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Testing the Markov condition in ion channel recordings
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A statistical test is presented to decide whether data are adequately described by probabilistic functions of
finite state Markov chainé‘hidden Markov models’) as applied in the analysis of ion channel data. Particu-
larly, the test can be used to decide whether a system obeys the Markov condition. Simulation studies are
performed in order to investigate the sensitivity of the proposed test against violations of the model assump-
tions. The test can be applied analogously to Markov modi8k063-651X97)15003-9

PACS numbg(s): 87.10+e, 02.50.Ga

[. INTRODUCTION states in a Markov model needed to be compatible with the
data.

lon channels are large proteins located in the membranes The paper is organized as follows: In the next section, we
of cells. They serve for signal transmission and regulate thériefly review the hidden Markov model. In Sec. Ill the test
concentration of ions in the cell. The channels open andtatistic is introduced. The power of test is evaluated by
close in a stochastic manner dependent on external condiimulation studies in Sec. IV. As presented, the test applies
tions such as trans-membrane voltage difference, concentrt@ hidden Markov models, however, it can be applied analo-
tion of ligands, or mechanical stress. In general the channe@0Usly to Markov models.
have several states in which they are closed and open, re-
spectively. They might even possess open states with differ- Il. HIDDEN MARKOV MODELS
ent conductivity. The noisy current in the range pA

through single channels can be measured by the patch clamp Hidden Markov model§HMM), introduced in[17] and
technique/1]. used in diverse fields such as speech recognii8hand ion

Analyzing data from ion channels generally relies on thechannel analysis, are generalizations of Markov models that

assumption of a Markovian dynamics. This holds for |nfer—"’1"0|\’vtOél‘e_3 to mc;_lude obts_,ervatlo;eéll_ n0|ste. FMMS can be flgrl
ring the number of channel states and mean dwell times b u'ated in continuous-time and discrete-ime versions. -0
" . . . owing [7] we chose the latter. The results also hold for
fitting exponentials to dwell time histogranig,3], for ex- . .

- . ) continuous-time models.
plicit modeling of low-pass filtered records by Markov mod-

. ) . A stationary hidden Markov model is given by an unob-
els[4,5], and also for analyzing unfiltered records by h'ddenservable procesX,, which can take one of ths states for
Markov modelq6-11].

h . dent f . Ievery pointt in time. The probabilities for a change from a
In many cases, however, it is not evident from empiricalg;,iei tq 5 statej are described by a time-independent tran-
data whether the system actually obeys the Markov condigjtion matrix (@) (i,j=1,... ). Since each row of the

tion. For two reasons, this assumption has given rise 10 fatrix is normalized to unity, thex s matrix (a;;) hass(s
lively discussion{12—-14. On the one hand, the information _ 1y free parameters. The observatiovisare determined
about the validity of this condition can provide valuable in-py the output probability densities of each of thestates.
sight into the system under investigatiph5,16. On the These densities are described by parameter vecifyrs
other hand, conclusions drawn from a model that does notfif=1, . . . s). For example, the density functiorfgy, ¢)

the process that has produced the data are very likely to leaghn be given by Gaussian distributions with different means
to erroneous results. Thus, it is desirable to test whether thgng variances.
process is adequately described by the sele¢tedden For ease of notation, the parameters of the hidden Markov
Markov model. model are arranged in a single parameter ve@tdts dimen-

We propose a test to perform this task. It is based on thgjon is denoted by. For example, in the case sftates with

the model is valid. A deviation from the expected distribu- 1 25— 52+ 5 parameters.

tion provides a test for the model. In order to evaluate the Gjyen an observed time serie¥;.y=Yq,....Yy

sensitivity of the proposed test against a violation of the nullys |ength N, the parameter vecto® can be estimated by a

hypothesis four simulation studies were performed where the,aximum likelihood procedurfLl9—21. For the calculation
assumption of an underlying hidden Markov model is Vio- of the log-likelihood function

lated in various manners. A fifth simulation study shows that

the test is also useful to estimate the minimum number of
LN(YlN,0)=|nP[Y1N|0] (1)

* Author to whom correspondence should be addressed. FAXthe so-called forward probabilities to find the system in state
++49/761/203-5967. Electronic address: jeti@fdm.uni-freiburg.dei at timet given the data up to time are defined by
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ai(t,Y1...1,0)=P[X;=i,Y1..40]. 2) The second term on the right-hand side vanishes due to the
_ _ estimation procedure. Neglecting higher order terms, solving
They can be calculated using the recursion for 2[L(8y) —L(6)] and using Eqgs(5) and (6) yields
S
ai(t,Yl---tﬂ):jZl aj(t=1Y 1. 1,0)a;(OF (Y, ) 2[Ln(0) —Ln(6p) 1~ X7 (8)
()

