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Maxwell's equations and the vector nonlinear Schrdinger equation

Yijiang Chen
Optical Sciences Centre, Australian National University, Canberra ACT 2601, Australia

Javid Atai
Department of Electrical Engineering, MESA Research Institute, University of Twente, 7500 AE Enschede, The Netherlands
(Received 10 June 1996; revised manuscript received 28 Augusj 1996

We examine similarities and fundamental differences between Maxwell’s equations and the vector nonlinear
Schralinger equatior(which is an approximation of the formein describing a light evolution in a uniform
nonlinear anisotropic medium. It is shown that in some cases, the solitary wave solutions to the nonlinear
Schralinger equation cannot be recovered from Maxwell’'s equations while in others the solitary wave solu-
tions to Maxwell’'s equations are lost from the nonlinear Sdinger equation through approximati¢even in
the limit under which the approximation is derived or validithough there are cases where the solutions to the
two sets of equations demonstrate only quantitative differences. The existence of novel classes of the hybrid
vector solitary waves composed of three field components is also demonstrated and the bifurcation character-
istics of the solitary wave states are analyZ&i063-651X97)15303-X]

PACS numbdis): 42.65.Tg, 42.65.Jx

I. INTRODUCTION tions differ significantly from the classical solitary waves of
the nonlinear Schiinger equation unless the electric field is
A light beam may propagate in a nonlinear medium with-linearly polarized along a geometric axis of the beam inten-
out diffraction or dispersion when the diffraction contribut- sity pattern24]. In general the polarization state of a solitary
ing to the spread of the beam is balanced by the confinememtave in the nonlinear medium witB=0 changes continu-
resulting from the beam induced refractive index change irously as the bearfdynamic solitary wavepropagate$24].
the materia[1-3]. This study of solitary wave evolution in a In such a nonlinear medium, Maxwell’s equations were in
uniform medium has aroused great interest recently, not onlfact shown to admitnot well behaved as shown in Fig. 2 of
because of their observations in experimddis7] but also  Ref.[25]) stationary solutions with the magnitude of the lon-
because of their diverse potential applications to ultrafasgitudinal field comparable to those of transverse fields that
signal processing such as optical switching, computing, fil-do not obey VNSH25]. This difference between Maxwell’'s
tering, and beam splittingj7]. Over the extensive research equations and VNSE for the case B0 is, however, not
reported so far, the theoretical and numerical analyses hawirprising as the approximation leading to VNSE is violated
mainly been based on the nonlinear Sclinger equation, for these solution$25], bearing in mind that VNSE is de-
which normally involves one field componef8-13]. In-  rived from Maxwell’s equations under the limitation of small
deed, an attempt was made to study the characteristics of tlieduced refractive index change or negligible longitudinal
solitary wave solutions to the vector nonlinear Schinger  field in comparison with the transverse fields.
equation(VNSE) with two field components, taking into ac- In this paper, we will examine differences and similarities
count the polarization effect of the solitary wayéd]. Inthe  between Maxwell's equations and VNSE for predicting the
presence of the two field components, VNSE for the nonlin-evolution patterns of solitary wave states trapped in a general
ear isotropic medium was proven to be integrgidlé], sup-  uniform (B#0) nonlinear medium in the limit of small in-
porting solitary wave solutions with a linear polarization ori- duced refractive index changer small longitudinal field
ented in an arbitrary direction. Recently, the study on VNSEcomponent under which the VNSE is derived or valid. We
was extended to higher-order solitary wayes., stationary will show that in some cases VNSE does give the solutions
self-trapped beams[15-20 and dynamic solitary waves quantitatively different from those resulting from Maxwell's
[21,22. It was shown that a proper superposition of the twoequations, whereas in others the solitary wave solutions to
field components of the first higher-order vector solitarythe two sets of equations demonstrate fundamental differ-
wave [15] may lead to stationary propagation of the two ences. Take the example of arbitrarily linearly polarized fun-
orthogonally polarized parallel fundamental solitary wavesdamental bright vector solitary waves with the two trans-
[19]. verse field components being in phase predicted by VNSE
Strictly speaking, light propagation in a medium obeys[14]. It is found that this type of solitary wave does not obey
Maxwell's equations and VNSE is an approximation of Maxwell's equations, i.e., no arbitrarily linearly polarized
Maxwell's equations. Naturally, a question remains as tdundamental vector solitary waves exist. On the other hand,
whether VNSE yields a reliable approximation for portraying for the two transverse field components being out of phase
light evolution in a medium. In the nonlinear medium whereby 7/2 we find the existence of the fundamental hykieb|l
nonlinearity results from electrostriction Br=0 in nonlinear  behaved, i.e., one hump in each transverse)fitld TM type
polarization Py =A(E-E*)E+0.5B(E-E)E* [23], it has vector solitary waves involving three field components; TE
been shown that spatial solitary waves of Maxwell's equa-and TM components share almost the same contribution to
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the hybrid TE-TM solitary wave for infinitesimally small wherek andeg are the wave number and permittivity in free
induced index change but the TM component tends to domispace,n is the refractive index of a medium, which is a
nate with increasing induced refractive index change, in coneonstantin=nq for a uniform medium to be considered, the
trast to VNSE, which always gives the hybrid solitary wave nonlinear polarizatio®" according to Makeet al.[23] for
solutions with a balanced contribution from the two trans-(linean isotropic centrosymmetric materials has the form
verse components irrespective of the induced index change. PNL= A(E-E*)E+0.58(E- E)E*, (1b)
The analysis on the first higher-order vector solitary wave

