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Transient oscillations in continuous-time excitatory ring neural networks with delay
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A ring neural network is a closed chain in which each unit is connected unidirectionally to the next one.
Numerical investigations indicate that continuous-time excitatory ring networks composed of graded-response
units can generate oscillations when interunit transmission is delayed. These oscillations appear for a wide
range of initial conditions. The mechanisms underlying the generation of such patterns of activity are studied.
The analysis of the asymptotic behavior of the system showsijHaajectories of most initial conditions tend
to stable equilibria(ii) undamped oscillations are unstable, and can only exist in a narrow region forming the
boundary between the basins of attraction of the stable equilibria. Therefore the analysis of the asymptotic
behavior of the system is not sufficient to explain the oscillations observed numerically when interunit trans-
mission is delayed. This analysis corroborates the hypothesis that the oscillations are transient. In fact, it is
shown that the transient behavior of the system with delay follows that of the corresponding discrete-time
excitatory ring network. The latter displays infinitely many nonconstant periodic oscillations that transiently
attract the trajectories of the network with delay, leading to long-lasting transient oscillations. The duration of
these oscillations increases exponentially with the inverse of the characteristic charge-discharge time of the
neurons, indicating that they can outlast observation windows in numerical investigations. Therefore, for
practical applications, these transients cannot be distinguished from stationary oscillations. It is argued that
understanding the transient behavior of neural network models is an important complement to the analysis of
their asymptotic behavior, since both living nervous systems and artificial neural networks may operate in
changing environments where long-lasting transients are functionally indistinguishable from asymptotic re-
gimes.[S1063-651X97)01103-3

PACS numbds): 87.10+¢€, 07.05.Mh

I. INTRODUCTION transmission times of the circuit components. They may in-
terfere with information processing by rendering the equilib-
Experimental studies of the behavior of self-connectedia unstable thus making the retrieval of the corresponding
single neurons have shown that the time it takes for a signahformation impossibld8]. This problem has motivated a
to be transmittedreferred to as delay herérom the neuron  number of studies investigating the dynamics of networks of
to itself can influence the discharge pattern of biological neugraded-response neurofSRNSs in the presence of delays
rons[1]. The influence of delay on neural behavior has alsd8,9].
been analyzed in theoretical and computational studies of The above considerations indicate that determining the
self-connected single neuron and of recurrent neural networ&ontribution of the delay to the shaping of neural dynamics is
models[2,3]. These results indicate that the delay is an im-important for better understanding a variety of neural net-
portant control parameter in living nervous systems: to dif-work behaviors. This work deals with the influence of delay
ferent ranges of delays correspond different patterns of newsn the behavior of networks composed of continuous-time
ral activities. GRNSs, which have been used as models of living neuron
In some artificial neural networKANN) applications, assemblie$10] as well as in ANN applicationg4].
such as content addressable memories, information is stored We study the influence of the delay on the behavior of a
as stable equilibrium points of the system. Retrieval occursietwork composed oN GRNs forming a ring where each
when the system is initialized within the basin of attractionunit is connected unidirectionally to the next one through an
of one of the equilibria and the network is allowed to stabi-excitatoryconnection. Rings with andd number of inhibi-
lize in its steady statfp4,5]. Delayed interunit transmissions tory connections are well known to generate sustained oscil-
may render such networks more versatile, for instance, bjations. For example, such rings composed of inverting gates,
enabling the storage and retrieval of time-varying sequenceferred to as ring oscillators, are used to determine gate
in discrete-timg 6] and continuous-time networkg]. Nev-  delays of complementary metal-oxide semiconductor
ertheless, in some ANN applications, uncontrolled delay mayCMOS) circuits[11]. Systems in a ring have also been used
deteriorate network performance. Such delays arise in hardgs models for the study of feedback in living systems such as
ware implementation of ANNs, due to finite switching and those that come in action in the control of gene expression
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FIG. 1. Oscillations in an excitatory two-neuron ring network with delay. The panels on the left and right show the time course of the
activationsx, (upper row andx; (lower row), at two different times. Parameters useg=0.01, Wy=W,=4, ag=a;=5, Ag=A;=1.
Initial condition ¢o(#)=—0.267@+1) for —1<6<—0.625, ¢¢(6)=0.267(+0.25) for —0.625< < —0.25, ¢o(0)=0.8(6+1) for
—0.2560=<-0.125, ¢y(#)=—0.8(6) for —0.125<6<0, and ¢.(6)=—-8(#+1) for —1<60<-0.75, ¢.(0)=8(#+0.5) for
—0.75= < —-0.25, ¢,(6)=—80 for —0.25<#<0. Abscissas: timédimensionless, rescaled to the delayrdinates: activatioridimen-
sionless.

