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Beam coupling impedances of obstacles protruding into a beam pipe

Sergey S. Kurennoy
AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 23 September 1996!

The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator
are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle.
Formulas for a few important particular cases including both essentially three-dimensional objects like a post
or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broad-
band impedance contributions from such discontinuities.@S1063-651X~97!00903-3#

PACS number~s!: 41.75.2i, 41.20.2q
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I. INTRODUCTION

Due to high currents in modern accelerators and collid
even contributions from small discontinuities of the vacuu
chamber to the impedance budget of the machine have t
accounted for. Numerous pumping holes—a few hundred
meter—in the vacuum screen of the Large Hadron Colli
~LHC! @1# can serve as an example. Their total contribut
to the machine impedance in the initial design was calcula
@2,3# and found to be dangerously large, close to the be
instability threshold, but after the proposed design change
was reduced by more than an order of magnitude@4#. This
analytical calculation was based on the Bethe theory of
fraction of electromagnetic waves by a small hole in a me
plane @5#. The method’s basic idea is that the hole in t
frequency range where the wavelength is large compare
the typical hole size can be replaced by two induced dipo
an electric and a magnetic one. Since essentially the s
idea works for any small obstacle, the method was exten
for arbitrarily small discontinuities on the pipe of a
arbitrary-shaped cross section, see@6# for the summary and
references therein. The problem of calculating the impeda
contribution from a given small discontinuity was therefo
reduced to finding its electric and magnetic polarizabiliti
Useful analytical results in this direction have been obtain
for various axisymmetric obstacles@7#, as well as for holes
and slots: circular@5# and elliptic@8# hole in a zero-thickness
wall, circular @9# and elliptic @10# hole in a thick wall, vari-
ous slots~some results are compiled in@11#!, and a ring-
shaped cut@12#.

In the present paper we utilize the method to calculate
coupling impedances of a few types of obstacles protrud
inside the beam pipe, such as a narrow post or a mask in
cepting synchrotron radiation. Formulas are derived wh
make practical estimates very simple. Numerical simulati
required to obtain similar results are necessarily thr
dimensional~3D! ones, and therefore are rather involve
This statement is generally applicable for any small disc
tinuities, but especially for those protruding into the vacuu
chamber.

II. GENERAL SOLUTION

For brevity we restrict ourselves to the longitudinal co
pling impedance of a small discontinuity on the wall of
551063-651X/97/55~3!/3529~4!/$10.00
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circular beam pipe of radiusR, which is @2#

Z~k!52 iZ0k
ae1am

4p2R2 , ~1!

when the wavelength 2p/k is large compared to the obstac
size. HereZ05120p V is the impedance of free spac
k5v/c is the wave number, andae ,am are the electric and
magnetic polarizabilities of the discontinuity. One shou
note that the transverse impedance is proportional to
same combination of polarizabilities,ae1am , and the real
part of the impedance is small at such frequencies~see@6,4#
for detail, as well as for other chamber cross sections!. Let
the obstacle shape be a half ellipsoid with semiaxisa in the
longitudinal direction~along the chamber axis!, b in the ra-
dial direction, andc in the azimuthal one, witha,b,c!R,
which means that the obstacle is small, and the Bethe
proach can be applied. To find the polarizabilities, one ne
to calculate the induced electric dipole momentP of the
obstacle illuminated by a homogeneous radial electric fi
E0, and the magnetic dipole momentM when it is illumi-
nated by an azimuthal magnetic fieldH0. This problem,
however, is essentially the same as that for an ellipsoid
mersed in a homogeneous field. Using the known solution
the last problem, e.g.,@8#, and adding obvious symmetr
considerations, we get

ae5
P

2«0E0
5
2pabc

3I b
~2!

and

am5
M

2H0
5

2pabc

3~ I c21!
, ~3!

where

I b5
abc

2 E
0

` ds

~s1b2!3/2~s1a2!1/2~s1c2!1/2
, ~4!

and I c is given by Eq.~4! with b and c interchanged. Al-
though Eqs.~2!–~4! solve the problem in general, importan
practical results can be obtained by considering particu
cases.
3529 © 1997 The American Physical Society
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III. POST AND MASK

In the casea5c, b5h we have an ellipsoid of revolution
and the integral in Eq.~4! can be expressed in terms of th
hypergeometric function2F1 to yield

ae5
2pa2h

2F1~1,1;5/2;12h2/a2!
~5!

and

am5
2pa2h

3@2F1~1,1;5/2;12a2/h2!21#
. ~6!

