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Beam coupling impedances of obstacles protruding into a beam pipe

Sergey S. Kurennoy
AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 23 September 1996

The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator
are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle.
Formulas for a few important particular cases including both essentially three-dimensional objects like a post
or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broad-
band impedance contributions from such discontinuifi84063-651X%97)00903-3

PACS numbes): 41.75-i, 41.20—q

I. INTRODUCTION circular beam pipe of radiuR, which is[2]

Due to high currents in modern accelerators and colliders, ot a
even contributions from small discontinuities of the vacuum Z(k)= —iZok%, (1)
chamber to the impedance budget of the machine have to be 4m°R
accounted for. Numerous pumping holes—a few hundred per i
meter—in the vacuum screen of the Large Hadron Collidethen the wavelength2/k is large compared to the obstacle
(LHC) [1] can serve as an example. Their total contributionSize. HereZ,=120m Q is the impedance of free space,
to the machine impedance in the initial design was calculate§ = @/C is the wave number, ande, a, are the electric and
[2,3] and found to be dangerously large, close to the bearfagnetic polarizabilities qf the d|scont|nuny. O_ne should
instability threshold, but after the proposed design changes ftote that the transverse impedance is proportional to the
was reduced by more than an order of magnit[#le This  Same compmatlon of polarlzab|lltlea/,e+ A s and. the real
analytical calculation was based on the Bethe theory of difPart of the impedance is small at such frequentse(6,4]
fraction of electromagnetic waves by a small hole in a metafor detail, as well as for other chamber cross secjiobst
plane[5]. The method’s basic idea is that the hole in thethe obstacle shape be a half ellipsoid with semiaxia the
frequency range where the wavelength is large compared t#@ngitudinal direction(along the chamber axisb in the ra-
the typical hole size can be replaced by two induced dipolesdial direction, andc in the azimuthal one, witla,b,c<R,
an electric and a magnetic one. Since essentially the sanféhich means that the obstacle is small, and the Bethe ap-
idea works for any small obstacle, the method was extendeBfoach can be applied. To find the polarizabilities, one needs
for arbitrarily small discontinuities on the pipe of an to calculate the induced electric dipole momehtof the
arbitrary_shaped cross section, iééfor the summary and obstacle illuminated by a homogeneous radial electric field
references therein. The problem of calculating the impedancgo. and the magnetic dipole momekt when it is illumi-
contribution from a given small discontinuity was thereforenated by an azimuthal magnetic fieldo. This problem,
reduced to finding its electric and magnetic polarizabilities.however, is essentially the same as that for an ellipsoid im-
Useful analytical results in this direction have been obtainednersed in a homogeneous field. Using the known solution of
for various axisymmetric obstacl¢Z], as well as for holes the last problem, e.g[8], and adding obvious symmetry
and slots: circulaf5] and elliptic[8] hole in a zero-thickness Cconsiderations, we get
wall, circular[9] and elliptic[10] hole in a thick wall, vari-
ous slots(some results are compiled [11]), and a ring- P 2mabc
shaped cuf12]. Y 260Es 3l

In the present paper we utilize the method to calculate the
coupling impedances of a few types of obstacles protrudingind
inside the beam pipe, such as a narrow post or a mask inter-
cepting synchrotron radiation. Formulas are derived which M 2mabc
make practical estimates very simple. Numerical simulations am:Z_Ho :m' ©)
required to obtain similar results are necessarily three-
dimensional(3D) ones, and therefore are rather involved.ypere
This statement is generally applicable for any small discon-
tinuities, but especially for those protruding into the vacuum abc (= ds

=" f o (s+

chamber. b2 75+ a2) P54 c2) 12 4

@

and | is given by Eq.(4) with b andc interchanged. Al-
though Eqs(2)—(4) solve the problem in general, important

For brevity we restrict ourselves to the longitudinal cou-practical results can be obtained by considering particular
pling impedance of a small discontinuity on the wall of a cases.

