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induced by relativistic temperatures and phonon damping

F. T. Gratton! G. Gnavi' R. M. O. Galva,? and L. Gomberoff
Ynstituto de Fsica del Plasma, Consejo Nacional de Investigaciones Giemsiy Tenicas and Departamento dédica,
Universidad de Buenos Aires, Ciudad Universitaria, Palrellg 1428 Buenos Aires, Argentina
2Instituto de Fsica, Universidade de ®aPaulo, Caixa Postal 66318, 05389-9700aulo, SP, Brazil
3Departamento de Bica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
(Received 1 July 1996; revised manuscript received 4 November) 1996

The modulational instability of a linearly polarized, strong, electromagnetic wave (im@agnetized
positron-electron plasma is analyzed using relativistic two-fluid hydrodynamics to properly account for physi-
cal regimes of very high temperatures. The effect of phonon damping is also included in the treatment. The
theory can be reduced to a pair of extended Zakharov equations. The envelope modulation is then studied by
deriving the corresponding nonlinear Satirger (NLS) equation, using multiscale perturbation analysis.
According to the intensity of the damping three different types of NLS are obtained. The main resu#s are
that relativistic temperatures modify the stability result found in the literature for low temperature, zero
damping,e,-e_ plasmas, angb) that phonon damping also produces substantial changes in the NLS, which
then predict unstable envelopes. This work extends previous analyses, showing that if the phonon damping is
O(% or O(€Y) (eis the perturbation parame}ea modulational instability appears in the electron-positron case
in all ranges of temperature and wave frequencies. Thus presence of some amount of sound absorption helps
to produce an envelope decay. When the phonon damping is very [gbfaf)] the self-modulational insta-
bility occurs in a finite band near the reduced plasma frequency, for ultrarelativistic temperatures.
[S1063-651X97)14302-1

PACS numbdps): 82.40.Ra, 51.66:a

I. INTRODUCTION of the electromagnetic wave may be a natural process for
amplitude modulation. Gangadhagtal. [ 18] examined, in-
The literature on waves and nonlinear processes istead, a parametric instability of a weakly relativistic, elec-
positron-electron plasmas has grown rapidly in recent timeg§omagnetic wave in the,-e_ plasma, to explain also the
in view of possible applications in the following fields. Rela- Short-time variability of the radio sources. Kates and Kaup
tivistic positron-electron plasmas are encountered in pulsdrl?] in a careful analysis of the modulational instability,
magnetospheres and in active galactic nuclei. Surveys dtased on multiple time-space scale perturbation theory of the
these fields can be found, for instance, in REfs2] (pulsarg nonlinear electr_omagnetlc wave in an e_Ie_ctron-lon plasma,
and[3,4] active galactic nuclefAGN). Interesting scenarios concluded that in th_e zZero temperature_ll_mlt the_ special case
for e, -e_ plasmas are conjectured in the physics of the earl)f"c ae.-e- p'aS”T'a is stable. When_a flnltelassma] tem-
time Universe, i.e., 10%<t<1 s after the big banfs—7]. In perature is considered, only a vanishingly small frequency

the laboratory, nonrelativistic electron and positron trappinqgt:re\;a_léat ;)I:sar)ﬁ;a‘IF')Eg?Jlri?/,e\;\g]eenrset\r:v?t%ntﬂgtr)lelzgﬁIlt; ftg]sizlble
in magnetic mirror experiments are presently actively pur'epraJirne(; by the .absence of the ponderomotive force and
suelz_(_j[8,9]. d i ; | h harmonic generation effects in that reference. In an electron-

Inéar and noniinéar waves #).-e_ plasmas have many j,, piasma, however, the modulational envelope instability
properties different from electron-ion plasmi0], due to o the electromagnetic wave is again possible. The nonlinear
the absence of high and low frequency scales associated W'@’bhr"cdinger equatiofNLS) derived in[16], which was sup-

the electron-ion mass difference. A survey of linear waves inhortive of the instability found irf15] and which included
e,-e_ plasmas can be found ifl1], while [12] reviews |ongjtudinal density variations, was found to be incorrect in
nonlinear relativistic effects in plasmas, including the e_ [17].
case. Other surveys on relativistic nonlinear effects in waves \We have reexamined the problem of the self-modulational
for ordinary ande,-e_ plasmas, related to the physical instability of a linearly polarized, large-amplitude, electro-
mechanisms discussed in this paper, can be found in Refmagnetic wave in a(unmagnetized positron-electron
[13] and[14]. plasma, using a two-fluid model and taking into account the
Propagation and nonlinear processes associated with three nonlinear effects considered[itv], i.e., (i) relativistic
strong, linearly polarized, electromagnetic wave in an un-<correction due to mass variatioli) the ponderomotive
magnetized electron-positron plasma have been studied bgrce that produces density changes, &iigl harmonic gen-
several authorésee, e.g.[14—20) since pioneering work by eration. Indeed, the three mentioned effects have the same
Chian and Kenne[15] proposed a mechanism to explain order of magnitude in a perturbation treatment and they must
very short intensity variationémicropulse$ of pulsar radio  all be included at the same level in the theory.
emission. They suggested that a self-modulational instability We first obtain a set of extended Zakharov-type equations

1063-651X/97/563)/3381(12)/$10.00 55 3381 © 1997 The American Physical Society



3382 GRATTON, GNAVI, GALVAO, AND GOMBEROFF 55

[see Eqgs(31) and(32)] for the vector potential of the wave lyzed. The basic solutions are perturbed with a spatial modu-
A coupled with phonons, i.e., with the sum of the perturbedation, and the dispersion relation is examined. Sections
electron and positron density\V [here A=eA/mc®,  VIA, VIB, and VIC deal with order one, weak, and ul-
N=(ny+ne—2ng)/ng, Ny is the unperturbed densitg, the traweak damping, respectively. In all three cases a modula-
speed of lighte>0, m the positron charge and mass, Gausstional instability is found. Discussions and conclusions, with
ian units are used throughdufrhese equations are correct @ table that summarizes the NLS derived in the paper, are
up to orderA in the wave amplitude. The derivation is car- given in Sec. VIL.

ried through using a fully relativistic hydrodynamic two-fluid

model so that both ultrarelativistic and classical random ther- Il. RELATIVISTIC POSITRON-ELECTRON

mal energies can be considered. In addition, we introduce a TWO-FLUID MODEL

phenomenological damping in the phonon equation. We examine here the equations for the relativistic motion