In the limit a!h, corresponding to a pinlike obstacle, we g

ae.
2ph3

3 @ ln~2h/a!21#
,

that is much larger thanam.22pa2h/3. Note that in this
limit am.2V, whereV52pa2h/3 is the volume occupied
by the obstacle~and subtracted from that occupied by t
beam magnetic field!, similarly to the axisymmetric case@7#.
These results give us a simple expression for the induc
impedance of a narrow pin~post! of heighth and radiusa,
a!h, protruding radially into the beam pipe:

Z~k!.2 ikZ0
h3

6pR2@ ln~2h/a!21#
. ~7!

@One could use the known result for the induced elec
dipole of a narrow cylinder parallel to the electric field@13#.
It will only change ln(2h/a)21 in Eq. ~7! to ln(4h/a)27/3.#
The factorF[(ae1am)/V is plotted in Fig. 1 versus the
ratioh/a. The figure also shows comparison with the asym
totic approximation given by Eq.~7!.

One more particular case of interest here ish5a, i.e., a
semispherical obstacle of radiusa. From Eqs.~5! and~6! the
impedance of such a discontinuity is

Z~k!52 ikZ0
a3

4pR2 , ~8!

which is 3p/2 times that for a circular hole of the sam
radius in a thin wall@2#.

FIG. 1. FunctionF[(ae1am)/V versus aspect ratioh/a for a
pinlike obstacle ~solid line!. The electric contribution is shor
dashed, the magnetic one is long dashed, and the dotted line s
the asymptotic form used in Eq.~7!.
t
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Another practical result that can be derived from the g
eral solution, Eqs.~2!–~4!, is the impedance of a mask in
tended to intercept synchrotron radiation. We setb5c5h,
so that our model mask has the semicircular shape with
dius h in its largest transverse cross section. Then the in
gral in Eq.~4! is reduced to

I b5I c5
1

32
F1S 1,12 ; 52 ;12

h2

a2D ,
and we can further simplify the result for two particul
cases.

The first one is the thin mask,a!h, in which case
ae.8h3/3, and again it dominates the magnetic ter
am.2V522pah2/3. The coupling impedance for such a
obstacle—a half disk of radiush and thickness 2a, a!h,
transverse to the chamber axis—is therefore

Z~k!52 ikZ0
2h3

3p2R2 F11S 4p 2
p

4 D ah1••• G , ~9!

where the next-to-leading term is shown explicitly.
In the opposite limit,h!a, which corresponds to a

long ~along the beam! mask, the leading terms
ae.2am.4pah2/3 cancel each other. As a result, the im
pedance of a long mask with lengthl52a and heighth,
h! l , is

Z~k!.2 ikZ0
4h4

3pR2l S ln lh21D , ~10!

which is relatively small due to the ‘‘aerodynamic’’ shape
this obstacle, in complete analogy with results for long ell
tic slots @2,3,11#.

Figure 2 shows the impedance of a mask with a giv
semicircular transverse cross section of radiush versus its
normalized half length,a/h. The comparison with the
asymptotic approximations Eqs.~9! and ~10! is also shown.
One can see that the asymptotic behavior~10! starts to work
well only for very long masks, namely, whenl52a>10h.
Figure 2 demonstrates that the mask impedance dep
rather weakly on the length. Even a very thin mask (a!h)
contributes as much as 8/(3p).0.85 times the semispher

ws

FIG. 2. ImpedanceZ of a mask@in units of that for a semisphere
with the same depth, Eq.~8! with a5h# versus its length. The
narrow-mask approximation, Eq.~9!, is short dashed, and the long
mask one, Eq.~10!, is long dashed.
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(a5h) impedance, Eq.~8!, while for long masks the imped
ance decreases slowly: atl /h520, it is still 0.54 of that for
the semisphere.

In practice, however, the mask has usually an abrupt
toward the incident synchrotron radiation, so that it is rat
one-half of a long mask. From considerations above one
suggest as a reasonable impedance estimate for such a
continuity the half sum of the impedances given by Eqs.~9!
and ~10!. This estimate is corroborated by 3D numeric
simulations using theMAFIA code@14#, at least, for the mask
which are not too long. In fact, the low-frequency impe
ances of a semisphere and a half semisphere of the s
depth—which can be considered as a relatively short real
mask—were found numerically to be almost equal~within
the errors!, and close to that for a longer half mask. Fro
these results one can conclude that a good estimate fo
mask impedance is given simply by Eq.~8!. The simulations
mentioned are rather involved, and a detailed comparison
well as numerical results for other types of discontinuiti
will be reported elsewhere.

