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Maxwell’s equations and the vector nonlinear Schro¨dinger equation
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We examine similarities and fundamental differences between Maxwell’s equations and the vector nonlinear
Schrödinger equation~which is an approximation of the former! in describing a light evolution in a uniform
nonlinear anisotropic medium. It is shown that in some cases, the solitary wave solutions to the nonlinear
Schrödinger equation cannot be recovered from Maxwell’s equations while in others the solitary wave solu-
tions to Maxwell’s equations are lost from the nonlinear Schro¨dinger equation through approximation~even in
the limit under which the approximation is derived or valid!, although there are cases where the solutions to the
two sets of equations demonstrate only quantitative differences. The existence of novel classes of the hybrid
vector solitary waves composed of three field components is also demonstrated and the bifurcation character-
istics of the solitary wave states are analyzed.@S1063-651X~97!15303-X#

PACS number~s!: 42.65.Tg, 42.65.Jx
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I. INTRODUCTION

A light beam may propagate in a nonlinear medium wi
out diffraction or dispersion when the diffraction contribu
ing to the spread of the beam is balanced by the confinem
resulting from the beam induced refractive index change
the material@1–3#. This study of solitary wave evolution in
uniform medium has aroused great interest recently, not o
because of their observations in experiments@4–7# but also
because of their diverse potential applications to ultra
signal processing such as optical switching, computing,
tering, and beam splitting@7#. Over the extensive researc
reported so far, the theoretical and numerical analyses h
mainly been based on the nonlinear Schro¨dinger equation,
which normally involves one field component@8–13#. In-
deed, an attempt was made to study the characteristics o
solitary wave solutions to the vector nonlinear Schro¨dinger
equation~VNSE! with two field components, taking into ac
count the polarization effect of the solitary waves@14#. In the
presence of the two field components, VNSE for the non
ear isotropic medium was proven to be integrable@14#, sup-
porting solitary wave solutions with a linear polarization o
ented in an arbitrary direction. Recently, the study on VN
was extended to higher-order solitary waves~i.e., stationary
self-trapped beams! @15–20# and dynamic solitary wave
@21,22#. It was shown that a proper superposition of the t
field components of the first higher-order vector solita
wave @15# may lead to stationary propagation of the tw
orthogonally polarized parallel fundamental solitary wav
@19#.

Strictly speaking, light propagation in a medium obe
Maxwell’s equations and VNSE is an approximation
Maxwell’s equations. Naturally, a question remains as
whether VNSE yields a reliable approximation for portrayi
light evolution in a medium. In the nonlinear medium whe
nonlinearity results from electrostriction orB50 in nonlinear
polarization PNL5A~E•E* !E10.5B~E•E!E* @23#, it has
been shown that spatial solitary waves of Maxwell’s eq
551063-651X/97/55~3!/3652~6!/$10.00
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tions differ significantly from the classical solitary waves
the nonlinear Schro¨dinger equation unless the electric field
linearly polarized along a geometric axis of the beam int
sity pattern@24#. In general the polarization state of a solita
wave in the nonlinear medium withB50 changes continu-
ously as the beam~dynamic solitary wave! propagates@24#.
In such a nonlinear medium, Maxwell’s equations were
fact shown to admit~not well behaved as shown in Fig. 2 o
Ref. @25#! stationary solutions with the magnitude of the lo
gitudinal field comparable to those of transverse fields t
do not obey VNSE@25#. This difference between Maxwell’s
equations and VNSE for the case ofB50 is, however, not
surprising as the approximation leading to VNSE is violat
for these solutions@25#, bearing in mind that VNSE is de
rived from Maxwell’s equations under the limitation of sma
induced refractive index change or negligible longitudin
field in comparison with the transverse fields.