Early Universe plasma and act!ve galactic nuclei plasmaof ane’-e” plasma. We are interested in the behavior of the
(which may or may not be magnetizenive very large tem- wave in systems with very high plasma temperatures, where

peratures. The p'aS"_‘a of the early Universe ha? uItrareIatl\{he internal energy associated with random motion contrib-
istic temperatures, i.e., the electron and positron energ

much larger than the rest mass enerav. so that electrons aﬁétjes substantially to the inertia of the fluid. We extend, there-
9 9y, re, the analysis of the references quoted in the Introduc-

E8§Lt2r5‘1b222\/$rg%na:tTe"C%Iily absaﬁg%on_?h'en tggnt]mi]s mgrva{ion, to a relativistic hydrodynamic treatment of the two-fluid
honons and lonaitudinal v%aves in'a relativisgé-ge‘ plasma model. Thus, we work with equations valid both for
b 9 classical temperaturep<nmc (p,n the pressure and num-

plasma is treated ifi7] and[21]. b ; ) '
. . . er of particles density, respectivelys well as for ultrarela-
We carry through a multiscale perturbation analypia- tivistic energiesp>nmé.

r.ameterejlo_(A)], and optam three Q|fferent types of noN- = we use the following signature for the metric tensor
linear Schradinger equations according to the case of finite ; o LY Y _
(order ong, O(€%), weak, O(e'), or ultraweak damping dsz—gwdx dx”, glw—d|aq1,—1,—l,—1), p#r=0,123,

] 1] 3 3 1 M — — 1 i i
O(é). In the first two cases we prove that absorption in theWheredX (cdt,dx) (1=1,2,3, roman indices for ordinary

A - . : . i vectors and denote withu“=y(c,v') the average tetra-
longitudinal oscillations induces a modulational instability of . . ESANAST st i
the electromagnetic wave in @ -e~ plasma. In the third velocity of a fluid elementy=[1-(v/c)7 ™= The energy

L ; momentum tensor for an ideal fluid is
case, where the NLS coincides for classical temperatures

with the one obtained if17] with zero damping, the enve- h

lope instability appears again in a finite band near the rela- THY=— utu”—pgt”’, (1)

tivistically reduced plasma frequency when the temperature c

is ultrarelativistic. ) )
Our study, thus, complements and extends the analysis §fhereh,p are the enthalpy and pressure fields, measured in

[17] (which is limited to classical temperatures and does noth€ rest frame of each element of the fluid"f=(c,0)] (for

include damping showing that at relativistic temperatures, this and other basic equations see, €.83,24)). It is also

or when the damping of the acoustic waves becomes refonvenient to introduce, the number particle density and

evant, a modulational instability appears also in ¢hee_  the total energy density, both as quantities in the proper

case. In spite of the incomplete derivation, the process corffame. Thenh=&+p, and £=nmc+ e, wheree is the In-

jectured in[15] may occur after all. However, as noted by ternal energy of the fluidm the proper mass of the partigle

most of the cited authors, for pulsar applications more workn general, equations of state liskandp with densityn and

is needed to take into account the presence of a very stroff§mperaturd (T the temperature in the rest frame, in energy

magnetic field. Our paper is focused on the study of generdfnits)

theoretical consequences of relativistic temperatures and

phonon damping on the modulational instability, and we do

not intend to analyze here the implications for a particular . o

physical scenario. However, we hope the results may be usd2 @ low energy plasmaclassical limi} we have £>p,

ful'in several applications. :_s=_(3/2)nT, and p=(2/3)e, while in the ultrarelativistic
The work is presented in the following way. Section 11 imit p>nrr_102 andp=(1/3)¢. o

describes the relativistic hydrodynamic fluid model. Section 1h€ basic equation of a charged fluid in the presence of

IIl presents the basic equations for a linearly polarized, finitef!€ctromagnetic fields is

amplitude plane wave in @"-e~ plasma. In Sec. IV we

derive the basic equation sg&1) and(32) and show its va- P TW:E j Fre &)

lidity up to third order inA. In Sec. V we report the multiple v c'v

scale perturbation analysis and the derivation of three types

of NLS, according to the damping intensity. For order onewhere j*=qgnu” (g the electric charge of the particles

damping we find a NLS with a complex cubic coefficient. and F"#=g"A*—g*A”, indicating the tetrapotential with

For weak damping the NLS becomes an integrodifferentialA*= (¢,A') (¢ the scalar potentialA' the vector potential

equation, with the integral in the cubicea) term. For ul- The electric and magnetic fields are given as usual by

traweak damping we get a NLS with a real cubic coefficientE=—(1/c)dA/dt—gradp, B=rotA. The conservation of the

(similar to that of Ref[17]). In Sec. VI the stability of con- number of particlegand, therefore, also of change written

stant envelope solutions of the three types of NLS is anaas

e=€(nT), p=p(nT). 2
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a,(nu’)=0. (4) coordinatez, the direction of propagation of a linearly polar-
ized, finite amplitude wave, withE,=E,(zt) and
Fromu,d,T#"=0 one obtains the equation of adiabatic B,=B,(z,t). Therefore we haveA=(A,(z1),0,0 and

motion v=(v,(z1),0,v,(zt)), wherev,(zt) is generated by the
v,By term of the Lorentz force. The longitudinal motion

d_g_ E @ 5) v,(z,t) coupled with the wave is accompanied by a density
dt ndt’ variation n(z,t), and a longitudinal electric field

. E,(z,t)=—4d¢(z,t)/dz. In the following we use a nondi-
In the classic limith= nmc+ (5/3)e, and we readily ob- mensional form for the potentiaEEeA(/mCz, p=ep/mc,
tain e/ o= p/po= (n/ny)°* (denoting with a subscript zero and for the sake of simplicity in notation we use the same
any reference stateln the ultrarelativistic caseh=(4/3)¢,  symbol for positron and electron quantities likeor n, al-
and we have insteadk/e,= p/po=(n/ng)*>. Positron and  though it is clear that they may be different during the evo-
electrons behave dynamically as photons at ultrarelativistiqution of the disturbance.
temperatures. For very high temperatufes,mc?, positrons The assumed symmetry leads to an important invariant of

and electrons coexist with a high frequenty~T photon  the motion by considering the component of Eq(7):
gas. This can be modeled with a radiation pressure

p,=consxn*® to be added to the gas pressure. However, hd yux dp dA

positrons and electrons follow the same adiabatic law, there- cat T T TGt date ®
fore this addition affects only the constant of the 4/3 adia-

batic law. In the following we assume that this change had\oting that Eq.(5) is equivalent to

been taken into account. The low frequeriéw<T) electro-

magnetic wave, instead, is treated via Maxwell equations and 1 @ _ E (E) 9)
plasma collective effects. ndt dtin

