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Local nonequilibrium effect on undercooling in rapid solidification of alloys
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A local nonequilibrium approach to rapid solidification of undercooled alloys is presented. Taking into
account the finite speed of mass signals, a steady-state solution to the nonisothermal rapid solidification
problem has been obtained. We have found that, if the solidification front moves at a velocityV equal to or
higher than the diffusive speedVD

L in the liquid, a partitionless thermal-controlled situation takes place. The
solidification mechanism changes atV5VD

L and the constitutional undercooling is lacking ahead of the solidi-
fication front. Some comparisons with the known experimental and theoretical results are discussed.
@S1063-651X~96!03312-0#
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I. INTRODUCTION

Considerable study has been given recently to the p
cesses of rapid solidification, which leads to a wide spectr
of applications for production of novel materials with th
advent of new sophisticated technologies such as laser
electron beam treatment of surfaces, quenching from the
uid state, and the levitation technique@1,2#. The most impor-
tant practical results of rapid solidification are the formati
of homogeneous solid solutions and morphological tran
tions in growth forms of crystals@1–4#.

It is well known that rapid solidification and recrystalliza
tion occur under conditions that are far from local equil
rium @1–7#. However, as a rule, existing theoretical trea
ments take into account only the deviation from chemi
equilibrium at the interface introducing the velocity depe
dent partition coefficientk(V), whereV is the velocity of the
solidification front motion@10–12#. All aspects of the mod-
els assume the local equilibrium in the bulk phases and
on classical irreversible thermodynamics by Onsager
Prigogine. Such a modeling is only valid for a relatively lo
interface velocityV!VD

L , whereVD
L is the diffusive speed in

the liquid, i.e., the maximum speed of propagation of
concentrational perturbations. In this case, classical ther
dynamics and the transport theory give reliable results
most situations encountered in practice@1#.

Solidification of undercooled melts can be so fast that
interface velocityV is of the order of or even greater than th
diffusive speedVD

i in the bulk liquid (i5L) or solid (i5S)
@1–4,7#. In these cases there is no local equilibrium in t
bulk phases and the solute flux cannot be described by
classical mass transport theory. Thus one should take
account the deviations from local equilibrium in phas
which affect both the solute diffusion field and the interfa
kinetics. Our theoretical treatments@13–17# have shown that
in rapid solidification the diffusion field in alloys~and in
some special cases the thermal field in pure substances! is far
from local equilibrium. In these situations the concentrat
~temperature! and its flux differ significantly from those pre
dicted by the classical local equilibrium theory.
551063-651X/97/55~1!/343~10!/$10.00
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The main purpose of the present article is to obtain
undercoolings at the solidification front and in the liqu
phase under local nonequilibrium conditions. The article
organized as follows. In Sec. II we consider the gene
model which takes into account the deviation from the lo
equilibrium of the diffusion field inside the phases and at
solidification front. This model incorporates the diffusiv
speedVD

i as the most decisive parameter governing the s
ute concentration field in the bulk phases. In Sec. III
consider an important case of steady-state regime of so
fication, and in Sec. IV we accentuate the undercooling
the liquid phase ahead of the solidification front. Our a
proach is applied to the case of flat liquid-solid interfa
motion and we perform an analysis of the undercooling
fluence on the transition from diffusion-limited growth to th
thermal and kinetic regimes of rapid solidification. In Sec.
on the basis of our model we give the numerical estimate
undercoolings and solute partitioning for Ag-Cu and Si-
dilute alloys. A summary is given in Sec. VI.

II. THE MODEL

The new approach to local nonequilibrium heat-ma
transfer is nowadays generally referred to as extended
versible thermodynamics by Jou, Casas-Vazquez, and Le
@18# and is the subject of an increasing interest. There
some other methods which also do not adopt the local e
librium assumption~see, for example,@13,14,19#, and refer-
ences therein!. These theories lead to Fourier’s and Fick
generalized laws by including relaxation effects, which co
vert the ordinary constitutive equations for the heat and m
fluxes into evolution equations for these quantities.

Let us consider the nonisothermal movement of
liquid-solid interface in a diluted chemically inert binary a
loy. Using the relaxational approach@13,18# to the problem
of local nonequilibrium diffusion mass transport during s
lidification @4,15,17,20#, we may write Fick’s generalized
law as
343 © 1997 The American Physical Society
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344 55PETER GALENKO AND SERGEI SOBOLEV
Ji1tD
i ]Ji

]t
1Di“Ci50. ~2.1!

Here indexi is relative to the liquid phase (i5L) or the solid
one (i5S); Ci is the mass concentration of the dissolv
component in a binary diluted alloy;Ji is the vector of the
diffusion flux of the dissolved component;t D

i is the time of
diffusional relaxation of the collective of atoms~molecules,
particles! to their equilibrium state in a local volume of a
loy; Di is the diffusion coefficient.