In this paper, we will examine differences and similariti
between Maxwell’s equations and VNSE for predicting t
evolution patterns of solitary wave states trapped in a gen
uniform ~BÞ0! nonlinear medium in the limit of small in-
duced refractive index change~or small longitudinal field
component! under which the VNSE is derived or valid. W
will show that in some cases VNSE does give the solutio
quantitatively different from those resulting from Maxwell
equations, whereas in others the solitary wave solution
the two sets of equations demonstrate fundamental dif
ences. Take the example of arbitrarily linearly polarized fu
damental bright vector solitary waves with the two tran
verse field components being in phase predicted by VN
@14#. It is found that this type of solitary wave does not ob
Maxwell’s equations, i.e., no arbitrarily linearly polarize
fundamental vector solitary waves exist. On the other ha
for the two transverse field components being out of ph
by p/2 we find the existence of the fundamental hybrid~well
behaved, i.e., one hump in each transverse field! TE-TM type
vector solitary waves involving three field components; T
and TM components share almost the same contributio
3652 © 1997 The American Physical Society



ll
m
on
ve
s
ng
v
er
s
th
w
av
re
ex
a
ry
ns

o

e
g

he
el

e
a
e

h
r

n

e

ing
s-

ing

55 3653MAXWELL’S EQUATIONS AND THE VECTOR . . .
the hybrid TE-TM solitary wave for infinitesimally sma
induced index change but the TM component tends to do
nate with increasing induced refractive index change, in c
trast to VNSE, which always gives the hybrid solitary wa
solutions with a balanced contribution from the two tran
verse components irrespective of the induced index cha
The analysis on the first higher-order vector solitary wa
solution also indicates qualitative and quantitative diff
ences in bifurcation characteristics based on the two set
equations. However, fundamental differences occur for
second higher-order solitary wave solutions from the t
sets of the equations—the triply degenerate solitary w
solutions resulting from Maxwell’s equations cannot be
covered from VNSE even in the limit of small induced ind
change under which VNSE is derived. Finally we show th
a general class of circularly polarized hybrid vector solita
waves with different propagation constants for the two tra
verse components obtained from VNSE does not satisfy~or
has no counterpart from! Maxwell’s equations in the limit of
small induced refractive index change within which the tw
sets of equations are supposed to agree.

II. GOVERNING EQUATIONS

The propagation of a light beam in a medium is govern
by Maxwell’s equations, which involve the electric and ma
netic fieldsE andH. ExpressingH in terms ofE, Maxwell’s
equation for a cw wave can be written equivalently in t
form of the vector wave equation governing the electric fi
E:

“3“3E2k2n2E2~k2/«0!P
NL50, ~1a!
ro
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wherek and«0 are the wave number and permittivity in fre
space,n is the refractive index of a medium, which is
constantn5n0 for a uniform medium to be considered, th
nonlinear polarizationPNL according to Makeret al. @23# for
~linear! isotropic centrosymmetric materials has the form

PNL5A~E•E* !E10.5B~E•E!E* , ~1b!

with A and B real nonlinear susceptibilities varying wit
materials, andA.0 andB.0 in a self-focusing nonlinea
medium to be discussed. Dropping the term““•E in
“3“3E and assuming the slowly varying approximatio
@i.e., ]2E/]z25]2eexp(ikn0z)/]z

2' i2kn0]e/]z2k2n 0
2e#,

the vector wave equation~1! reduces to a VNSE@14#:

i2kn0]e/]z1¹ t
2e1~k2/«0!@A~e•e* !e10.5B~e•e!e* #50,

~2!

where the transverse operator¹ t
25¹22]2/]z2.

For the sake of convenience in illustrating the point, w
consider, in the following, the~111!-dimensional case for
which the stationary vector solitary wave solution to Eq.~1!
is of the form@26#

E~x,z!5@Ex~x!x̂1jEy~x!ŷ1Ez~x!ẑ#exp~ ibz!, ~3!

with j51 corresponding to two transverse components be
in phase,j5i representing the solutions with the two tran
verse components out of phase byp/2, and x̂,ŷ,ẑ are unit
vectors. This vector field solution of Eq.~3!, substituted into
Eq. ~1!, leads to the three coupled scalar equations govern
real normalized field components Cx,y