solution also indicates qualitative and quantitative differ-with A and B real nonlinear susceptibilities varying with
ences in bifurcation characteristics based on the two sets ohaterials, andA>0 and B>0 in a self-focusing nonlinear
equations. However, fundamental differences occur for thenedium to be discussed. Dropping the teV:-E in
second higher-order solitary wave solutions from the twoVXVXE and assuming the slowly varying approximation
sets of the equations—the triply degenerate solitary wavéi.e., #E/dz’=eexp(ikngz)/dz°~i2knyoeldz—kn 3el,
solutions resulting from Maxwell’s equations cannot be re-the vector wave equatiofi) reduces to a VNSIE14]:

covered from VNSE even in the limit of small induced index .

change under which VNSE is derived. Finally we show that i2kngoel g2+ Vie+ (K¥/eo)[A(e € e+ 0.58(e- e)e"] =0,

a general class of circularly polarized hybrid vector solitary @
waves with different propagation constants for the two transyhere the transverse operal%fzvz— Ploz.
verse components obtained from VNSE does not satisfy For the sake of convenience in illustrating the point, we

has no counterpart fronMaxwell’s equations in the limit of  consider, in the following, thé1+1)-dimensional case for

small induced refractive index change within which the twowhich the stationary vector solitary wave solution to EL.
sets of equations are supposed to agree. is of the form[26]

Il. GOVERNING EQUATIONS E(x,2) =[Ex()x+EEy ()Y +Ex(x)Z]expi Bz),  (3)

The propagation of a light beam in a medium is governed"’ith é&=1 corresponding to two transverse components being
by Maxwell's equations, which involve the electric and mag-" Phase&=i representing the solutions with the two trans-
netic fieldsE andH. ExpressingH in terms ofE, Maxwell’s  VErsé components out of phase b2, andx.y,z are unit
equation for a cw wave can be written equivalently in theVvectors. This vector field solution of E¢B), substituted into

form of the vector wave equation governing the electric fieldEd- (1), leads to the three coupled scalar equations governing
E: real normalized field components W

X
=E,yV(A+0.5B)/go/bny and ¥,=—iE,\(A+0.58)/gq/
bng:

