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Multiple-scales analysis of plasma response to intense laser field and plasma excitation
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A method of multiple scales is used to analyze a nonequilibrium distribution of the electron plasma in an
intense laser field. A dielectric response function, which is nonlinear for the laser field, with wave vectors at
arbitrary angles to the laser field is presented by using an appropriate small fluctuation of slowly varying
quantities to linearize the kinetic equation of plasma. The numerical results for dielectric properties of plasma
in various directions are displayed. The plasma instability in high electric field reported by Morawetz and
Jauho@Phys. Rev. E50, 474 ~1994!# does not exist under any intensity laser fields. The most excited wave
modes are damped even though the imaginary part of the dielectric function becomes negative in certain
conditions. For the limit of the parameterklD!1, a corrected analytical expression of dispersion relation is
obtained. This modification of the excited wave dispersion relation results in a great change of the stimulated
Raman scattering instability, particularly for the large-angle sideward Raman instability. The screening prop-
erties of plasma under the intense laser field and the dependence of wave mode excitation on plasma param-
eters and angles of the wave vector from the laser field are also discussed.@S1063-651X~97!07802-1#

PACS number~s!: 52.40.Nk, 52.35.Mw
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I. INTRODUCTION

The study of the interaction of intense laser light w
plasmas serves as an excellent introduction to the field
plasma physics. Both the linear and nonlinear theories
plasma waves, instabilities, and wave-particle interacti
are important for understanding the laser plasma coupling
particular, recent advances in short-pulse laser techno
@1–3# (P'1018 W/cm2, tL'2pvp

21;1 psec! make the
nonlinear laser-matter interactions possible. Such a h
intensity laser field, for example, leads to a number of d
ferent laser-plasma and laser–electron-beam interaction
nomena@4–12#. For the different intensities the laser fie
irradiates onto the plasma, various nonlinear properties
be produced, where the wave mode excitation of the plas
however, is a collective response of the plasma coup
with the external field. In particular, the plasma nonline
coupling with incident laser light results in a scattering lig
wave and an electron plasma wave@stimulated Raman scat
tering ~SRS!#. It has been actively investigated theoretica
@13–15# and experimentally@16,17# for nearly 20 years be
cause this instability is an important issue in laser iner
confinement fusion@18#, x-ray laser@19,20#, and laser wake-
field generation@21,22#, and so on. In a three-wave~incident
laser light, scattering light, and plasma waves! interaction,
the behaviors of the plasma wave are significant for und
standing various instabilities. As a basis of these curre
active issues, the investigations of plasmas phenomena
strong oscillating electromagnetic field are of great sign
cance. More recently, Morawets and Jauho@23# indicated
that under a high static electric field a plasma instabi
exists for certain intensity electric fields and frequenci
Their results were obtained by using a generalized Kadan
Baym ansatz and a displaced Maxwellian distribution fu
tion.

In this paper, we show that this instability does not ex
551063-651X/97/55~3!/3373~8!/$10.00
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under an intense but constant laser field. The attrac
strength values for incident laser light is of the subpicos
ond order of short pulses. In order to connect this work w
current relevant issues we consider such a short pulse las
well, i.e., assuming that the laser pulse lengthtL is smaller
than the inverse of the ion plasma frequencyvpi . In this
case, the motion of the ions can be neglected. The elect
electron collisions cannot equilibrate the distribution of t
electron plasma sufficiently rapidly. Thus the electro
would not be in equilibrium. On the other hand, it is difficu
to calculate the nonequilibrium distribution function of th
electrons by solving the Fokker-Planck or Vlasov equati
and using the conventional methods to treat the perturba
is not valid due to the presence of an intense laser field
our work a multiple-scale method is used to analyze the n
equilibrium distribution of the electron plasma in an inten
laser field. By using an appropriate small fluctuation
slowly varying quantities, we linearize the kinetic equati
of plasma self-consistently and obtain a dielectric respo
function and a nonequilibrium distribution function resultin
from the electron quiver motion. A remarkable result, ho
ever, is that in all directions of the wave vector, the mo
excited wave modes are damped and at the wave vector
where the imaginary part of the dielectric function is neg
tive there are no zero points of the real part. The dispers
relation in the limits ofklD! 1 and screening properties o
the plasma are changed under an intense laser field. H
ever, these results lead to a large modification of the S
temporal growth rate. Interestingly, for a certain strength
ser field, the large-angle sidescatter is more important c
pared to backscatter around the quarter critical dens
When the wave vector is parallel to the laser propagat
direction these properties return to those of the Maxwell
distribution in the absence of an intense laser field and
SRS growth rate returns to the usual properties.

