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Resonant interactions of drift vortex solitons in a convective motion of a plasma
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The three dimensionality of drift vortex solitons in a convective motion is investigated. The propagation of
vortex solitons is described by the Kadomtsev-Petviashvili equation with negative dispersion. It is pointed out
that under a certain condition the vortex soliton resonance is posgfil663-651X97)05102-7

PACS numbds): 52.35.Kt, 52.35.Ra

[. INTRODUCTION we cannot tell whether the vortex soliton is stable against
bending distortion. Laedke and SpatscHék showed that
The pseudo-three-dimensional dynamics of a magnetizetivo dimensional perturbations of single vortices in the plane
(with magnetic fieldB,=B,z) and inhomogeneougwith perpendicular to the magnetic field do not grow in time. Re-
densityny(x)] plasma withT >T;, by taking account of the cently, the three dimensignal stability of monopolar drift vor-
motion of electrons along the magnetic field, can be detices has been studied bykérstedtet al. [7]. They showed
scribed by the Hasegawa and Mima equatfiby2] that vortices with a monotonic decreasing or increasing ra-
dial profile of the potential vorticity are stable for long trans-
d - verse perturbation. When we consider the three dimension-
at (VE¢=d)=[(V.$xD)-V, ](Vig—Inng)=0, (1) ality of drift vortices, the three dimensional interaction
between vortices is an interesting problem as well as the
wherez is the unit vector of the axis; the time and space three dimensional stability. However, almost all studies on
coordinates are normalized hy;' and p=(TJ/m)Y%w, the interactions use two-dimensional models.
(w¢j is the ion cyclotron frequencyl, is the electron tem- When we consider the vortex motion in an inhomoge-
peraturg, the electric potentia by T./e, and the subscript neous plasma extended to the direction of magnetic field, the
L indicates the components perpendiculaBtp When we three dimensionality of the vortex must be taken into ac-
take they axis in the direction of the density gradient, Etj). ~ count. In this paper, we investigate the propagation of drift
admits a linear wave whose dispersion relation is given by vortices in a two dimensional periodic zonal flow that ex-
tends to the direction of the magnetic field uniformly. We
[(kX2) -V Inng(y)]  «ky consider the case that the motion of ions is nearly two di-
- 1+K2 T 1¥k2 (2 mensional but vortex lines are inclined to thexis. In Sec.
Il, we derive the Kadomtsev-PetviashvilK-P) equation

wherek is the wave vector in the direction perpendicular tofrom the fluid equation by using the reductive perturbation
7, k, is thex component ok, and«=|V, In ny(y)|. The drift ~ method, which describes the propagation of drift vortex soli-
wave which exists in such a magnetized and nonunifonﬁons. In Sec. I, the interaction between two inclined vortex
p|asma has interesting properties' Hasegawa and Koﬂﬁ]na solitons is investigated by making use of the two-soliton so-
showed that the spectrum cascade by mode coupling in driftition of the K-P equation, and the existence of vortex soli-
wave turbulence described by E@) occurs at longer and ton resonance is shown. Summary and discussion are given
shorter wavelengths. In a region of large wave numbers, thé the last section.
energy spectrum cascade to smalkér and in a small wave
number region the energy tends to decay to a lower fre- Il. DERIVATION OF THE K-P EQUATION
guency, hence to smalldk,. Thus, the energy spectrum FROM A FLUID MODEL
tends to condense at a critical valuekgt= k. andk,=0. Itis
well known that as a consequence of cascade, a periodic The three dimensionality of drift vortices in the zonal
zonal flow in thex direction perpendicular to both directions flow in the direction perpendicular to both directions of in-
of inhomogeneity and applied magnetic field appears in thédomogeneity and magnetric field is investigated. We assume
plasma [4]. Nozaki et al. [5] have shown that vortices that the ion temperature is much smaller than the electron
formed by the shear flow propagate along the neutral sheet é¢mperature, and use a cold ion approximation. The fluid
the zonal flows at the Korteweg-de Vri¢kdV) solitons. — equations for cold ions take the forms
They have obtained the KdV equation for the motion of vor-
tices by applying the reductive perturbation method to the gn an an an vy dvy v,
Hasegawa and Mima model equation and also to the two — tvx oo +tvy —o v, —+n(—+ -t —)

: : : . . : o y Jz ax dy oz
dimensional ion-fluid equations with the Boltzmann distribu- 3)
tion for the electron density.