IIl. GENERAL SOLUTION
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FIG. 1. FunctionF=(a+ a,,)/V versus aspect ratib/a for a FIG. 2. Impedanc& of a masKin units of that for a semisphere

pinlike obstacle(solid line). The electric contribution is short with the same depth, Eq8) with a=h] versus its length. The
dashed, the magnetic one is long dashed, and the dotted line showarrow-mask approximation, E¢P), is short dashed, and the long-
the asymptotic form used in E§7). mask one, Eq(10), is long dashed.

Il POST AND MASK Another practical result that can be derived from the gen-
eral solution, Egs(2)—(4), is the impedance of a mask in-
tended to intercept synchrotron radiation. We lsetc=h,

so that our model mask has the semicircular shape with ra-
dius h in its largest transverse cross section. Then the inte-

In the casea=c, b=h we have an ellipsoid of revolution,
and the integral in Eq(4) can be expressed in terms of the
hypergeometric functionF, to yield

2ma%h gral in Eq.(4) is reduced to
ae= NI )
2F1(1,1,5/2,1 h/a) - _1F 1151 h2
and b= lem 32 T 0T g2)
_ 27a’h ©) and we can further simplify the result for two particular
M= 3[LF1(1,1;5/2;1-a%h?) - 1] cases.

The first one is the thin maska<h, in which case
In the limita<h, corresponding to a pinlike obstacle, we get o,=8h%3, and again it dominates the magnetic term,
am=—V=—2mah?/3. The coupling impedance for such an

3
= 2mh obstacle—a half disk of radius and thickness @, a<h,
¢ 3[In(2h/a)—1]" transverse to the chamber axis—is therefore
that is much larger tham,,=— 2wa?h/3. Note that in this 2hs 4 \a
limit a,=—V, whereV=_2ma?h/3 is the volume occupied Z(k)=—ikZoz2m2 1+(;— Zlnt } 9

by the obstaclgand subtracted from that occupied by the
beam magnetic _fle)d3|mlla_rly to the aX|symmetr|c ca.s{é]. . where the next-to-leading term is shown explicitly.

These results give us a simple expression for the inductive In the opposite limit.h<a, which corresponds to a
impedance of a narrow pitpos) of heighth and radiusa, long (along the bea,r)n m:':lsk, the leading terms

a<h, protruding radially into the beam pipe: ae=— am=4mah?/3 cancel each other. As a result, the im-

h3 pedance of a long mask with lengtl-2a and heighth,
~—j <]
Z(k) 'kZ°6wR2[In(2h/a)— ok (7) h<l,is
4
[One could use the known result for the induced electric Z(k):—ikzoiz(lnl—— ) (10)
dipole of a narrow cylinder parallel to the electric fi¢ltB]. 37R\"h

It will only change In(2/a)—1 in Eq. (7) to In(4h/a)—7/3.] o _ _
The factorF=(a.+ ay)/V is plotted in Fig. 1 versus the Whlch is relatl\_/ely small due to the “aerodynamlc” shape _of
ratio h/a. The figure also shows comparison with the asymp-his obstacle, in complete analogy with results for long ellip-

totic approximation given by Eq7). tic slots[2,3,11.

One more particular case of interest herdisa, i.e., a Figure 2 shows the impedance of a mask with a given
semispherical obstacle of radiasFrom Eqs(5) and(6) the semicircular transverse cross section of radiusersus its
impedance of such a discontinuity is normalized half length,a/h. The comparison with the

asymptotic approximations Eq&) and (10) is also shown.
_ One can see that the asymptotic behavid) starts to work
Z(k)= _'kZO477_R2’ ®  well only for very long masks, namely, whdr=2a= 10h.
Figure 2 demonstrates that the mask impedance depends
which is 37/2 times that for a circular hole of the same rather weakly on the length. Even a very thin maakgh)
radius in a thin wall[2]. contributes as much as 8/3=0.85 times the semisphere
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(a=h) impedance, Eq8), while for long masks the imped- file. An interesting fact is that the leading behavior for thin
ance decreases slowly: ih=20, it is still 0.54 of that for irises of all shapes is exactly the same as @68).
the semisphere. It is easy to check the result in E(L2) for the particular

