior of the Hamiltonian. The dependence of the en-

Table Il. For the acceptance of the adaptive step-sizergy violation at each step with the step size is, in general,
method, see Table II. _ nonlinear. Therefore it is not necessary that a small local
Then, define the gain by error correspond to a proportionally small energy violation

of the Hamiltonian. Figure 5 shoWd H|, the absolute value
of the energy violation after one integration step, versus the
ga=(Ata)/ Atyyc. (26)  local errorEg. The two clusters of points correspond to fixed
step sizeddt=0.04 and 0.08. No strong correlation between
EsandAH can be observed. This is further evidenced by the
dashed lines, which are the result of fitting to a scaling law
i J(AH?)=E2: for the larger step sizeb is almost zero.
_ Therefore, it becomes clear that fixireg and varyingAt
adaptively cannot have a strong effect on the acceptance,
which solely depends oAH.
Two approaches could be used to improve the efficiency
of our scheme.
(i) Decrease the overhead: instead of estimating the error
by comparingT2(At) with T(2At), one could replace the

iterations
I

TABLE lll. Gain g,, average number of trial steg®;, and
cost per step.

Case Oa Rt Cost per step€2Ry)
A 1.01615) 2.25 4.50
B 1.02922) 2.45 4.90
C 1.002) 1.13 2.26
FIG. 4. Number of iterations in the solvéBiCGys) versus D 1.0013) 1.15 2.30

adaptive step size.
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107 Con — Finally, instead of varying the step size, one could vary
E box=0215 3 adaptively the couplings of the Hamiltonia#, Eqg. (3), at

1ol L AL=0.08 . each step, or even include some new operatoks, itnying to

At=0.04 z tune them so as to best conserve energy. The general diffi-
o0 } culty with that approach is to find an error Ed.6), which
varies monotonically with the couplings &f.
107! =
- ] IV. CONCLUSION

|ad]
(R [

e We have implemented an adaptive step-size method for
1078 ‘ hybrid Monte Carlo simulations, and tested it at several pa-
A rameters B,«,volume). The relative variance of the step
size increases for small quark masses and small volumes.
The average step size seems somewhat larger than the cor-
L o L responding fixed step size at the same acceptance. But this
1078 1078 it gain is more than offset by the overhead of determining the
E. adaptive step size. It seems very difficult to achieve real
“ gains in efficiency, because conservation of energy, which is
FIG. 5. |AH| versus the local erroEg, on a 4 lattice at ~ necessary for high Metropolis acceptance in the HMC algo-
k=0.215. The step size is fixed At=0.04 and 0.08AH is the  rithm, is poorly correlated with the conventional error gov-
change in the total energy after one integration step. The dottedrning the adaptive step size.
lines result from fitting to the form/{AH?)=E2, and show the A plausible extrapolation from our results would indicate
correlation (or absence 9fbetween the two quantitie§AH?) is  that the relative variance of the step size scales like
obtained by dividing the data in 10 bins and averaging the valueﬁqa =12 je. as ML) 2, wherem_ is the pion mass and
AH? in each bin. L the physical size of the lattice. This quantity normally
remains constant as the continuum lirait>0 of the lattice
theory is taken, so that the relative fluctuations in the adap-
latter by an Euler integrator, which requires no additionaltiVe Step sizedt would tend to a constant. Even if this analy-
force evaluation. Note that the error equatidi) remains SIS IS no more than plausible at this §tage, it is clear that the
symmetric under the exchang®,U,At)« (p’,U’,—At) two.I|m|ts mg—0, \(—>0f: ha\(e opposite effects on .the fluc-
even though the Euler integrator is not time reversible. ThéUations ofAt, making it unlikely that such fluctuations be-
problem we found with that approach is that, for the large®0me Very Ie_lrge on present Iattlc_e sizes. This observatlon is
step sizes used on our small lattices, the eft6f no longer consistent W|th_the I!mlted fluctuationia factor of 2 or spin
obeyed a simple scaling la@2) as a function of the step the number of iterations ne.eded py the solver to compute the
size. Then the number of iterations needed to solve(Eg).  force in the largest QCD simulatiori8]. . ,
increased, defeating the expected reduction in overhead. On Thus it appears that QCD is much “easier” to simulate

larger lattices with smaller step-sizes, this problem would béhan the Kepler problem: in lattice QCD, the force on the
milder. gauge links varies little in magnitude, and the curvature of

(i) Change the definition of the errdéi6), so that it is the molecula_r dynamics trajectory is rather small. One intui-
better correlated witHAH|, the energy violation at each tive explanatlon_ is t_hat the _QCD force is dominated by short-
step. Note thafAH| itself cannot be chosen, because it doed@nge UV contributions, which drown the IR component sen-
not increase monotonically with the step-size: in that cas§'tive t0 the energy barrier det-0.

Eq. (13) admits multiple solutions; the overhead of converg-
ing to one of them, and the same one under time-reversal,
increases considerably. With our definition, Ef6), the er-

ror is only weakly correlated withAH|, but the situation We thank D. Stoffer for helpful discussions. T.T. is sup-
again seems to improve with smaller step sizes, on largguorted in part by the Japan Society for the Promotion of
lattices (compare the two dashed lines in Fig. Blonethe-  Science. Ph. de F. thanks Hiroshima University and Tsukuba
less, it would be desirable to control the step size with aJniversity, especially Professor O. Miyamura and Professor
more relevant quantity than E(L6), since all that matters in Y. Iwasaki, for hospitality during this project. T.T. thanks
the end is energy conservation. Professor M. Gutknecht for hospitality.
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