It is worth mentioning that many authors@11,24–26#
3373 © 1997 The American Physical Society
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3374 55SHI-BING LIU, SHI-GANG CHEN, AND JIE LIU
worked in a frame where the electrons have only their r
dom thermal motion and the oscillatory motion of the las
field is transferred to the ions. In such a frame their res
appeared in the form of sums of Bessel functions. On
other hand, the Bessel function appears also in the dis
sions of the quickly varying behavior of plasma oscillati
@27–29#. Here we will concentrate on the slowly varyin
behaviors of plasma oscillation and work in the laborato
frame where the Bessel function is not to emerge in the
tained results.

II. MULTIPLE-SCALE ANALYSIS
OF KINETIC EQUATION

The basic equations describing the interaction of la
field with the plasma is the Vlasov equation

] f j
]t

1v•
] f j
]x

1
qj
mj

SE1
v

c
3BD • ] f j

]v
50 ~1!

plus the Maxwell equations, where the electromagnetic fie
E andB are conspicuously the sum of those applied fro
outside sources and those induced from the internal par
distributions, i.e, E5Eext1Eind and B5Bext1Bind ,
f j5 f j (x,v;t) is the distribution function of thej th-type par-
ticles, in phase space (x,v), andqj andmj are the charge and
mass of thej th-type particles, respectively. Our analys
starts from Eq.~1!. We writex andt in multiple-scale forms

T05t, T15et, T25e2t, . . . ~2a!

and

x05x, x15ex, x25e2x, . . . , ~2b!

wheree is a small parameter,T0 andx0 represent fast scales
T1 andx1 represent slower scales,T2 andx2 represent more
slower scales, and so on. In our physical problemT0 and
x0 correspond to the levels of laser frequencyvL and wave
vectorckL /v th, wherev th is the thermal velocity of electron
and T1 and x1 are the levels of the plasma frequencyvp
~wherevp54pe2nj /mj , with nj the ambient density of the
j th-type particles!, wave vectork, and laser wave vecto
kL . Hence the distribution function can be written as

f j~v,x;t !5 f j~v,x0 ,x1 ,x2 , . . . ;T0 ,T1 ,T2 , . . . !.

Instead of determiningf j as a function of (v,x;t), we deter-
mine f j as a function of (v,x0 ,x1 ,x2 , . . . ;T0 ,T1 ,T2 , . . . ).
To this end, we change the independent variable in the o
nal equation ~1! from (v,x;t) to (v,x0 ,x1 ,x2 , . . . ;
T0 ,T1 ,T2 , . . . ). Using a chain rule, we have

]

]t
5

]

]T0
1e

]

]T1
1e2

]

]T2
1•••, ~3a!

]

]x
5

]

]x0
1e

]

]x1
1e2

]

]x2
1•••. ~3b!

Hence, for the plasma electrons Eq.~1! becomes
-
r
ts
e
s-

y
-

r

s

le

i-

S ]

]T0
1e

]

]T1
1e2

]

]T2
1••• D f e

1v•S ]

]x0
1e

]

]x1
1e2

]

]x2
1••• D f e2 e

me

3F ~EL1eEind!1
1

c
v3eBindG• ]

]v
f e50, ~4!

whereEL is the laser electric field and a fast scale quan
andEind andBind are the induced fields in the plasma and tw
slow scale quantities. Our purpose is to seek a uniform
proximate solution to Eq.~4! in the form

f e5 f e
~0!~v,x0 ,x1 ,x2 , . . . ;T0 ,T1 ,T2 , . . . !

