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Mechanics with fractional derivatives

Fred Riewe*
ENSCO, Inc., 445 Pineda Court, Melbourne, Florida 32940

~Received 5 September 1996!

Lagrangian and Hamiltonian mechanics can be formulated to include derivatives of fractional order@F.
Riewe, Phys. Rev.53, 1890 ~1996!#. Lagrangians with fractional derivatives lead directly to equations of
motion with nonconservative classical forces such as friction. The present work continues the development of
fractional-derivative mechanics by deriving a modified Hamilton’s principle, introducing two types of canoni-
cal transformations, and deriving the Hamilton-Jacobi equation using generalized mechanics with fractional
and higher-order derivatives. The method is illustrated with a frictional force proportional to velocity. In
contrast to conventional mechanics with integer-order derivatives, quantization of a fractional-derivative
Hamiltonian cannot generally be achieved by the traditional replacement of momenta with coordinate deriva-
tives. Instead, a quantum-mechanical wave equation is proposed that follows from the Hamilton-Jacobi equa-
tion by application of the correspondence principle.@S1063-651X~97!01403-7#

PACS number~s!: 03.20.1i, 46.10.1z, 46.30.Pa, 03.65.Sq
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I. INTRODUCTION

In 1931, Bauer@1# proved that it is impossible to use
variational principle to derive a single linear dissipati
equation of motion with constant coefficients. Bauer’s the
rem expresses the well-known belief that there is no dir
method of applying variational principles to nonconservat
systems, which are characterized by friction or other diss
tive processes. As stated by Lanczos@2#, ‘‘Forces of a fric-
tional nature . . . are outside the realm of variational pr
ciples, while the Newtonian scheme has no difficulty
including them.’’ The techniques of Lagrangian and Ham
tonian mechanics, which are derived from variational pr
ciples, thus appears to be out of reach.

The proof of Bauer’s theorem, however, relies on the ta
assumption that all derivatives are of integer order. If a L
grangian is constructed using noninteger-order derivativ
then the resulting equation of motion can be nonconserva
@3#. Because most classical processes observed in the p
cal world are nonconservative, it is important to be able
apply the power of variational methods to such cases. N
conservative quantum processes are common too, since
is dissipation in every nonequilibrium or fluctuating proce
including tunneling @4#, electromagnetic cavity radiatio
@5,6#, masers and parametric amplification@6#, Brownian
motion @7,8#, inelastic scattering@9,10#, squeezed states o
quantum optics@11#, and electrical resistance or Ohmic fric
tion @12#. Since the starting point for the quantum
mechanical treatment of a phenomenon is usually the Ha
tonian or a related function, variational principles a
important here too.

Besides the use of fractional derivatives, a number
other methods have been proposed that take advantag
loopholes in Bauer’s@1# theorem. Bateman@13# suggested
two methods based on the idea that a Lagrangian could
to multiple equations. His first technique introduces an a
iliary coordinatey that describes a reverse-time system w
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negative friction. The Lagrangian for the combined system

L5mẋẏ1 1
2g~xẏ2 ẋy!, ~1!

which leads to two equations of motion

mẍ1g ẋ50, mÿ2g ẏ50. ~2!

Here, dots indicate time derivatives. Even though the fi
equation describes a frictional force, the correspond
Hamiltonian leads to extraneous solutions that must be s
pressed and the physical meaning of the momenta is unc
The method is also described by Morse and Feshbach@14#
and has been used in several applications@11,15#.

Dekker @16# has added a clever twist to the auxiliar
coordinate method. He considers a Lagrangian which p
vides two first-order equations that are complex conjuga
of each other, so that there is no nonphysical auxiliary eq
tion. The equations can be combined to form a real, seco
order equation of motion. Dekker’s report@16# also provides
a comprehensive review of work related to dissipation
Lagrangian and Hamiltonian mechanics.

Bateman’s second method uses a Lagrangian that lea
an Euler-Lagrange equation that is, in some sense, equiva
to the desired equation of motion. For example, the tim
dependent Lagrangian

L5 1
2mẋ2e~g/m!t ~3!

leads to the Euler-Lagrange equation

e~g/m!t~mẍ1g ẋ!50. ~4!

The desired equation of motion is obtained if the fac
e(g/m)t is ignored. However, the corresponding momentu
and Hamiltonian do not appear to be physically meaning
Also, Ray @17# has shown that the Lagrangian should
interpreted as describing a system with increasing m
rather than one with dissipation. Other work using th
method can be found in Refs.@6,8,18#.
3581 © 1997 The American Physical Society
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An approach that applies only to quantum systems is
modify the Schro¨dinger equation directly@8,10,19#. For ex-
ample, a nonlinear term proportional to ln (c/c* ) can be
added, sometimes accompanied by a second term to en
conservation of energy. These types of modifications prov
quantum results corresponding to classical friction, althou
many appear to have other unsatisfactory or peculiar feat
@10#. This method does not correspond to any classical te
nique for including friction in Lagrangian and Hamiltonia
mechanics.

A standard device for dealing with dissipation is the Ra
leigh dissipation function~Ref. @20#, pp. 21 and 22!, which
can be used when frictional forces are proportional to vel
ity. For a particle in one dimension, Rayleigh’s function i

F5 1
2g ẋ2 ~5!

and Lagrange’s equation must be rewritten in the form

d

dt

]L

] ẋ
2

]L

]x
1

]F
] ẋ

50. ~6!

In this case, it takes two scalar functions to specify the eq
tion of motion. The momentum and the Hamiltonian are
same as if no friction were present, so they are of no
when attempting to add friction to Hamiltonian mechanics
quantum theory.

The most realistic approach is to include the microsco
details of the dissipation directly in the Lagrangian or Ham
tonian @4,5,7,9,12,21#. For example, if the dissipation is du
to the interaction with a bath of harmonic oscillators w
coordinatesyj , the following Lagrangian can be used:

L5
1

2
mẋ22V~x!1(

j

1

2
mjF ẏ j22v j

2S yj2 cj
mjv j

2xD 2G .
~7!