Equation~2.1! can be treated as the simplest generali
tion of the classical Fick law for mass transport in bo
phases, which takes into account the relaxation to local e
librium of the mass flux. As it follows from Eq.~2.1!, the
concentration gradient“Ci at a point of alloy defines a mas
flux not at timet as in the local-equilibrium approximatio
but with a delay equal to the relaxation timet D

i .
The mass transfer in both phases is governed by the

ance law

]Ci

]t
1“•Ji50. ~2.2!

In contrast with Fick’s law, which leads to the diffusio
equation of parabolic type, Eqs.~2.1! and ~2.2! give rise to
the hyperbolic equation for the solute concentration@13–20#

]Ci

]t
1tD

i ]2Ci

]t2
5“•~Di“Ci !. ~2.3!

Equation~2.3! is the simplest mathematical model combi
ing the diffusive ~dissipative! mode and the propagativ
~wave! mode of mass transport under local nonequilibriu
conditions. This equation implies a finite spe
VD

i 5(Di /t D
i )1/2 of concentrational perturbations. We ca

also consider the speedVD
i as a maximum speed at whic

the diffusional perturbations can propagate in the phases
The local equilibrium solidification takes place when t

time t D
i 5Di /(VD

i )2 of the local diffusion relaxation of the
chemical composition is essentially less than the charact
tic solidification timetS5Di /V

2, whereV5~n•V! is the nor-
mal velocity of the liquid-solid interface;n is the normal
interface vector pointed towards the melt;V is the vector of
the solidification front velocity, and~•! is the scalar produc
of vectors. In this case, the time of relaxation becomes
finitesimal t D

i →0 and Eqs.~2.1! and ~2.3! describe Fick’s
diffusion transfer in the local equilibrium limits. Thus th
transition to the classical Fick law occurs ast D

i →0,
VD

i →`, i.e., when the diffusive speedVD
i is maximum in

comparison with the liquid-solid interface velocityV.
When the solidification front moves with a higher velo

ity, V;VD
i , local equilibrium, strictly speaking, does not o

cur and the mass flux does not depend on the instant valu
the chemical composition gradient but is determined by
local prehistory of the mass transfer in the solidifying all
@see Refs.@13–15# and Eq.~2.1!#. The case 0,V,VD

i cor-
responds to intermediate regimes of the alloy solidificat
from a metastable liquid phase to a stable solid one w
there may be derivations of concentrations from their lo
equilibrium values described by a Boltzmann-type distrib
tion. It should be noted thatVD

i limits only the speed of
-

i-

al-

is-

-

of
e

n
n
l
-

concentrational perturbations, but the normal veloc
V5~n•V! of the liquid-solid interface can be greater tha
VD

i .
The simple numerical estimates of quenching from

liquid state have shown@15# that the solidification velocityV
may be close to the speedVD

L of the diffusive speed even a
cooling rates of 104–105 K/s and local-nonequilibrium ef-
fects appear in a solidifying alloy.

Recently we have discussed the coupled transfer p
cesses which have different space-time scales in a nonl
medium@4,13,15#. For the nonisothermal rapid solidificatio
of undercooled alloys we can give the following estimat
When the thermal conductivity of the alloy is determined
the phonon oscillation in the solid phase, molecular~ionic!
diffusion in a liquid or electron transfer, then thermal rela
ation in the alloy takes place at a speedVT;103–106 m/s.
Using typical values of the diffusion coefficien
Di510210–10211 m2/s and a relaxation time
t D
i 510210–10211 s ~see, for example,@8#! for the diffusive

speedVD
i , we haveVD

i 5(Di /t D
i )1/250.1–10 m/s. In any

case, the ratioVD
i /VT is low: VD

i /VT;1022–1025. It fol-
lows from this that the local equilibrium in the thermal fie
of alloys establishes much faster than the local equilibri
of the diffusion field. In this connection, we may describe t
heat transfer in both phases as it is governed by the clas
local equilibrium heat conduction equation with heat sou

¸ i

]Ti
]t

5“•~l i“Ti !1QVd~r2R!, ~2.4!

whered~r2R! is the Dirac delta function which depends o
the radius vectorr of a point in alloy and the radius vectorR
of the interface position;T is the temperature;̧ andl are
the heat capacity and thermal conductivity, respectively;Q is
the latent heat of solidification.

To derive the interface conditions, we integrate Eqs.~2.2!
and~2.4! over an infinitesimal zone that includes the liqui
solid interface. The interface conditions are

n•~l i“Ti !uS
L1~n•V!Q50, TL5TS, ~2.5!

n•~Ji2VCi !uS
L50. ~2.6!

After differentiating Eq.~2.6! by t, we have

tD
i S ]Ji

]t
2Ci

]V

]t
2V

]Ci

]t D •nuS
L50. ~2.7!

Then, subtracting Eqs.~2.6! and ~2.7! and combining the
result with Eq.~2.1! we obtain

FDi“Ci1SV1tD
i ]V

]t DCi1tD
i V

]Ci

]t G•nuS
L50. ~2.8!