1e f e
~1!~v,x0 ,x1 ,x2 , . . . ;T0 ,T1 ,T2 , . . . !1•••. ~5!

Substituting for f e from Eq. ~4! and equating each of th
cofficientse0 ande to zero, we have

]

]T0
f e

~0!1S v• ]

]x0
D f e~0!2

e

me
SEL•

]

]vD f e~0!50, ~6!

F ]

]T1
1v•

]

]x1
2

e

me
SEind1

1

c
v3BindD • ]

]vG f e~0!

1S ]

]T0
1v•

]

]x0
2

e

me
EL•

]

]vD f e~1!50. ~7!

Equation~6! is a zeroth-order equation corresponding to
zeroth-order solution that gives a nonequilibrium distributi
and Eq.~7! is a first-order equation corresponding to a fir
order solution that is a correction to the zeroth-order so
tion. We require only to retain the equations to first order
our problems. In fact, Eq.~7! can describe both the quickl
varying ~wave mode frequencies are greater than or appr
mately equal to the light wave frequency! and the slowly
varying ~wave mode frequencies are far less than the li
wave frequency! behaviors in the plasma oscillation extrao
dinarily well, which, of course, is the result of utilizing th
method of multiple-scale analysis. If one neglects those
slowly varying terms,]/]T1f e

(0) and v•]/]x1f e
(0) , Eq. ~7!

gives a fast varying approximation just like Jackson do
@27#.

Solving Eq. ~6! by setting the laser field
EL5E0cos(kL•x2vLt) in which the phasekL•x2vLt be-
comeskL•x02vLT0 in our consideration of multiple scale
becausekL!vL /v th , the termkL•x0 in the phase may be
treated as a constant. Consequently, we obtain the form
the zeroth-order solution of the kinetic equation~1!,

f e
~0!;expF2

me

2Te
~v2vE!2G , ~8!

where it has been assumed that the distribution of the pla
electron is Maxwellian before the laser light entered into
plasma and vE5(eE0 /mevL)sin(kL•x02vLT0) is the
quiver velocity of the electrons in the laser field. Hence l
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f e
~0!5A~T1 ;x1 ,v!expF2

me

2Te
~v2vE!2G[Ag0 . ~9!

We note thatA is not a constant but a function of the slo
scales T1, v, and x1 because f e

(0) is a function of
(v,x0 ,x1 , . . . ;T0 ,T1 , . . . ) and thederivatives in Eq.~7! are
with respect to (x1 ;T1), which is not known at this level o
approximation; it is determined at subsequent levels of
proximation by eliminating the secular terms. It is rema
able that we are only interested in the zeroth-order solu
f e
(0) because our final goal is to find the dielectric functi
that can be obtained from the first-order equation~7! by us-
ing a self-consistent linearizing method. The above equat
are, however, kept to first-order. On the other hand, the s
scale cofficientA is dependent on the characteristic para
eters of the plasma, which differ from these of Ref.@23#. It
may be determined in a self-consistent linearizing appro
mation.

For expression~9!, actually, it is very clear in the physica
picture that the electron thermal motion is superpose
quiver component due to the presence of an external l
field, which is a drift Maxwellian distribution. Because th
fast scalesx0 andT0 are included invE andk•(v2vE),0,
Eq. ~9! reflects a coupling motion of both fast and slow m
tions.