This method is well suited to a wide range of realistic app
cations that can be modeled with harmonic oscillators. Ho
ever, it is not intended to be a general method for introduc
friction into classical Lagrangian mechanics. It can be co
plex in practice and does not allow the functional form of t
frictional force to be chosen arbitrarily.

The techniques described above are not as simple
direct as conservative mechanics. To put the mechanic
nonconservative systems on the same footing as the co
vative, a method was presented in Ref.@3#, and is extended
in the present paper, that allows nonconservative forces t
calculated directly from a Lagrangian. Hamilton’s equatio
are derived from the Lagrangian and are equivalent to
Euler-Lagrange equation. The method is suggested by
observation that a term proportional to thenth-order deriva-
tive dnx/dtn in the Euler-Lagrange equation follows from
Lagrangian with a term proportional to (dn/2x/dtn/2)2. Hence
a frictional force of the formg(dx/dt) might follow directly
from a Lagrangian containing a term with the half-order d
rivative (d1/2x/dt1/2)2. It was shown in Ref.@3# that such
fractional derivatives in the Lagrangian do indeed descr
nonconservative forces. This technique overcomes man
the objections raised for the other methods, but its price
the complexity and unfamiliarity of fractional calculus.
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Derivatives of any noninteger order are usually term
‘‘fractional derivatives.’’ Since the mathematical techniqu
for dealing with derivatives of noninteger order are relative
unfamiliar, fractional calculus is reviewed in Sec. II. Th
methods of Lagrangian mechanics with fractional derivativ
from Ref.@3# are reviewed in Sec. III. Section IV provides
derivation of Hamilton’s equations using a modified Ham
ton’s principle. Mechanics with fractional derivatives is e
tended to included canonical transformations in Sec. V a
Hamilton-Jacobi theory in Sec. VI. In Sec. VII the metho
are illustrated using the example of a classical friction
force proportional to velocity. An appropriate quantizatio
procedure is then presented in Sec. VIII. In Sec. IX fractio
mechanics is used to solve a puzzle first published in 19
Conclusions are presented in Sec. X.

II. FRACTIONAL CALCULUS

A review of fractional calculus was presented in Ref.@3#,
as was a brief history of the subject. Additional details can
found in textbooks@22,23# and a recent review article@24#.
This section provides a summary of the needed mathema

The fractional integral of ordern is defined by

d2n f ~ t !

d~ t2c!2n 5
1

G~n!
E
c

t

~ t2t8!n21f ~ t8!dt8

@ Re~n!.0#. ~8!

If n is the smallest integer greater than Re (u), and
n5n2u, then the fractional derivative of orderu is defined
by

duf ~ t !

d~ t2c!u
5

dn

dtn
d2n f ~ t !

d~ t2c!2n . ~9!

For integer values ofu, the definition reduces to the usu
definition of derivative.

The above notation, which will be used throughout t
paper, follows Oldham and Spanier@22#. Another common
notation was introduced by Davis@25# and is used by Miller
and Ross@23#:

cDt
uf ~ t !5

duf ~ t !

d~ t2c!u
. ~10!

A definition, especially useful whent,c, is the Weyl deriva-
tive

cWt
uf ~ t !5~21!2u

duf ~ t !

d~ t2c!u
. ~11!

Use of the Weyl derivative would simplify certain formula
in this paper by eliminating the sometimes ambiguous fac
(21)2u. However, the notation is less physically meanin
ful, since the Weyl derivative reduces to the negative of
ordinary derivative whenu is an odd integer. All of the
above notations emphasize that the fractional derivative
function is not determined by the behavior of the function
the single valuet, but depends on the values of the functio
over the entire intervalc to t, just as a definite integral de
pends on values throughout the interval of integration.
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55 3583MECHANICS WITH FRACTIONAL DERIVATIVES
It is illuminating to consider the special casec50. Then
the expression for the derivative of a power oft has the same
form as for integer-order derivatives:

dutn

dtu
5

n!

~n2u!!
tn2u. ~12!

The factorialsn! and (n2u)! must now be interpreted as th
gamma functionsG(n11) andG(n2u11). Another special
case isc52`, for which

dueat

d~ t1`!u
5aueat, ~13!

which is the same as the expression for integer-order der
tives. Equations~12! and ~13! can be used to calculate th
fractional derivatives of any functions that can be expres
as sums of powers or exponentials.

In this paper integer-order derivatives with respect tot
may be denoted with dots, so thatẋ5dx/dt and
ẍ5d2x/dt2. Derivatives of arbitrary order with respect tot
are sometimes indicated by a subscript or superscript in
rentheses:x(u,a)5x(u,a)5dux/d(t2a)u. The constant may
be omitted if it is zero or if its value is clear from the contex

A formula we will need is integration by parts of a fra
tional derivative. The conventional formula for integer-ord
derivatives is

E
a

bdnf ~ t !

dtn
g~ t !dt2~21!2nE

a

b

f ~ t !
dng~ t !

dtn
dt

5 (
k50

n21

~21!k
dn2k21f ~ t !

dtn2k21

dkg~ t !

dtk U
a

b

. ~14!

Love and Young@26# have obtained a fractional-order fo
mula

E
a

b d2n f ~ t !

d~ t2a!2n g~ t !dt5~21!nE
a

b

f ~ t !
d2ng~ t !

d~ t2b!2n dt

~15!

for 0,n,1. To obtain a general formula for integration b
parts for orderu, we choosen to be the smallest intege
greater thanu, and letn5n2u. Then application of Eq.~14!
followed by Eq.~15! yields the general formula

E
a

bduf ~ t !

dtu
g~ t !dt2~21!2uE

a

b

f ~ t !
dug~ t !

dtu
dt

5 (
k50

n21

~21!k
dn2k21f ~ t !

dtn2k21

dkg~ t !

dtk U
a

b

. ~16!