In practice, however, the mask has usually an abrupt cutaseh=a, when the iris has a semicircular profile of radius
toward the incident synchrotron radiation, so that it is rathem. The required conformal mapping for this case is very
one-half of a long mask. From considerations above one casimple,w=(z/a+a/z)/2. The ratio of the coefficients of the
suggest as a reasonable impedance estimate for such a diecond and first terms in this expressionais/ 7, cf. [7],
continuity the half sum of the impedances given by E§s.  which gives usa,= wa?, in agreement with Eq(12).
and (10). This estimate is corroborated by 3D numerical The more general conformal mapping from the upper half
simulations using th&AriA code[14], at least, for the masks planew into z with the boundary including the iris having a
which are not too long. In fact, the low-frequency imped- semielliptic profile is given by
ances of a semisphere and a half semisphere of the same
depth—which can be considered as a relatively short realistic z=aw+hyw?—1.
mask—uwere found numerically to be almost eq@aithin ) ) o
the errory, and close to that for a longer half mask. From e need an inverse mapping, but, fortunately, it is enough to
these results one can conclude that a good estimate for tif@d its asymptotic behavior at largeandw [7], which is
mask impedance is given simply by E§). The simulations
mentioned are rather involved, and a detailed comparison, as ih g£+

a+ z

well as numerical results for other types of discontinuities,
will be reported elsewhere.

W:

Comparison of the second and first terms leads us exactly to
the result fora, in Eq. (12).
In fact, one can readily obtain an answer also for irises
Following a similar procedure one can also easily obtainhaving the profile shaped as a circle segment with the chord
the results for axisymmetric irises having a semielliptic pro-of lengths along the chamber wall in the longitudinal direc-
file in the longitudinal chamber cross section, with depthtion, and opening angle@ where G< ¢< . The conformal
b=h and length 2 along the beam. For that purpose, onemapping for this case is
should consider limic—< in Eq. (4) to calculate polariz-
abilities @, anda,, per unit length of the circumference of We sp
the chamber transverse cross section. The broadband imped- 1-(1-s/z)?’
ances of axisymmetric discontinuities have been studied in

[7], and the longitudinal coupling impedance is given by ~Whereg=m/(m— ¢). Considering its asymptotic behavior at
z—o, and comparing termsz and 1, one gets

= ms?(B%2—1)/12, which can be used in E.1) to derive
the impedance. Just for reference, we present the impedance
of such an exotic iris, expressed in terms of its height

h=s(1— cosp)/(2sing):

IV. AXISYMMETRIC IRIS

11

quite similar to Eq.(1). As c—, the integrall .—0, and

I, is expressed in elementary functions as He

1 1 h?2
IbZEZFl 1,_,2,1_ ;

2 a+h’

It gives us immediately

~ 7 —_ m
ae=§h(h+a), am=—§ah, (12)

and the resulting impedance of the iris of depthvith the
semielliptic profile is simply

2

Z(k)= —ikzoﬁ, (13

which proves to be independent of the iris thicknasIhe

20 =~ KZo3r 1~ coa?

e(2m—¢) 2¢—sin2¢
>Sirf @ — .
3(m— o) 2

(14)

Again, the impedance is proportional k3, but the coeffi-
cient now depend§n fact, rather weaklyon ¢.

V. SUMMARY

Combining above the general method for calculating im-
pedances of small discontinuities with the well-known solu-
tion of the problem of an ellipsoid in a homogeneous field,
we obtained a few analytical results for both 3D and axisym-
metric obstacles protruding inside the beam pipe. These re-

same result has been recently obtained by Gluckstern arglilts can greatly simplify calculations of the broadband con-

Kurennoy using another meth¢#l5]. One should emphasize tributions to

that @, in Eq. (12) is just an iris cross-section aréaith

the coupling impedances from such
discontinuities, especially in the 3D case. One should men-

negative sigj which is correct for any small axisymmetric tion that the present approach does not work for enlarge-

discontinuity, as was pointed out [i7]. However, calculat-

ments of the vacuum chamber. However, the existing results

ing @, is not so easy: a conformal mapping was used for thafor holes and slot§2—4,6 and for axisymmetric enlarge-
purpose in[7] for irises (as well as for chamber enlarge- ments[7] cover this case quite well.

mentsg having a trapezoidor rectangular, or triangulapro-

It is worthwhile to mention that the above results for the
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