III. DIELECTRIC RESPONSE FUNCTION OF PLASMA

In principle, the first-order scale equation contains ter
that produce secular terms. For a uniform expansion, th
terms must be eliminated. From Eqs.~6! and~7! we see that
the term includingf e

(0) in Eq. ~7! averaging overT0, which
will contribute to a term proportional toT0 for f e

(1) , is a
secular term and should be set equal to zero, so that

F ]

]T1
1v•

]

]x1
2

e

me
SEind1

1

c
v3BindD • ]

]vGA^g0&50.

~10!

It can be seen that in the treatment of the secular term o
the wave frequencies that are far less than the laser frequ
are left. Obviously, the treatment is identical to the cons
erations of the current subjects of interest. For the slo
varying behaviors in the plasma oscillation, Eq.~10! is a
highly appropriate description.

Assume that these slowly varying quantities have per
bations

dEindexp@ i ~k•x12vT1!#1c.c., ~11a!

dBindexp@ i ~k•x12vT1!#1c.c.

5
c

v
~k3dEind!exp@ i ~k•x12vT1!#1c.c., ~11b!

A01dA~v!exp@ i ~k•x12vT1!#1c.c., ~11c!

respectively, whereA05(me/2pTe)
3/2 is the normalized

constant of Maxwellian distribution, which is a fundamen
requirement satisfying the initial condition. Substituting Eq
~11a!–~11c! into Eq. ~10! and then linearizing, we obtain
-
-
n

ns
w
-

i-

a
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s
se

ly
cy
-
y

r-

l
.

dA^g0&~2 iv1 ik•v!

5
e

me
A0K ]g0

]v L •@~12k•v/v! Ĩ1vv/v#•dEind ,

~12!

where Ĩ is a unit tensor and angular brackets represent
average over a period associated with the frequency of la
Therefore, the amplitudedJ of the induced current produce
by field disturbance can be written as

dJ52eneE
2`

`

vdA^g0&dv, ~13!

wherene is the density of the electron plasma. Substituti
Eqs. ~11a!–~11c! into Eq. ~12!, according to the complex
Fourier forms of Maxwell’s equations, and utilizing Eq.~13!,
finally, the dielectric tensor function is obtained

D̃~k,v!5S 12
vpe
2

v2 D Ĩ2A0

vpe
2

v2 E
2`

`

dv
vv

k•v2v
k•K ]g0

]v L ,
~14!

wherevpe5(4pe2ne /me)
1/2 is the frequency of the electro

plasma.
Making use of the conventional methods@30# and averag-

ing in the wave vector directionk•D̃(k,v)•k/k2, the dielec-
tric response function can be calculated as

D~k,v!511
kD
2

k2
^W~j!&, ~15!

where the dispersion function

W~j!512jexp~2j2/2!E
0

j

exp~ t2/2!dt

1 i ~p/2!1/2jexp~2j2/2! ~16!

FIG. 1. Real part of the dielectric response function vs the f
quency for the different parameters:klD50.05, vos/v th510.0,
u50.0 ~dash-dotted line!; klD50.1,vos/v th510.0,u50.0 ~dashed
line!; klD50.1, vos/v th55.0, u50.0 ~dotted line!; andklD50.1,
vos/v th55.0, u50.3p ~solid line!, respectively.
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and

j5
vp
v th

2
vos
v th

cosu sinc. ~17!

vos5eE0 /mevL and v th5(Te /me)
1/2 are the amplitude

of the quiver velocity of electrons in the laser fie
and the thermal velocity of electrons, respective
kD5(4pe2ne /Te)

1/25lD
21 is the Debye wave number,u is

an angle of the wave vector and laser field vector,vp5v/k is
the phase velocity of the wave, andc is the phase of the
laser field. The second term on the right-hand side of
~16! involves an orthostatic probability integration that c
be represented by a special functionj21F

1(1; 32;2
1
2j

2),
where 1F

1(a;b;z) is known as the Kummer function.
It is worth noting that if one seeks the usual electrosta

form rather than that of Eq.~14!, one can usefully write the
denominator of the dielectric function ask•(v2vE)2kjv th
and change the integration variable fromv to (v2vE), since
the different feature in the electron dielectric function is t
presence ofvE in the oscillating Maxwellian. Hence one no
can obtain the standard result in the usual way@30#, but with