Whendkf /dtk50 or dkg/dtk50 for k50 to n21, this be-
comes the result we will use,

E
a

b duf ~ t !

d~ t2a!u
g~ t !dt5~21!2uE

a

b

f ~ t !
dug~ t !

d~ t2b!u
dt.

~17!
a-

d

a-

r

III. GENERALIZED MECHANICS
WITH FRACTIONAL DERIVATIVES

This section provides background and notation. It a
reviews the results of Ref.@3#, which introduced the gener
alization of mechanics to include derivatives of noninteg
order. Section IV begins the presentation of material lead
to Hamilton-Jacobi theory and a corresponding quantu
mechanical wave equation.

A. Background

In traditional Newtonian mechanics, equations of moti
normally have derivatives of first or second order only. T
corresponding Lagrangians have derivatives of only first
der. Ostrogradsky@27# published a generalization of La
grangian and Hamiltonian mechanics to include derivati
of arbitrarily high~integer! order. Such dynamical equation
with higher-order derivatives can be used to describe p
ticles with internal structure, such as spin or internal mot
@28#. The formalism was extended to quantum electrodyna
ics by Bopp@29# and Podolsky@30# and to quantum field
theory by Green@31#. Generalized mechanics is reviewed
Ref. @32# and recent applications are described in Re
@33,34#. The present work and Ref.@3# can be considered to
be a further generalization of mechanics to include nonin
ger derivatives of all orders.

B. Notation

The Lagrangian for generalized mechanics is a function
coordinatesxr , the time parametert, and derivatives ofxr
with respect tot. The subscriptr51, . . . ,R indicates the
particular coordinate~for example,x15x, x25y, x35z).
The order of derivatives can be any non-negative real or
although in principle there is no reason to exclude more g
eral derivatives, such as complex order. If the Lagrangia
a function of the coordinatexr andN different derivatives of
xr , then we will uses(n) to indicate the order of thenth
derivative, wheren51, . . . ,N. For example, if the lowest-
order derivative isd1/2x/d(t2b)1/2 , then s(1)5 1

2. In Ref.
@3# it was found that if the fractional calculus of variations
applied over the time intervalt5a to b, then the Lagrangian
can contain two types of derivatives:

qr ,s~n!5qr ,s~n!,b5
ds~n!xr

d~ t2b!s~n! ~18!

and

qr ,s8~n!,a5
ds8~n!xr

d~ t2a!s
8~n!
, ~19!

wheres(n) ands8(n) can be any non-negative real numbe
„or complex numbers with Re@s(n)#>0…. We defines(0) to
be 0, so thatqr ,s(0) denotes the coordinatexr . The subscript
r may sometimes be omitted. For some applications, it m
be more convenient to streamline the notation by writi
qr ,n or to number all coordinates consecutively:qi .

As in Ref.@3#, we will simplify the derivations by using a
Lagrangian that does not contain any derivatives with resp
to t2a. The straightforward extension of each final result
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Lagrangians with both types of derivatives will then be p
vided. In derivations that use only coordinates defined by
~18!, the subscriptb on the coordinates will be omitted.

The notationL($qr ,s(n)%,t) will be used to indicate tha
the Lagrangian is a function of the parametert and the set of
all qr ,s(n) for r51, . . . ,R and n50, . . . ,N. The notation
L($qr ,s8(n),a ,qr ,s(n),b%,t) designates a Lagrangian that is
function of both types of coordinates. Because summati
over r will always be over all values, we will use the usu
convention of summing over repeated indices. However,
will not be able to use the summation convention forn in all
cases, so all summations overn will be indicated explicitly.

C. Euler-Lagrange equation

The Euler-Lagrange equation was derived two differ
ways in Ref.@3#. The first was a generalization of Euler
original ~integer-order! method based on finite difference
and the second followed the same pattern as in conventi
classical mechanics~Ref. @20#, Chap. 2! by developing and
applying fractional calculus of variations. The use of calc
lus of variations avoids ambiguities of Euler’s method, su
as exchanging the order of limits and summation. The
points of the integration interval are chosen to be fixed,
that we can exchange the order of integration and differ
tiation. The path is varied, but not the time, so we can
change the order of differentiation.

By varying the integral

J5E
a

b

L~$qr ,s8~n!,a ,qr ,s~n!,b%,t !dt, ~20!

and using fractional integration by parts, Eq.~17!, it was
shown in Ref.@3# that we obtain the Euler-Lagrange equ
tion

(
n50

N

~21!s~n!
ds~n!

d~x2a!s~n!

]L

]qr ,s~n!,b

1 (
n51

N8

~21!2s8~n!
ds8~n!

d~x2b!s8~n!

]L

]qr ,s8~n!,a
50. ~21!

D. Hamilton’s equations

In Ref. @3#, Hamilton’s equations were derived using th
Euler-lagrange equation. An alternative method of obtain
the same result uses a variational principle. The deriva
will be presented in Sec. IV.

IV. MODIFIED HAMILTON’S PRINCIPLE

The modified Hamilton’s principle is a variational prin
ciple that yields Hamilton’s equations. It is the launchi
point for canonical transformations and Hamilton-Jac
theory. The derivation here with fractional derivatives fo
lows the conventional method given by Goldstein~Ref. @20#,
p. 225!. Using the procedure described in Sec. III B, we w
initially assume thatL contains only coordinatesqr ,s(n),b as
defined in Eq.~18! and the results will then be extended
also include coordinatesqr ,s8(n),a from Eq. ~19!.
-
q.

s

e

t

al

-
h
d
o
n-
-

g
n

i

As in Ref. @3#, define the momenta

pr ,s~n!5pr ,s~n!,b

5 (
k50

N2n21

~21!s~k1n11!2s~n11!

3
ds~k1n11!2s~n11!

d~ t2a!s~k1n11!2s~n11!