This relation holds asymptotically if the model is specified
and lead to the log-likelihood function by correctly. The numbeN of data needed to reach the asymp-
totic regime depends on the process. Simulation studies not
presented here show that E§) holds if each transition be-

Ln(Y1.n0)= m;l @i(N,Y1..n,0). (4 tween the states has occurred at least 10 times.
For the test we estimai# based on the whole time series

An estimate 6y can be obtained by maximizing of lengthN and denote this estimate t# . Then, the time
Ln(Y1...n|6) with respect tod either by nonlinear optimiza- series is divided irK parts of lengthM =N/K. For each
tion or by the expection-maximization algorithm, i.e., the these parts we estiAmate the pa[amemsand evaluate the
Baum-Welsh reestimation formuldd9,22. Here, all nu-  |og-likelihoods Ly, (6y) and Ly (6y). Asymptotically, i.e.,
merical calculations have been performed by the lattefgr N, M—w, but M/N—O, the distribution of
method as described if20] since it behaves numerically oL () — Lo (87 is qiven b
more stably than nonlinear optimization. For ease of notation[ m(Ow) ~Lm(6h)] is given by
we suppress the dependencelL@{Y...\|#) on Y.y in the . .
following. 2[Lm(6u) — L (6]~ X2 9

S

lll. THE TEST STATISTIC By the proposed procedure we obtainsamples of they?
In this section we introduce the statistics to test the agdiStibution if the model is valid. In order to judge whether
Eq. (9) holds, we apply the Kolmogorov-Smirnov test for the

equacy of a given hidden Markov model to describe an ob- ; o 9 ;
served time series. consistency of an empirical distribution with a proposed

Under mild regularity conditions, the difference betweentheoretical distributior{30]. The Kolmogorov-Smirnov-test

the maximum likelihood estimatory and the true param- statistic is denoted by in the following.
eters@, are generally believed due to central limit theorems

to converge to a normal distribution IV. EVALUATION OF THE POWER OF THE TEST
IN( 6, @N),v/\/’(o,z), (5) In this section, we evaluate the power of the above pro-
posed test; i.e., we investigate the sensitivity of the test
with, asymptotically, against a violation of the null hypothesis that the data were

produced by a hidden Markov model. Of course, it is not
possible to consider all imaginable alternative hypotheses.
One has to restrict oneself to a reasonable class of alternative
hypotheses. We choose four alternative hypotheses that vio-
This has been proven for independent random variablefite the model assumptiongl) Nonstationary transition
(see, e.g.[23]), Markov models[24], and hidden Markov probabilities;(2) dwell time dependent transition probabili-
models with discrete output probabiliti¢s7]. For hidden ties:(3) a fractal model(4) refractory time. Finally, we show
Markov models with continuous output probabilities, up tothat the proposed test enables one to estimate the smallest

now, the consistency of the maximum likelihood estimatorsnumber of states of the Markov process compatible with the
[25], the local asymptotic normality in the sense of Le Camdata.

[26,27], and the asymptotic normality of maximum split data
likelihood estimators has been shoy®8]. The proof of
asymptotic normality of the maximum likelihood estimators
in hidden Markov models is announcgzb]. In order to evaluate the power of the test numerically we
Given the asymptotic normality of the estimators of Egs.chose a hidden Markov model with three states and Gaussian
(5), the distribution of the maximum log-likelihood output probability functions representing, e.g., one ion chan-
LN(bN)a which is itself a random variable, can be derived bynel with two different conductance levels. The transition ma-

2

5 1
_ " y1
aaiaej LN(0N) N 2” . (6)

A. Model definition

a Taylor expansiotisee[23] for a detailed discussion trix A is given by
- 9 - A 0.90 0.05 0.0
Ln(6o)= LN(0N)+(?_0i Ln(O) (6p— 6y) a—| 0.06 092 004 10
1 A 92 - . 0.03 0.02 0.9
+ 5(00_ 0N)W Ln(6n) (6~ 6y)

R The means and the variances of the Gaussian output prob-
+0O(|6,— 6. (7) ability functions were chosen to be
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FIG. 2. The effect of drifting transition probabilities. Shown is
the averaged test statisti€ of the Kolmogorov-Smirnov test for
increasing drift rates. The 1% and the 0.1% significance levels are
marked.