VXV XE—k?n2E— (k?/gq)PN-=0, (1a

Ay e 220Ut 18 U BINITER (ot U e 1004,
ax 1+b 3¢5+ (als)dy+ oy ]

(4a)

a2, 1dXP= g~ [(a/S) 2+ y2+sy214h,,  (4b)  Another special case ig,=0; Eq. (4) gives the TM type
solitary wave solution, which is quantitatively different from

dip,/dX=b[1— g2~ (olS) Y2 — o]y [1+b2, (4¢ that predicted by Eq(5). The difference increases with in-

creasingb [27].
with  X=kngbx, b=BZIk?n2—1, o=(A—0.5B)/
(A+0.5B) (which is 0.075 for 0.B/A=0.86 of carbon dis- Ill. FUNDAMENTAL SOLITARY WAVE STATES
ulphide liquid ando=1/3 for 0.8/A=0.5 of some crystals

[5,23)), the prime indicating the derivative with respectXp A. Difference

ands=1 for £&=i ands=o¢ for £&=1. Following similar sub- Now we consider general casesigf*0 andy,#0 where
stitution, the corresponding normalized nonlinear Sehromany interesting solitary wave states arise. For the case of
dinger equation is written as slo=1 (i.e., é&=1 for two in phase transverse compongnts
Eq. (5) is shown to be integrable 4], and supports a class of
A2 [dXP=[1— = (olS) 2]y, (58 linearly polarized fundamental vector solitary waves with the
, , , polarization orienting in an arbitrarily direction,
Xe=[1—- -

A2y, 1dX2=[1~ (als) P2~ Y314y, (5b) 0% V3 sechX—Xo) o
with e and its components related b§(x,z)=[E,(x)X
+EE,(x)Y]expli (82— k*n§)z/2kng]. In the special case of i, =sing v2 sectiX—Xy), (6b)

=0 (4,=0), Egs.(4) and (5) reduce to the same equation
governing the fieldy, of the TE type spatial solitary wave, where ¢ refers to the polarization direction. This family of
the solution of which is described by sech functidn8].  solitary wave solutions to the VNSE seems to indicate that
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there is a corresponding family of linearly polarized hybrid
TE-TM trapped vector solitary waves to Maxwell's equa-
tions (4) transiting continuously from the special TE solitary
wave to the TM solitary wave. Our analysis on E4) for

this case reveals that the vector solitary waves of this type do

not exist for anyb except for the special TE solitary waye

is an odd integer ofr/2) or for the special TM solitary wave
(@ is an integer ofr). Physically, the existence of a linearly
polarized solitary wave orienting in any direction to the

VNSE is due to the rotational symmetry of the induced

waveguidg(i.e., the linearly polarized solitary wave does not
“see” the refractive index change particularly aligned in the
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FIG. 1. (a) Phase space trajectories of the fundamental vector
solitons forb=0.01 (solid curve and the dashed line is the corre-

x direction. However, the possible solitary wave state tosponding trajectory from VNSEb) dispersion curve describing the
Maxwell's equations “sees” the induced waveguide espe-dependence of power dnor the propagation constagtof TE-TM

cially along thex direction, imposing the effect that varies

with the orientation of the polarization on the solitary wave

vector solitons. The value=1/3 ands=1 in the figures.

beam. That is, the rotational symmetry present in the VNSHn Fig. 1(a) of three-dimensional phase space trajectory. The

is broken in Maxwell's equations; self-consistency of self-

trapping of the linearly polarized TE-TM vector solitary
wave no longer holds for Maxwell's equatioh28]. Math-

solitary wave solutions fob+0 (or 8>kng) from Maxwell’s
equations are, however, represented by 3D curved trajecto-
ries [see Fig. 1a) for the example ob=0.01 ando=1/3].