3
]L

]qr ,s~k1n11!
, ~22!

wheren50, . . . ,N21. It is also possible to define the mo
menta recursively by

pr ,s~N21!5
]L

]qr ,s~N!
~23!

and

pr ,s~k21!5~21!s~k11!2s~k!
ds~k11!2s~k!

d~ t2a!s~k11!2s~k! pr ,s~k!

1
]L

]qr ,s~k!
~k51, . . . ,N21!. ~24!

The Hamiltonian is

H5 (
n51

N

qr ,s~n!pr ,s~n21!2L, ~25!

where the summation convention implies summation o
r .

The variational principle

dJ~a!5dE
a

b

L„$qr ,s~n!~ t,a!%,t…dt50 ~26!

can be rewritten in terms of the Hamiltonian as

dI ~a!5dE
a

bS (
n51

N

qr ,s~n!pr ,s~n21!2H D dt50. ~27!

Then

05dI ~a!5
]I

]a
da

5daE
a

b

(
n50

N21 S ]qr ,s~n11!

]a
pr ,s~n!1qr ,s~n11!

]pr ,s~n!

]a

2
]H

]qr ,s~n!

]qr ,s~n!

]a
2

]H

]pr ,s~n!

]pr ,s~n!

]a Ddt. ~28!

In terms ofqr ,s(n) , rather thanqr ,s(n11) , this becomes
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05dI ~a!5
]I

]a
da

5daE
a

b

(
n50

N21 S pr ,s~n!

ds~n11!2s~n!

d~ t2b!s~n11!2s~n!

]qr ,s~n!

]a
1

ds~n11!2s~n!qr ,s~n!

d~ t2b!s~n11!2s~n!

]pr ,s~n!

]a
2

]H

]qr ,s~n!

]qr ,s~n!

]a
2

]H

]pr ,s~n!

]pr ,s~n!

]a D dt

5daE
a

b

(
n50

N21 S ~21!s~n11!2s~n!
ds~n11!2s~n!pr ,s~n!

d~ t2a!s~n11!2s~n!

]qr ,s~n!

]a
1
ds~n11!2s~n!qr ,s~n!

d~ t2b!s~n11!2s~n!

]pr ,s~n!

]a

2
]H

]qr ,s~n!

]qr ,s~n!

]a
2

]H

]pr ,s~n!

]pr ,s~n!

]a Ddt, ~29!

where the last step used integration by parts, Eq.~17!. Next define the variations

dqr ,s~n!5
]qr ,s~n!

]a
da ~30!

and

dpr ,s~n!5
]pr ,s~n!

]a
da. ~31!

Then we have

05E
a

b

(
n50

N21 S ~21!s~n11!2s~n!
ds~n11!2s~n!pr ,s~n!

d~ t2a!s~n11!2s~n! dqr ,s~n!1
ds~n11!2s~n!qr ,s~n!

d~ t2b!s~n11!2s~n! dpr ,s~n!2
]H

]qr ,s~n!
dqr ,s~n!2

]H

]pr ,s~n!
dpr ,s~n!Ddt

5E
a

b

(
n50

N21 F S ~21!s~n11!2s~n!
ds~n11!2s~n!pr ,s~n!

d~ t2a!s~n11!2s~n! 2
]H

]qr ,s~n!
D dqr ,s~n!1S ds~n11!2s~n!qr ,s~n!

d~ t2b!s~n11!2s~n! 2
]H

]pr ,s~n!
D dpr ,s~n!G dt. ~32!
by
-

uler-
-
ions
Since the variationsdqr ,s(n) anddpr ,s(n) are independent, we
obtain Hamilton’s canonical equations:

]H

]qr ,s~n!
5~21!s~n11!2s~n!

ds~n11!2s~n!

d~ t2a!s~n11!2s~n! pr ,s~n! ,

]H

]pr ,s~n!
5qr ,s~n11! , ~33!

]H

]t
52

]L

]t
.

If the Lagrangian is a function of coordinates defined
both Eqs.~18! and~19!, then we must define additional mo
menta

pr ,s8~n!,a5 (
k50

N82n21

~21!2[s8~k1n11!2s8~n11!]

3
ds8~k1n11!2s8~n11!

d~ t2b!s8~k1n11!2s8~n11! S ]L

]qr ,s8~k1n11!,a
D ,
~34!

wheren50, . . . ,N821. The Hamiltonian is then
H5 (
n51

N

qr ,s~n!,bpr ,s~n21!,b1 (
n51

N8

qr ,s8~n!,apr ,s8~n21!,a2L.

~35!

For this Hamiltonian, we have the additional equations

]H

]qr ,s8~n!,a
5~21!2[s8~n11!2s8~n!]

3
ds8~n11!2s8~n!

d~ t2b!s8~n11!2s8~n!
pr ,s8~n!,a , ~36!

]H

]pr ,s8~n!,a
5qr ,s8~n11!,a .

These results are the same as were derived using the E
Lagrange equation in Ref.@3#. The present method of deri
vation is needed as a basis for the canonical transformat
in Sec. V.

For integer-order derivatives, it can be shown~Ref. @20#,
p. 220! that

dH

dt
5

]H

]t
52

]L

]t
. ~37!
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Hence if the Lagrangian is not an explicit function of tim
and all derivatives are of integer order, then the Hamilton
is a constant of the motion. However, if there are noninteg
order derivatives in the Lagrangian, it was shown in Ref.@3#
that Eq.~37! does not hold and therefore a Hamiltonian w
fractional derivatives is not generally a constant of the m
tion and the system is nonconservative.

V. CANONICAL TRANSFORMATIONS

Transformations are called canonical if they preserve
form of Hamilton’s canonical equations. They transform t
coordinatesqs( i ) and momentaps( i ) into new variables
QS( i )(q,p,t) and PS( i )(q,p,t) and provide a new function
K(Q,P,t) that plays the part of the Hamiltonian. For sim
plicity, subscripts will usually be omitted when showin
functional dependence ofK and the subscriptr will be omit-
ted for coordinates and momenta. The derivations will
extensions of the method used by Goldstein~Ref. @20#, Chap.
8! for conventional mechanics.