The effective collision frequency in the™-e~ plasma, ) )
which includes recombinations and photon annihilations, idve Write Eq.(8) in the form
assumed to be much smaller than the plasma frequency. The d h ;
validity conditions of wave equations and collective plasma _ (7 X+ oAl=0. (10)
processes in a similar physical scenario are discussgd.in dt[nm¢ c

Therefore, we may writgp/p,=(n/ny)", with a poly-
tropic index 4/3<I'=5/3, and using Eq.5) we obtain
h=Tp/(I'-1)+nmc, e=p/(I'—1) as interpolation for-
mulas that include both limits, with the understanding that as h

Considering that the fluid velocity, must be zero when
A=0, we can write

I" approaches the value 5/3 we must petnmc?. e ? Ux_ gA. (12

The temporal component of E¢B) gives an equation for nm ¢
the time change of, Finally from Eq.(11) it follows that

dy 1dp dp 1+ (nmc/h)2A?
at - ya Yar T9vE ©) 72:—2_1(—(02/@) , (12)

The spatial components of E(B) [using Eqgs.(5) and (6)] The z component of Eq(7) can also be elaborated in a
lead to the momentum equation of the relativistic fluid: convenient form,

h d 1 v dp 1 h d 1dp yv,d

?m(yv)z—;graQ)—?yaJrnq E+Ev><B . Ezﬁ(va):_;a_s_%;d_f

(7)
dp vy JA

We may note the enhancement of inertidc? instead of +nmco| - 9z FE)- (13
nm) due to internal energy and pressure, and the presence of
the extra force term originated frodp/dt in the right-hand  Using Egs.(9) and(11) we obtain
side (RHS). There will be two equations like Ed7) for
positrons and electrons, and we shall wrife- oe (>0, 1d/( h vz| 1 op de
positron chargewhere =1 for positrons andr=—1 for cdt\nm@& ¢ ym@az 7 oz
electrons. All rest frame thermodynamic quantities in the ab- 5
sence of wavesE=B=0) ny,pg,hy.&y are assumed to be _ nmc J (AT (14)
constant and equal for electrons and positroreutral equi- vh 9z\ 2/

librium state with equal random energy in both species ) ) )
The pressure gradient term in Ed4) contains the number

density as measured in the laboratery= yn that appears

Ill. PLANE ELECTROMAGNETIC WAVE . o -
also in the continuity equation

OF FINITE AMPLITUDE

We consider now a disturbance of a uniform equilibrium,

14 d
in which all the physical quantities depend on one spatial ot (yn)+ Jz (ynwz)=0, (19
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which follows from Eq.(4). the RHS must be of the same order as the third one. These
Finally the potentials of the wave satisfy the equations longitudinal quantities originate from the wave through the
Lorentz force, here represented by the last term in the RHS.

4 —e L (92 4779 16) In fact, Egs.(15) and(17) confirm these estimates; i.e., den-
a2 " 92 sity perturbations and electric potential are of the same order
asv,.
o Ame v, Finally, we perform an expansion of the thermodynamic
Cozt m 2 on e (17 quantities about the(constant equilibrium state as

n=ng+n’, h=hy+h’, wheren’,h’ are O(¢?. We obtain,
where the sum symbol is over positron and electron quantiusing Eq.(9)
ties. The set(9), (11), (14—(17) and the thermodynamic

2 ’ ’
propertiesSec. 1) complete the set of equations for a plane,’x _ _ meno [ 1 (mczno 2, N h’ +0(e)
linearly polarized, finite amplitude, electromagnetic wave in € ho 2\ hg o ho ’
a relativistic positron-electron plasma. (21)

IV. WEAKLY NONLINEAR WAVES 1ov,  1(dp| on' [(nemc) dg
. . cotc ho \dn/, 9z hg az
Here we derive a reduced set of equations for the slow
motion approximation of relativistic dynamics, i.e., when 1 0 [[nymc?\? , .
can be approximated by=1+(1/2)(v/c)?. The basic idea is T 537 ho A%|+0(e"), (22)

that whene~O(Anmd/h) is assumed to be small then ac-
cording to Eq (11) vy /c~0(e). We can define an effective where @p/dn), is the adiabatic pressure derivative evalu-
particle massm enhanced by the relativistic temperature ated in the equilibrium state. We also nemd=yn in Egs.
effect asm*c —h/n and note that the expansion parameter(15)—(17), and settingn, =ny+n| , we have

¢ is a measure of the “quiver velocity'(peak oscillation

velocity of e, -e_ in the driving field in units of the speed of n_ n" 1[nymdc\? ) 4
light, e=|eEy,|/(m* woc)<1, wy being the frequency and n_:n_+§( h A*+0(e%), (23
Eox the electric field amplitude. For low temperatures, o o 0
p<nmd, the effective mass coincides with the rest mass, sgo that Eq.(15) reduces to
that ¢ is the ratio of the classical “quiver velocity” to the
speed of light. Thuse~0O(A)<1 is also a measure of the d nL d
amplitude of the wave. However, for ultrarelativistic tem- atny, oz Uz- (24)
peratures, since>nmc?, A is not necessarily small and can
take values of order one. It is convenient to define two constandsand 7 as
Hence, we consider now weakly nonlinear waves, keep-
ing systematically all significant terms up to ordet and 5= % _ nom¢®
neglectingO(s? contributions. To this order of approxima- ~ hy’ 7= hg
tion the equatlons of Sec. III reduce to a pair of nonlinear
If v,/c~O(g), we can verify from Eq. (14) that that
v,/c~0(&?). In fact, assuming thatuv(/c)’~0(&*), Eq. R , ,
(12) shows that n_ h_ =—5 n_z _ 5( ﬂ_ E zAz) (25)
ng hg Ng ng 2 7 '
) nmcé \? . S _
Y=l —— A +0(e ) (18)  Eliminating v, from Egs.(22) and(24), we obtain
1 42 3\ n Pe 1 @
and, therefore, from Eq11) (?W_ 5@) n_(L,: o aZ‘P Z(1-8) — AZ.
Uy nmc 1/nmé )2 (26)
c= % 5 h Al |, (19

Summing Eq.(26) for electrons and positrons, the electric
neglecting terms in:* only. Several terms drop in E¢L4) potential is eliminated, and defining the normalized sum of
given the assumption that/c is already of ordee? i.e.,y the perturbed densities a¢=(n;,+n(c)/no, we get

can be taken eAquaI to 1 amth,/dt equal todv,/dt, with 1 5 P e
errors of ordere”, so that 5 N=(1=8)n? — A2
(Cz o2 5&22)/\/ (1-90)n 972 A (27)
19/ h v, 1 dp do nmcé g (A?
calnm@cl” nm@az %9z h a2\ The difference of Eq(26) for electrons and positrons
(20) eliminatesA?, and setting\=(n{,—n|)/ny, we have