ematically, the difference in the existence of the linear po-With increasingb (or B) i, and, (TM) components inten-

larized hybrid TE-TM vector solitary waves results from the
difference in the integrability of the systems. Equat{&nat

sify while ¢, (TE) component diminishes. The power carried
by the hybrid TE-TM vector solitary wave

s/lo=1 possesses two integrals of motion; one is the Hamil-

tonian

H= %+ % — g~y + 0.5y + gig) + (ol s) Yy (7)
the other isy, ¥y — ¢y b, =const, and Eq(5) is integrable.
However, Eq.(4) admits only one invariant,
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regardless the value @&fo and it is not integrable. The lin-

[

P=§f Re EXH*).zdx
_ Beobng * 5 , . b?y?
= 2a0mkC AT 0m) | | B It T

X[[yl?+ (als) |y |+ U|l//z|2_1]]dx

is plotted in Fig. 1b) together with those of TE and TM
solitary waves foroc=1/3. Other values ofr demonstrate
similar characteristics. The hybrid solitary wave has the larg-
est amount of power.

Here, the characteristics of the solitary wave solutions

early polarized solitary wave solutions are lost when the sysgepend apparently on the parametewhich is related to the

tem transfers from integrable to nonintegrable.

B. Similarity
On the other hand, for the general casesaf+#1, the

induced refractive index is anisotropic in nature; the hybrid="

fundamental TE-TM vector solitary waves are found to exist™ _ X
00 kW [Fig. 2(c) of Ref. [5]], the beam width becomes

in Maxwell's equations. These solutions correspond to th
trajectory of Eq.(8) with H=0. A fixed anisotropyo (#1)
and induced index chand&n~b?= 82/k?n3— 1) leads to a
hybrid vector solitary wave with the field values dt=0
related by

b?[1— ¢~ (o/S) Y3 1292l (1+ %) — g — 7+ 0.5+ )

+oyipils=0, (9
which reduces to the corresponding one for VN&E by
settingb=0. Note that fors/oc#1, Eq.(5) is not integrable
either and it admits one invariant of E@). The correspond-
ing fundamental vector solitary wave solutions to E§)
read = ihy=+2/(1+ o) sechK—Xo) identified by the
straight(dashed line, independent ob, on the plane),=0

beam width a, in experiment[5] by b=%k®n3—1
=1/kngay. The beam widtla;=8.5 um at power 230 kW in
the experimenf5] for nonlinear glass gives=0.0067, cor-
responding to the nonlinear induced index changm
max—No~ BIk— g~ (BIk—nNg) (BIk+ng)/2n, = b2ny/2
4.4x 10 °. On the other hand, when the power increases to

ag=4.9 um, which givesb=0.0132 andAn=1.33x10*.
Obviously, the value b=0.01 (corresponding to
An=7.6x10"%) of Fig. 1(a) is well within the present ex-
perimental condition in a glass medidrs] with weak non-
linear coefficientn,=A/(2nye,)=3.4x10 1 cn?/W. In
fact, for nonlinear materials such as L&) and AlGaAs,
which has a nonlinear coefficief#] n,=5.4x10" 4 cm?/W
160 times larger than in glass, the valuesbodnd An can
possibly reach b~0.1 and An~0.01 or higher (as
b2~ An~n,Xintensity).

IV. FIRST HIGHER-ORDER SOLITARY WAVE STATES

Apart from the fundamental solitary wave solutions con-
sidered above, systefd) also supports higher-order solitary
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FIG. 4. (a) The intensity distributions of three degenerate third-
FIG. 2. Projection of phase space trajectories/ga0 plane and order ve'ctor so||.tons ar=1/3, s=1, andb. Q05 ahianedirom .
) ) . - . - Maxwell's equations, and the corresponding two degenerate soli-
field profiles of the first higher-order vector solitonssat 2/3,s=1, . ; ! NN
B . . o tons from the VNSE have the same intensity profiles distributing
andb=0.06, which corresponds to the nonlinearity induced refrac- . . . L )
between degenerate solitons | and Il intensity profiles in the figure.