FIG. 2. Imaginary part of the dielectric function vs the fr
quency. The parameters are the same as in Fig. 1.
,

.

c

the usualv/kv th replaced byj, then to be followed by aver-
aging over the oscillation phase. Note that this is the reve
of the usual procedure in the calculation for the cyclotr
orbits of a hot magnetoplasma@12# or for the oscillation
orbits in previous oscillating-electron plasmas@11,31–33#.
This procedure gives the result of Eq.~15!. In addition, it is
obvious that the response functionD(k,v), when
u56p/2, returns to that of the Maxwellian distribution i
the absence of an external laser field. We also can see,
Eqs. ~24!–~27!, that the laser field modifications to the d
electric properties of the plasma embody the functionj com-
pletely becausek andv appear inj only, and in the complex
v plane, the position of the poles shifts in comparison to
Maxwellian. The detailed analyses will be presented num
cally in the next section.

IV. NUMERICAL RESULTS OF MODE EXCITATION

We now consider the real part of the dielectric functi
Eq. ~15!. The real part ReD(k,v) as a function of the fre-
quencyv is plotted for different parameters. Figure 1 di
plays the variation of ReD(k,v) for different parameters
vos/v th , klD , and the angleu, respectively. For a certain
temperature of the plasma the exciting frequencies mov
higher values ofv when both the strength of the laser fie
and the parameterklD are increased, respectively. Howeve
increasing the angleu, the exciting frequencies move t
lower values ofv. The amplitude of ReD(k,v) is suscep-
tible to the parameterklD . The smaller the paramete
klD , the larger the amplitude. It can be seen from Fig. 3 t
the exciting modes result in a narrow region of theklD
value. In the direction of the wave vectork parallel to the
laser field, no excitations exist forklD exceeding 0.3 in the
case of arbitrary laser field strength values, and the hig
the strength, the narrower the region of theklD value where
the excitation occurs. That is to say, whenklD>0.3, the
Landau damping typically becomes important, which is ide
tical to the theoretical analysis of Ref.@34#.

Figure 2 shows the imaginary part of the dielectric fun
tion ImD(k,v) as a function of the frequencyv. Im
D(k,v) becomes negative in a certain region of frequen
However, combining Fig. 1 with Fig. 2, one can see that t
negative imaginary part does not involve the zero points
the real part in the dielectric function, which implies that
a-

n

FIG. 3. ~a! Relationship ofv and k for the
second excitation point. The corresponding p
rameters arevos/v th515.0, u50.0 ~dash-dotted
line!; vos/v th510.0, u50.0 ~dashed line!;
vos/v th55.0, u50.0 ~dotted line!; and
vos/v th55.0, u50.3p ~solid line!. ~b! Imaginary
part of the dielectric function vs the valuesv and
k, which correspond to the second excitatio
point. The parameters are the same as in~a!.
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55 3377MULTIPLE-SCALE ANALYSIS OF PLASMA RESPONSE . . .
does not follow the instability of the plasma wave. The fi
exciting point corresponds to a very large positive imagin
part, which represents a large Landau damping. Therefo
possible exciting mode exists only at the second zero p
of the real part, which can be seen from Figs. 3~a! and 3~b!.
In order to understand these excitation properties in m
detail the real part of the dielectric function as a function
the angleu and strength value (vos/v th) are displayed in
Figs. 4 and 5 respectively. It is noteworthy that in the diffe
ent directions the exciting properties of the plasma are
tinctive, which differs from the usual situation. From th
above discussions we find that the nonlinear response p
erties of the plasma to an intense laser field concentrate
the influence of the laser field on the distribution of t
plasma. Essentially, in the contour integration of express

FIG. 4. Real part of the dielectric function vs the angleu for
klD50.05, v50.8vp , vos/v th510.0 ~dash-dotted line!;
klD50.05, v51.5vp , vos/v th510.0 ~dashed line!; klD50.1,
v50.8vp , vos/v th510.0 ~dotted line!; andklD50.1,v50.8vp ,
vos/v th55.0 ~solid line!.

