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Cellular automata model for gene networks

J. A. de Sales, M. L. Martins, and D. A. Stariolo
Departamento de Bica, Universidade Federal de \dsa, 36571-000, Vasa, Minas Gerais, Brazil
(Received 1 May 1996; revised manuscript received 17 October)1996

In order to study the overall behavior of gene networks, we propose a simple cellular autG#ataodel
in which each binary gene is connectedkoother inputs(including itselj interacting through asymmetric
short- and long-range couplings. Using numerical simulations and mean-field calculations, collective dynami-
cal properties of this CA model were investigated. It is shown that the CA exhibits three different dynamical
regimes: a frozen, a marginal, and a chaotic phase, where an initial damage vanishes, remains limited, and
grows to a finite fraction of the lattice sites, respectively. The results presented are also consistent with the
observed biological scaling laws for the number of differentiated cells and cell length cycles as a function of
the number of genes in an organisi81063-651X97)03303-5

PACS numbds): 87.10+€, 0.5.50+q, 64.60.Cn

[. INTRODUCTION sists of N binary genes, all of them connected Ko other
fixed genes or inputs randomly chosen among the remaining
It is the activity of specific structural genes, which areones. The state; of each gene, i=1,2,... N, is updated

controlled by associated regulatory genes, that generates th§ a transition functiorf; that represents the gene interac-
vital phenomena of proliferation, differentiation, develop- tions via the proteins, chosen at random among all Boolean
ment, and persistence of spatial and functional ordered pafunctions withK variables.

terns in the life span of each organism. Thus one of the most
challenging problems in modern biology is the understanding
of the complex set of biochemical interactions responsible RS RS2 amscribed
for differences in the rate of synthesis of various proteins by @ region
differentiated cells in eukaryotes, the so-called gene control
mechanisnj1].

This mechanism regulates the repertoire of different types
of MRNA molecules, the abundance of each mRNA, and the
number of times each mMRNA is used before it is destroyed.
Consequently, it determines the kind and the amount of en-
zymes and structural proteins, the products of gene activity,
contained in each cell. In this lies the essence of cell differ-
entiation: it is the protein content of one cell that makes it
different from another one. The gene control mechanism
regulates the concentration or abundance of proteins over a
range from one to two orders of magnitude and very few
genes are subjected to absolute “on-off” regulation. There-
fore, although cell specific proteins can be possible among
those that determine the cell specific character, the major
differences among cell types are in the regulatory genes, as
proposed by Wilsofi2] and King and Wilsorj3], who found
few discrepancies in the structural proteins of chimpanzee
and human species. R

At the transcriptional level, the most frequent process of
Gene conto (he changes 1 e rate of st of & 1 6. 1. Smpted el ofgers nductn. T st ar

. : V] ’ s ollowing: (a) the inactive transactive factor 1 is activated by bind-
creasing the synthesis of a primary RNA transcript in the cel(

| A simolified del f h S | | ng an inducer moleculdgp) the active transactive factor 1 binds to
hucleus. A simplitied model for the transcriptional control regulatory sequend®S;; (c) a second transactive factor 2 binds,