From Eg. (200 we can seea posteriori that indeed i‘9_2 &2)/\/1 5 072<P 28)
v,/c~0(&?) as assumed, since the first and second terms on 2 %52 75922
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Since this equation is uncoupled from the electromagnetitV, adding now the damping as
wave, we can choose the solutiovi=¢=0 if we want to

study only the longitudinal disturbances generated by the (37— 2o+ 200 A=(1- ) wiAA’~N), (33
wave. Thenn/,=n{, andv,,=v,e. Thus, Eq.(27) is the
equation for the phonons driven by the ponderomotive force (2= 0202+ va) N'=(1— 8)c292A2. (34)

of the electromagnetic wave. There is no separation of

charges and no electrostatic field in the positron-electrofygre in casda) (nonrelativistic thermal energw‘:vg/cz
plasma, to this order of approximation. Plasmons are giveg§=(5/3)p0/(mno), t and z are the natural variables and
by Eq.(28), but for our purposes we assume that they are noh Ar are defined as in Secs. Ill and IV. However, for cése

present in the system. _ _ (ultrarelativistic thermal energys=1/3 andv 2= c?/3. More-
We now introduce trj‘e expressio(&l), (23), and(24) i gyer, A stands here foR, andt,z represent the reduced
(16), and neglectingd(s") terms we find variablest,z of Sec. IV. Thus for applications to caé®, the
52 52 formulas of this section must be first rescaled to ordinary
(_2_ c? —— | A+ 202 nA= w2(1— 8) pA(7PA2 = N), time-space variables and to the normalized potewtial
ot 0z P P To derive the nonlinear Schilinger equation we apply

(29 the time-space multiscale perturbation technique to B8.
and (34) [22].
We formally write

where w 5=4me’ny/m is the square of the electraiposi-

tron) plasma frequency. It is therefore convenient to use new

variables, A=A, +82A,+83As+0(s),
72=\nz, i=nt, A=9A, (30)
N=eNi+e2Ny+e3N3+0(e%), (35
so that we finally write the coupled equations for the weakly
nonlinear wavecorrect to ordee®) as v=votev,+elv,+edvs+0(e?),
¥ 3\ - .. . , .
o L9 2A_ 204 _ 2 with e<1. The expansion of in powers ofe allows treat-
(aEZ ¢ 97 At20pA=0p(1=9AA=N), (3D ment of weaker dampings by taking=0, v,=1,=0, etc. To
the lowest significant order
19 & P . : :
S5 85 | N=(1-6) — A%, (32 Ar=ae’+are . N=0, (36)
c? o> 97? 922

where §=kz— wt is the fast variable and,» satisfy the

whereA (and A) must be small with respect to unity. dispersion relation

For low thermal energies, casa),

»2 D(w,k)=— w?+k’c?+2w,=0, (37)
a2 <L
¢+ (32)vg for the transverse electromagnetic wave. For applications to
case(b) (as commented aboywe must note that true values
for ko are k/\'3, o/\5, since herezt represent the
reduced variable€30). The amplitudes,a*, in Eq.(36) are

1 taken as slow variables, and the perturbative expansion as-
o=5, n<l. sumes thatA,;=A,4(a,a*,0), N,3=MN,s@a,a*,0). The

3 space-time dependence of the higher order corrections is
througha, a*, and @ only. The multiscale technique is in-
troduced by the following expansions

_1-35 5=
n= Ev -

wherev 2= (5/3)py/(mny) is the classic speed of sound.
For ultrarelativistic(random energies, casé),

The speed of sound is given now byg= 6c?=(1/3)c?.

V. DERIVATION OF THE NONLINEAR

da
SCHRODINGER EQUATIONS = eTi(a,a*)+&°Ty(a,a*) +&°Ta(a,a* )+ O(e?),

We introduce now an important new element in the (38
model: a phenomenological damping term for the phonons.
Referenceqd7,21] discuss the nature of the noncollisional g
absorption of sound and longitudinal waves in a relativistic —Z=le(a,a*)+8222(a,a*)+s323(a,a*)+0(a4),
positron-electron plasma. Here we focus our attention on the (39)
effect of a phonon damping raieon the self-modulation of
the transverse wave. o . and the corresponding complex conjugates. We have

The main result of the present section is that relativistic
temperatures and phonon damping produce substantial
changes in the NLS. The consequences for the stability of the
envelope are then examined in Sec. VI.

To simplify the notation we write the equations of Sec. 9i=—wdy+8(T193+ T1 dax) + O(£?). (41

97=Kd g+ &(Z10a+ Z% 9ge) +0(£?), (40)
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Care must be taken to remove secularities at each pertur- - N, N, .
bative order. Applying the perturbative procedure and sepaf®@“—vgk®) FgZ @vo g T —4(1-8)c’k*a’e”’+c.c.
rating powers of we obtain from Eq(33) the equation for (47)

A, (for order&?),

) A, . » To avoid a secular behavior @¢¥, we must exclude the so-
2wp| —oz tAz| —2i0(TitvgZy)e"+cc=0, (42 |ytion expla;6) with ay=wry(w>—v 2k?). Therefore, we get
where v,=c?k/w is the group velocity derived from Eq. o n2.2i0 *
9 .~ X ; =aa“e”’+c.c+C(a,a*), 48
(37). To eliminate the secular solution 8§ in Eq. (42) we No=a ( ) (48)
require
where« is a complex parameter defined by
T1+ Ung=0. (43)
Consequently, we can write . (1-8)c?k? 49
o(w+ivyl2) —vik?
oa + oa =0 (44
gty 99z,

andC(a,a*) is an arbitrary real function of the slow vari-
neglectingO(e) terms. Therefore, up to ordef, the ampli- ~ ables.
tude is constant in time if we move with the wave packet From the ordee® in Eq. (34) we obtain
speed. The amplitude modulation is revealed at the next or-

der of the perturbation theory. The solution of E42) is Y PN, N FINA
A,=Bé’+B*e ", (ag  (0TTUKD) G troe Ty

whereB=B(a,a*) is an arbitrary function of the slow vari- =2al avgvgZy +iaviwa—4iaZ;(vgw—vik)

ables.