FIG. 5. Real part of the dielectric function vs the laser streng
vos/v th . The parameters are the same as in Fig. 4.
t
y
, a
nt

re
f

-
s-

p-
on

n

~14! the distribution of poles in the complexv plane have
displaced due to the presence of a laser field. The sp
distribution of these poles determines the response of
plasma on an external field. The discussed properties e
just because the poles have made a redistribution.

V. DISPERSION RELATION
AND SHIELDING PROPERTIES

Now we consider the case of the parame
klD!v th /vos,1, which meansj@1. In this limit the real
part of Eq.~16! can be expressed in a convergent series

@W~j!#R52j2223j242•••2@~2n21!!! #j22n2•••,
~18!

where (2n21)!!5(2n21)3(2n23)3•••3331. Taking
the first two terms on the right-hand side of Eq.~18! and then
averaging in a laser cycle yields

^W~j!&R.2~2p!21S klD

vpe

v D 2E
0

2p

dc~122bsinc

13b2sin2c!23~2p!21S klD

vpe

v D 4
3E

0

2p

dc~124bsinc110b2sin2c!, ~19!

whereb5(klDvpe /v)(vos/v th)cosu. Substituting Eq.~19!
into Eq.~15!, settingD(k,v)50, and neglecting some high
order small terms, finally, we obtain an analytical express
of dispersion relation

v25vpe
2F113k2lD

21
3

2
k2lD

2S vosv th
D 2cos2uG . ~20!

In the process of the derivation above we have neglec
relevant terms higher than third-order of small quantiti
Obviously, the excited wave frequency increases subs
tially and in different directions it is distinctive. If one ne
glects thevos-dependent term, Eq.~20! recovers the Bohm-
Gross frequency. The third term on the right-hand side of
~20! is called the laser field modified term. This term b
comes zero whenu5p/2. It is to see that the external lase
field does not affect the plasma oscillation along the dir
tion of laser propagation. Evidently, from Eq.~20!, for a high
field (vos/v th.1) the modified term is larger than the seco
term in the transverse direction~wave vector parallel to lase
field vector!, so this term is significant to the transver
plasma oscillation along the direction of the laser field. Co
bining Eq.~20! with Figs. 3~a! and 3~b! we can see that, for
the cold plasma, the maximum of the correction term is
lowed to arrive atA8vpe in the region of the exciting wave
because the wave modes ofv/vpe<3 can be excited for a
certain strength value of the laser.

In order to understand the anisotropic dielectric proper
of plasma further, we consider the limit ofv50. One can
find, from Eqs. ~15!–~17!, that the dispersion function
^W(v50)&Þ1 for uÞp/2 in this limit. Therefore, the
screening property of the plasma is changed due to an
tense laser field. The screening length becomes
s
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3378 55SHI-BING LIU, SHI-GANG CHEN, AND JIE LIU
r D5@4p^W~v50!&nee
2/Te#

21/25lD@^W~v50!&#21/2

~21!

andr D is determined by not onlyTe andne but alsovos and
u. The evolution of̂W(v50)& along with strength value o
the laservos/v th and the angleu are plotted, respectively, in
Fig. 6. One can see that^W(v50)&<1. The equality sign is
satisfied only in two cases ofvos50 or u5p/2. The screen-
ing length increases when the strength of the laser is rai
When the strength value increases tovos/v th>4.0,
^W(v50)&'0, which means that the screening effect d
appears in the transverse direction. As the angleu increases
gradually, the screening length decreases correspondi
and returns to the Debye length whenu increases top/2. We
can see from Fig. 6 that the screening effect disappe
within certain limits ofu whenvos/v th is sufficiently large.
Furthermore, in the problem of Coulomb scattering, which
closely related to the screening of an effective poten
;exp(2r/rD), one sets the maximum impact parame
bmax equal to the screening length in order to avoid a lo
rithmic divergence, i.e., takes the Coulomb logarithm
lnL5ln(12pnelD