Note that the relaxation effects lead to the fact that condit
~2.8! includes not only the interface velocityV, but also the
interface acceleration]V/]t @17#.

The connection between the interface temperat
TI5TL5TS and the concentrationCL is given as@1–4#

TI5TA2m~V!CL2V/b02GK, ~2.9!



y
e
ls
e;

th
-
de

-

al

q
e
an
e
ot

e

re

55 345LOCAL NONEQUILIBRIUM EFFECT ON UNDERCOOLING . . .
CS5k~V!CL , ~2.10!

where TA is the temperature of solidification of the allo
main component;V is the normal interface velocity in th
vector n direction;G is a capillarity constant which equa
TAg/Q; g is the surface tension of the liquid-solid interfac
K is the mean curvature of the liquid-solid interface;b0 is
the kinetic coefficient of interface motion;m is the tangent of
the nonequilibrium liquidus line slope which depends on
interface velocity;k is the nonequilibrium partition coeffi
cient which also depends on the interface velocity and
fines the solute trapping.

Thus Eqs.~2.3! and~2.4! of heat-mass transfer with inter
face conditions~2.5!, ~2.8!–~2.10!, and the functionsk, K,m
describe the problem of rapid solidification under loc
nonequilibrium conditions.

III. THE STEADY-STATE REGIME

Now let us obtain a steady-state solution of the set of E
~2.3! and ~2.4!. We view the solidification from a referenc
frame attached to a solidification front moving at a const
velocity V in the j5x2Vt direction. Here we neglect th
temperature dependence of the diffusion coefficient in b
the liquid (i5L) and the solid (i5S). In this version, Eqs.
~2.3! and ~2.4! of heat and mass transfer have the form

d2Ti
dj2

1
V

ai

dTi
dj

1
QV

l i
d~j!50, ~3.1!
al

ol

-

e.
-
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-
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h

Di@12V2/~VD
i !2#

d2Ci

dj2
1V

dCi

dj
50, ~3.2!

whereai5l i /¸ i is the thermal diffusivity. We can get th
conditions on the solidification front~j50! from boundary
conditions~2.5! and ~2.8!. They are

lS

dTS
dj

2lL

dTL
dj

5QV, ~3.3!

VCL1DL@12V2/~VD
L !2#

dCL

dj

5VCS1DS@12V2/~VD
S !2#

dCS

dj
. ~3.4!

The boundary conditions far from the solidification front a

TL~`!5T0 , CL~`!5C0 ,
dCS

dj U
j→2`

50. ~3.5!

The solutions of Eqs.~3.1! and~3.2! which satisfy condi-
tions ~3.3!, ~3.4!, and~3.5! are the solid phase~j<0!

TS~j!5TI , CS~j!5C0 , ~3.6!

and the liquid phase~j.0!
TL~j!5T01~TI2T0!expS 2
jV

aL
D , ~3.7a!

CL~j!5H C01~CI2C0!expS 2
jV

DL@12V2/~VD
L !2# D , V,VD

L

C0 , V>VD
L

~3.7b!
n

whereaL is the thermal diffusivity in the liquid andCI is a
concentration of the liquid at the solidification front.

Solutions~3.6! and ~3.7a! for temperature have the usu
steady-state profiles in both phases@21# except for the value
of TI . However, concentration distribution~3.7b! differs
substantially from those predicted by the classical parab
diffusion equation. As it has been shown@15# and following
solution ~3.7b!, when the solidification front motion ap
proaches the diffusive speed,V→VD

L , the concentration in
the liquid reaches the initial concentration of an alloy, i.
CL→C0 for any 0,j,`. Moreover, there is no solute dif
fusion in the liquid and the solidification process cannot
controlled by the solute redistribution ahead of the solid
cation front atV>VD

L @see Eq.~3.7b! and Ref.@17# #. This
result is in good agreement with the recent experime
@22,23#, which observe almost partitionless~diffusionless!
solidification if undercoolings exceed a critical undercoolin

Following the standard method of definition of the diff
sion layerdD ahead of the solidification front~see Ref.@1#, p.
ic

,

e
-

ts

.

189!, an expression fordD* in a local nonequilibrium situa-
tion can be obtained. From~3.7b! we can get

dD*5H 2DL@12V2/~VD
L !2#/V, V,VD

L

0, V>VD
L .

~3.8!

As follows from Eq.~3.8!, when the velocityV increases, the
solute layerdD* ahead of the front shrinks more rapidly tha
expected from the classical mass transport theory~see Fig. 1!
in which dD52DL/V.0 for any valuesV/VD

L .
The behavior of the solute concentration~3.7b! allows us

to introduce the effective diffusion coefficientD* as @17#

D*5HDL@12V2/~VD
L !2#, V,VD

L

0, V>VD
L .

~3.9!