tive index changé\n~b“ny/2=0.0027 forny=1.53. (b) Bifurcation valuess(b) vs b andb,(a) Vs o

wave solutions. The first higher order is characterized by tw
humps in the total intensitf|? profile symmetrically located
on the two sides ok=0 at which the fields have the charac- within (¢,=) 0<o<1 (or 2A>B>0), meaning that within

teristics of(i) 4,(0)=0, #;(0)=0, and 1>0>0.8 Maxwell’s equations differ from the VNSE quali-

"(0) =y (0){1— 0.502(0) — b 1— $2(0)12/(1+b2)1 2 tatively even in the limit ob—0. Furthermore, for the value

¥y(0)= (0N S(0) b= YOI )(}10@ <0 (or B>2 A) Maxwell’'s equationg4) also admit this set
of higher-order solutions yet VNSE accepts no such solu-

Mation iy v by x OF rotating phase space trajectory by 90°
[see Eq.(5)]), irrespective of the value df; and they exist

and (i) 44(0)=0, #,(0)=0 and tions wheno<0. The relation betweel and the bifurcation
valueso= o™ (<0) ando= o " (<0), at which the degen-
Y2(0)=—sy;(0) — 1/b? erate first higher-order solitary wavdspecified by Egs.
4 > — (109 and (10b)] bifurcate from TM and TE solitary waves,
+1b*+2(1+5s/b?) 5(0) — 0.51—5?) (0, is shown in Fig. 8.
(10b) The interesting aspect of this vector solitary wave is that a

superposition ofi, and ¢, componentgat b—0) may lead
corresponding to two degenerate solitary wave stifags.  to two parallel propagating “fundamental solitary waves”
2(a) and 2b)] associated with a particuldr (or 8) below a  with their polarizations orthogonal to each other. This can be
critical valueb=b_,. This critical valueb.;, above which appreciated by considering a casecsf0.94 (B=0.062 A
the degenerate solitary wave specified by 8@b) ceases to for which the field of ¢, and ¢, can be approximated by
exist or eactb corresponds to one solitary wave state only, ¥, = ¢+ = y(X—=Xo) + (X+Xo) and =i — i,
decreases with increasing and b,;—0 when 6>0.8 (B = ¢(X—Xg) — ¢(X+Xp) with ¢()=seck)/V2 [Fig. 3b)].
<0.22 A) as shown in Fig. @). The difference in the field For é=i, the superposition leads to two parallel propagating
shapes and the phase space trajectories between the deggolitary waves with one left-circularly polarized and the
erate solitary waves also increases with increabingn the  other right-circularly polarized ag& exp(—iBz)~ (¢ + )X
other hand, VNSES5) invariably yields two degenerate first +i(yy— i)y +ig,z =X+iy)+X-iy)p+ip,z (¥,—0 at
higher-order solitary wave solutiorfeelated by the transfor- b—0); and for &=1 two linearly polarized “fundamental

solitary waves” result from the superposition because

1 B ey E exp(B2)~ (st )X + (1= o)y + idh,z= (X +y) 1+ (X
i —Y)¢tig,z. The normalized separationXg from the
G0} b O.S-W VNSE is fixed irrespective ob, which is 2X;=26.8 for
0.2 Goomnsy 0T o=0.94[Fig. 3b)]. However, M'axwe'll’s'equatiqns give'the
P normalized separation decreasing with increasinghich is
02 P W v,— 2X,=8.3 for b=0.05 (corresponding to
06— M I b 2 An~b?n,y/2=0.0019, over three times smaller than that pre-
N e S dicted by Eq.(5) [Fig. 3b)].
(a) (b)

V. SECOND- AND OTHER HIGHER-ORDER SOLITARY
FIG. 3. (a) The functionb,, (o) vs o, and the dependence of the WAVE STATES

bifurcation valuesr ™ andaF on the waveguide heigtt obtained ] )
from Maxwell's equations:o, is the corresponding one from The next higher-order vector solitary wave features three