[4] shown in Fig. 1 can essentially model genes transcribegle naps facilitated by protein-protein interactions with the bounded
by RNA polymerase |, II, and Ill. At any instant each gene isransactive factor 1, to the regulatory sequeR&; (d) RNA poly-
either active or inactive for transcription, with or without a merase recognize this transcription complésansactive factors
tl’anscription Comp|eX bound to |t, reSpeCtiVer. Fina”y, thebounded to enhancer-promoter regipn@) RNA Synthesis ini-
target of these regulatory molecules can be either a single @fates; (f) while the transcription complex remains, RNA poly-
a set, of perhaps ten or more, genes. merase repeatedly recognizes it; gdil RNA synthesis continues
One of the first models for genetic regulation and cell(e); (g) the dissociation of transcription complex from the enhancer-
differentiation has been proposed by Kauffrn&n. It con-  promoter sequences initializes the whole process. From[BEf.
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The dynamical properties of these random Boolean nettory action of thej(i) (I=1,2,...,K—1) input on gené
works have been studied by several autH@rs12] and, in  and J;; is the autogenic regulation. sg&0 if x<0 and
brief, the main results follow: for networks with connectivity sgnx)=1 if x>0. All the gene states are simultaneously
K>2 the attractors are chaotic with low stability to minimal updated. In order to accomplish this, a given gene evaluates
perturbations, cycle lengths increase exponentially Wth the present stimulus from all its regulatory genes, including
(undesirable aspects in biological mode)ingnd the average itself. If the overall stimulus it receives at tintds positive,
number of alternative cycles is proportionalNoIn contrast, the gene activates, or stays active if it was already active;
nets with K=2 show striking spontaneous order. The ex-otherwise it turns inactive or stays inactive.
pected length of state cycles is onl*? the number of The coupling constanty; model the extremely complex
alternative attractors is al99'/? and each cycle is stable to and partially unknown set of biochemical interactions briefly
almost all minimal perturbations. All of these results are dis-discussed in the Introduction. Our choice of thes takes
cussed in Ref[13]. into account the following biological feature@) The prod-

Recently, Bastolla and Parisi have investigated analytiucts of a determined gene can activate, inhibit, or not affect
cally [14] and by computer simulatiorjd5] the distribution  the transcription of another gene. In our model all the acti-
of cycle lengths, average number of attractors, and distribuvatory interactions will assume the same valié and the
tion of attraction basins for the Kauffman model. They foundinhibitory ones—J. When the geng does not influence the
that all systems on the critical line exhibit the sameexpression of a different genie the coupling constant is
behavior—cycle lengths and number of attractors increase ak; =0, corresponding to a diluted bondi) The gene inter-
NY2 in an annealed approximation—as tKe=2 original  actions are asymmetric, i.eJ;j#J;; . The case in which a
Kauffman proposal. given gend activates another genethat, in turn, inhibits,

In this paper we study, by numerical simulations andis biologically frequent.(iii) Autogenic or self-regulation
mean-field analytic calculations, the dynamical properties ofjene control is frequent in living organisms. In the present
a cellular automatgCA) model which incorporates both CA model the self-control is provided by thk, coupling
long-range interaction&s in the original Kauffman model constants.
and short-range gene interactidnext and next-nearest cou-  Since the molecular biologists have elucidated only par-
plings, as in the lattice version of Kauffman’'s moddn tially the real connectivity matrix among genes, we have
Sec. Il the CA model is described. In Sec. Il we present ourchosen a random distribution of nonsymmetridal (valid
simulation results, concerning average periods, number dlso for the self-interaction$;) described by
different attractors, and stability against mutations. A mean-

field study of this last property is also done. In Sec. IV we (1—py)

discuss our results in terms of the biological data currently P(Jij) = — [6(J;j—J)+8(Ji;+I) ]+ p16(Ji)),

available. Finally, we conclude in Sec. IV. @)
Il. CELLULAR AUTOMATA MODEL whered(x) is Dirac’s delta function and=1. Therefore, for

o . o ) a particular gene network, each bahgis activatory(+1) or
The activity of gene induction is not a single event occur-inhibitory (—1), with probability (1—p,)/2, or diluted(J=0)
ring within the cell. On the Contrary, mu|tlp|e gene interac- with probabmty P As noticed by Weisbuchl?], a random
tions are frequently observed, i.e., induction or repression Ofyteraction matrix is a positive choice once one is looking for
certain gene sets. The final effect or cellular response is oyeneric properties independent in any critical manner on a
tained from all these interactions, initially triggered by a spe-particular interaction structure, which probably varies from
cific extracellular stimulus. This process reminds us of latticeyne organism to the other.