To be canonical, new coordinates must satisfy a modi
Hamilton’s principle of the form

dE
a

bS (
i50

N21

PS~ i !QS~ i11!2K~Q,P,t !D dt50. ~38!

At the same time, the original coordinates satisfy the sim
principle

dE
a

bS (
i50

N21

ps~ i !qs~ i11!2H~q,p,t !D dt50. ~39!

For these equations to hold, the integrands must differ by
total time derivative of an arbitrary functionF:

S (
i50

N21

PS~ i !QS~ i11!2K~Q,P,t !D
2S (

i50

N21

ps~ i !qs~ i11!2H~q,p,t !D 5
dF

dt
. ~40!

This relation follows from

E
a

bdF

dt
dt5F~b!2F~a!. ~41!

SinceF is not varied at the end points, we automatically g

dE
a

bdF

dt
dt5d@F~b!2F~a!#50. ~42!

The functionF, which completely determines the transfo
mation, is called the generating function. ForF to produce a
transformation from one variable to another, it must be
function of both the old and new variables. We thus ha
four traditional forms for F: F1(q,Q,t), F2(q,P,t),
F3(p,Q,t), andF4(p,P,t).

For mechanics with fractional derivatives, these gene
ing functions will be seen to lead to awkward expressio
involving fractional time derivatives. However, satisfacto
n
r-

-

e

e

d

r

e

t

a
e

t-
s

transformations can be obtained using generating funct
with different variablesq̄s( i ) andQ̄S( i ) , defined by

dq̄s~ i !
dt

5qs~ i11! ,
dQ̄S~ i !

dt
5QS~ i11! . ~43!

For integer-order derivatives, these new coordinates are
same as the usual canonical coordinates. However, w
dealing with fractional derivatives, the coordinatesq̄s( i ) and
Q̄S( i ) will not be canonical, so all canonical expressions m
be written in terms of the original coordinatesqs( i ) and
QS( i ) . The four kinds of generating functions are the
F̄1(q̄,Q̄,t), F̄2(q̄,P,t), F̄3(p,Q̄,t), and F̄4(p,P,t). For our
present purposes, there is no need to deal withF̄3 or F̄4. We
will refer to transformations using the original canonical c
ordinates as ‘‘direct’’ transformations, to distinguish the
from the transformations using theq̄s( i ) and Q̄S( i ) . We will
first derive the canonical transformations forF̄1 and F̄2 and
then state the results for the less useful direct canonical tr
formations.

A. Canonical transformations of the first kind

For a generating functionF̄1(q̄,Q̄,t) that is a function of
q̄s( i ) andQ̄S( i ) , the transformation is

S (
i50

N21

ps~ i !qs~ i11!2H D 2S (
i50

N21

PS~ i !QS~ i11!2K D
5

d

dt
F̄1~ q̄,Q̄,t !

5 (
i50

N21
]F̄1

]q̄s~ i !

dq̄s~ i !
dt

1 (
i50

N21
]F̄1

]Q̄S~ i !

dQ̄S~ i !

dt
1

]F̄1

]t

5 (
i50

N21
]F̄1

]q̄s~ i !
qs~ i11!1 (

i50

N21
]F̄1

]Q̄S~ i !

QS~ i11!1
]F̄1

]t
.

~44!

Since the variablesq andQ are considered to be indepen
dent, the equation can hold identically only if the coefficien
of qs( i11) andQs( i11) are each equal to zero. Hence we ha
the transformation equations

ps~ i !5
]F̄1

]q̄s~ i !
,

PS~ i !5
]F̄1

]QS~ i !
, ~45!

K5H1
]F̄1

]t
.

B. Canonical transformations of the second kind

Following the traditional method for integer-order deriv
tives, we can define the generating functionF̄2(q̄,P,t) as the
Legendre transformation
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F̄2~ q̄,P,t !5F̄1~ q̄,Q̄,t !1 (
i50

N21

PS~ i !Q̄S~ i ! . ~46!

Solve this forF̄1 and substitute into Eq.~44! to get

S (
i50

N21

ps~ i !qs~ i11!2H D 5S (
i50

N21

PS~ i !QS~ i11!2K D
1
d

dt S F̄22 (
i50

N21

PS~ i !Q̄S~ i !D
52K1

d

dt
F̄22 (

i50

N21
dPS~ i !

dt
Q̄S~ i !

52K1 (
i50

N21
]F̄2

]q̄s~ i !
qs~ i11!

1 (
i50

N21
]F̄2

]PS~ i !

dPS~ i !

dt
1

]F̄2

]t

2 (
i50

N21
dPS~ i !

dt
Q̄S~ i ! . ~47!

Equating the coefficients ofqs( i11) anddPS( i ) /dt gives us
the transformation equations

ps~ i !5
]F̄2

]q̄s~ i !
,

Q̄S~ i !5
]F̄2

]PS~ i !
, ~48!

K5H1
]F̄2

]t
.

C. Direct canonical transformations

The most direct derivation of the canonical transform
tions does not use the auxiliary coordinatesq̄s( i ) and Q̄S( i ) .
However, if only the canonical coordinates are used, cer
terms can only be made to cancel by keeping all terms un
the variational integral, as with Eqs.~38! and~39!, and using
integration by parts. As seen from Eq.~17!, integration by
parts introduces fractional time derivatives that complic
the transformation equations. These time derivatives ca
difficulties with the Hamilton-Jacobi and wave equation
Since derivations of the direct transformations follow t
same pattern as used in Secs. V A and V B, the derivat
will not be shown. The direct canonical transformation of t
first kind is

~21! [s~ i11!21]
d[s~ i11!21]ps~ i !
d[s~ i11!21]~ t2a!

5
]F1

]qs~ i !
,

~21! [S~ i11!21]
d[S~ i11!21]PS~ i !

d[S~ i11!21]~ t2a!
5

]F1

]QS~ i !
, ~49!