3 ). From the above discussion one can fi
that the screening lengthlD becomesr D , which is larger
than lD . Under an intense laser field it will become ve
large and tends to infinity whenvos/v th is sufficiently large
in the direction parallel or approximately parallel to the las
field. Of course, whether this shielding phenomenon is o
standing within the interaction timevpe

21 will be worth study-
ing further in the future.

VI. RAMAN INSTABILITY

The stimulated Raman scattering instability arises fr
the decay of a pump photon into a scattered photon an
plasmon. What we are interested in here is the effects of
discussed wave exciting properties on the SRS growth r

FIG. 6. Dispersion function atv50.0 vs the angleu. The cor-
responding laser field strengths of the curves arevos/v th 50.5, 1.0,
2.0, 3.0, . . . , 10.0 from top to bottom.
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We look at the case of a steady-state interaction where
pump is continuous over all space~linearity approximation!
and not too strong. In this case the temporal growth rate
the unstable waves for the backward and sideward SRS
stabilities is given by@35#

g5
1

4
kvosF vpe

2

vek~vL2vek!
G1/2, ~22!

wherevek5(vpe
2 13k2v th

2 )1/2 is the Bohm-Gross frequenc
and the wave numberk is given by the dispersion relatio
(vek2vL)

22c2(k2kL)
22vpe

2 50. Since most experiment
start out with a very low temperature for the electro
(;10 eV! one can assume that the initial electronic tempe
ture is cold~i.e. vpe

2 @3k2v th
2 ). In this case the growth rate

becomes

g50.5vL

vos
c S vpe /vL

12vpe /vL
D 1/2. ~23!

In our considerations the growth rate of instability can
changed because the dispersion relation of the elec
plasma wave has been modified@see Eq.~20!#. From a direct
derivation, the relevant density fluctuation equation that
scribes the instability now becomes

F ]2

]t2
1vpe

2 23v th
2 S 11

1

2
m2sin2q D¹2Gdnen0

5
e2

c2me
2¹2~AL•As!, ~24!

where AL and As are the vector potentials of the large
amplitude pump and the scattered light waves,dne is a small
density perturbation in the plasma,n0 is the plasma ambien
density, andm5vos/v th . By means of the conventiona
method, for the backscatter and sidescatter~0<q,p/4), the
dispersion relation can be derived as

~v22h2vek
2 !@~v2vL!22c2~k2kL!22vpe

2 #5
1

4
k2vosvpe

2 ,

~25!

where, for vpe
2 @3k2v th

2 ,

h2511
3

2 S vosc D 2S vL

vpe
D 2sin2~2q! ~26!

and the wave-number matching conditionk.2kLcosq is
used. It needs to be indicated that, in order to keep in
with the usual treatment, the angleu in Eq. ~20! has been
translated intoq, which represents the angle between t
plasma wave vector and the laser propagation direction.
can see that the original wave frequencyvek is replaced by
vc5hvek, determined by Eq.~20!. Takingv5vc1 ig, the
maximum growth occurs when the scattered light wave
also resonant. The relevant growth rate, in this case, ca
obtained
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g50.5
vos
c F vpe /vL

h~12hvpe /vL!G
1/2

vLcosq. ~27!

In comparison with Eq.~23!, we can find that one factorh
appears, except for the scattering angleq is included in Eq.
~27!. When q50 it returns to Eq.~23!, which gives the
backscattering growth rate. The unstable mode wave num
k that satisfies the scattered light resonant condition is

k5k06
vL

c F S 12
vpe
2

vL
2 D cos2q1h2

vpe
2

vL
2 22h

vpe

vL
G1/2.

~28!