models in which any “site” is capable of influence upon  Also, since almost all known regulated genes in prokary-

other “contact sites,” “positively” or “negatively.” _otes and eukaryotes are directly controlled by up to six or ten
In the CA model presented in this paper the genome igene products, our CA model involvés=9 regulatory in-
represented by a set ®f binary geneso;, i=1,2,... N.  puts per gene, including itself. Of theki—1 inputs are ei-

Wheno;=1 the gene is active for transcription and the spether chosen at random among all the other remaining genes,
cific enzymes or structural proteins it codifies are producedyjith probability p,, or are its neighbor genes with probabil-
On the other hand, whes; =0 the gene is inactive and the jy 1-p,. Thus thep,=1 limit corresponds to an infinite-
products it codifies are not synthesized. The network state @hnge model with connectivitk =9 (including the self-

a given time t is specified by the activity pattern jnteractionJ;;), whereas thep,=0 limit corresponds to a
o1(t),0(1), ... ,on(). Each gend is regulated byK—1  square lattice in which each site has a Moore neighborhood
other genes and by itself, through a function of the previougjefined by its eight nearest and next-nearest neighbors. For
state of its regulatory elements. In analogy with neural netany other, values the simultaneous presence of short- and
work modelq 16] the gene activity state at the next time step|ong-range couplings reflects the biological fact that a given

is given by gene can be regulated by either its nearest neighbors or dis-
tant DNA sequences, whose proteins, produced in the cyto-
K-1 plasm, diffuse towards the cell nucleus. Therefore, as Keller,
o (t+ 1)=sgr( Jijoi(t)+ IEl ‘]ij|(i)0'j|(i)(t) , (1) Thomas, and Pohleyi8] observed, spatial distances are fre-

quently an irrelevant feature for functional biological net-
works. Once th&K inputs of each gene and the correspond-
whereJijI(i) is the coupling constant representing the regulaing interactionsJ;; are chosen at the beginning, the CA
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FIG. 2. Distribution of periods fofa) p,=p;=0 (local, nondiluteg} (b) p;=0.80,p,=0 (diluted, loca}; (c) p;=0, p,=0.70(nondiluted,
nonloca); and(d) p;=0.20, p,=0.75 (diluted, nonlocgl gene networks. The data correspond to simulations for 10 000 different nets with
N=400 genes, each one tested with three random initial states.

structure is fixed forever. The quenched CA defined by Eq. A. Periods and number of attractors
(1), where there is a zero threshold, corresponds to a maxi- gjnce the phase space of a finite CA contains oy 2
mally disordered system. different configurations, its deterministic dynamics finally

will drive the system towards an attractor, either a limit cycle
or a fixed point.

Figure Za) shows the period distribution for the cycles in

In the present CA model there are, except in he=1  thep,=0 limit, corresponding to a CA with only loc#éhear-
limit, geometrically correlatednearest-neighborcouplings  est and next-nearest neighpanteractions. The presence of
which have made an analytical solutidd6] unfeasible. dilution, Fig. Ab), affected the former period distribution by
Therefore the dynamical properties of the CA were studiedlecreasing the frequencies of long period cycles. Also, the
mainly through computer simulations. In all the simulations,average period of a nondiluted net can be reduced, F, 2
any initial states of the genes were equally probable and thi the probability p, of long-range interactions is increased.
largest genome size used Wwds-625 genes. In Sec. Il Dwe Therefore the combined effects of dilution and long-range
compared the simulation results with analytic calculations orcouplings, shown in Fig. @), could be important to design
a simplified mean-field model. gene nets with limit cycles of low average period.

lll. RESULTS
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"g i & 050 ° p;=0.90. However, the analysis of the average period as a
g A o1 function of the numbeiN of genes is very difficult, espe-
o cially in the critical region and in the low-diluted regime,
g 10— where the periods are very long.
s ] * Another important quantity is the number of distinct
g . . ¢ cycles, which provides information about the structure of the
< | o attractors in the CA phase space. The numerical simulations
| . , carried out have revealed that this number increases as a
° power law of the number of genes in both regimes. A typical
. . - . log-log plot of the number of cycles versié is shown in
= = - . Fig. 4. The exponents vary from 1.80, fpy=0.20, to 1.47,
o o o 0 a . .
. s a4 a4 as for p,=0.80, and fixedp,=0.20.
T T T T T TT 1 T T T T TTT
10 1&0 1000 B. Stability of the attractors