K5H1
]F1

]t
-

in
er

e
se
.

s

and the direct canonical transformation of the second kin

d[S~ i11!2S~ i !]21

d~ t2b! [S~ i11!2S~ i !]21QS~ i !5
]F2

]PS~ i !
,

ps~ i !5~21!12[s~ i11!2s~ i !]
d12[s~ i11!2s~ i !]

d~ t2a!12[s~ i11!2s~ i !]

]F2

]qs~ i !
,

~50!

K5H1
]F2

]t
.

In this paper these direct transformations will only be us
for purposes of comparison.

VI. HAMILTON-JACOBI THEORY

As in conventional mechanics, the Hamilton-Jacobi eq
tion results from a canonical transformation for which t
new variables are constant in time. For integer-order der
tives, such a transformation will follow automatically if th
new HamiltonianK is identically zero, since from the equa
tions of motion we then have

Q̇i5
]K

]Pi
50,

~51!

Ṗi52
]K

]Qi
50.

For fractional derivatives satisfyingS( i11)2S( i )<1, we
can derive a similar relationship from

d[S~ i11!2S~ i !]

d~ t2b! [S~ i11!2S~ i !] QS~ i !5
]K

]PS~ i !
50,

~52!

~21! [S~ i11!2S~ i !]
d[S~ i11!2S~ i !]

d~ t2a! [S~ i11!2S~ i !] PS~ i !5
]K

]QS~ i !
50

if we differentiate each side by
(21)12[S( i11)2(S( i )]@d12[S( i11)2S( i )] /d(t2a)12[S( i11)2S( i )] #
or d12[S( i11)2S( i )] /d(t2b)12[S( i11)2S( i )] to get

Q̇S~ i !5
d12[S~ i11!2S~ i !]

d~ t2a!12[S~ i11!2S~ i !]050,

ṖS~ i !5~21!12[S~ i11!2S~ i !]
d12[S~ i11!2S~ i !]

d~ t2a!12[S~ i11!2S~ i !]050.

~53!

If necessary, intermediate coordinates may have to be
fined to ensure thatS( i11)2S( i )<1.

SinceK is related toH by
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K~Q,P,t !5H~q,p,t !1
]F̄2

]t
, ~54!

it follows thatK will be zero if F̄2 satisfies

H~q,p,t !1
]F̄2

]t
50. ~55!

It will be convenient to expressp in terms of the trans-
formation equation

ps~ i !5
]F̄2

]q̄s~ i !
, ~56!

in which case we obtain the Hamilton-Jacobi equation

HS qs~ i ! , ]F̄2

]q̄s~ i !
,t D 1

]F̄2

]t
50. ~57!

The solution (F̄2 in this case! of the Hamilton-Jacobi equa
tion is usually denoted byS and called Hamilton’s principa
function.

Note thatS(q̄,P,t) is a function ofq̄ rather than the ca
nonical coordinateq. If we wish to find a direct Hamilton-
Jacobi equation in terms ofq, a similar derivation using a
generating functionF2(q,P,t) from Sec. V C yields the
more complicated equation

HS qs~ i ! ,~21!12[S~ i11!2S~ i !]
d12[S~ i11!2S~ i !]

d~ t2a!12[S~ i11!2S~ i !]

3
]F2~q,P,t !

]qs~ i !
,t D 1

]F2~q,P,t !

]t
50. ~58!

We will not make use of this form of the equation, except
brief references in Secs. VII and VIII.

We know that sinceṖS( i )50, the momenta must be con
stant. Hence the solution of the Hamilton-Jacobi equat
can be written asS(q̄s( i ) ,aS( i ) ,t), where eachaS( i ) is a con-
stant. We then have

ps~ i !5
]S~ q̄s~ i ! ,aS~ i ! ,t !

]q̄s~ i !
. ~59!

The other transformation equation provides the new cons
coordinates

bS~ i !5Q̄S~ i !5
]S~ q̄s~ i ! ,aS~ i ! ,t !

]aS~ i !
. ~60!

This equation can be solved forq(as( i ) ,bS( i ) ,t) to get the
final solution to the problem.

An interesting result of conventional classical mechan
is that the solutionS to the Hamilton-Jacobi equation equa
to within an additive constant, the integral*Ldt. We now
show that the same holds true for the case of fractional
rivatives. The time derivative ofS can be written
r

n

nt

s

e-

dS

dt
5 (

i50

N21
]S

]q̄s~ i !

dq̄s~ i !
dt

1 (
i50

N21
]S

]PS~ i !

dPS~ i !

dt
1

]S

]t

5 (
i50

N21
]S

]q̄s~ i !

dq̄s~ i !
dt

1
]S

]t

5 (
i50

N21
]S

]q̄s~ i !
qs~ i11!1

]S

]t
, ~61!

since the momenta are constant in time. By substituting fr
the Hamilton-Jacobi equation, we get

dS

dt
5 (

i50

N21
]S

]q̄s~ i !
qs~ i11!2H ~62!

and from

ps~ i !5
]S~ q̄s~ i ! ,aS~ i ! ,t !

]q̄s~ i !
~63!

we find

dS

dt
5 (

i50

N21

ps~ i !qs~ i11!2H5L, ~64!

or

S5E Ldt1 const. ~65!

VII. APPLICATION TO LINEAR FRICTION

The formalism of the preceding sections can be illustra
with the example of a frictional force proportional to velo
ity. For simplicity, we will choose a Lagrangian that is
function of coordinates defined by Eq.~18!. We will consider
the limiting case in whicha→b while keepinga,b, so that
all fractional derivatives can be approximated by derivativ
of the formdu/d(t2b)u.

The three terms in the Lagrangian

L5
1

2
mS dxdt D

2

2V~x!1 i
1

2
gS d1/2x

d~ t2b!1/2D
2

5
1

2
mẋ22V~x!1 i

1

2
gx~1/2,b!