As the KdV solitary wave is a nonlinear wave, which by

virtue of the one dimensionality is fully stable, vortex soli- duy Jux duy dux _ 9P @

. . — 4oy —+vy, —+v,—=——+v,,
tons described by the KdV equation may be stable. However, gt UxTgx Uy ay V2757 ax oY
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v, v, v, vy, 0 respectively. In the third orde (&) and O(e?), we have

o= oy U (5)  the polarization drift

dv, dv, dv, dv, d (3)
W—’_UXW_FU)’W—FUZE:_E' (6) 0;3):_%, (15)
where we take the axis in the direction of the magnetric
field, the time and space coordinates are normalized By Pp? g apd
and p.=(TJ/m) Y% wy, respectively, and the electric poten- v =(\+®) — O+ . (16
tial ¢ by TJle. ggdy  J§ 9§
As the ion density in drift waves is equal to the electron
density to a high accuracy, the quasineutrality condition rezng the equation fop?
latesn to the electron density which is given by the Boltz-
mann distribution
(92 ., &¢(2)
n=exp ¢). 7) A+ ®) W_(M—(D ) % =0, 17)

In this section, we extend the reductive perturbafibh
for the one-dimensional propagation of drift vortices in theyhich are in agreement with the results of REH] to this
two dimensional space to the quasi one-dimensional Propaspint. We assume that® is separable
gation in the three-dimensional space. We assume that an
electrostatic drift wave is propagated in thelirection while
it varies slowly in thez direction, so that by means of a p P =X (& 9, 1Y (y). (18)
parameter, ordering a smallness of the amplitude stretched

variables may be expressed as Substituting Eq(18) into Eq.(17), we have
£=e(x—ent),

7= 61/2+ aZ' (8)

d> A+d”
7= €%, W()\)Y(z)(y)z(

dy? A+ @

Y®(y)=0. (19

where\ is the phase velocity in the direction of the drift

wave in the long wave limit and so thatis expanded as | follows that\ is one of the eigenvalues of E€L9), under
PR IE FYC I PIC I (9p the periodic boundary condition fof2,

and also Y(Z)(O) _ Y(Z)(l ), (20)
v=ev M+ e @+ P+ P+ (10 Y@ (0)=Y2"(l).

2 () 2 (2, 3 (3 4 (4, ... .
vy=e(evy vy ey eyt 0), (1) h the fourth orderO(e?) and O(e¥?), we obtainy @, v,

(1) ; (3 .
v 3’ and the equation fo as follows:
v,=e" (M + 2P+ P+ P +--0), (12 ‘ a ¥

wherea (>0) andb (>0) are parameters to be determined Pp?  gp®
and ¢ and @ {M,v M) are the electrostatic potential and v=(\+d) PR Vel (21
drift velocity related to the zonal flow. When we take the y
axis in the direction of the density gradiert’, v (), and
v (! are regarded as functions gfonly. We note here that P22 2D 2D 22
the quasineutrality condition does not break down because v§,4)= ———+(A+D)
the vorticity is not strong. Introducing the transformations Iy gy dy  9gdy
[Eq. (8)] and the expansiondEgs. (9)—(12)] into Egs.(3)— 9@ g2 P22
(7), we havea=3/2 andb=1 from the consistency of the P ?y——df[()wr@) aEay
ordering and the requirement that the reduced equation must
contain the » derivatives. In the lowest ordeQ(e) and PY GNP FIOR P FAC
0O(€¥?), and in the second ord@(e?) and O(e>?), we have —P’ E + P ] P (22
the guiding-center drift,
d¢(l) (1) (2)
(D _ —_ (L— ) d
v, d(y), v’=0, (13 v, dp
dy y (AN +D) Fr (23
(2) (2)
u(f):— o6 , v(2)=§¢ (14

and
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9 ap® 9 P\ o
N+ D) 6_)/2_()\+q) ) pY: +E’ _07_)/2)¢
(93(15(2) {9(1)(2) {9¢(2) (93¢(2) (93(15(2)
(&wyz TRV AR T
(9(1)(2)
_ &g ()\¢(1)+q)cb’—2q)’q)”+ ¢(1)(DH)
(92¢(2)
gy (@)= @)
Pp'? " vt
+W{()\+®)(¢ -0} + an =0. (29

Differentiating Eq.(24) with respect to&, substituting Eq.