[12]. In the field of neural networks, rings are studied to gainnections, lead to positive feedback. Schematically, this
insight into the mechanisms underlying the behavior of re-mechanism can be expressed as “negative times negative is
current networkg2,13,5,14. From the formal standpoint, positive.”
ring networks belong to the class of cyclic feedback systems Theoretical results indicate that activations in excitatory
whose asymptotic behavior has been investigated in sonng networks should in general eventually stabilize, as such
detail (see[15—18, and the references thergiThese theo- systems have a strong tendency to converge to stable equi-
retical results help in better understanding the system’s dytibria ([19], and the references thergirSurprisingly, in nu-
namics and are important complements to experimental andherical investigations, oscillatory behavior is easily gener-
numerical investigations using analog circuits and digitalated in excitatory ring networks with delay. An example of
computers. such oscillatory patterns obtained with an excitatory two-
Ring networks are classified into positive and negativeneuron ring network with delay is shown in Fig. 1. The upper
feedback systems depending on their response to a perturbaad lower panels represent the time course of the activations
tion. When the effect of a perturbatige.g., increase in one of the two neurons. The panels on the left show the behavior
neuron’s activationis reinforced by the feedback logp.g.,  of the system during a short period after the network is ac-
the neuron receives an excitatory feedbattke ring operates tivated, while those on the right show the dynamics at a later
a positive feedback. Reciprocally, when the effect of a pertime. It can be seen that both activations rapidly stabilize in
turbation is reduced by the feedback lo@pg., the neuron a periodic square-wave-like oscillation, which is maintained
receives an inhibitory feedbagkhe ring operates a negative throughout the observation window. Such oscillations were
feedback. Rings may also have mixed responses, but thibtained in a large number of numerical investigations using
cannot be the case for rings of GRNs since each unit has different integration schemd#ppendix A and were robust
monotone increasing output function. A GRN ring networkto the reduction of the discretization time step, indicating
exerts negative feedback when it contains an odd number dhat they were not artifacts of the numerical methods. The
inhibitory connections. All other cases, that is, when the netfollowing two properties of the oscillatory solutions were
work is excitatory or has an even number of inhibitory con-derived from numerical investigations of the behavior of ex-
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citatory ring networks with delay(i) When the network is [—A;.;,0] of length equal to the delay,,;. Thus the
initialized with oscillating activations, it displays periodic phase space for DDE2.1) is the product spaceS=
oscillations for small enough characteristic charge-discharg8,;x - - - X Sy_;, with §=C([ —Ai;1,0],R), where C(I,R)
time of the neurons(ii) similar oscillations do not occur in denotes the space of continuous functions from the interval
excitatory ring networks with instantaneous transmissiorl on the real lineR. Note that in cases wher =0, the
times. corresponding initial conditiorp; is a real number, an&,
Theoretical results indicate that undamped oscillationgan be identified witiR. Thus, whem;=0 for alli, we have
cannot be stable in excitatory ring networks, while numericals=R", which corresponds, as expected, to the phase space
investigations seem to indicate the opposite. Thus to examingf the ODE(2.3).
this apparent contradiction is the main goal of this paper. We In the following, general results presented for DI¥E1)
will show that the numerically observed oscillations in net-hold whether interunit transmissions are delayed or not, so
works with delay are long-lasting transients. that no distinction is made between the two cases. When
In order to study the mechanisms underlying the generathere are differences between the two, relevant to this work,
tion of oscillations in excitatory ring networks, we introduce they are clearly specified so that no confusion arises: systems
the model in Sec. I, then we analyze both the asymptoti¢2.1)—(2.3) [to be read systerf2.1) and systen(2.3)] refer to
and the transient regimes of such systems with and withougoth cases with instantaneous and delayed transmissions,
delay. The study of the asymptotic regime shows the possiBDE (2.1) refers to the cases where there is at least one
bility of unstable periodic oscillations in excitatory rings, but delayed connection in the loop, and ODEJ) to the cases
these do not satisfy properti) described above, and hence where all transmissions are instantaneous.
cannot explain the existence of the oscillatigBgc. IIl). A For ®=(¢q,...,¢n—1) in S, there is a unique
mechanism for the generation of long-lasting transient oscilsolution of systems (2.1)—(2.3), denoted z(t,®)
lations is then proposed which is compatible with the ob-=(x,(t,®), ... xy_1(t,®)), such that x;(t,®)= ¢;(t)
served pattern&Sec. IV). The results are discussed in Sec. V.for —A,,;<t<0, and z(t,®) satisfies systemg2.1)—
The results presented here generalize our work on the2 3) for t=0. We denote byz, the (semjflow associ-
behavior of a single self-exciting neurg®0], and on exci- ated with systems (2.1)—(2.3, that is, z(®P)