5Ex,yA(A10.5B)/«0/bn0 and Cz52 iEzA(A10.5B)/«0/
bn0:
dcx

dX
5bA11b2

22scx~cycy8 /s1czcz8!b/A11b21~scx
21scy

21cz
211/b2!cz

11b2@3cx
21~s/s!cy

21scz
2#

, ~4a!
-

e of
s
f
he

f
hat
d2cy /dX
25cy2@~s/s!cx

21cy
21scz

2#cy , ~4b!

dcz /dX5b@12cx
22~s/s!cy

22scz
2#cx /A11b2, ~4c!

with X5kn0bx, b5Ab2/k2n0
221, s5(A20.5B)/

(A10.5B) ~which is 0.075 for 0.5B/A50.86 of carbon dis-
ulphide liquid ands51/3 for 0.5B/A50.5 of some crystals
@5,23#!, the prime indicating the derivative with respect toX,
ands51 for j5i ands5s for j51. Following similar sub-
stitution, the corresponding normalized nonlinear Sch¨-
dinger equation is written as

d2cx /dX
25@12cx

22~s/s!cy
2#cx , ~5a!

d2cy /dX
25@12~s/s!cx

22cy
2#cy , ~5b!

with e and its components related bye(x,z)5@Ex(x) x̂
1jEy(x) ŷ#exp[i (b22k2n 0

2)z/2kn0]. In the special case o
cx50 ~cz50!, Eqs.~4! and ~5! reduce to the same equatio
governing the fieldcy of the TE type spatial solitary wave
the solution of which is described by sech function@1,8#.
Another special case iscy50; Eq. ~4! gives the TM type
solitary wave solution, which is quantitatively different from
that predicted by Eq.~5!. The difference increases with in
creasingb @27#.

III. FUNDAMENTAL SOLITARY WAVE STATES

A. Difference

Now we consider general cases ofcxÞ0 andcyÞ0 where
many interesting solitary wave states arise. For the cas
s/s51 ~i.e., j51 for two in phase transverse component!,
Eq. ~5! is shown to be integrable@14#, and supports a class o
linearly polarized fundamental vector solitary waves with t
polarization orienting in an arbitrarily direction,

cx5cosu & sech~X2X0! ~6a!

cy5sinu & sech~X2X0!, ~6b!

whereu refers to the polarization direction. This family o
solitary wave solutions to the VNSE seems to indicate t
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3654 55YIJIANG CHEN AND JAVID ATAI
there is a corresponding family of linearly polarized hyb
TE-TM trapped vector solitary waves to Maxwell’s equ
tions ~4! transiting continuously from the special TE solita
wave to the TM solitary wave. Our analysis on Eq.~4! for
this case reveals that the vector solitary waves of this type
not exist for anyb except for the special TE solitary wave~u
is an odd integer ofp/2! or for the special TM solitary wave
~u is an integer ofp!. Physically, the existence of a linear
polarized solitary wave orienting in any direction to th
VNSE is due to the rotational symmetry of the induc
waveguide~i.e., the linearly polarized solitary wave does n
‘‘see’’ the refractive index change particularly aligned in t
x direction!. However, the possible solitary wave state
Maxwell’s equations ‘‘sees’’ the induced waveguide esp
cially along thex direction, imposing the effect that varie
with the orientation of the polarization on the solitary wa
beam. That is, the rotational symmetry present in the VN
is broken in Maxwell’s equations; self-consistency of se
trapping of the linearly polarized TE-TM vector solitar
wave no longer holds for Maxwell’s equations@28#. Math-
ematically, the difference in the existence of the linear p
larized hybrid TE-TM vector solitary waves results from t
difference in the integrability of the systems. Equation~5! at
s/s51 possesses two integrals of motion; one is the Ham
tonian

H5cx8
21cy8

22cx
22cy

210.5~cx
41cy

4!1~s/s!cx
2cy

2; ~7!

the other iscxcy82cx8cy5const, and Eq.~5! is integrable.
However, Eq.~4! admits only one invariant,

H5cy8
21

b2

11b2 F12cx
2 2

s

s
cy
22scz

2G2cx
22cx

22cy
21

cz
2

b2

1
1

2
~cx

41cy
41cz

4!1scy
2cz

21scx
2S cy

2

s
1cz

2D , ~8!

regardless the value ofs/s and it is not integrable. The lin
early polarized solitary wave solutions are lost when the s
tem transfers from integrable to nonintegrable.