(23) into the equation and taking account of H48), we
have

(3’2¢(3) 1 d2y® X2
WN) ———— e
92 A+d | dy TIE
1 @ d3y@  dy® g2y@
N+ D dy>  dy dy? )
9 &X(Z) "
— | x®@ HPp'l -1+ ——Y®@
IE X 9E >N\ 1)
dY®@ ) #2x®@ 2 94X
+(DP—D" +
2y(2)
1 ) I°X

Multiplying Eq. (25) by the eigenfunctiony® for \, and
then integrating ovey from O tol, we obtain theK-P equa-
tion for X'? as a compatibility condition,
(2) (2)y(2) (2) (2) (2 —
X2+ a(XOXD) o+ BXZ e yX 2+ 6X2=0. (26)

where the coefficients, 8, v and § are given by

B 1fl @3 1 d >\+c1>"d )
=-5 LY T o ay v | @7
1 !
B=— f (Y®)2dy, (28)
N Jo
7=£ JI(Y(Z))Z—Z1 dy (29
N Jo (AN+D)2
1 | (2)2 14
5=‘Nfo[” A R TN
—Y<2>Y<2>'(q>—cb")]dy, (30)

| @_(DII
N= JO(Y<2>)2 D) dy. (31

The last term of Eq(26) can be eliminated by the Galilei
transformation. The coefficients and 8 are in agreement
with the coefficients of a nonlinear term and a dispersion
term of the KdV equation, which is derived in R¢&], re-
spectively. Following Ref.[5], we assume a periodic
electric-field with small variation about the constant value
€Cq in order to get the finite coefficierd of the nonlinear
term of Eq.(26),

—d=cy+fV(y), (32

whereV is given by
V(y)= D, apsink,y+ 2, bncoK,y,
m=1 m=1

Kp=27m/l, (33

where f is a small parameter but is much greater than
ExpandingW, A andY® in power off,

W=Wy+fW;+--- |
AN=No+fAi+---, (34)
Y(Z)ZYE,Z)-l-fY(lZ)-F"' ,

and following the same calculation plan to R], we have

Cokﬁq
Ao—mzn-], (35

Van
Ygr%:ﬁ
VAL +Br,
whereA,, andB,, are arbitrary constants. Let timath eigen-

mode be excited. Substituting Eq85) and (36) into Egs.
(27)—(31), we have

{ALSinkLy + Bncokny}, (36

f 3m Bm
= — T (K2—K2 )| agy ——m—
Ay \/ﬁ Co ( m 3m)| 3m m
4AZ An 4BZ,
x| 1— +b 1—
AZ B2 | em JAZ1 B2 A2 +B2
+0(f?), (37)
= ﬁ—co +O(f 38
1
7m=—c—+0(f ) (39
0

and
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2 2

5=tk ko (14+kE 2 oM
m (1+km)2 2m m 2m 2 Am+Bm 2m
m=m 2
+ 72 gz om0, (40

It should be noted thaB,,y,=1/(1+k2)?>0. Thus the
propagation of the three dimensional drift vortex solitons is
described by th&-P equation with negative dispersion. As
being pointed out by Nozaleét al. [5], the vortex soliton is
produced by means of the coupling between it mode
and the 3n harmonic component in the zonal flow. The shift
of the soliton-velocityd,, is produced by the coupling be-
tween themth mode and the & harmonic component in the
zonal flow.