IV. AXISYMMETRIC IRIS

Following a similar procedure one can also easily obt
the results for axisymmetric irises having a semielliptic p
file in the longitudinal chamber cross section, with dep
b5h and length 2a along the beam. For that purpose, o
should consider limitc→` in Eq. ~4! to calculate polariz-
abilities ãe and ãm per unit length of the circumference o
the chamber transverse cross section. The broadband im
ances of axisymmetric discontinuities have been studie
@7#, and the longitudinal coupling impedance is given by

Z~k!52 iZ0k
ãe1ãm

2pR
, ~11!

quite similar to Eq.~1!. As c→`, the integralI c→0, and
I b is expressed in elementary functions as

I b5
1

22
F1S 1,12 ;2;12

h2

a2D5
a

a1h
.

It gives us immediately

ãe5
p

2
h~h1a!, ãm52

p

2
ah, ~12!

and the resulting impedance of the iris of depthh with the
semielliptic profile is simply

Z~k!52 ikZ0
h2

4R
, ~13!

which proves to be independent of the iris thicknessa. The
same result has been recently obtained by Gluckstern
Kurennoy using another method@15#. One should emphasiz
that ãm in Eq. ~12! is just an iris cross-section area~with
negative sign!, which is correct for any small axisymmetri
discontinuity, as was pointed out in@7#. However, calculat-
ing ãe is not so easy: a conformal mapping was used for t
purpose in@7# for irises ~as well as for chamber enlarge
ments! having a trapezoid~or rectangular, or triangular! pro-
ut
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file. An interesting fact is that the leading behavior for th
irises of all shapes is exactly the same as Eq.~13!.

It is easy to check the result in Eq.~12! for the particular
caseh5a, when the iris has a semicircular profile of radiu
a. The required conformal mapping for this case is ve
simple,w5(z/a1a/z)/2. The ratio of the coefficients of the
second and first terms in this expression isãe /p, cf. @7#,
which gives usãe5pa2, in agreement with Eq.~12!.

The more general conformal mapping from the upper h
planew into z with the boundary including the iris having
semielliptic profile is given by

z5aw1hAw221.

We need an inverse mapping, but, fortunately, it is enoug
find its asymptotic behavior at largez andw @7#, which is

w5
z

a1h
1
h

2

1

z
1•••.

Comparison of the second and first terms leads us exact
the result forãe in Eq. ~12!.

In fact, one can readily obtain an answer also for iris
having the profile shaped as a circle segment with the ch
of lengths along the chamber wall in the longitudinal dire
tion, and opening angle 2w, where 0<w<p. The conformal
mapping for this case is

w5
sb

12~12s/z!b ,

whereb5p/(p2w). Considering its asymptotic behavior a
z→`, and comparing termsz and 1/z, one gets
ãe5ps2(b221)/12, which can be used in Eq.~11! to derive
the impedance. Just for reference, we present the imped
of such an exotic iris, expressed in terms of its heig
h5s(12cosw)/(2sinw):

Z~k!52 ikZ0
h2

2R~12cosw!2

3Fw~2p2w!

3~p2w!2
sin2w2

2w2sin2w

2p G . ~14!

Again, the impedance is proportional toh2, but the coeffi-
cient now depends~in fact, rather weakly! on w.

V. SUMMARY

Combining above the general method for calculating i
pedances of small discontinuities with the well-known so
tion of the problem of an ellipsoid in a homogeneous fie
we obtained a few analytical results for both 3D and axisy
metric obstacles protruding inside the beam pipe. These
sults can greatly simplify calculations of the broadband c
tributions to the coupling impedances from su
discontinuities, especially in the 3D case. One should m
tion that the present approach does not work for enlar
ments of the vacuum chamber. However, the existing res
for holes and slots@2–4,6# and for axisymmetric enlarge
ments@7# cover this case quite well.

It is worthwhile to mention that the above results for t
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polarizabilities can also be used to obtain the real part of
longitudinal impedance, which is proportional to (ae

21am
2 ),

as a function of frequency, and then to calculate the rela
loss factors for the considered discontinuities, see@6# for
detail.
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