_ 2103 _ 2i6
Introducing the operator +4(1-9)ck(iZz,—kB)]e“'+c.ctrveugyPC. (50

Examining Eq.(50) we find that to avoid secularities M it

1
=210, 2 dgx =~ — (T10a+ T} dax), i
P=2Z10a% 21 vg( 102t T1 0ax) is necessary that

Eq. (34) is expressed as

voPC=0. (51
{(wdy+ svg'P)z— Ui( kdp+eP)2— vo(wdy+ sng)}N
=(1- 8)cA(ka,+&P)?A2, (46)  No other information is needed from EGO).
Finally the equation foA to third order, taking into ac-
To orders? we find that count the results already obtained, gives

Fa ,da . o PAs ) - ) .
prranls F—le(Terngz) e'’+c.ct22m; W+A3 =(1-d)wy[(1-a)a’e™’+[(3—a)|a]*~Cla€’]+c.c.
1 1

(52

From Eq.(52) it follows that the equation that eliminates the where we have introduced the space-time variables
secularity ofA; is
T=1t,= 8t1=82t,

. Ja Ja

—2|(1)(T2+ngz)+ W_CZE 1
1 1 &= - (Za—vgtr)=z1—vgti=e(Z—vgt). (55)

=(1-d)w>a[(3—a)|al?~C]. (53

] ) 5 We shall show now that the value & depends on the
Using previous results anéb o/ k= (1/w)(c"~v g) We can intensity of the damping. Basically, there are three different
write Eq. (53) in the form of a NLS equation cases:(i) vyp>0 (order-one damping (i) »,=0 and v,;>0
(weak damping and (iii) yy=»;,=0 and »,>0 (ultraweak
damping.

In case(i), v;>0, to comply with Eq.(51) C cannot de-
(54) pend ona or a*: it must be an absolute constant. It follows

_aa+1avg(92a+11 5(»,2, 2 2 o120
|(97_ 2 ok (952 2( ) ® a[( a)|a| ]_ '
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that C=0, since fora=0 the density disturbance must be
absent, so that,=0. Thus we obtain a NLS equation with
complex coefficients, sincer is complex [Eq. (54) with
C=0].

In case(ii), when y,=0, the elimination of secularities
follows a different route; Eq(50) no longer provides infor-
mation aboutC(a,a*). The value ofC can be determined
from Eq. (34), noting that it is exact to ordes® for the
¢-dependent terms, but that it is valid to ordeY for the
slowly varying termgthose that depend ananda*, but not
on 6). Thus, we find that

1 Z1%
UZ
9

2(1-6)c?

7__ 2
Vg~ Us

9
2
Us

P— P?(aa*). (56)

)PC(a,a*)z

Integration of this equation gives
C=Co|a|2—CoC1eclff e C1¢al?d¢, (57)
¢

with Co=2(1-3)c?/ (v i—v3), andCy=vvy/(v5—v 2).
Therefore the NLS equation takes the form
_CO)

(3
X |a|2+ CyCe%1¢ J e Ci|al?d¢ (58
3

cga 1davgd’a (1-d)wivg

(1-68)c?k?
' 97 T2 0k 92 2k -

w’— vgk2

a=0.

In case(ii), C;#0, the NLS becomes an integrodifferential
equation.

Finally, for an ultraweak damping, cadéi), Eq. (57)
holds withC,=0, so that

2(1-68)c?al?
o 21-5)c%al

- 2__2
Vg~ Us

(59

and « is real. This ultraweak damping result reproduces, for

classical temperatures, the NLS equation obtainefili,

which was derived for a positron-electron plasma with non-

relativistic temperaturesv¢<c?) without damping effects.

VI. EFFECT OF PHONON DAMPING
AND RELATIVISTIC TEMPERATURES:
MODULATIONAL INSTABILITY

A. Order O(1) damping

We report now on the envelope instability for damping
effects of order O(1). For consistency we assume
e<yy/w<l. We have a nonlinear Schtimger equation with
complex coefficients, which we will write as

2

i aa+ a+ 2=0 60
[ pa—gz qalal*=0, (60)
with
1 é’vg w,z)C2
P=2 ok T W (6D
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. (1-d)w} (1-6)c?k?(w?—v2Kk?)
gr=Re(q)= 2w _(wz—v§k2)2+(v0w/2)2 ’
(62)
and
. v (1-6)2wic?k? 63
%= m(Q)_Z (wz—v§k2)2+(vow/2)2’ 63

where we assume tht;| <|q,|.
Let us consider a solution of E¢G0) of the form

I

(64)

Yo R U . R Y VR f
a(é, ) \/Tqia?,rex i| ko—pkor+ | ¢dr

whereé;&(r)zqraél(lJr 2q;a37), anda, is a real constant.
This solution decays slowli.e., not exponentiallyin time.

We now introduce small perturbatior#; , to the solu-
tion

(K+ko) €~ pK3T

a(é,r)=a(¢é,n+ 5a1exp: i

+ 5azexp[ —i{(K—ko)g

|

and linearize. The following equations hold:

(Q—2pkoK + 2iq;[a]*~ pK?+q,[a[?) sa, + g|a]*sa5 =0,

—f (Q—¢)dr

(65

+pk(2)7'—f (Q*+¢)d7

(66)
qlal?saf +(—Q* +2pkoK + 2iq;[a]*— pK>+q,[a[?) da,
=0. (67)
Thus, Q(K) is given by
Q02— 4(pkoK —iq;[a]®) Q2 +4(pkoK —iq;[a]?)?
+(lal*+af)[a]*~ [pK>—q[a]*]*=0, (68)

or, alternatively,

Q=2(pkK—ig;[al®) = JDZK“—qurWKZ—Q?IEP‘(ég)

where|a[?=a3/(1+2q,a37).

Conditions for instability arise for values &f where the
expression S(K)=p?K*—2pq,|a[’k?+3q?[a]* becomes
negative. Thus we find an instability band in the interval
(Kq,K5) with

2\ 1/211/2
;i
?) } - {0

Note that the growth rate is maximum wh&K) is mini-
mum, that is, for Ky,=(|a]?q,/p)¥? and its value is
Z(Q)=[al*(|q| — 2q;). A stability diagram is shown in Fig. 1,
where in a semilogarithmic graph the ordina¥s Y, rep-
resentK,,K,, measured in units of|a]/d, versus the ab-

K1,2:

qr il qr2 4
[a[? 'S Ell ;—3IH
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- . ' - - pressiong62) and (63) for g, ,q; we must similarly replace
b w5 by oj7 when we return tav, k values associated to the
SBLE o original t,z variables. We also haye= w 27¢? »* from Eq.
(61).

It is easy to see that over the wholk range,
0,~O(wjn/w) (sincevw<l andv § can be at most?/3).
Thus, passing frorK, to the true wave number, we find that
ky~elaglw/c. We have introduced a collisionless skin
depth d=c/+2pw, with the effective plasma frequency.
Then, Ay /27~ d/e|ay| when k?d?<1, while \y~\/e|ag|
whenk?d?>1. The ultrarelativistia is much larger than the
classical valudat the same densityThus, the length of the
packet modulation increases with increasing temperatures in
the relativistic domain.