tatory two-neuron network21,22. =Xy (D), . .. Xn_1t(P)) and x;(P)(6) =x;(t+ 6,d) for
all — A, 1< 60<0. To simplify the notations, the dependence
[l. THE RING NETWORK MODEL on the initial conditiond® will not be indicated unless nec-
essary.

The dynamics of aiN-ring neural network is determined
by the following system of delay differential equations
(DDES9):

We say that system@.1)—(2.3) satisfy the positive feed-
back condition wheb= agWj- - - an_1Wy_1>0. After an
appropriate change of signs of some of the activations, sys-

dx; ;1 tems(2.1)—(2:3) with the positi_ve feedback condition can be
ei*lT(t): _Xi+1(t)+Wi+10'ai+1(xi(t_Ai+l))- transformed into systems satisfying the more restrictive con-
2.1) straintCy: «;>0 andW;>0, for alli [5]. From here on we
' suppose that systenig.1)—(2.3) satisfyC,.

In DDE (21)’ as well as in all Subsequent expressionsi the A network is referred to as irreducible when there is a
index i is taken moduloN, so that, for instancexy=x,.  directed path linking any two unif§]. In a ring network any
x;(t) represents the activation of umiat timet, ;>0 char-  two units are connected through the directed path of connec-
acterizes the decay rate of the activation and is referred to d#ns linking consecutive units, so that ring networks are ir-
the characteristic charge-discharge time of the neutgris ~ reducible. _
the connection weight indicating the influence of unit1 Besides being irreducible, systerf&1)—(2.3) have also
on uniti, A;=0 is the transmission delay associated with thisthe property of being cooperative as defined 18]. Let f;
connection, andr,, is the output function of unit defined ~ from ExIt on & be defined as
by 1
fix.y)=—[=x+Wioa(y)]. (2.9

I

aa —aa
—€e

o,(a)=tanhaa)= (2.2

Then system$2.1)—(2.3) can be rewritten as
When all delaysA; are set to zero, interunit transmissions dx.
are instantaneous and DOE.1) becomes a set of ordinary Cil:l(t):fi+l(xi+1(t)-xi(t_Ai+1))- (2.5

differential equation§ODES:

dx; 11 Under C,, we have (9fi/&y)(x,y)=aiWi[1—aii(y)]>O
€i+17 gt (0==Xi42(D+Wi10q,, (V). (23 g5 g X, ¥, andi. Thus system$2.1)—(2.3) are cooperative
systemq19].