VNSE. (b) Field profiles of the degenerate second-order vector soliP€aks in the totaE|? intensity profile[Fig. 4@)]. The rela-
ton [with the fields ax=0 governed by Eq(10a] at e=0.94 and  tion of the field components at=0 for this vector solitary
s=1 for b=0.05 andb=0 (from VNSE), respectively; note that at Wave is governed by Eq9). This set of higher-order vector
this b=0.05, according to Maxwell's equation the other degeneratesolitary waves bifurcates from the TE and TM solitary waves
second-order vector soliton with the fieldsxat0 governed by Eq. at o¢,(b) [<0, see Fig. 4)] and continues to exist up to
(10b) does not exist although VNSE still predicts its existence. o=1. Within o,<0<1, Eq. (4) yields three degenerate
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third-order vector solitary waves for eath(or 8) below a VII. DISCUSSION
particularb=b.,(o) (or knp<B<pg.) as is shown in Fig.

4(a) for the case obr=1/3 andb=0.05. This criticab,(c) Here, it should be mentioned that the physical origin of

confining b for trapping three degenerate third-order vectoriundamental differences demonstrated above in the vector

solitary waves depends en[see Fig. 40)]. It decreases with sc?litgry wave solutions predicted by the two sgts of eq_uatio_ns
increasing o and at 6>>0.7 (B<0.35A) bg,(c)—0. At within the parameter region yvhere the approximation is valid
b=b.,(c) the two degenerate solitary wavésand IIl in result' from the self—con5|sten'cy requirement for self-
Fig. 4 merge into one, and abowe>b_,(o) the two degen-  trapping. In some cases for which fundamental differences
erate solitary waves disappear and elacbr p) is associated occur, the presence of the longitudinal field, no matter how
with only one third-order vector solitary wave. On the con-small itis, leads to anisotropy in the induced refractive index
trary, VNSE (5) predicts that eacb corresponds to two de- change, which destroys the self-consistency for self-trapping.
generate vector solitary waveselated by transformation This is contrary to the linear guiding structure where the
Iy ye Py y) for any valueb>0 that exists within &2o<<1,  longitudinal component can always be ignored safely in the
demonstrating a qualitative difference from Maxwell’s equa-weakly guiding approximatioh29].

tions. It should also be added that the discussion concerning the

Furthermore, it can be shown that Maxwell's equationssimilarity and difference between Maxwell’s equations and
admit fourth-, fifth-, and other higher-order vector solitary the VNSE presented above has been restricted to the bright
waves that exhibit qualitatively different bifurcation charac- stationary solitary wave solutions. Applications of these sta-
teristics from those acquired from the VNSE. Instead of suchionary solitary wave solutions for a long or short distance
continuation, we conclude our discussion here by pointing, opagation requires the knowledge of their stability charac-
out another fundamental difference between Maxwellsisiics Stable solitary wave states ensure a long distance
equations and the VNSE in predicting vector solitary waveg, o\ tion of the stationary structure, while unstable solitary
solutions with circularly polarizations. wave states may find their way in applications for ultrafast
optical switching 30]. The stability analysis of these station-
ary solitary wave states and the corresponding differences
between the two sets of equations are beyond the scope of
the present paper and require further investigation.