FIG. 1. The empirical cumulative distribution of[QM(bM)
—Lu(6y)] (solid line) and the expected cumulatiyé, distribution
(dotted ling for the process defined by Eq4.0) and(11).

_ 2__
#1=00, 071=0.1, on an IBM 6000 RISC workstation. Therefore, we chose

another way to display the power of the test. Instead of
counting the simulation runs with rejected null hypothesis
) we average the test statistic of 10 realizations for each degree
u3=2.0, 03=0.1. of violation of the null hypothesis to approximate the smooth
) ) ) ) curve. This procedure estimates the mean of the distribution
The dimensiorr of the parameter vectd is 12. We simu- o the test statistic for the alternative hypotheses. Simulation
lated time series of lengthl=150.000 and divided it into  stydies show that these distributions of the test statistic are
K=150 time series of lengtM =1000 to perform the test. symmetric and that their variance is rather constant. There-
To apply the test the resulting time series must be longore, the mean calculated here corresponds to the median of
enough for the asymptotic results to be valid. If the off-the distributions and is related monotonically to the fraction
diagonal elements of the transition matrix are of similar magcajculated usually. Thus, this procedure yields essentially the
nitude, as a rule of thumb, this condition is met, if the time sagme information as the canonical method that requires only
series have a length of at least 1% of the computational effort.
We now discuss the different simulation studies to evalu-
ate the power of the proposed test.

w;=1.0, ¢5=0.1, (12)

M =10S7ax (12

with s the number of states and,,, the largest dwell time.

For the chosen model, the dwell times are 10 and 12.5, re- ) ) . . o
spectively, 20 units of time. In order to investigate the sensitivity against violations of

Figure 1 shows the expected cumulatb\@ distribution  the stationarity assumption, nonstationarity of the transition

according to Eq(9) and the empirical cumulative distribu- Probability of the first state is introduced by

tion for the chosen process. It indicates a good qualitative

agreement of the two distributions. In order to quantify this, —~ (s—1)wt

we counted for 200 realizations of the process the number of an(h=an-——yg (13
cases where the hypothesis of consistency of the two distri-
butions was rejected by the Kolmogorov-Smirnov test at a
significance level of 5%. This results in an actual rejection
rate of 4.5%, indicating that the asymptotic regime is reached
for the chosen situation.

1. Nonstationary transition probabilities

~ vt
alj(t)=a1j+ﬁ (j=2,...9), (19

where s again denotes the number of states. This time de-
pendency of the transition probabilities causes a decreasing

To investigate the power of a test, usually, for differentdwell time of the first state. The drift rate serves as the
degrees of violation of the null hypothesis on the order ofparameter for the null hypothesis violation. As outlined
1000 times series are realized, the test is performed, and tlabove, we judge the performance of the test by averaging the
fraction of rejected null hypothesis given a certain signifi-test statistic of ten simulations for every degree of the null
cance levelx is calculated in dependence of the degree othypothesis violation. Figure 2 shows the averaged test statis-
violation. However, this procedure to evaluate the power retic Z of the Kolmogorov-Smirnov test with increasing viola-
quires an enormous computational effort to obtain a goodion of the null hypothesis and the 1% and 0.1% levels of
approximation of the underlying smooth behavior since forsignificance, respectively. A change of 10% over the whole
the chosen model and number of data the maximization obbservation time in the dwell probability of one of three
the log-likelihood for a single time series requires ca. 45 minstates is detectable by the proposed test.

B. Power of the test
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FIG. 3. The effect of dwell-time-dependent transition probabili-  FIG. 4. Violation of the Markov condition by a fractal model.

ties. Shown is the averaged test statisfifor increasing degreeg ~ Shown is the averaged test statisfidor increasing fractal dimen-
of the null hypothesis violation. The 1% and the 0.1% significanceSiOﬂ D.
levels are marked.
. » - model according to Eq10) but forced the state to stay for
2. Dwell-time-dependent transition probabilities the time 7, before the dynamics were applied. Figure 5
The Markov condition, stating that the transition prob- displays the results. Note that the dwell times of the chosen
abilities between the states do not depend on the time alreadpodel were 10 and 12.5, respectively 20 units of time, so
spent in the states, is violated by increasing the probability téhat the considered type of violation is only detectable if it
leave any state proportional to the tirhg already spent in  amounts to 50% of the shortest dwell time. In summary, the
the state. The proportionality constamtparametrizes the test enables a detection of different types of violations of the
violation of the null hypothesis. Markov conditions.