B. Similarity

On the other hand, for the general case ofs/sÞ1, the
induced refractive index is anisotropic in nature; the hyb
fundamental TE-TM vector solitary waves are found to ex
in Maxwell’s equations. These solutions correspond to
trajectory of Eq.~8! with H50. A fixed anisotropys ~Þ1!
and induced index change~Dn;b25b2/k2n0

221! leads to a
hybrid vector solitary wave with the field values atX50
related by

b2@12cx
22~s/s!cy

2#2cx
2/~11b2!2cx

22cy
210.5~cx

41cy
4!

1scx
2cy

2/s50, ~9!

which reduces to the corresponding one for VNSE~5! by
settingb50. Note that fors/sÞ1, Eq. ~5! is not integrable
either and it admits one invariant of Eq.~7!. The correspond-
ing fundamental vector solitary wave solutions to Eq.~5!
read cx5cy5A2/(11s) sech(X2X0) identified by the
straight~dashed! line, independent ofb, on the planecz50
o

t

-

E
-

-
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d
t
e

in Fig. 1~a! of three-dimensional phase space trajectory. T
solitary wave solutions forbÞ0 ~or b.kn0! from Maxwell’s
equations are, however, represented by 3D curved traje
ries @see Fig. 1~a! for the example ofb50.01 ands51/3#.
With increasingb ~or b! cx andcz ~TM! components inten-
sify while cy ~TE! component diminishes. The power carrie
by the hybrid TE-TM vector solitary wave

P5
1

2 E
2`

`

Re~E3H* !•zdx

5
b«0bn0

240pk2~A10.5B!
E

2`

` H ucxu21ucyu21
b2ucxu2

11b2

3@ ucxu21~s/s!ucyu21suczu221#J dX
is plotted in Fig. 1~b! together with those of TE and TM
solitary waves fors51/3. Other values ofs demonstrate
similar characteristics. The hybrid solitary wave has the la
est amount of power.

Here, the characteristics of the solitary wave solutio
depend apparently on the parameterb, which is related to the
beam width a0 in experiment @5# by b5Ab2/k2n0

221
51/kn0a0. The beam widtha058.5mm at power 230 kW in
the experiment@5# for nonlinear glass givesb50.0067, cor-
responding to the nonlinear induced index changeDn
5nmax2n0;b/k2n0'(b/k2n0)(b/k1n0)/2n0 5 b2n0/2
54.431025. On the other hand, when the power increases
400 kW @Fig. 2~c! of Ref. @5##, the beam width become
a054.9 mm, which givesb50.0132 andDn51.3331024.
Obviously, the value b50.01 ~corresponding to
Dn57.631025! of Fig. 1~a! is well within the present ex-
perimental condition in a glass medium@5# with weak non-
linear coefficient n25A/(2n0«0)53.4310216 cm2/W. In
fact, for nonlinear materials such as CS2 @4# and AlGaAs,
which has a nonlinear coefficient@6# n255.4310214 cm2/W
160 times larger than in glass, the values ofb andDn can
possibly reach b;0.1 and Dn;0.01 or higher ~as
b2;Dn;n23intensity!.