Since |q;/q,|<1 over the wholew range, we estimate
|g|—2q;~q,. This gives us an order of magnitude for
g=Z(Q) in true space-time scales,g~&?[a,|%q,

oL _._ivgle=0.01 UNSTABLE

__ :vslc=0577

FIG. 1. Stability diagram for finite phonon dampingg#0. ~&%[ag|*nw ;23/0’- Hence, we conclude that
The semilogarithmic plot shows Y{,Y,)=(K,,K,)d/e[a] (d 2=—12 212
=c/\2nw,), as functions ok=w/+27w, . The instability occurs g~&°lay| “’P‘/; for k<1, (72)

for Y,x values comprised between the upper lfieand the lower

line Y;. The boundariesy,,Y, are shown for two values of

vl\2nw,=0.05 and 0.5, to illustrate the effect of changes in the g~82|a_0|2wp\/;/kd for k2d3>1. (72)
value of damping. The figure indicates also variations when tem- ) ) o

perature changes from classical to ultrarelativistic values. The linedhe modulational instability is faster for large wavelengths

Y,,Y, are dash-dotted farg/c=0.01, and full for /3. of the electromagnetic wave, and the growth rate is reduced
by ultrarelativistic temperatures.
scissax=w/\/ﬂwp [heredzc/(\/ﬂwp)]. The instability Finally, we check the consistency of the predicted insta-

g bility with the decay of the amplituda(7) given by Eq.(64).
The decay rate. of the chosen solution due to the imaginary
part of g is given byu~¢&2[al?q;. Therefore,g/u~q,/
gi~w/v=>1. The instability will develop much faster than

We can see in Fig. 1 that the temperature range, classic (5lpe det;:ay time of tgel atmplltllljde. Tthtt‘j’ \t/)vef com(‘jlrm th?)t thg
ultrarelativistic, has some influence on the boundaries of th&/3V€ Pecomes modulationally unstable betore decay by ab-

unstable region. The rangé —Y,, at a given frequency, is sorption
narrower at high energies. The lower boundary is also sensi-

tive to changes of the parameter,2 7w, while the effect _
on the upper boundary is negligible. The boundfryin- In the weak damping case,=0, »,#0) the correspond-
creases by an order of magnitude when the damping is inng NLS equation for the amplitude is given by E§8). The
creased ten times, and so the unstdblinterval decreases. analysis of this case shows greater complexity. The integro-
The region of instability exists for all frequencies of the differential NLS has a solution of constant envelope of the
wave, but the growth rate tends to zeroaas:«. Note that, form a(¢,7) =agexp{i(koé— wo7)}, with a, a real constant.
while the characteristics of the instability region depend onThis solution has the peculiarity thet given by Eq.(57) is

the presence of finite damping, the direct eﬁ’ec]p@'bn the zero. Thus the nonlinear wave with constant envelope is de-
growth rate(in view of the assumptionq;|<|q,|) is not  scribed by the same NLS of Sec. V, cdge but with reala,
crucial. The instability persists even in the limi/w—0. since herey,=0.

We give now quick estimates of order of magnitude for The small perturbations of this solution are a different
the growth rate and characteristic wavelength of the modumatter, since the consta@tgiven by Eq.(57) is not zero in
lational instability. Restoring true time and space variablesthis case. Perturbing the solution as
the dispersion relation of the electromagnetic wave is given — .
by w?=2w57+k?c?. At ultrarelativistic temperatures where a(é,m)=a(g,n)+ darexplil(K+ko) = (Q+wo)7l} (73
7n<l1, the plasma frequency cutoff decrt_eases su_bstantia_lly. + Sazexp —i[ (K—ko) €~ (Q* — wg) 7]} (74)
Waves can propagate at lower frequencies than in classical
plasmas at the same density. This effect is due to the inwe find that in order to satisfy Eq58), ) and K must be
creased inertia, stored in very large thermal energies. In exelated by

occurs forY;<Y<Y,. In the figure the lines are represente
for two damping valuesy/2pw,=0.05 and 0.5. In addi-
tion the figure shows lines for two temperature values. Th
lines are dash-dotted far,/c=0.01 and full for 1¥3.

B. Weak damping

00— 2pkoK — (pK?— qad) +irC a2 ) s [ gaircy St ) 2 s g 75
PkoK —(pK“—qag) +ir oao—CW axt+|qtir 0 TCIIKZ agda; =0, (75)
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. K(C,+iK)\| ) . , K(C1+iK)
q+irCo —z—»—|agda,— | Q—2pkoK+(pK*—qag) —irCoay ———5—|d6a; =0, (76)
C2+K C2+K

wherep is the same as in Ed61), q is equal tog, of Eq. (62) with »,=0, andr=(1— 5)w§vg/2kcz. Consequently, the
following dispersion relation holds:

0=2 koK"‘\/ 2K4_9 [ c K? 2K2_ 2irnCral CiK? a7
=2pkoK + \/ p?K*—2p| q—rCy ———5|a3K?—2irpCoas ———.
0C§+K2 0 0 Oci_'_Kz

From this equation we conclude that conditions for theout rescaling are p=wjc%?, and q=[(1-d)wivy/
modulational instability can be achieved at any wave fre-2kc?][3—(1— 6)c?k?/(w?—v2k?)—2(1— 5)02/(05_05)]_
quency. The imaginary term in the square root is a source of The modulational instability described here is characteris-
|nstab|I|ty.for all valugs ofw andK. This term depend.s'on tic of a physical regime with zero phonon damping, simge
the dampingy; and disappears when—0. The destabiliz- 465 not enter in the equations at this order of the perturba-
ing effect of the imaginary term, for fixed frequency, in- i, theory. Comparing the results of this section with those
creases at large values ki, but becomes negligible when ¢ g0 'y B, we conclude that a small amount of damping
vg—0instead, i.e., for large wavelengths, whets close to [i.e.,v~0O(e)] destabilizes the wave iK-w regions that are

V2wp. : y c stable in an ideal dissipationless system. Further increase of
On the other hand an instability can also arise, indepen- ’

dently from the damping;, when the sum of the real terms Qamplpg[l.e., VNO.(I)] as in Se(;. Vi A,.res.trlcts again the
in the square root is negative. This may hapgender re- instability to a particulaK-w region, which is nevertheless
strictive conditions onw andK) even ifC, is negligible. We wider than that of the ideal case considered in this section, as

shall comment upon the conditions for this instability in Sec.Shown in Fig. 1.