For the one-soliton solution of Eq26), ¢ takes the

form
L 2
n|l—Qr T

1
B K2secR=
Oy 2

=3 K| &+

K

x sin| K y+ g) +o(f ), (41)

whereK andL are thex andy components of soliton wave
number, respectively, and is given by

L2
Qm::[’;ngdl"ym K’ (42

FIG, 1. Vortex soliton. (@) The perturbed electric potential contour
lines, ¢{?=1.0 and 3.0, are depicted at different valuesyoin the frame
and SirTl(A,n/\/Azm-l— Bzm) is taken to bem/2. moving with the soliton. The parameters are set as follows=1,

Equation(41) shows that the potential-well and potential- an=byn=1, agn=bz,=0.1, f=0.1, andK=1.52, andL=0.6,
hump solitons are lined up in thedirection alternately. The Wwherey, ¢{?, ¢ andz are normalized by, €°Tee ', e *%p,, and
electric field is directed to the center of the soliton in the€ ps. respectively.(b) The perturbed electric potentig?’ [Eq.
potential-well and it is directed outward from the center in(41] at 7=—10 and the contour map of equipotential.
the potential-hump soliton. It may be noted that the direction
of rotation due to theEXB drift between the neighboring Scribed by theK-P equation with negative dispersion. This

vortex is opposite. One of the vortex solitons is drawn in Fig.means that vortex line soliton is stable against a transverse

1. The figure shows the contous{?’=const for Eq.(41)
depicted in the frame moving with soliton.
Finally, we note that if some of the coefficienis 8, and

perturbation. It is interesting to study the interaction between
two obliquely moving vortex solitons. The study of the in-
teraction of two obliquely moving line solitons has been

y in Eq. (26) become extremely small or large for a given made by Miles/9]. He has shown that, when relative incli-
configuration, others stretching from Ed8)—(12 must be  nation between wave normals is at a certain small critical

introduced. In that case, we shall obtain another equatio@ngle, two solitons interact strongly in the case of negative
instead of Eq(26). dispersion to make a resonant soliton from a point at which

the two incident solitons meet together. On the other hand, in
the case of positive dispersion, line solitons never satisfy the
resonant condition. From the procedure to construct the mul-
We have obtained th&-P equation for the motion of tisoliton solutions of theK-P equation[10], the two-soliton
vortices in zonal flow by applying the reductive perturbationsolution is given by
method to be three dimensional cold ion-fluid equations with
the Boltzmann distribution for electron density. THe P
equation was first introduced in order to discuss the stability
of the line soliton against long transverse perturbation by
Kadomtsev and PetviashvilB]. The results were obtained
that the line soliton of the KdV equation is unstable in the
case of positive dispersion and is stable for negative disper-
sion. The equation corresponds to the case of negative and
positive dispersion wheBy>0 andBy<0, respectively. As
the equation that is derived in previous section has
Bmym=1/(1+k?2)?>0, the motion of vortex solitons is de-

Ill. RESONANT INTERACTION OF VORTEX SOLITONS

B
X=12= (logf ), (43

f=1+expy,+expy+a(l,2exp 71+ 77), (44)

n=Kjé+Lin—Qjr—7° (45)

KiQ;=pKi+yL7(j=1,2), (46)
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FIG. 2. The repulsive interaction between two vortex solitoffs
<a(1,2<1). (a The perturbed electric potential contour lines,

¢?=1.0 and 3.0, are depicted at different values;ofrhe param-
eters are set as followm=1, a,,=b,,=1, as,=bz,=0.1,f=0.1,
andK;=0.76,L,=0.3,K,=1.3, andL,=—0.44.(b) The perturbed

FIG. 3. The attractive interaction between two vortex solitpagl,2)
>1]: The perturbed electric potential contour Iim&%):l.o and 3.0
are depicted at different values gf (K;=0.76,L,=0.3, K,=1.3,

where 77? is the real constant aral1,2) relates to the phase
shift ¢ of the two interacting solitons,

exp(2¢)
=a(l1,2

_ (K1—K)(Q1—= Q) — y(L1— L)%= B(K;—Ky)*
(K1 +K)(Q1+ Q) = y(Ly+ L)%= B(Ky+Kyp)*

(47)