If V!VD
L , the effective diffusion coefficientD* reduces to

the diffusion coefficientDL for the local equilibrium condi-
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346 55PETER GALENKO AND SERGEI SOBOLEV
tions. But whenV is of the order ofVD
L , there is an essentia

difference betweenDL and D* . The ratioD* /DL is de-
creased by the parabolic law as 12V2/(VD

L )2 in the velocity
region 0,V,VD

L and equals zero atV>VD
L ~see Fig. 1!.

The effective diffusion coefficient~3.9! includes the local
nonequilibrium effects and can be used to modify some
sults of the local nonequilibrium theory. For example, t
use ofD* in the form of Eq.~3.9! leads to the generalize
partition coefficient@17#

k5H ke@12V2/~VD
L !2#1V/VD

L

12V2/~VD
L !21V/VD

L , V,VD
L

1, V>VD
L

~3.10!

FIG. 1. Curve 1 is the dependence of the dimensionless d
sion layerdD* /dD and diffusion coefficientD* /DL as a function
f (V/VD

L )5dD* /dD5D* /DL512V2/(VD
L )2 on the dimensionless

velocity V/VD
L . Curves 2 and 3 indicate the concentrational jum

[C]/C05(12k)/k on the solidification front, where the interfac
partition coefficientk was used from Aziz’s model@12# ~curve 2!
and present equation~3.12! ~curve 3!. ke50.5.
e
n
m

al-
-

whereke is the value of the equilibrium partition coefficien
at V!VD

L .
The known models by Jackson, Gilmer, and Leamy@10#,

Wood@11#, Aziz @12#, and expression~3.10! predict the tran-
sition to an equilibrium partitioning,k5ke , at a low solidi-
fication front velocity,V!VD

L , where the models coincide
The transition to complete solute trapping,k51, in the
above mentioned models@10–12# occurs only at infinite in-
terface velocity,V→`. However, expression~3.10! clearly
demonstrates that the transition to complete solute trapp
k51, occurs atV5VD

L ~see Fig. 2!.
Now let us consider the concentration profiles in mo

detail. Using expression~3.10!, we rewrite solutions~3.6!
and ~3.7b! in the form

-

FIG. 2. Curves showing the dependence of the interface p
tion coefficientk on the dimensionless velocityV/VD

L according to
the models of various investigators (ke50.1).
CS~j<0!5C0 for any V, ~3.11a!

CL~j.0!5H C0F11
~12ke!@12V2/~VD

L !2#

ke@12V2/~VD
L !2#1V/VD

L expS 2
jV

DL@12V2/~VD
L !2#

D G , V,VD
L

C0 , V>VD
L .

~3.11b!
-

In the limits V/VD

L→0, the solution~3.11b! reduces to the
local equilibrium solution obtained by Ivantsov@24# and
Tiller et al. @25#. As the ratioV/VD

L increases, the solut
concentrationCL(0) at the interface will decrease. Whe
V>VD

L , the concentration in both phases has the initial co
position of an alloyCS(j)5CL(j)5C0 ~Fig. 3!. Note that
this result differs fundamentally from the classical loc
equilibrium case whereCL(j)→C0 only whenV→` ~see,
for example, Ref.@26#!.
-

In the local nonequilibrium approach, solution~3.11!, Eq.
~3.10! and condition~2.10! give an expression for the con
centration jump [C][CL(0)2CS(0) at the front. The jump
is

@C#5H C0~12ke!@12V2/~VD
L !2#

ke@12V2/~VD
L !2#1V/VD

L , V,VD
L

0, V>VD
L .

~3.12!
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As expression~3.12! predicts, an alloy has equal concentr
tions, CL(0)5CS(0), on thesolidification front atV>VD

L

~see Fig. 1!. This means that the lines of nonequilibriu
liquidus and solidus will coincide on the kinetic phase d
gram at the finite velocitiesV>VD

L of the solidification of an
alloy.

IV. UNDERCOOLING DISTRIBUTION
IN THE LIQUID PHASE

Now let us examine the undercoolingDT in the bulk liq-
uid and at the solidification front, whereDT is a difference
between the temperatureTliq of liquid on the kinetic diagram
of alloy state and the true temperatureTL in the temperature
field. Then we have the relation

DT~j>0!5Tliq~j!2TL~j!, ~4.1!

where

Tliq~j!5TA2mCL~j! ~4.2!

is the equation of the nonequilibrium liquidus line on t
kinetic phase diagram.

Substituting Eqs.~2.9!, ~2.10!, ~3.7a!, ~3.7b!, and~4.2! for
Eq. ~4.1!, for the case of the flat solidification front~the
mean curvature of the solid-liquid interface is zero, i.
K50! we obtain the expression

DT~j>0!5DT0F12expS 2
jV

aL
D G1DTCFexpS 2

jV

aL
D

2expS 2
jV

DL@12V2/~VD
L !2# D G

1~DTK1DTN!expS 2
jV

aL
D , V,VD

L , ~4.3a!