Qi (tin) =a;; — (s— 1) vty 15

i (tin) =25 = )7tin (19 C. Estimating the minimum number of states
qj(t) =a+ oty (i#]). (16) So far, the number of statessof the Markov process was
Tassumed to be known. Since the number of assumed states

more than 19 per time step for the dwellprobabiies lsadd QS1erMines the degrees of freedaro the model, the
P P P roposed test can be applied to infer the number of states of

to the rejection of the hypothesis that the time series wa e process under investiaation. This is done by comparin
generated by a Markov process. During the simulation, it P 9 ' y paring

. . 2 4. . . .
was controlled that the condition<{g;; (t;,) <1 was not vio- the left-hand side Pf Eqc9) with the x; distribution with
lated. ! degrees of freedom corresponding to the assumed model,

e.g., in the case of a Gaussian modek$2+S. Figure 6
3. A fractal model displays the results. Hidden Markov models with an increas-
ing number of states are fitted to data from the model Eq.

_Another possibility to violate the Markov condition iS (10 it three states. The test enables a determination of the
given by the fractal modefsl5]. For these models, the dwell (¢ rrecy smallest number of states that can describe the pro-

probability increases with the timg, already spent in the oqq Note that models with more than three states are also
state. The transition probabilities of a fractal model are giveryatacted as being consistent with the data.

by
@i () =1—(1—ay)th °, (17) 0.25

aij(tin):aijtﬁD, i #], (18)

whereD is the fractal dimension that parametrizes the vio-
lation of the Markov condition. FdD =1 the Markov model
results. The result of the simulation in Fig. 4 reveals that for
the given model a fractal dimension of e.g., 1.1 will lead to a
rejection of a Markovian process. On the other hand, a di-
mension larger than 1.1 can be excluded if the test does not
reject the model.

4. Refractory time Toof

Finally, the Markov condition is violated by introducing a

refractory time, i.e., a minimal time that the process has to FIG. 5. The effect of refractory time. Shown is the averaged test
spend in a state. To simulate such processes we used thetistic Z for increasing refractory times.
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sensitive the test is to detect a violation of the assumed
model, we performed four simulation studies where we
modified a hidden Markov process continuously in different
ways to become non-Markovian. The sensitivity of the pro-
posed test depends on how the model assumption of a sta-
tionary Markov process is violated: The test has shown to be
very sensitive if the violation results from drifting transition
probabilities, from dwell-time-dependent transition prob-
abilities, or a fractal model. For example, a fractal dimension
of 1.7 as reported if15] would lead to a highly significant
' | rejection of the Markov model used in the simulation study.
9 3 4 5 6 7 The test is less sensitive to detect refractory times in the
system that retard the beginning of the Markovian dynamics.
Furthermore, the proposed test can be used to estimate the
FIG. 6. Determining the number of states. Shown is averagedNinimum number of states in the Markov process necessary
test statisticZ for hidden Markov models with different number of t0 describe the data.
states$ applied to time series that were generated by a hidden In applications, performing simulation studies as pre-
Markov model with three states. The 1% and the 0.1% significancéented will reveal which degree of violation of the model

>

levels are marked. assumptions is consistent with the fitted model and which
degrees of violation can be excluded if the model cannot be

Markov and hidden Markov models are increasingly used The test_ i_s suited_for analyzing d_ata recorded undt_ar steady
in the analysis of patch clamp ion channel data. In manftate conditions as in the case of ligand-dependent ion chan-
cases their adequacy for a given system has been assum &Is. For v_oltage—dependent channels where numerous t_rlals
but not tested using empirical data. If a record is a realization®! @ certain pulse protocol are recorded these single trials

of a hidden Markov process, the asymptotic distribution ofd€termine the lengtM in the protested test. Further, it can
the log-likelihood is ay? distribution, its number of degrees help to decide whether observed changes in inactivation dy-

of freedomr being given by the number of model param- namics[31] are consistent with statistical fluctuations in a

eters. Thus, a test for the consistency of the empirical dis’[rif'tted model or have to be treated explicitly as modal gating

bution of a fitted model with the theoretical distribution pro- between two different dynamics.
vides a test whether the time series may be considered as a
realization of a hidden Markov process.

Based on the asymptotic distribution of the log-likelihood,
we have introduced such a test. The test is analogously ap- We would like to thank A. Wilts and U.-P. Hansen for
plicable to test Markov models. In order to investigate howvaluable comments on an earlier version of this manuscript.
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