For the case 0&(1,2>0, the solutio Eq. (43)] represents
regular interaction of two solitons. According &91,2)>1 or
a(1,2<1, the interaction is attractive or repulsive in the
x-direction. In Figs. 2 and 3, typical patterns of solution are
shown for the two cases. Figures 2 and 3 correspond to re-
pulsive and attractive cases, respectively. In the limit
a(1,2—o, the phase shift becomes infinite. This is thought
to be resonance between two inclined vortex solitons, whose
condition is given by setting the dominator &f1,2) to zero

V3¢
1+Kk5,

tand; — tand,= + (K1+Ky), (48

where §,=arctan(;/K;). Figure 4 is the snapshot of the
resonant interaction between two inclined vortex solitons
with parameters near the resonant condition in(&8). Two
vortex solitons interact strongly to make a resonant vortex
soliton from a point at which the two incident solitons meet
together.

The condition of the other limia(1,2—0, in which the
phase shift becomes minus infinity, is given by equating the
numerator ofa(1,2) to zero, which is expressed as follows:

V3¢
tan@l—tarﬁZ:imz— (Kl_KZ) (49)
m

Figure 2 is the snapshot of the interaction between two in-
clined vortex solitons with parameters near the condition in
Eqg. (49. In this case, two vortex solitons cannot approach

electric potentials¢? and the contour maps of equipotential at €ach other closely. They interact through the messenger soli-

n=24, »=10, andyp=—14.

ton denoted byM in Fig. 2. The solution of the messenger
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FIG. 4. The resonant interaction between two vortex solitons with pa-

rameters near the resonant conditié;=0.76, L;=0.01, K,=1.3,
L,=2.3.

soliton is given by taking the limit 7—o,
m,+log a(l,2)——oo but 7,— 7,~0(1) as follows,

$2=35" (=K,
m
1 L,—L,
X secht > [(Kl—Kz) E+ K=K, 77) —QMT]
2 T
X \[I— sm( Ky + 5) +0(f ), (50)
where
(Li—Lp)?
Qu=Bn(Ki= K+ Y= — = (61
1 2
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soliton and the second soliton interact resonantly to make the
first soliton which is shifted by log(1,2).

IV. SUMMARY

We have investigated the propagation of three-
dimensional drift vortices in a two-dimensional periodic
zonal flow which extends to the direction of the applied mag-
netic field. The propagation of vortices is described by the
K-P equation with negative dispersion. Therefore, vortices
propagate as thK-P solitons in the direction normal to the
static electric field with inhomogeneity. The solutions show
that the potential-hump and potential-well solitons are lined
up in the direction of the static electric field alternatively and
propagate with the same velocity. These hump and well parts
rotate clockwise and counterclockwise in the sense of the
EXB drift, respectively.

As the propagation of the vortex solitons is described by
the K-P equation with negative dispersion, the vortex may
be stable against a transverse perturbation. The interactions
between two obliquely moving vortex solitons are also in-
vestigated by using the two-soliton solution of tie P
equation. It is shown that the drift vortex soliton resonance is
possible under a certain condition.

When the angle of intersection between two solitons has
the critical value given by Eq48), the resonance occurs to
form the triad soliton as shown in Fig. 4. However, it should
be noted that when the angle of intersection of the two soli-
tons is between the critical values, the two-soliton solution
[Eq. (43)] becomes singular. As pointed out by Miley, the
resonance solution is on the borderline between regular and
singular regimes in the parameter space. Although the nar-
rowness of the resonance region may cast doubt on the ex-
istence of the soliton resonance in a real system, it is possible
to produce a virtual resonant soliton in the region close to the
exact resonance state. In fact, Folletsal.[11] and Nishida
and Nagasaw@l2] verfied the resonance conditions by the
observation of such a virtual state of plane ion-acoustic soli-
-tons. The resonant interaction of ion-acoustic solitons has
been studied both theoretically and experimentally by many
authors[13-17. The importance of soliton resonance in
nonlinear development of the two dimensional wave system
is clear. Now the possibility of drift vortex soliton resonance
has been shown even in the special case. We believe that the

It should be noted that the messenger soliton and the secongdrtex soliton resonance is also important in understanding
soliton satisfy the resonant condition. Thus, the messengehe time evolution of the vortex soliton systems.
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