An initial condition of DDE (2.1) is constituted by the Under conditionC,, systemg2.1)—(2.3) preserve the or-
history of the activation of each neurarduring a time in-  der of initial conditions. That is, if an initial condition is
terval corresponding to the deldy, ;. Initial conditions for  larger than another one then the corresponding solutions will
DDE (2.1) are of the formd=(¢g, . .. ,n_1), Where each have the same property: the activations corresponding to the
¢, is a continuous function defined on the intervallarger initial condition remain larger than the ones corre-
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sponding to the smaller initial condition. Thus, when plotted Proof. Local stability of any of the equilibria, denoted by

on the same graph, the activations of the former remaim;=(uy, ... ,uy) with j €{0,1,2,3 is derived from the study
above those of the latter. of the roots of the characteristic equation:

More precisely, let ®=(¢q, ..., pn_1) and &' N—1 N—1
=(¢g, - - - ,pn—1) be IS, we say thatd is larger(respec- P(\)= H (1+ei)\)—be*“H ol (au;_,)=0,
tively, strictly large) than®’, denotedb=®’ (respectively, =0 i=0
®>d’), if for all i, and for all #e[—A;.,,0], we have (3.2
bi(6)= ¢ (6) [respectively.¢i(6)> b/ (6)]. wherer=Ag+- - - +Ay_q.

Monotonicity Under conditionCo, systems(2.1)—(2.3) Local stability is ensured when all the eigenvalues of the

generate an eventually strongly monotone semiflow, that isghove characteristic equati@B.2), associated with systems
, . , , (2.1)—(2.3 atrj, have strictly negative real parft83].When
for ® and @’ in S such thatd=d" and #o", there is at least one delayed transmission, i.e., tharsigh
thatA,>0, the characteristic equatid8.2) is a transcenden-
> ! . (e R .
we havez(®)>z(®’) for all t>2 max (A;). 26 tal equation with infinitely many solutions. However, the
(2.6 monotonicity property implies that all of its solutions have
Proof. This result follows from the cooperative and irre- N€gative real parts if and only if the same holds when

. : A;=0 for all i [Corollary 5.2(p. 93 [19] ]. In other words,
ducibl 1t f tem@.1)—(2.3), and Th 34 : ;
ucible properties of systen@.1—(2.3), an eorem DIDE (2.1 and its associated ODR2.3) have exactly the

.88 in [19]. . S
(p. 88 in [19] same set of locally asymptotically stable equilibria. There-
fore, in the following, we consider the roots of the polyno-
Ill. THE ASYMPTOTIC BEHAVIOR mial P(\) for_7-=0._ - -
In the following sections we study successively the local ODE (2.3) is an irreducible cooperative system, thus the
linear stability and the global behavior of systerf#s1)— root of the characteristic equatidB.2) with the largest real

part is indeed a real numbgEorollary 3.2(p. 60 in [19] ].
Therefore, for the stability analysis, it is sufficient to deter-
mine the sign of the largest real root B{\). The equilib-
rium point is unstable ifP(\) has a strictly positive root.
P(\) is strictly increasing foik=0, therefore it has a real
A constant solution of system®.1)—(2.3) is referred to  strictly positive root if and only if°(0)<0, that is,

(2.3, and characterize the set of oscillating solutions of ex
citatory ring networks.