Even in the regime where the period of cycles grows ex-
FIG. 3. (a) Average period of attractors as a functionMffor ponentially asN increases, it does no.t mean that the ﬂOW on
local (p,=0) gene networks. A transition between an eXponemi‘,jllthese attractors is divergent or exhibits extreme sensitivity to

and a power law scaling of the periods with occurs near Initial conditions. o
p..=0.40. The solid(dashedl lines correspond to exponential !N order to investigate the stability of the attractors the
(powe fittings. (b) The effect of long-range couplings, shown in a damage spread throughout the CA have been studied. To do
log-log plot, for p;=0.70 and varioup, values. The data corre- this, first the automaton was simulated during a given tran-
spond to 10 000 different nets, each one tested with five randorgient. Then a replica of the system was made where an “ini-
initial states. tial damage” was created by flipping randomly a fractipn
either of the genes or of the regulatory connections. As time
Figure 3a) shows the average period of the attractors forevolves, the initial damage spreads through a damaged re-
the diluted, short-range CA model. It was found numericallygion where the genes in the two systems have different val-
that the average period increases exponentially with the&es. This damage is measured by a normalized Hamming
numberN of genes forp;<0.40 and as a power law for distance¥ defined by
0.40<p;=<1. The critical value of,~0.40 corresponds to an
effective average connectiviti 4~5.4, greater than the
critical valueK =4 for the local model considered by Kurten
[16]. The introduction of long-range couplings decreases the
average periods as shown in FigbB In the local(p,=0) i.e., the fraction of geneso() in the replica system that
case the exponents range from 1.68,dg+0.40, to 0.39, for  differ from their counterpart$o;) in the original system.

1 N
V(=5 2 lof(m-aivl, €
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The CA is in its ordered phase if, for larg¢ and suffi- 020 —
ciently long timet, an arbitrarily small initial Hamming dis- (a)
tanceW(0) vanishes or does not grow. On the contrary, the - e
CA is in its chaotic phase i approaches a finite non-null _i:____,,:,,_”}.{__,_:;;_-i;;::::-
value for¥(0)—0. Consequently, small perturbations intro- 0.16 — S
duced in the CA initial state or connectivity structure grow Fow s
into differences of a large size. Therefore in the chaotic -
phase the attractors become unstable and unable to retuts o2 — | » e
homeostatically, after small perturbations, to its previousg g
limit cycle. This means, in summary, that the CA dynamical 7/ 7
evolution exhibits extreme sensitivity to initial conditions. & * -

Typical behaviors of the Hamming distance are shown in> ~ T / P,
Fig. 5, for the diluted(p;#0) and local(p,=0) case. The 4 . 40
complete dynamical phase diagram in parameter space ! . -4 o2
(p1.,p2) is shown in Fig. 6. To get the limi¥(0)—0 prop- 004 4. ¥ -@-- 05
erly, in the numerical simulations the following tridi9] _ L 08
has been used: consider three initial staigs o, and o3
with W,,(0)=W¥,50)=3V,40)=s<1, wheres is a fixed 0.00
number. Here?;, denotes the Hamming distance between 0.00 020 0.40 0560 080 100
the configurationsr; and o, and so on. Then ¥(0)