2 ~66!

represent kinetic energy, potential energy, and linear frict
energy. The methods of Secs. III–VI can be applied
choosingN52, s(0)50, s(1)5 1

2, and s(2)51. The La-
grangian can be written as a function of the generalized
ordinates:

L5 1
2mq1

22V~q0!1 i 12gq1/2
2 . ~67!

The Euler-Lagrange equation is

]L

]q0
1 i

d1/2

d~ t2b!1/2
]L

]q1/2
2

d

dt

]L

]q1
50, ~68!
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which becomes

mẍ52g ẋ2
]V~x!

]x
. ~69!

The momenta are

p05S ]L

]q1/2
D1 i

d1/2

d~ t2b!1/2S ]L

]q1
D

5 igx~1/2,b!1 imx~3/2,b! , ~70!

p1/25S ]L

]q1
D5mẋ.

The Hamiltonian is

H5q1/2p01q1p1/22L

5
p1/2
2

2m
1q1/2p01V~q0!2 i

1

2
gq1/2

2 ~71!

and Hamilton’s equations are

]H

]q0
5 i

d1/2

d~ t2b!1/2
p0 ,

]H

]p0
5q1/2,

~72!
]H

]q1/2
5 i

d1/2

d~ t2b!1/2
p1/2,

]H

]p1/2
5q1 .

The first of Hamilton’s equations yields the Euler-Lagran
equation, the one to its right is an identity, and the remain
two equations are equivalent to the definition of the m
menta.

If we define coordinates

q̄05q~21/2!5
1

G~ 1
2 !
E
b

t

~ t2t8!21/2q~ t8! dt8,

~73!
q̄1/25q0 ,

then the Hamilton-Jacobi equation can be obtained from
~57!. Written in terms of the canonical coordinates, t
Hamilton-Jacobi equation is

1

2m S ]S

]q0
D 21q1/2

]S

]q~21/2!
1V~q0!2 i

1

2
gq1/2

2 52
]S

]t
.

~74!

The rule for finding the corresponding quantum-mechan
wave equation will be shown in Sec. VIII to be the same
in conventional mechanics. This rule yields

F2\2
1

2m

]2

]q0
2 2 i\q1/2

]

]q~21/2!
1V~q0!2 i

1

2
gq1/2

2 Gc
5 i\

]c

]t
. ~75!
g
-

q.

l
s

The wave equation is just the conventional Schro¨dinger
equation, but with two extra terms involving fractional d
rivatives.

The methods of Sec. VI also provide a direct Hamilto
Jacobi equation in terms of the canonical variables. From
~58! we find

2
1

2m S d1/2

d~ t2a!1/2
]S

]q1/2
D 21~21!1/2q1/2

d1/2

d~ t2a!1/2
]S

]q0

1V~q0!2 i
1

2
gq1/2

2 52
]S

]t
. ~76!

As discussed earlier, this form of the equation is unsatisf
tory for most purposes, due to the fractional time derivativ

This simple example illustrates the basic techniques
applying fractional-derivative mechanics to linear frictio
but it does not deal with more realistic scenarios that mi
include driving noise or more general frictional forces.

VIII. WAVE EQUATION

A. Wrong way

Our next goal is to find a quantum wave equation cor
sponding to a Hamiltonian with fractional derivatives. As
first guess, we might try the usual substitution,

pr ,n→2 i\
]

]qr ,n
~77!

to obtain the wave equation

HS qr ,n ,2 i\
]

]qr ,n
Dc5 i\

]c

]t
. ~78!

With a simple example, we can easily show that this r
may lead to the wrong result. Consider the Hamiltonian

H5
P2

2m
1Qp1V~q!2 i

1

2
gQ2. ~79!

Given this Hamiltonian, it is reasonable to think that it obe
Hamilton’s equations

]H

]p
5q̇,

]H

]P
5Q̇,

]H

]q
52 ṗ,

]H

]Q
52 Ṗ, ~80!

which lead to the equation of motion

]V

]q
5mq̈̈2 igq̈. ~81!

If the Hamiltonian is quantized using Eq.~77!, it is easy to
see that the wave equation corresponds to this equatio
motion.

Unfortunately, Eq.~79! is only a different notation for the
fractional-derivative Hamiltonian given by Eq.~71!, which
corresponds to a different equation of motion,

]V

]q
52mq̈2gq̇. ~82!
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In order to obtain Eq.~82! from Eq. ~79!, we must use a
different set of Hamilton’s equations, given by Eq.~72!. We
see that a Hamiltonian can correspond to more than one
of Hamilton’s equations. However, the conventional quan
zation procedure for the Hamiltonian leads to only a sin
wave equation, the one corresponding to the conventio
Hamilton’s equations. We must seek out a different path
quantization.

B. Right way

A standard method of showing the correspondence
tween quantum and classical mechanics is to start with
Schrödinger wave equation and derive the classi
Hamilton-Jacobi equation as an approximation@35#. The
procedure is straightforward and can be illustrated for
case of one dimension with coordinatex. Begin with the
Schrödinger equation,

F2\2
1

2m

]2

]x2
1V~x!Gc5 i\

]c

]t
~83!

and write the wave function as

c~x,t !5A~x,t !exp S i\ S~x,t ! D , ~84!

where the amplitude and phase are determined by the
functionsA(x,t) and S(x,t). The wave equation then be
comes

F2
\2

2m

]2A

]x2
2
i\

m

]A

]x

]S

]x
2

i\

2m
A

]2S

]x2
1

1

2m
AS ]S

]xD
2

1AV~x!Gc5F i\ ]A

]t
2A

]S

]t Gc. ~85!

If we separate this expression into real and imaginary pa
we get two equations:

]S

]t
1

1

2m S ]S

]xD
2

1V~x!5
\2

2mA

]2A

]x2
~86!

and

m
]A

]t
1

]A

]x

]S

]x
1
1

2
A

]2S

]x2
50. ~87!