FIG. 3. The solute profiles computed for different values of
dimensionless velocityV/VD

L : 1—V/VD
L 50.001; 2—V/VD

L 50.5;
3—V/VD

L >1. ke50.5. Distancej has been nondimensionalize
with respect to diffusion length,DL[12V2/(VD

L )2]/V.
-

-

,

DT~j>0!5DT02~DT02DTK2DTN!expS 2
jV

aL
D ,

V>VD
L . ~4.3b!

Here

DT05TA2m0C02T0 ~4.4!

is the initial ~base! undercooling in the liquid phase far from
the solidification front,m0 is the tangent of the equilibrium
liquidus line slope,

DTC[m@C#5HmC0~12k!/k, V,VD
L

0, V>VD
L ~4.5!

is the preexponential factor of the constitutional underco
ing @see the second term in the right side of Eq.~4.3a!#
caused by the solute redistribution in the liquid phase ah
of the solidification front,DTC has a meaning of the non
equilibrium temperature interval of solidification on the k
netic phase diagram of the alloy,

DTK5V/~bVD
L ! ~4.6!

is the kinetic undercooling on the solidification fron
b5b0/VD

L is the ratio of the kinetic coefficientb0 and the
diffusional speedVD

L , and

DTN5~m2m0!C0 ~4.7!

is the undercooling defined by the difference between
equilibrium liquidus temperatureTA2m0C0 and the non-
equilibrium liquidus temperatureTA2mC0 on the kinetic
phase diagram.

As follows from Eq.~4.3!, the liquid is undercooled on
the solidification front~j50! and far from it~j→`!:

DT5H DTK1DTN , j50

DT0 , j→`.
~4.8!

Condition~4.8! is different from the classical solution of th
constitutional undercooling problem@24,25,27# in which the
liquid is undercooled, but the solidification front and infini
point in liquid are in equilibrium (DT05DTK5DTN50). In
the local-equilibrium approximation,V!VL , and under the
conditions T05TA2mC0 , m→m0 the general solution
~4.3a! reduces to the known Borisov expression@27# which
was obtained on the basis of Ivantsov’s solution@24# ~a dis-
cussion about this local-equilibrium expression is also giv
in Ref. @4#, p. 107!.

Solutions~3.6! and ~3.7a!, consistently with the tempera
ture balance~3.3!, give the temperatureTI on the solidifica-
tion front,

TI5TQ1T0 , ~4.9!

whereTQ5Q/¸L is the temperature of adiabatic solidifica
tion. Having equated the two expressions~2.9! and~4.9!, the
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348 55PETER GALENKO AND SERGEI SOBOLEV
initial undercoolingDT0 on the flat solidification front (K
50) can be divided into the next parts,

DT0[TA2m0C02T0

5H DTT1DTK1DTC1DTN , V,VD
L

DTT1DTK1DTN , V>VD
L ~4.10!

whereDTT5TQ is the purely thermal undercooling. We ca
conclude that as it follows from Eqs.~4.5!–~4.7! and~4.10!,
the constant velocity of the solidification front is possib
~nonzero kinetics of the attachment of atoms at the solid
cation front,V.0! if

DT0.DTT1DTC1DTN

5TQ1mC0~12k!/k1~m2m0!C0 , V,VD
L

~4.11!
DT0.DTT1DTN5TQ1~m2m0!C0 , V>VD

L .

Under these conditions the solidification front can move
the steady-state regime.

Figure 4 shows kinetic phase diagrams in the coordina
‘‘temperature-chemical composition’’ in the steady-state
gime of local nonequilibrium solidification of a dilute alloy
In connection with Eqs.~4.4!–~4.10!, the ratio between the
contributions of the undercoolingsDTT , DTK , DTC , DTN to
the total undercoolingDT0 at V,VD

L is shown @see Fig.
4~a!#. It is evident that in this case the interval of solidific
tion is shorter than in the equilibrium situation
DTC5mC0(12k)/k,DTC

05m0C0(12ke)/ke . This dem-
onstrates a tendency to formation of more homogeneou
loys as the solidification velocityV increases in the rang
0,V,VD

L . Then, with finite solidification velocities
V>VD

L , the confluence of nonequilibrium lines of liquidu
and solidus occurs@see Fig. 4~b!#. In this case the solidifica
tion of the alloy proceeds without changing its chemic
composition,CL(0)5CS(0)5C0 , at the front and with a
constant slopem* of the nonequilibrium line of solidifica-
tion, Fig. 4~b!. As follows from Eq.~3.7b!, at V>VD

L the
concentration in the liquid phase is also equal to the ini
one,CL(j)5C0 . Hence the solidification of the alloy wil
proceed completely partitionless with the initial chemic
composition. This conclusion is in agreement with the res
in @28#, where on the basis of molecular dynamics compu
simulation techniques it has been shown that the comp
solute trapping occurs when the liquid-solid interface vel
ity attained its critical steady-state value.