VI C. Finally, let us note that putting formall£,=0 as a

control of the dispersion relation, we reobtain the properties VII. DISCUSSION AND CONCLUSIONS
of the dispersion relation of Sec. VI A in the limit—0. In
fact settingC,=0, Eq. (58) coincides with Eq.(60) with
VOZO.

We have studied the modulational instability of a linearly
polarized, strong electromagnetic wave, in an unmagnetized
positron-electron plasma, using relativistic two-fluid hydro-
dynamics to properly account for physical regimes of very
high temperatures. The nonlinear wave is coupled with lon-
gitudinal oscillations via the Lorentz force. A relativistic cor-

The ultraweak damping is ruled by a NLS equation simi-rection for slow motion, as well as the effect of density varia-
lar to that obtained ifi17]. However, when temperatures are tions on wave propagation, are taken into account. We have
relativistic, in our extended equation it is easier to satisfy theyjso included different degrees of phonon damping in the
conditionv §=c?(c*k?)/w?<v ¢, sincev 5=c?/3, so thatC  treatment. The model can be reduced to a pair of extended
becomes a real negative coefficient in E84). Furthermore  zakharov equations;33) and (34). We may recall that the
6=1/3, and so there is a reduction Gfwith respect to the well-known Zakharov equations for longitudinal Langmuir
classical value. It follows from basic NLS theory that whenyyaves in the usual ion-electron plasma, are derived by time
the coefficient of the cubic term is pOSitiVEinceﬂvg/ﬁk>O) averaging over fast variables, so that a term WKQEF ap-

a constant wave envelope is modulationally unstable. pears as driver of sound waves. However, in the case of

We find, after rescaling variables, an unstable frequencglectromagnetic waves in am.-e_ plasma, we have ob-
interval, 2 pw,<w<1.224%27w,. When the tempera- tained Eqs(33) and(34) without averaging procedures, and
ture is nonrelativistic, the unstable frequency interval isthey are exact to third order in the expansion parameter.
Viw,<w<vVlw,(1-v3/2c?) instead. Since Z/c®<1, the  Thus, a termd, A2 appears in Eq(34), without absolute
unstable frequencies are restricted to a very small intervajalue or time average.
close tov2w,, whose width tends to zero for a cold plasma.  The envelope modulation is then studied deriving the cor-
Conversely, as the temperature grows the unstable frequenggsponding NLS equation, using multiscale perturbation
interval increases, and becomes a finite frequency band ahalysis. According to the intensity of the damping we ob-
ultrarelativistic temperatures. tain three different types of NLS. The coefficients of the

Following the procedures of Secs. VI A and VI(Br tak-  NLS also change with classical or relativistic temperatures.
ing the limit »,—0 in the dispersion relation of Sec. V)B Table | summarizes all cases treated for easier reference. In
it is easy to find that perturbations of the form view of possible applications, equations in Table | are writ-
expli(KE—Q 1)} are unstable when@OK <|ag|\2q/p=K.  ten with ordinary time-space, and frequency—wave number
for g>0, with a growth rate given by Z(Q) variables, instead of the special scalings used for mathemati-
=2pqglag]K?—p?K*. Here, we use the notation of cal convenience in the text. The table gives the cubic NLS
Eg. (60), and a, is the amplitude of a constant envelope term for finite, weak, and ultraweak damping. In each case
solution. The maximum growth rat&(Q)=|a,|?q, occurs the explicit form, for classic and ultrarelativistic tempera-
at K=K v2. The values ofp,q to be used herdwith-  tures, is presented. Short notes on stability and conditions on

C. Ultraweak damping
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TABLE I. A summary of NLS equations.

i&7+ﬁ9%a.+A(a)=0,T=ezt,§—=8(Z—vgt), vi=wlk

w*=2nw5+c%k?, vy=Kc% w, p= nw5c’ 0% t,z,0,k: ordinary variables
Damping T A(a) cubic term Notes
v Classic 30} A?—v?) (vd/c)?<1, =1
A=|-—|1-
5o ( (v?—v§)2+(vovf/2k)2 unstable for allw
Vo w,z,Cz/k2 al?
+i— ala
4 (v7-03)%+ (vous/2k)?
Finite Ultrarelativistic wfm 2 Cw?-c3) 7<l
= 7( _§(vf2—c2/3)2+(vovf/2k)2) unstable for allw
Vg (usnczlk2 )
+i— ala
9 (v7—c?3)%+ (vou/2k)? al
ey Classic 3 wg 1c2-v? 2c¢%-v2 (vd/c)?<1, =1
A=-—1|1-3 -3 al?
2o ( 3 m 3 Ug—ﬁvs>| | unstable for allw
2 c?—v? *
+372 ;Cleclff e C1fal?d¢ |a
Vg™ Us ¢
_ V1Ug
T
Weak Ultrarelativistic A,“’_S” 2 2 4 c? al 7<l e for all
" 907-F3 9 v2-c3 unstable for alk
4 C2 _ )
to o Clecl“”ff e~ Clal?d¢ |a
9 Ug—C /3 V¢
_ Vlvg
! vé—c2/3
&%v, Classic 3 w; 1c?-v? 2c¢2-0v2 (vdc)?<1, =1
A=-— 1*—ﬁ*——ﬁ a|a|2 unstable fon2w,<w
2 3vi-vs 3vg—ug Ly
<V2wu(1+ 3 vi/c?)
Ultraweak Ultrarelativistic A wsﬂ . 2 &2 4 2 aal? <l
= — —_ = — =
w 907-Z3 9 05—02/3 unstable fory2nwy,<w