It can be shown that the VNSE supports a general class of Equally, mention should be made that the analysis on
vector solitary waves with different propagation constantssimilarities and differences between the VNSE and Max-
for two circularly polarized transverse components. Expresswell's equations for predicting the solitary wave solutions
ing the transverse field componepss left and right circular presented are for the two transverse components being either
polarizations e = (e, +e;)V2x+i(e,—e;)V2y=e (x+iy)/  inphase or/2. The corresponding, andE, for the solitary
V2 + e (x —iyW2 = e, (x)expli(B% — k®n3) z/2kng]r+  wave solutions of Eqg4) and(5) are then the real quantities
e_(x)exp[i(B2 —k?n3)z/2kny]l, Eq. (2) reads [31]. When the relative phase between the two transverse
components is neithensr nor 7/2+ms (m=0,1,2,..) and/or
) ) ) ) 2 2.2 the phases of amplitudes are the transverse dimerfsiar

d’e. /dx*+[Ale.|*+(A+B)|es|*]e.=(BL —k°np)e., asx) dependent, the field componertig and E, of possible
11 solitary solutions become complex. The VNSE then involves

four real equationgrather than two of Eqs(5)] governing
which admits the fundamental and higher-order circularlythe real and imaginary parts of the two transverse compo-
polarized solitary waves forB,#3_ [18]. However, nents for so_lltary wave solutlons. The corr_espondlng Max-

Maxwell's equations do not accept this kind of vector Well's equations then include six real equatigrather than

solitary wave solutions. This can be illustrated by expandinglree of Eqs(4)] governing the real and imaginary parts of
Eq. (1) in terms of e.[E,=E—E,z=e, (X)exp(i S, 2)r he three field components. Vector dark solitons in a self-

+e_(x)exp(B_2)!], leading to defocusing nonlinear medium are such examples with com-
plex Ex, E,, andE,. In the moving coordinatesX(Y,Z)
transformed from(X=x-z/v, Y=y, Z=2z), these vector
dark solitons are stationary with respect to the propagation

VI. CIRCULARLY POLARIZED SOLITARY
WAVE STATES

de. —e.el*(B-—F1)2]

a2 +[A(le=+]e]?) distance, i.e.E,, ,(X,Y) areZ independent. The phases of
amplitudes of the solitons are transverse dimengsoch as
+(A+B)|es|?le. +0.5BeZe* 7_ X) dependent and so is the relative phase. In these general
situations, similarities and differences between the VNSE
(B2 —K2n2)e, + l,‘i ﬁ (12) and Maxwell's equations for predicting solitary wave solu-
= 0T 7 V3 dx’ tions are still expectethamely some solutions of the VNSE

can be recovered from Maxwell's equations, others are not,

and vice versp although details may differ from case to
which reduces to Eq.(11) when e,=0 (b=0) and case. These elaborations are again beyond the scope of the
—iB,v2de,/dx=d?{e, +e_exp[i(B_— B.)z]}/dx? where present paper and require further investigation. However, the
7n,.=1 andn_=exp[i(B, — B_)z]. Obviously, no stationary main conclusions drawn from the bright solitary waves for
solutions exist to Eq(12) for any values ofA andB (#0) the relative phase being 0 ew2 still apply; i.e., Maxwell's
except forB,=p_. equations have to be used for describing light evolution in a
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nonlinearity inducednisotropicmedium when the polariza- it is shown that arbitrarily linearly polarized vector solitary
tion characteristics of a solitary wave is considered. waves predicted by VNSE do not satisfy Maxwell's equa-
tions even in the limit of small induced refractive index
change under which VNSE is derived. The existence of
novel classes of hybrid TE-TM vector solitary waves is also

In summary, similarities and fundamental differences bepredicted and the bifurcation characteristics are investigated.
tween Maxwell’'s equations and the nonlinear Scimger

equation are examined. Our study shows that Maxwell's
equations have to be used for describing light evolution in a
nonlinearity induced anisotropic medium when the polariza- The optical sciences centre is a member of the Australian
tion characteristics of a solitary wave are considered, espd?hotonics Research Centre, and Y. Chen is grateful for the
cially for the higher-order solitary wave states. In particular,financial support of the Australian Research Council.
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z component is not chosen in this way, the solutions to VNSE
with real E, and E, considered in the paper are no longer
recoverable from Maxwell's equations because E@.
then become complex and consequeritly and E, become
complex.