IV. FIRST HIGHER-ORDER SOLITARY WAVE STATES

Apart from the fundamental solitary wave solutions co
sidered above, system~4! also supports higher-order solitar

FIG. 1. ~a! Phase space trajectories of the fundamental ve
solitons forb50.01 ~solid curve! and the dashed line is the corre
sponding trajectory from VNSE;~b! dispersion curve describing th
dependence of power onb or the propagation constantb of TE-TM
vector solitons. The values51/3 ands51 in the figures.
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55 3655MAXWELL’S EQUATIONS AND THE VECTOR . . .
wave solutions. The first higher order is characterized by
humps in the total intensityuEu2 profile symmetrically located
on the two sides ofx50 at which the fields have the chara
teristics of~i! cy~0!50, cz~0!50, and

cy8~0!5cx~0!$120.5cx
2~0!2b2@12cx

2~0!#2/~11b2!%1/2,
~10a!

and ~ii ! cx~0!50, cy8(0)50 and

cz
2~0!52scy

2~0!21/b2

1A1/b412~11s/b2!cy
2~0!20.5~12s2!cy

4~0!,

~10b!

corresponding to two degenerate solitary wave states@Figs.
2~a! and 2~b!# associated with a particularb ~or b! below a
critical valueb5bc1. This critical valuebc1, above which
the degenerate solitary wave specified by Eq.~10b! ceases to
exist or eachb corresponds to one solitary wave state on
decreases with increasings and bc1→0 when s.0.8 ~B
,0.22 A! as shown in Fig. 3~a!. The difference in the field
shapes and the phase space trajectories between the d
erate solitary waves also increases with increasingb. On the
other hand, VNSE~5! invariably yields two degenerate firs
higher-order solitary wave solutions„related by the transfor

FIG. 2. Projection of phase space trajectories oncz50 plane and
field profiles of the first higher-order vector solitons ats52/3,s51,
andb50.06, which corresponds to the nonlinearity induced refr
tive index changeDn'b2n0/250.0027 forn051.53.

FIG. 3. ~a! The functionbc1~s! vss, and the dependence of th
bifurcation valuessc

TM andsc
TE on the waveguide heightb obtained

from Maxwell’s equations;sc is the corresponding one from
VNSE. ~b! Field profiles of the degenerate second-order vector s
ton @with the fields atx50 governed by Eq.~10a!# at s50.94 and
s51 for b50.05 andb50 ~from VNSE!, respectively; note that a
this b50.05, according to Maxwell’s equation the other degener
second-order vector soliton with the fields atx50 governed by Eq.
~10b! does not exist although VNSE still predicts its existence.
o

,

gen-

mationcx,y↔cy,x or rotating phase space trajectory by 9
@see Eq.~5!#…, irrespective of the value ofb; and they exist
within ~sc5! 0,s,1 ~or 2A.B.0!, meaning that within
1.s.0.8 Maxwell’s equations differ from the VNSE qual
tatively even in the limit ofb→0. Furthermore, for the value
s,0 ~or B.2 A! Maxwell’s equations~4! also admit this set
of higher-order solutions yet VNSE accepts no such so
tions whens,0. The relation betweenb and the bifurcation
valuess5sc

TM ~,0! ands5sc
TE ~,0!, at which the degen-

erate first higher-order solitary waves@specified by Eqs.
~10a! and ~10b!# bifurcate from TM and TE solitary waves
is shown in Fig. 3~a!.

The interesting aspect of this vector solitary wave is tha
superposition ofcx andcy components~at b→0! may lead
to two parallel propagating ‘‘fundamental solitary waves
with their polarizations orthogonal to each other. This can
appreciated by considering a case ofs50.94 ~B50.062 A!
for which the field ofcx and cy can be approximated by
cx5c11c25c(X2X0)1c(X1X0) and cy5c12c2
5c(X2X0)2c(X1X0) with c~z!>sech~z!/& @Fig. 3~b!#.
For j5i , the superposition leads to two parallel propagat
solitary waves with one left-circularly polarized and th
other right-circularly polarized asE exp~2ibz!;~c11c2!x
1i ~c12c2!y1iczz 5~x1iy!c11~x-iy!c21iczz ~cz→0 at
b→0!; and for j51 two linearly polarized ‘‘fundamenta
solitary waves’’ result from the superposition becau
E exp(ibz);(c11c2)x1 (c12c2)y1 iczz5(x1y)c11(x
2y)c21 iczz. The normalized separation 2X0 from the
VNSE is fixed irrespective ofb, which is 2X0526.8 for
s50.94 @Fig. 3~b!#. However, Maxwell’s equations give th
normalized separation decreasing with increasingb, which is
2X058.3 for b50.05 ~corresponding to
Dn'b2n0/250.0019!, over three times smaller than that pr
dicted by Eq.~5! @Fig. 3~b!#.