Equation~86! is the classical Hamilton-Jacobi equation, wi
an extra term that is a sort of quantum potential. The te
becomes zero for\50, leading to the well-known~and
sometimes misleading! observation that quantum mechani
reduces to classical mechanics in the limit as\ approaches 0
In this sense, the Hamilton-Jacobi equation is the sh
wavelength limit of the Schro¨dinger equation~Ref. @20#, pp.
307–314!. Equation~87! is the classical continuity equatio
with densityr5A2 and current densityj5(A2/m)]S/]x.

The same procedure can be used to determine the ap
priate wave equation corresponding to a fractional-deriva
classical system described by Eq.~74!. In analogy to Eq.
~83!, we start by choosing the wave equation
et
i-
e
al
o

e-
e
l

e

al

s,

t-

ro-
e

F2\2
1

2m

]2

]x2
2 i\x~1/2!

]

]x~21/2!
1V~x!2 i

1

2
gx~1/2!

2 Gc
5 i\

]c

]t
. ~88!

We need to show that this wave equation reduces to
Hamilton-Jacobi equation in the classical limit. This task c
be accomplished by writing the wave function as

c~x,x~1/2! ,x~21/2! ,t !5A~x,x~1/2! ,x~21/2! ,t !

3exp S i\ S~x,x~1/2! ,x~21/2! ,t ! D .
~89!

The differentiations can be performed easily since there
no fractional derivatives of the wave function in Eq.~88!,
only integer-order derivatives with respect to fractional c
ordinates. The fractional wave equation becomes

2
\2

2m

]2A

]x2
2 i\x~1/2!

]A

]x~21/2!
1Ax~1/2!

]S

]x~21/2!
2
i\

m

]A

]x

]S

]x

2
i\

2m
A

]2S

]x2
1

1

2m
AS ]S

]xD
2

1AV~x!2 i
1

2
Agx~1/2!

2

5 i\
]A

]t
2A

]S

]t
, ~90!

which reduces to the Hamilton Jacobi equation

]S

]t
1

1

2m S ]S

]xD
2

1x~1/2!

]S

]x~21/2!
1V~x!2 i

1

2
gx~1/2!

2

5
\2

2mA

]2A

]x2
, ~91!

provided we satisfy the continuity equation

m
]A

]t
1mx~1/2!

]A

]x~21/2!
1

]A

]x

]S

]x
1
1

2
A

]2S

]x2
50. ~92!

This procedure demonstrates the consistency between
classical and quantum equations in the limit as\ approaches
0, which is the desired result. It is not a derivation of t
classical equations from the quantum, since the two class
equations are not necessarily the real and imaginary par
the wave equation.

The success of the above procedure suggests the fol
ing rule: The Hamilton-Jacobi equation

HS qs~ i ! , ]S

]q̄s~ i !
,t D 1

]S

]t
50 ~93!

corresponds to the quantum wave equation

FHS qs~ i ! ,2 i\
]

]q̄s~ i !
,t D Gc5 i\

]c

]t
. ~94!



se
he
es

o
n
-
a

be
qu

on
b
r
lity

in

ro

g-
ced
he
ng-
eth-
. To
its
al

ct
ys-
ca-
an-
hat
ce
on-
ues.
, it
nge
ians
de-
to

pos-
ges

55 3591MECHANICS WITH FRACTIONAL DERIVATIVES
This wave equation differs from the incorrect one discus
in Sec. VIII A because differentiation is with respect to t
coordinates q̄s( i ) , rather than the canonical coordinat
qs( i ) .

It may be possible to find a quantum wave equation c
responding to the more complicated form of the Hamilto
Jacobi equation, Eq.~58!, which includes fractional time de
rivatives. However, only integer-order derivatives obey
simple product rule, so there is no simple connection
tween such a wave equation and the Hamilton-Jacobi e
tion, as there was for Eq.~90!. Moreover, the fractional time
derivatives would result in an unsatisfactory wave equati
since there are difficulties defining a positive-definite pro
ability density when time derivatives are not of first orde
Even the Klein-Gordon equation allows negative probabi
densities because of its second-order time derivative@36#.
For these reasons, we consider Eq.~94! to be the appropriate
wave equation.

IX. PUZZLE

Bateman@13# tells the story of an interesting problem
which, at the time, appeared impossible to solve. Accord
to Bateman’s account, R. C. Tolman posed the question
whether there were equations that could not be obtained f
a Lagrangian. E. T. Whittaker responded with

ẍ2x50,
~95!

ÿ2 ẋ50,
.

s

s.
d

r-
-

-
a-

,
-
.

g
of
m

which he believed might not be derivable from any Lagran
ian. In an attempt to solve the problem, Bateman introdu
the two tricks described in Sec. I of the present work: t
method of dual equations and the time-dependent Lagra
ian. Bateman attempted to find a Lagrangian using his m
ods, but concluded that a solution did not seem possible
my knowledge, this puzzle has remained unsolved since
publication by Bateman in 1931. However, with fraction
mechanics~using the conventions of Sec. VII! it is trivial to
find a solution:

L5 ẋ21 ẏ21x21 ẋy2 ix ~1/2!y~1/2! . ~96!

X. CONCLUSION

By using fractional derivatives, it is possible to constru
a complete mechanical description of nonconservative s
tems, including Lagrangian and Hamiltonian mechanics,
nonical transformations, Hamilton-Jacobi theory, and qu
tum wave mechanics. The example in Sec. VIII shows t
the formalism can be applied to a classical frictional for
proportional to velocity. There is no assurance that all n
conservative systems can be treated by these techniq
However, by using fractional derivatives of various orders
is possible to choose Lagrangians that result in a wide ra
of dissipative Euler-Lagrange equations. These Lagrang
can describe nonconservative forces involving fractional
rivatives, rather than the functions more commonly used
describe dissipation. Hence we are presented with new
sibilities for dissipative equations, and also new challen
posed by the complexity of the mathematical methods.
.
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