Our treatment of the undercoolings lends strong supp
to the idea that the diffusive speedVD

L is one of the most
decisive parameters in rapid solidification processes. As
showed, the distribution of the undercoolingDT(j>0) and
the initial undercoolingDT0 have the constitutional under
cooling only atV,VD

L @see Eqs.~4.3.1! and ~4.10!#. When
V>VD

L , the constitutional undercooling is zero@see Eqs.
~4.5! and ~4.10!#. In the latter case, i.e., when the homog
neity of the solute distribution in the liquid phase occu
CL(j.0)5C0 , the flat solidification front will be absolutely
stable relative to the constitutional undercooling because
its lacking.

Thus if the front velocityV is higher than the diffusive
speedVD

L the distribution of undercooling in the liquid is du
-
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to the initial undercoolingDT0 and the kinetic terms such a
DTK and DTN . As follows from Eq. ~4.3!, at the critical
pointV5VD

L a transition from a diffusion-limited to a purel
thermally and kinetically controlled growth occurs. Such
transition has been observed in experiments on rapid so
fication of undercooled alloys@2,5,7,8,23,29,30#. This result
has a clear physical meaning. A source of concentratio
perturbations, i.e., liquid-solid interface, moving at a veloc
equal to or higher than the maximum speed of these per
bations cannot disturb the alloy ahead of itself. Theref
when the interface velocityV passes through the critica
point V5VD

L the solidification mechanism changes quali
tively, and the undercooling in liquid will not depend on th
solute diffusive profile.

FIG. 4. Determination of different contribution
(DTN ,DTK ,DTC ,DTT) into the total undercoolingDT0 on a part
of the kinetic phase diagram of a dilute alloy. Equilibrium diagra
of phase state defined by the lines of the liquidus and solidus w
have the slopesm0 andm0/ke , respectively. Dotted line represen
the line that connects the melting pointTA of the main alloy com-
ponent with the interface composition in the liquid in the absence
the interface attachment kinetic effect. Nonequilibrium liquidus a
solidus lines in the presence of the interface attachment kin
effect have the slopesm(V) andm(V)/k(V), respectively.~a! Ef-
fect of local nonequilibrium on composition in the liquid phase f
given velocity 0,V,VD

L at the solidification front and in the sol
ute diffusion field. The composition of solid isC0 under the steady-
state regime and at the self-consistent temperatureTI at the solidi-
fication front,TI5T01TQ5TA2mC0/k2V/b0 . ~b! Confluence of
the nonequilibrium liquidus and solidus lines into one line with t
slopem* at V>VD

L . Temperature intervalDTC of nonequilibrium
solidification is zero. Value of the kinetic undercoolingDTK in-
creases as the velocityV increases.
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V. DISCUSSION

Now let us consider undercooling on the front and in t
liquid under local nonequilibrium conditions in more deta

For the numerical estimates, we decided to take a Ag
dilute alloy which is often used in the rapid solidificatio
processes. In our calculations we choose the next phys
constants: ke50.44, m056.46 K/wt %, DL52.131025

cm2/s, TA51233.5 K, TQ5337 K, b0510 ~cm/s!/K
@9,31,32#. Here we give the estimate of the diffusive veloci
asVD

L 5DL/ l 05170 cm/s, wherel 0 is a length scale relate
to the interatomic distance equal to 1.23531027 cm. We
shall calculate undercoolings in a Ag–1 wt % Cu alloy at t
initial temperature ofT05850 K.

For the total definition of undercoolings, we shall use
expression for the nonequilibrium liquidus line slopem de-
pendent on the partition coefficientk @1,2#. This yields

m5m0H 11
1

12ke
$ke2k@12 ln~k/ke!#%J . ~5.1!

The insertion of Eq.~3.10! into Eq. ~5.1! for the generalized
partition coefficientk gives direct dependencem on the ratio
V/VD

L .
The distribution of undercoolings in the liquid phase a

at the solidification front is defined by the set of equatio
~4.3!–~4.10! and~5.1! with inequalities~4.11!. The results of
calculation of the undercoolingDT(j) in liquid are plotted in
Fig. 5. The undercoolingsDTC , DTK , andDTN at the so-
lidification front are plotted versus the ratioV/VL in Fig. 6.

The undercoolingDT(j) has a smooth profile on the he
lengths, aL/V, which do not depend on the variation o
the ratioV/VD

L @see Fig. 5~a!#. In the meantime, the distribu
tion of undercooling DT(j) on the diffusion lengths,
DL[12V2/(VD

L )2]/V, is changed from the local equilibrium
smooth profile@V!VD

L , see curve 1 in Fig. 5~b!# to the con-
stant value only due to the kinetic undercooling on the fro
j50 @V>VD

L , curve 3 in Fig. 5~b!#. This change occurs at a
almost zero value of the kinetic sumDTK1DTN on the so-
lidification front ~atV!VD

L ! up to the zero value of the con
stitutional undercooling in liquid~atV>VD

L ! ~see Fig. 6!. In
this case the nonequilibrium interval of solidification,DTC ,
degenerates into zero, and the alloy composition correspo
to a point on the line with a constant slop
m*5(m0lnke)/(ke21) @see Eq.~5.1! at k51# on the kinetic
diagram of solidification, Fig. 4~b!.