W(t)=Wy(t) +Wos(t) —Wya(t) 4 036
is a reliable extrapolation t&(0)—0. The phase diagram, (b)
shown in Fig. 6, presents a frozen and a chaotic phase for w7 e
which a small initial damage vanishes or attains a finite W e
value, respectively. In addition, there is a third phase local- ’
ized in a narrow band between the chaotic and frozen re- . _| B
gions, for which the final damage remains at the same size of> PSS
the initial damageln this marginal phase the attractors are © o .
stable since a small initial damage neither vanishes nor> 14 -
grows. The existence of this marginal phase, which, as will ﬂ . P
be seen in a next subsection, is due to the simultaneous presy Wt ot
ence of local and long-range interactions in the genomic net- o1 —f PR P,
works, is the central result obtained by our simulations. In "
contrast, Derrida and Pomef8] using an annealed approxi- - < 02
mation have shown that, for an infinite system, the Hamming 1 o - @ 05
distance in the Kauffman model attains a finite nonzero value (A ~ @ o8

/

in the chaotic phase and zero elsewhere. Moreover, the an- ]
0.00 —-F’ T
0.00

nealed approach for the Hamming distance evolution is ex- T T 1T T T T 1
act, in the limit of large systems, until times of the order of 0.20 0.40 0.60 0.80 1.00
In N [8,20]. ¥(0)

C. Percolation of frozen components and dynamical order FIG. 5. Long time Hamming distanc# as a function of the
. . . . . initial damageW (0) for diluted (p;#0) and local(p,=0) CA. In (a)
As is shown in Fig. 7, the CA dynamics crystallizes Qthe initial damage was introduced in the gene activities ang)in

quset of genes in fixed active or inactive states, which COMgnly the gene interactions were damaged. The data correspond to
stitute a frozen component. The structure of this frozen corg nog ditferent nets wittN=625 genes, each one tested with five

is determined by the control parameteps (p,). In the fro-  random initial states.

zen phase a frozen core percolates through the gene net and

isolates usually several subsets of genes oscillating in comin this phase the genome exhibits sensitivity to initial condi-
plex patterns. Since each oscillating subset has its own peions. So, as has been noticed by Kauffnja8] and Weis-
riod, the global period cycle is the product of all such subsebuch and Stauffef12], the appearance of a percolating fro-
periods. The marginal phase corresponds to the boundamen core seems to be a sufficient condition for an ordered
region where a frozen core begins to percolate and the subsiethavior in our CA model.

of oscillating genes is just splitting in separated islands. This Figure 8 shows the typical behavior of the fraction of
region marks the phase transition between order and chaosscillating genes as a function of the genome $izén the

In contrast, in the chaotic phase a frozen core does not pefrozen phase this fraction decreases withand appears to
colate and the great majority of genes oscillate in complexattain an asymptotic value in which only a few percent of
cycles. Only small islands of frozen genes form and thereforgenes oscillate. In contrast, the average fraction of oscillating
a damage introduced in one site can propagate via itgenes increases wit in the chaotic phase, but again it is
coupled elements to a finite fraction of genes in the networkvery difficult to analyze this regime since the periods are
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the CA sensitivity to initial conditions. The system presents three (©
phases: frozen, marginal, and chaotic, depending on whether the

t—o Hamming distancel vanishes, remains of the same size, or
approaches an independent finite value for almosW¥&ll)—0, re-
spectively. The data correspond to 1.000 different nets Wit#00
genes. Each net was tested with one random initial state.

FIG. 7. Typical subsets of oscillating®) and frozen(O) com-
ponents in networks withN=121 genes in the(a) chaotic
(p1=0.25, (b) marginal (p;=0.50, and (c) frozen (p;=0.7H
phases, with fixedp,=0.75. In the frozen regime the oscillating
genes form small isolated islands, contrary to the chaotic phase in
very long. On the other hand, the fraction of oscillating which the majority of genes oscillate in complex cycles. The mar-
genes is quasi-independent Mfin the marginal phase and ginal regime corresponds to the boundary region where a frozen
fluctuates around 20%, therefore predicting a core of frozeore begins to percolate.
genes comprising, on average, 80% of them. Again this is a
central result since Flyvbjeri@1] has shown that the frozen
core in the infinite Kauffman model exhibits only two re-
gimes. In the chaotic phase the fraction of frozen genes ten
to a value less than 1, while in the frozen phase and on thﬁ1
critical line this fraction tends to 1. Therefore the ordered
phase in the Kauffman model seems to be excessively rigig
as compared with the marginal regime presently found.