A. Linearization

as an equilibrium point. Throughout the rest of the paper, N—1
constant functions irS are identified with their value in 1—bH o (au,1)<O. 3.3
RY. Letr=(ug, ...,uy_1) €eR", thenz(t)=r is an equilib- imp T

rium of systemg2.1)—(2.3) if and only if r is a root of the

following system: At the pointr;=0 we haves;(0)=1 so that inequality

(3.3) is equivalent to ¥ b, thus proving the statements con-
—Ujy1+W, 10, (uj))=0 for all i. (3.2 cerning the stability and lack of stability of, andr ,, respec-
't tively. At r, andrj the study of the solutions of E¢3.1)
This system has been studied[i]. Equation(3.1) has  shows thatbIl{"'o;(e;u;_1)<1, which proves the state-
the unique root ;=0 for b=agW,- - - ay_,Wy_;<1. For ~ments concerning the stability of these two points. N

b>1, Eq. (3.1 has three distinct roots denoted )
B. Global analysis

r1.=—(ao, ...,8n-1), =0, and rz=(ag, ....an-1),
with a;>0, so thatr;=—r3 andrz>r,=0>r,. Note that Thanks to the monotonicity of the system it is also pos-
the system has the same set of equilibria, whatever the valugble to draw a picture of the global behavior of the trajec-
of the delaysA, . tories in the phase space. We first verify that syst€2ih—
Local stability (i) For b<1,ry=0 is locally asymptoti- (2.3 satisfy a boundedness condition.
cally stable,(ii) for b>1, r, andrg are locally asymptoti- Lemma: boundedness§) For ®=(d¢q, ..., dpn_1), WE
cally stable whiler,=0 is unstable. define
|
F(®)=(fo(¢ho(0), dn-1(—Ap)), - - - Fn-1(dn-1(0),dn—2(—Ay-1))) in RV, (3.9

then,F maps bounded subsets 8fto bounded subsets &". (ii) There is a bounded subsBtof S such that for all® in
S, there isT>0 such thatz,(®) e D for all t>T.

Proof. (i) This point stems from the fact that eathmaps bounded subsets Bf to bounded subsets @f. (i) We first
remark that for®=(¢g, ...,¢n-1) and ¥=(¢g, ... ,¢yn_1) in S such that®d<W¥ and ¢;(0)=¢;(0) for some ]
€{0, ... N=1} we havef;(¢;(0),¢;-1(—A;))=<f;(¥;(0),4;-1(—A)). Moreover, since-1<oc,(a)<1, we have the
following inequalities:

1 1
Z(_X_Wi)gfi(xvy)gZ(_X"_Wi)- (3.5
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Therefore for all® € S we have
L(D)<F(D)<LT (D), (3.6)

where

1
£(¢):<;5P‘¢d0)_whl---, P_¢Nﬂoy_MMH)

EN-1

and

1 1
LT(D)= (—[— $o(0)+Wo], ...,—[— ¢N-1(0)+WN-1])-
€0 EN-1

We denote byz, andz, the semiflows associated with the  (iv) B is a codimension one locally Lipschitz manifold
DDEsdz /dt=L"(z ) anddz"/dt=L"(z), respectively. containing the unstable equilibrium point=0 and its stable
Then, from Theorem 1.1(p. 78 in [19], we obtain  manifold.

7, (P)<z(®)<z (®) for all t=0. Sincez; (®)——-W Proof. We only sketch the proof of statemefij since
=—(Wp, ... Wy_1) and z/ (®)—W=(Wo, ... Wy_1) general results on invariant sets can be founf2ih 25 and
ast— 4w, for p=(7q, ...,7y-1)>0, andT sufficiently — a detailed proof for two-neuron networks is given[Ri].
large, we have-W— p<z(®)<W+ 5 for all t>T. | Let u be in S, such thatu>0. There exists a continuous,

The fact that system&.1)—(2.3) are cooperative and ir- strictly decreasingwith respect to the order defined &)
reducible together with the previous lemma imply that, whenmap, b,, from S to R such that(1) for all ® in S,
they have a unique equilibrium point, all trajectories con-g + b (d)u is the unique intersection between the line go-
verge to this poinfProposition 4.2p. 90 [19]], as follows.  ing through® and directed byu (i.e., the set{d+\u,\

Global asymptotic stability For b<1, the equilibrium Ry \with the boundary separating the two basins of attrac-
ro=0 is globally asymptotically stable, that ig(t,®)—r tion; (2) the setB(r;)={® e S b,(P)>0! is exactly the
ast—+x forall ®esS. basin of attraction of ry; (3) the set B(rg)={®

From this point on and throughout the rest of the paper we_ S,b,(®)<0} is exactly the basin of attraction of; and
supposeb>1, so that the system is bistable, i.e., it has two(4) the setB={® e S,b,(®)=0} is exactly the boundary
locally asymptotically stable equilibrium pointg andr 3. separating the two basins of attraction.