Notwithstanding the fact that atV,VD
L the value of the

undercoolingDT(j) at any pointj near the front is not
higher than 3% of the initial undercoolingDT0 ~see Figs. 5
and 6!, it is the inhomogeneity of the distributionDT(j) that
leads to the instability of the flat front of solidificatio
@3,33,34#. In this situation, growing structures—cells an
dendrites—will be formed inside the diffusional lay
@1,2,4,8#. However, this diffusional layer degenerates in t
limits V→VD

L @see Eq.~3.8!#, and in the velocity range
V>VD

L the constant undercooling will occur on the diffusio
lengths@see curve 3 in Fig. 5~b!#. In the latter case, i.e., a
V>VD

L , the profile of undercoolingDT(j) manifests only on
the heat lengths@see Fig. 5~a!#. Thus a transition from diffu-
sionlike growing structures to thermal-like ones can occur
quite similar change in behavior of Ni-B dendrites has be
shown in the experiment by Eckleret al. @23#. This transition
u

al

n

s

t,

ds

n

has been observed experimentally by Walder and Ryder@30#
on a rapid crystal growth from undercooled Ag-Cu melts

Possible transition to thermal growing structures in allo
is directly connected with the solute partitioning process a
the beginning of the partitionless solidification. As we qua
tatively showed in Fig. 2, local-nonequilibrium effects si
nificantly influence the solute partitioning. For quantitati
demonstration of this influence we can use the results of K
et al.’s experimental measurements@35# on Si-As dilute al-
loy solidification. In Fig. 7 the partition coefficientk is
shown as a function of the solidification velocityV. In com-
parison with the experiment@35# we correlate two models
one of which takes into account both the finite speed
substance propagation in the bulk liquid and the deviat
from equilibrium at the solidification front@present investi-
gation, Eq.~3.10!#, and the other model takes into accou
the deviation from equilibrium at the solidification front on
@12#. Evidently, if the two extreme points marked in Fig.
near the valueV52 m/s are interpreted within the limits o
experimental error as a complete partitionless solidificat
result, one can see that Eq.~3.10! gives quite a satisfactory
result in comparison with the experiment. It should be no
that there is a considerable uncertainty in the choice of

FIG. 5. The undercoolingDT(j) distribution in the liquid phase
of Ag–1 wt % Cu alloy on the thermal~a! and diffusion~b! lengths.
Distancej has been nondimensionalized with respect to therm
length,aL/V, and diffusion length,DL[12V2/(VD

L )2]/V.
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350 55PETER GALENKO AND SERGEI SOBOLEV
value of the diffusive speedVD
L . For example, in Ref.@31#

the range of the value of the diffusive speed is evalua
within the limits of one order~VD

L 50.4–4.0 m/s for Ag-Cu
dilute alloys!. In the works @35,36# when interpreting the
experiments on Si-As alloy solidification, various mode
were used where the values of the diffusive speed were
ferent from one another more than 12 time
VD

L 50.035–0.46 m/s. For a satisfactory comparison with
experiment~Fig. 7! we used a value of the diffusive spee
VD

L 51.2 m/s. Therefore in our opinion, for further quantit
tive correlations between the theory and experiment, a m
detailed investigation of the solute partitioning process
necessary. Particularly, it is necessary to obtain experim
tally the rates of solidification under which the transition
complete solute trapping and partitionless solidification

FIG. 6. The undercoolings at the flat solidification front
Ag–1 wt % Cu alloy versus the dimensionless velocityV/VD

L .

FIG. 7. Quantitative comparison ‘‘solidification velocity–solu
partitioning function’’ for the present investigation, Eq.~3.10!
~curve 1!, and the dilute continuous growth model@12# ~curve 2!
with the experimental data@35# ~symbolss and m!. ke50.35,
VD
L 51.2 m/s.
d

if-
,
e

re
s
n-

-

curs. Also, it is necessary to make more exact the notion
the diffusive speedVD

L . In the present investigation we as
sumed that the diffusive speed at the solidification fro
equals the diffusive speed in the bulk liquid. This assumpt
may lead to discrepancy between the predictions of
theory and the experiment if for an alloy the diffusion coe
ficient and interatomic distance have essentially differ
values at the solidification front and inside the bulk liquid

It is also pertinent to note the remarkable experiments
revealing chemical homogeneity of dendritic alloys. Miros
nichenko points out@7# the fact that in the splat cooling
process for the binary Al-Mg, Al-Mn, Cu-Sn, and Cu-S
systems cooled at a rate above 106 K/s the concentration in
the core of dendrites equals the initial chemical composit
of alloys. In all alloys the concentration changed discontin
ously at a cooling rate equal to 106 K/s. At the same cooling
rate the partition coefficientk which was defined as the rati
between the solute concentration in the solid and in the
uid at the interface changed sharply from the near equi
rium valueke up to k51 ~a brief discussion about Mirosh
nichenko’s experiment is given by Chernov in Ref.@8#, p.
196!. The partition coefficientk51 occurs at higher rate
@7#.