Also, our simulations reveal that, with fixqg (the prob-
ability of long-range couplings the fraction of oscillating

sented. The main simplification refers to the connectivity
tructure of the CA. Here it is assumed that each gene pre-
OEsents connections witk other genes chosen at random from
e totalN, itself included. Then ifK remains finite ad\
rows to infinity (as is the case we are interestey ihcan
e proved 22] that the dynamics of individual genes are not
correlated and can be solved analytically. The calculations
will be restricted to this case. The complete model, with
... long- as well as short-range interactions, in which the spatial
. . . . {iructure of the neighborhood of the genes begins to be im-
Py, since the overall stimulus received by a gene typICaIIyportant, is very difficult to study analytically because corre-

decrgatsr]eﬁsee Eq.(l)t]. tThereforeOthfhnuTr?erhof gder]les fro- lations develop rapidly as time passes and the expressions for
Zen In the Inactive state grows. ©n the other hand, ahg  ,q dynamical evolution become intractable.

the fraction of oscillating genes slightly decreases with the Concretely, we calculated the time evolution of the Ham-

increase ofp, in the nonchaotic phases. To understand thisming distance, Eq(3), between two replicas of the CA, with

regult we CO“S'deF a given element at the border of an Osc'lén initial fraction of damaged genes in one of them. We were
lating island. Ifp, increases, so does the chance of this ele

. ) : able to introduce the effects of random noise, or “tempera-
ment to receive an input from a distant gene, most probabl

from a frozen one since in these phases the majority of th}éure in the dynamics that is defined by

gene activities are fixed. Consequently the chance of this
gene to enter into a cycle decreases, and the size of nonfro-
zen islands and the fraction of oscillating genes also de-
crease.

P(oi)= ®)

1+exp(—20'ihi/T)'

with T being the temperature of the system or level of noise
in the network dynamics anhi=2}<=1Jijaj+h represents

In this section analytical results of a mean-field versionthe effect on genefrom its K neighborsh being an external
for the dynamics of the model introduced in Sec. Il are prednput. Note that in the limiff—0 the dynamics Eq(5) re-

D. A mean-field calculation
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few percent of the genes oscillate, while, in contrast, the fraction of . K=5
oscillating genes increases in the chagpg=0.20 phase. In the 0.40 - °,
marginal (p;=0.55 regime this fraction fluctuates around 20% of .
the genes and predicts a core of frozen genes comprising, on aver- .o.
age, 80% of them. Y 0.30 .,
[ ]
[ ]
duces to Eq(1) with a nonzero thresholt. Following the KR
lines of Ref[23] the following map for the time evolution of 020 1 '*..
V¥ (t) was obtained: %,
0.10 "..
1 K-p p K ..o.
V(t+l) =g 2 X X [qf<t>]p[1—qf<t>]Kp< )
2 p=0 n=0 m=0 p 0.00 T T T °$ee
0 1 2 3 4 5
K-p\/p 1
<\ n m/| 1+ e 20 Vel FRIIT T
1 FIG. 9. () Mean-field phase diagram in which only the chaotic
T 1+ e 22X Y[ +RT | (6) (I>0) and frozen(*=0) phases appear, independently of the ini-

tial damage. The parametels=1 andh=0 are fixed.(b) Typical
behavior of the order parametdf as a function of the external

with X,=[2n—(K—p)]J and¥,=(2m—p)J. noiseT for a fixed connectivityk =5, characterizing a continuous
Before analyzing the solutions of this equation we note

that there are four free parameters: the connectikifythe phase transition. Again}=1 andh=0 are fixed.
noise levelT, the external inpubh, and the mean strength of
the interactions]). The effect ofK and T will be analyzed

fixing J=1 andh=0 throughout. The long time behavior o
P (t) was studied for connectivitid§ ranging from 1 to 9 as
a function of the temperatufe. The main result is shown in

damage behaves with increasifiglt presents a continuous
¢ transition toW=0 at a critical temperaturd; which in-
creases with increasing.