Again, the fact that the system is cooperative and irreduc- Statementi) is implied by the above characterization of
ible implies that the trajectory of most initial conditions con- {ha attraction basins and the basin boundary in terms of the

verges to either, orr3 [Theorem 4.1(p. 90 [19]]. zeros of the map,, with appropriately selected.
Almost convergencé-orb>1, the union of the basins of Statementii) is a direct implication of(i).
attraction ofr, andrz contains an open dense subsetof Statementsiii) and (iv) result from[25]. m

We recall that the set of solutions that tend to an equilib-
rium point is referred to as its basin of attraction.

The complement of the union of the basins of attraction of C. Oscillations on the boundary
the two stable equilibria is a negligible set denotedAny
neighborhood off3 intersects the union of the two basins.
Thus B is the boundary of the two basins. This is describe
more precisely as follows.

The basin boundary(i) B divides the phase spa&into
two regions in the same way a plane divides a three
dimensional space: Points “below” and “aboveB3 form
the basins of attraction of, andr 3, respectively. More pre-
cisely, let ®eB, and &' €S, if &=®’' (respectively,

We define the notions of weak and strong oscillations for
dscalar and vectorial functions as[i26].

Definition 1 Let a:[ty,+)—R be a continuous func-
tion. We say thah is strictly oscillatory if for everyT=t,
there exisfT'=T andT"=T such thata(T')a(T")<0.

Definition 2. Weak oscillations. A solution z(t)
=Xo(t), ... Xn_1(t)) of systemg2.1)—(2.3) is weakly os-
cillating if there existsT, such that for allT=T,

¢'=P) and®#d’ thenz(t,d')—r, (respectivelyrs) as inf{x;(s):s=T, O<i<N-—1}
t— +. Conversely, letd’'eS, if z(t,®')—r, (respec- e ’
tively, r3) as t—+oo, then there is® e, such that <0ssufdx(s):s=T, 0<i<N-1}. (3.7

d=d’ (respectively®’'=d) andd#d’.
(ii) B is the boundary separating the two basins of attrac-
tion, that is, every neighborhood & intersects both attrac- The components of a weakly oscillating solution are not
tion basins. necessarily strictly oscillating scalar functions. In fact, if af-
(i) B is unordered in the sense that for two differentter some time, the different neuron activations are not all of
points ® and &' in B, we have neitherd=®’' nor the same sign, then the corresponding solution is weakly
®’'=d. Moreover,B is positively invariant under the semi- oscillating, even if none of the activations is strictly oscillat-
flow z, i.e., if ® is in B, then so isz,(P) for all t=0. ing.
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Definition 3. Strong oscillations. A solution 15 ‘
z(t) =(Xo(t), ... Xn_1(t)) of systems (2.1)—(2.3 is
strongly oscillating if each of its componenks is strictly 10 ]

oscillating in the sense of definition 1.

Strong oscillation implies weak oscillations.

Definition 4. Damped oscillations. A  solution
z(t) = (Xo(t), . .. Xn_1(t)) Of systemg2.1)—(2.3) is said to
display damped oscillations if it is weakly oscillating and
z(t)—0 ast— +oo.

Weak or strong oscillations that are not damped are re-
ferred to as undamped oscillations. The following result is
deduced from the fact that systerfd1)—(2.3) are almost . . . .
convergent. 1.0 9.0 19.0 29.0 39.0 49.0

Undamped oscillationsUndamped oscillatory solutions time
of systemg2.1)—(2.3), if they exist, are necessarily unstable.