It is evident that the analytical treatment of the functi
‘‘undercooling–dendritic growth velocity’’ at high cooling
rates@6,7# and from deeply undercooled alloy melts@23,29#
can be made, if, according to the model developed in
work, one takes into account the deviation from local eq
librium at the liquid-solid interface and inside the bulk liq
uid. Unfortunately, this analytical calculation is difficult t
carry out at present as the existing functions defining
crystal growth shape~for example, one of these functions
a so-called ‘‘Ivantsov function,’’ see Refs.@1,4,37#! are
based on the local equilibrium approximation. This make
difficult to describe the experiment adequately@38#, and the
definition of the nonequilibrium crystal growth shape c
become further development of the local-nonequilibriu
model of alloy solidification.

It has also been shown in experiments@6# under cooling
rates 53106 K/s that in the melts of aluminum-magnum a
loys the eutectic decomposition is suppressed. The su
saturated solid solutions with the initial liquid chemical com
position of the alloy are formed. The sharp change in
crystallization mechanism proves that the cooling rate
creasing above the critical value leads to qualitative chan
in kinetic and mass transport processes.

Thus the morphological transitions in growth forms and
change of solidification regimes occur at high undercoolin
As it has been estimated by Herlach@2#, the change of the
growth regimes is connected with the attainment of the cr
cal growth velocity which is equal to the atomic diffusiv
speed.

All our theoretical results lend strong support to the id
that the diffusive speedVD

L is one of the most decisive pa
rameters which phenomenologically represents the effec
local nonequilibrium in the rapid solidification processe
WhenV>VD

L , solution ~3.11b! implies that the solute con
centration ahead of the solidification front is undisturbed a
reaches the initial concentration of the alloy. The corr
definition of the solute layerdD* and the effective diffusion
coefficientD* also demonstrate the absence of the diffus
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processes atV>VD
L @see Eqs.~3.8!, ~3.9!#. This result is in

agreement with the physical meaning that a source of pe
bation, i.e., the liquid-solid interface, moving at a veloc
higher than the maximum speed of perturbations cannot
turb the medium ahead of itself. Thus when the interfa
velocity V passes through the critical pointV5VD

L , the un-
dercooling depends only on the temperature profile in
liquid and kinetic undercooling at the interface@see Eq.
~4.3b!#, but it does not depend on the solute diffusive profi
At this point, a transition from diffusion-limited to purel
thermally controlled growth can occur.

The role which the diffusive speed plays in rapid solid
fication processes can be favorably compared with the
isotropy effect or the growth kinetics of a liquid-solid inte
face. Like the achievement by the front of the diffusi
speed, well-known effects such as the change of crysta
graphic directions of growing crystals@39# or exchange of
the atomic kinetics mechanism@40# offer breaks on the
curvesV versusDT at some critical undercoolingDT* . It
seems plausible that the nonmonotonous dependenceV ver-
susDT observed in experiments on deep undercooled a
solidification @5,22,23,29# is governed by the set of liste
causes. Therefore the detailed experimental study for el
dation of the causes of the nonmonotonous dependencV
versusDT will require a special consideration of the the
retical approach.
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VI. CONCLUSIONS

~i! Local nonequilibrium solidification of a binary alloy
has been investigated analytically in the steady-state reg
of isotropic liquid-solid interface motion. Our model take
into account the relaxation to local equilibrium of the solu
flux in both phases and incorporates the diffusive speed
the most important parameter governing the solute conc
tration field. This approach leads to the non-Fickian diffusi
problem in rapid solidification described by a hyperbol
type partial differential equation.

~ii ! The most significant changes in the solidification r
gimes under local-nonequilibrium conditions occur near
critical pointV5VD

L , i.e., when the solidification velocityV
equals the diffusive speedVD

L in the liquid phase. AtV>VD
L

an alloy solidifies completely partitionless with the initi
chemical composition.

~iii ! The shift from the local equilibrium in the diffusion
field and solute distribution atV,VD

L contribute signifi-
cantly to the total undercooling defined as the sum of th
mal, kinetic, and caused by the solute distribution const
tional undercooling. AtV>VD

L there is no influence of the
diffusion field, and the undercooling in the liquid will b
defined only by thermal undercooling in the liquid and k
netic undercooling at the growth front. Thus atV>VD

L the
constitutional undercooling is absent and the flat solidifi
tion front will be absolutely stable relative to the constit
tional undercooling. The transition from a diffusion-limite
to a purely thermally and kinetically controlled solidificatio
regime occurs.
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