Fig. 9a): for eac_hK>3 there is a phase transition at a finite IV. DISCUSSION
T from a chaotic phase wher#(«)>0 to an ordered or
frozen phase with¥()=0. An important point to stress is In the context of cell differentiation Kauffman interprets

that the asymptotic values oF(t) areindependent of the the cell types as stable cyclic patterns of gene expression
initial damage ¥(0). This is in contrast with the results emerging from the interactions among genes and their prod-
found in the simulations and suggests that spatial structurects. Consequently, the total number of cyclic attractors rep-
and short-range interactions may be relevant for the preseneesents the highly limited number of differentiated cell types

of the marginal phase in which the Hamming distance stay# a living organism. Also, the periods of these attractors are
small for small initial damage or “mutations.” In Fig.(B) it related to the various differentiated cell cyc|@4,25. Bear-

can be seen, for a typical case wik=5, how the final ing in mind this biological interpretation, our numerical
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simulations are consistent with the observed data, since tHieom a specified probability distribution. This model with a
following items are true. zero threshold corresponds to a maximally disordered CA
(i) Always in the period distribution, shown in Fig. 2, the version. We found that the CA parameter space is partitioned
majority of cycles has short periods and a few examples havby attractorglimit cycles) which are either sensitive or not to
very long ones, as is the case for the biological observethe initial conditions. In the chaotic regime the average pe-
mean cycle time for each level of genomic sipe complex-  riod of the attractors increases exponentially with the ge-
ity) [25]. nome size, while in the ordered phase we observed a power
(i) Even in the local case the exponents controlling thdaw increase of their average period. The stability analysis of
power law increase of the average periods, ranging from 1.6these attractors demonstrated that within the ordered phase
to 0.39, are consistent with the biological evidence that thehe cycles are stable against damage spreading. Indeed, the
average mitotic period increases either as the square root ofdered regime is divided into two regions: a frozen one, in
the DNA content per cell or linearly witkperhaps slightly  which the final Hamming distance is always zero; and a mar-
faster tham the number of transcribed genes across manyinal one, in which the final Hamming distance is of the
phyla [25]. Also, these periods increase exponentially onlysame order of the initial one. The marginal region, localized
above an effective connectivity #f.4~5.4, close to the av- between order and chaos, has stable attractors or cell types
erage number of regulatory sites per gene in a multicellulaendowed with the necessary flexibility to allow mutations
organism suggested as being, at least, [fR&. and therefore natural evolution, a basic feature of life. The
(i) The observed number of cell types does not increasexistence of this marginal phase is the central result obtained
as the square or as an exponential function of the gene nunby our simulations. In contrast, in the chaotic regime even a
ber in organisms across many phj®b]. Again, in both CA  small initial damage spreads to a finite fraction of genes.
regimes(ordered and chaoticthe number of different attrac- Also, the marginal regime is a result of the simultaneous
tors increases as a power law of the genomic size, with expresence of local and long-range interactions in the genomic
ponents in the biologically expected range. networks. This conclusion is supported by the absence of this
(iv) Finally, our CA exhibits a marginal regime in which marginal regime in a simplified model with only long-range
the gene expression patterns are stable against almost all panteractions. The presence of noise in the simplified model
turbations and, in addition, limited mutations are permitteddid not destroy the basic phase transition between the chaotic
Therefore in this regime the Darwinian adaptive evolutionand the frozen phases in the CA dynamics but affects the
that occurs by gradual accumulation of useful minor mutavalue of the critical connectivity for which a chaotic phase
tions is possible. Also, in the marginal phase the fraction ofdevelops for each noise level.
oscillating genes fluctuates around 20%, which means that Finally, the observed power laws in the ordered regime
on average 80% of the genes comprise a frozen core. Thier both the average period cycles and number of distinct
result is consistent with biological data, since it is observedattractors are in the range suggested by the biological data
that 70% or more of the genes are transcribed into heterogeoncerning the cell cycle length and number of differentiated
neous nuclear RNA among all cell types of an organism. cells in an organism. However, more extensive simulations
In summary, our very simple model can exhibit some ofinvolving genome sizes of $@r 10* genes and with nonzero
the properties observed in living organisms. Moreover, it rethresholds are necessary in order to investigate if the mar-
inforces the hypothesis, raised by Langi@] in the context  ginal regime, mainly, persists even in the infinite size limit,
of complex systems, dynamics, and computation, that lifesince in Ref[15] it is suggested that the number of cycles
occurs in a marginal region at the edge of chaos, in which thand their lengths increase very fast with random Boolean net
cell types are stable and endowed with the necessary flesize, which seriously prejudices the biological interpretation.
ibility to allow mutations and, consequently, diversity and
natural evolution, basic features of life.
ACKNOWLEDGMENTS