The growth rate as a function of the angleq is plotted in Fig.
7. One can see that, at the plasma electron densityne

FIG. 7. Growth rate of the Raman instability vs the scatter
angleq. ~a! For vos/c50.6, the solid line is at the 1/4 critica
density and the dashed line is at the 1/16 critical density.
vos/c50.5, the dash-dotted line is at the 1/4 critical density.~b! For
vos/c50.2, the solid line is at the 1/4 critical density and the dash
line is at the 1/16 critical density. Forvos/c50.1, the dash-dotted
line is at the 1/4 critical density.
er

51
4ncr , wherencr is the critical density, the growth rate i

gradually reduced along with angleq whenvos/c<0.5. That
is to say, the backscattering (k.2kL) growth rate is larger
than that of sidescattering in the strength region
vos/c<0.5, which is in agreement with the usual resu
When the strength value is increased tovos/c>0.6 a very
interesting change results that the sidescattering growth
is larger than the backscattering one asq>p/10, which is
different from that obtained before. At the densityne5
1
16ncr , the sidescattered growth rate is lower than the ba
scattered one. From Fig. 7 we can arrive at the import
conclusion that when the laser strength arrives at a cer
value, the large-angle sidescatter is more significant that
back-scatter around the quarter critical density. It is wo
indicating that in the approximation in Eq.~20! the only
requirements arev/(vpeklD)@vos/v thsinqsin(kL•x2vLt)
and 3

2k
2vos

2 cos2q!vpe
2 . Therefore, the above results are re

sonable. In addition, the results given in this section are v
only in the pump linearity approximation. A more extensi
discussion on this subject is planned to be presented in
other work.

VII. CONCLUSION

In this work we have given a nonequilibrium distributio
function of the electron plasma mathematically and obtain
a dielectric function in an intense laser field by using
appropriate treatment method that linearized the relev
slowly varying quantities. We find numerically that, in th
plasma interaction with an intense laser field, the nega
imaginary part of the dielectric function does not follow
plasma instability. The most excited wave modes are dam
by a large Landau damping asv/vp>2 and the excitation
properties are distinct due to different angles of the wa
vector deviating from the laser field. The parameterklD re-
gion where the excitation occurs is presented for the dive
strength values of laser field. ForklD!1(.v th /vos), a sig-
nificant dispersion relation with the laser field correction
different directions of the wave vector is obtained. In th
case, the frequencies of the excited wave modes have a
table increase for the small-angle oscillations and this
crease is directly related to the square of the electron qu
velocity in laser field. We find further that the screenin
effect is anisotropic under an intense laser field. The scre
ing length increases with the intensification of the las
strength and the screening effect disappears in the direc
parallel to the laser field when the strength increases t
critical valuevos/v th54.0. Within a large-angle domain o
the wave vector deviated from the direction of the laser fi
~e.g., 0<u<0.3p) the screening is lost when the strength
raised to a certain value~e.g., vos/v th56.0). Furthermore,
we indicate that in the physics of Coulomb scattering, repl
ing the maximum impact parameter with the Debye len
may be unsuitable in the presence of an intense laser fie
the mentioned screening effects can occur in the interac
timevpe

21 . Finally, we investigate the effects of these resu
on SRS instability. It is found that, for the strength val
vos/c.0.5, the sidescatter starts out to become import
because of the change of the dispersion relation in the e

r
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tron plasma wave. In particular, whenvos/c>0.6 and
q>p/10 the instability growth rate is larger than that of t
backscattering instability around the quarter critical dens

In the interaction of a plasma with an intense laser fie
the electron quiver motion results in the anisotropy of
density fluctuations; however, it also results in the aeolo
pism of the nonlinear coupling and the plasma respo
properties discussed in this paper. Only in laser propaga
ou

ys

.

.

s

s,

ys
.
,
e
-
e
g

direction, where parameterj5(v/k)Ame /Te, do all the
properties return to that of the Maxwellian plasma.
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