V. SECOND- AND OTHER HIGHER-ORDER SOLITARY
WAVE STATES

The next higher-order vector solitary wave features th
peaks in the totaluEu2 intensity profile@Fig. 4~a!#. The rela-
tion of the field components atx50 for this vector solitary
wave is governed by Eq.~9!. This set of higher-order vecto
solitary waves bifurcates from the TE and TM solitary wav
at sc2(b) @,0, see Fig. 4~b!# and continues to exist up to
s51. Within sc2,s,1, Eq. ~4! yields three degenerat

-

i-

e

FIG. 4. ~a! The intensity distributions of three degenerate thir
order vector solitons ats51/3, s51, andb50.05 obtained from
Maxwell’s equations, and the corresponding two degenerate s
tons from the VNSE have the same intensity profiles distribut
between degenerate solitons I and II intensity profiles in the figu
~b! Bifurcation valuessc2(b) vs b andbc2~s! vs s.
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3656 55YIJIANG CHEN AND JAVID ATAI
third-order vector solitary waves for eachb ~or b! below a
particular b5bc2~s! ~or kn0,b,bc! as is shown in Fig.
4~a! for the case ofs51/3 andb50.05. This criticalbc2(s)
confiningb for trapping three degenerate third-order vec
solitary waves depends ons @see Fig. 4~b!#. It decreases with
increasing s and at s.0.7 ~B,0.35A! bc2(s)→0. At
b5bc2(s) the two degenerate solitary waves~I and III in
Fig. 4! merge into one, and aboveb.bc2(s) the two degen-
erate solitary waves disappear and eachb ~or b! is associated
with only one third-order vector solitary wave. On the co
trary, VNSE~5! predicts that eachb corresponds to two de
generate vector solitary waves~related by transformation
cx,y↔cx,y! for any valueb.0 that exists within 0,s,1,
demonstrating a qualitative difference from Maxwell’s equ
tions.

Furthermore, it can be shown that Maxwell’s equatio
admit fourth-, fifth-, and other higher-order vector solita
waves that exhibit qualitatively different bifurcation chara
teristics from those acquired from the VNSE. Instead of su
continuation, we conclude our discussion here by point
out another fundamental difference between Maxwe
equations and the VNSE in predicting vector solitary wa
solutions with circularly polarizations.

VI. CIRCULARLY POLARIZED SOLITARY
WAVE STATES

It can be shown that the VNSE supports a general clas
vector solitary waves with different propagation consta
for two circularly polarized transverse components. Expre
ing the transverse field componentet as left and right circular
polarizations et5(er1e1)/&x1i (er2e1)/&y5er~x1iy!/
& 1 e1~x 2 iy!/& 5 e1(x)exp[i (b 1

2 2 k2n 0
2) z/2kn0] r1

e2(x)exp[i (b 2
2 2k2n 0

2)z/2kn0] l, Eq. ~2! reads

d2e6 /dx21@Aue6u21~A1B!ue7u2#e65~b6
2 2k2n0

2!e6 ,
~11!

which admits the fundamental and higher-order circula
polarized solitary waves forb1Þb2 @18#. However,
Maxwell’s equations do not accept this kind of vect
solitary wave solutions. This can be illustrated by expand
Eq. ~1! in terms of e6@Et5E2Ezz5e1(x)exp(ib1z)r
1e2(x)exp(ib2z) l #, leading to

d2@e62e7e
i @6~b22b1!z##

2dx2
1@A~ ue6u21uezu2!