V. CONCLUSION . . . . . . L
A stimulating discussion with Marina L. Martins is ac-

In the present paper we have investigated numerically &nowledged. The authors would also like to acknowledge
simple CA model for gene control, which consists of binarypartial support by the Fundaz de Amparo aPesquisa do
genes interacting through asymmetric short- and long-rangéstado de Minas Gerais—FAPEMIG—and Conselho Nacio-
activatory, inhibitory, or diluted coupling constants chosennal de Desenvolvimento Ciefitio e Tecnolgico—CNPq.

[1] J. Darnel, Jr., H. Lobish, and D. Baltimor®olecular Cell [7] B. Derrida and H. Flyvbjerg, J. Phys. 29, L1003 (1986.
Biology (Scientific American Books, New York, 1980 [8] B. Derrida and Y. Pomeau, Biophys. Lett. 45 (1986.
[2] A. C. Wilson, Stadler Sympz, 117 (1975. [9] B. Derrida and H. Flyvbjerg, J. Phy&Parig 48, 971 (1987).
[3] M. C. King and A. C. Wilson, Scienc&88 107 (1975. [10] B. Derrida and H. Flyvbjerg, J. Phys. 20, L1107 (1987.
[4] M. Ptashne and A. A. F. Gann, Natufeondon 346, 329 [11] S. A. Kauffman, Physica [10, 145(1984.
(1990. [12] G. Weisbuch and D. Stauffer, J. PhyBrance 48, 11(1987).
[5] M. S. H. Ko, J. Theor. Biol153 181(1991). [13] S. A. Kauffman, Physica @2, 135(1990.

[6] S. A. Kauffman, J. Theor. BiolR22, 437 (1969. [14] U. Bastolla and G. Parisi, Physica 3, 1 (1996.



3270 J. A. de SALES, M. L. MARTINS, AND D. A. STARIOLO 55

[15] U. Bastolla and G. Parigunpublishegl [22] B. Derrida, E. Gardner, and A. Zippelius, Europhys. Lédit.
[16] K. E. Kurten, J. Phys(France 59, 2313(1989. 167 (1987.
[17] G. Weisbuch, J. Theor. Bioll43 507 (1990. [23] B. Derrida, J. Phys. &0, L721 (1987).
[18] U. Keller, R. Thomas, and H. J. Pohley, J. Stat. PBys1129 [24] S. A. Kauffman, Sci. Am64 (Augus) (1991).
(1988. ) [25] S. A. Kauffman,The Origins of Order: Self-Organization and
[19] H. E. Stanley, D. Stauffer, J. Kege, and H. J. Herrmann, Selection in Evolutio(Oxford University Press, New York,
Phys. Rev. Lett59, 2326(1987. 1993.
[20] H. J. Hilhorst and M. Nijmajer, J. PhygFrance 48, 185 [26] E. H. Davidson, Developmeri08 365 (1990.
(1987 [27] C. G. Langton, Physica B2, 12 (1990.

[21] H. Flyvbjerg, J. Phys. 21, L955 (1988.