<1.22{2nw,

parameters are added. We see that the cubic term is local <K<K, . With finite damping it happens for all frequen-
finite and ultraweak damping cases, but it becomes spatiallgies in a limited band& ; <K<K, . But for weak damping a
nonlocal for weak damping, the corresponding NLS beingmodulational instability occurs without restrictions, for all
integrodifferential. Two results can be emphasizédRela- K, o values. Thus, an ideal dissipationless system is less
tivistic temperatures do alter the stability result found ] prone to the instability than a system with a small amount of
for low temperaturdzero dampinge. -e_) plasmas, by en- damping. Analogies can be found in other branches of
larging the range of unstable frequencies, which now takeplasma physics: a small amount of resistivity destabilizes
place from 1 to about 1.22 times the relativistic plasma freideal magnetohydrodynamic modes; a small amount of vis-
guency. (ii) Phonon damping also produces substantiakcosity affects the stability of ideal flows.
changes in the NLS, which then predicts unstable envelopes The unstable wavelengths of the perturbed envelope and
at all frequencies, except in the ultraweak case, i.e., when thitae growth rate of the instability have been computed for the
damping rate is of second order in the expansion parametethree cases of finite, weak, and negligible damping. It is gen-
It is also interesting to note that weak damping produce®rally recognized that the growth rate of the modulational
the largest destabilizing effect. With zero damping the moduinstability can give estimates of the time of formation of
lational instability occurs in a restricted interval and solitons. The model with relativistic temperatures may be
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used for discussions on early Universe plasmas, from th&hus, fore,-e_ plasmas with radiation pressure, we expect
phase of neutrinos decoupling and disappearance of muottisat the phonon damping regime changes with the frequency
to the time of annihilation of positron and electrons. That isof the transverse wave: from ultraweak, forvery close to
from about 10% s to 1 s, or better, in temperature epochsthe plasma frequency, to weak or finite, when we consider
from approximately 100 to 1 MeV. Radiation pressure, thenwaves with increasingly larger frequencies. The modula-
acts to provide “springiness” to acoustic oscillations. How- tional instability, therefore, is due to relativistic temperature
ever, specific analysis of that systdor other astrophysical effects (ultraweak casefor frequencies near\/Z_nwp. At
scenarios like AGN, where high temperature positron-higher frequencies the ultraweak case predicts stability, but
electron plasmas are expeck@kceeds the scope of this pa- we expect that the phonon damping becomes stronger. Thus,
per. We limit ourselves to a discussion of conditions of ap-the modulational instability should appear also at those
plicability of the theory. higher frequencies, induced now by phonon damping effects
In primordial e, -e_ plasmas, densities are considered to(weak and finite casgs
be in the 18-10"%cm3 range, so that the plasma fre-  Several references consider the effect of an ambient mag-
quency, assuming=0.01, is very high, above 1®rad/s. netic field on nonlinear electromagnetic waves processes in
The time scale of the instability in this scenario, assuminge,-e_ plasmas(see literature quoted in the Introductjon
finite phonon damping, can be estimated to be as small adowever, the work up to the present has been mainly on
10 s, takinge=0.01(see Sec. VI Aand therefore during circularly polarized waves. Circularly polarized waves per-
that time the expansion of the Universe is negligible. Thusmit some simplifications of the calculations. Referefi2€]
low frequency electromagnetic wavesp<T, could gener- contains an important contribution to the modulational insta-
ate density inhomogeneities and leave imprints in thebility of electromagnetic waves in magnetized plasmas with
plasma, at earlier times than the recombination era. Thesgassical temperatures, for propagation parallel to the mag-
structures, which perhaps may act as seeds of forthcomingetic field. The concern of26] is primarily the ordinary
gravitational developments, should run completely undetecion-electron plasma, and the positron-electron case is treated
ted in the present highly isotropic 3-K radiation background,as a special limit. Thus, this work also deals with circularly
which reflects dominant radiation At=T of earlier epochs polarized waves. A magnetic field introduces new features
[7]. On this subject Ref25] contains interesting recent work and the modulational instability occurs over a broad band of
for unmagnetizea, -e_ plasmas. This reference studies thelow frequencies, below the cyclotron resonance.
formation of solitons in early Universe scenarios, using However, in a positron-electron plasma with a magnetic
positron-electron fluid dynamics with relativistic tempera-field, the natural electromagnetic modes for parallel propa-
tures, in the framework of circularly polarized electromag-gation are linearly polarized waves. In Cartesian coordinates
netic waves. the dielectric tensor is diagonal, since off-diagonal terms
The choice of a proper phonon damping to be employecdompensate exactly. Circularly polarized solutions are a spe-
in the study of a particular physical system requires furthewcial linear superposition of natural modes, with a rather par-
analysis. For this purpose, a kinetic treatment of acoustiticular phase relationship. The situation is the opposite to
oscillations ofe_ -e_, driven by the ponderomotive effect of that of more common ion-electron plasmas, where the circu-
an electromagnetic pump wave, should be developed to obarly polarized representation diagonalizes the dielectric ten-
tain an estimate of the collisionless damping. This is notsor. In fact, observations of pulsars, radio sources expected
available yet, as far as we know. For classical temperature$p have e, -e_ magnetospheres with very large magnetic
free (not driver) acoustic modes without electric field do not fields, often indicate dominance of linearly polarized waves
exist in a collisionlesse, -e_ plasma[10], although such [1]. In addition, it is not possible, of course, to use linear
acoustic waves do appear in a fluid-theoretical treatmencombination of solutions when dealing with nonlinear
Conversely, at relativistic temperatures and in the presencgaves, so that results on the modulational instability of cir-
of radiation pressure, acoustic waves can be sustained inaularly polarized waves do not apply to linearly polarized
collisionlesse, -e_ plasma. waves, and vice versa. In this sense, the theory of self-
For early Universee, -e_ plasmas, Ref[7] provides an modulational instability of electromagnetic waves in a mag-
approximate dispersion relation for phondrisg. (115 in netizede,-e_ plasma is still not complete.
that referenckderived from Vlasov equations that incorpo-  In physical regimes where the plasma frequency is much
rate radiation pressure as external force. Unfortunately, thiarger than the cyclotron frequency, and for high-frequency
approximation given ifi7] is not relativistic, so that the pho- electromagnetic waves propagating parallel to the magnetic
non phase velocity does not correspondctd3 [from Eq. field above the plasma frequency, the dispersive properties
(1195 in [7], the root w/kc=2.1730-i0.7331, can be ob- approach those of an unmagnetized plasma. In the primordial
tained. A relativistic derivation of the dispersion relation of plasma these conditions would apply since the magnetic
phonons driven by radiation pressure ireg-e_ plasma is field, if any, is supposed to have been very weak, while the
still not available. plasma density was huge. Moreover, at relativistic tempera-
For applications of our theory we may conjecture, nevertures the ratio of cyclotron to plasma frequencies is further
theless, taking the estimate [0f] as a rough trend, that pho- reduced by the effect of inertia enhancement. Thus, our
non absorption is small when the frequency of the electrotheory can be applied to early Universe scenarios, and to
magnetic wave approaches the plasma frequency cutoff, i.ecases of unmagnetized plasmas in AGN. For configurations
at very small wave numbers. It becomes, then, increasinglyith important magnetic fields, such as-e_ in pulsars, or
large as the frequency of the electromagnetic wave growsonfined in laboratory experiments, it may be relevant only
above the plasma frequency, that is, for large wave numbersinder restricted conditions, i.e., in the high frequency limit.
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At lower frequencies, linearly polarized Alfaesolitons in  plasmas. Thus(31) and(32) provide a framework, exact to

cold e, -e_ plasmas have been recently deried]. O(A3), for further analytical or numerical studies of the
Summarizing, our work extends previous analyses of linjproblem.

early polarized electromagnetic waves in nonmagnetized

plasmas, showing that if the phonon dampingQié®) or
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