1~A1B!ue7u2#e610.5Bez
2e7* h2

5~b6
2 2k2n0

2!e61h6

ib1

&

dez
dx

, ~12!

which reduces to Eq.~11! when ez50 ~b50! and
2ib1&dez/dx5d2$e11e2exp[i (b22b1)z] %/dx

2, where
h151 andh25exp[i (b12b2)z]. Obviously, no stationary
solutions exist to Eq.~12! for any values ofA andB ~Þ0!
except forb15b2.
r
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-
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VII. DISCUSSION

Here, it should be mentioned that the physical origin
fundamental differences demonstrated above in the ve
solitary wave solutions predicted by the two sets of equati
within the parameter region where the approximation is va
result from the self-consistency requirement for se
trapping. In some cases for which fundamental differen
occur, the presence of the longitudinal field, no matter h
small it is, leads to anisotropy in the induced refractive ind
change, which destroys the self-consistency for self-trapp
This is contrary to the linear guiding structure where t
longitudinal component can always be ignored safely in
weakly guiding approximation@29#.

It should also be added that the discussion concerning
similarity and difference between Maxwell’s equations a
the VNSE presented above has been restricted to the b
stationary solitary wave solutions. Applications of these s
tionary solitary wave solutions for a long or short distan
propagation requires the knowledge of their stability char
teristics. Stable solitary wave states ensure a long dista
evolution of the stationary structure, while unstable solita
wave states may find their way in applications for ultrafa
optical switching@30#. The stability analysis of these station
ary solitary wave states and the corresponding differen
between the two sets of equations are beyond the scop
the present paper and require further investigation.

Equally, mention should be made that the analysis
similarities and differences between the VNSE and Ma
well’s equations for predicting the solitary wave solutio
presented are for the two transverse components being e
in phase orp/2. The correspondingEx andEy for the solitary
wave solutions of Eqs.~4! and~5! are then the real quantitie
@31#. When the relative phase between the two transve
components is neithermp norp/21mp ~m50,1,2,...! and/or
the phases of amplitudes are the transverse dimension~such
asx! dependent, the field componentsEx andEy of possible
solitary solutions become complex. The VNSE then involv
four real equations@rather than two of Eqs.~5!# governing
the real and imaginary parts of the two transverse com
nents for solitary wave solutions. The corresponding Ma
well’s equations then include six real equations@rather than
three of Eqs.~4!# governing the real and imaginary parts
the three field components. Vector dark solitons in a s
defocusing nonlinear medium are such examples with co
plex Ex , Ey , andEz . In the moving coordinates (X,Y,Z)
transformed from~X5x2z/v, Y5y, Z5z!, these vector
dark solitons are stationary with respect to the propaga
distance, i.e.,Ex,y,z(X,Y) areZ independent. The phases o
amplitudes of the solitons are transverse dimension~such as
X! dependent and so is the relative phase. In these gen
situations, similarities and differences between the VN
and Maxwell’s equations for predicting solitary wave sol
tions are still expected~namely some solutions of the VNS
can be recovered from Maxwell’s equations, others are
and vice versa!, although details may differ from case t
case. These elaborations are again beyond the scope o
present paper and require further investigation. However,
main conclusions drawn from the bright solitary waves
the relative phase being 0 orp/2 still apply; i.e., Maxwell’s
equations have to be used for describing light evolution i
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nonlinearity inducedanisotropicmedium when the polariza
tion characteristics of a solitary wave is considered.

VIII. CONCLUSION

In summary, similarities and fundamental differences
tween Maxwell’s equations and the nonlinear Schro¨dinger
equation are examined. Our study shows that Maxwe
equations have to be used for describing light evolution i
nonlinearity induced anisotropic medium when the polari
tion characteristics of a solitary wave are considered, es
cially for the higher-order solitary wave states. In particul
ett
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n
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-

.

-

s
a
-
e-
,

it is shown that arbitrarily linearly polarized vector solita
waves predicted by VNSE do not satisfy Maxwell’s equ
tions even in the limit of small induced refractive inde
change under which VNSE is derived. The existence
novel classes of hybrid TE-TM vector solitary waves is a
predicted and the bifurcation characteristics are investiga
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