We have the following characterization of the dynamics
of solutions on the boundary.

Weak oscillationsA solution of system$2.1)—(2.3) is in
B if, and only if, it is weakly oscillating.

Proof. A weakly oscillating solution is not converging to
eitherr, or r3, and belongs therefore to the bound&yTo
prove the reciprocal we defin&,={® e S,®>0} and
K_={®eS, 0>d} as the positive and negative cones in
S, respectively. A givend is in the basin of attraction of
r, (respectivelyrj) if, and only if, there ist=0 such that
z,(®) e K_ [respectively z,(®) e K, ]. Conversely® is in
B, if and only if z(®) ¢ K, UK_ for anyt=0. That is,® is 5 L
in B if and only if, for allt=0, there are two integels and “-1.0 1.0 3.0 50 7.0 9.0 11.013.015.017.0 19.0
k" in {0,...N—1} and two real number® and 6’ in time
[-A.0] and [—A.,0], respectively, such that
X (t+ 0)<0=<x,/ (t+6"). Hence z(t,®) satisfies the in- FIG. 2. Weak and strong oscillations. Examples of wedkly-
equalities(3.7). [ ] per panel and strongly(lower panel oscillating solutions, for an

We present the following examples of weak oscillations.excitatory two-neuron ring network. Parametees=100 (upper
ForN=1 andA,=0, the only weakly oscillating solution is Ppane), =10 (lower panel, Wo=W;=4, ag=a;=5, Ay
the constant solutionz(t)=r,=0. For N=2, with =A:=1. Initial conditionseo(6)=—¢1(6)=—1 for —1<6<0.
Ao=A,=0, if z(t)#r, is weakly oscillating then Abscissas: timgdimensionless, rescaled to the dglagrdinates:
Xo(t) X x4 (t)<0 for all teR, so that neitherxo(t) nor activation(dimensionless
X1(t) change signs. Hence the solutiaft) is not strongly
oscillating. However, for delayed interunit transmission(€o=¢€1, @y=a;=5) connected through symmetrical
times, using26], we have the following resulthe proof is ~ weights and delaysW,=W,;=4, Aj=A,=1) for the initial
given in Appendix G. condition ® =(¢q, 1), with ¢o(0)=—p1(0)=—1. The

Strong oscillations Assume that there i§ such that corresponding solutioa(t,®) is in B, since the system is
A;>0, that the characteristic equation of DDE1) atr, has  invariant under the transformatiog— X, X;— Xo, implying
no root with zero real part, and that<é for all i, where that initial conditionsW¥ = (q,#1) such thaty,=—y, lie
0 is the unique solution of on the boundary3, giving rise to weakly oscillating solu-
tions. The upper panel shows the time course of the activa-
tions for ;= €, =100 larger thard=55. It can be seen that
the two activationsg andx, are of opposite signs, so that
z(t) is weakly oscillating. Yet neithex, nor x; is strictly
then all solutions in3—{r,} are strongly oscillating. oscillating, hencez(t) is not strongly oscillating. However,

Therefore, when interunit transmissions are delayed, anih the lower panel of Fig. 2, it is shown that, as predicted by
the characteristic charge-discharge times of the neurons atke result stated above, wher is small enough
small enough, the components of a weakly oscillating non{ey;= ;=10 smaller thand=55), the solution of the same
constant solution are necessarily strictly oscillating scalainitial condition is strongly oscillating.
functions. For instance, fol=1, any nonzero solution of We have seen that the solutions on the boundary are os-
DDE (2.1) in B changes signs at least once in any interval ofcillating either weakly or strongly. These can be damped to
length equal to the delay. the unstable equilibrium point, as shown, for example, in

The condition ¢,<# on the characteristic charge- the upper panel of Fig. 2. The following result concerns un-
discharge time is important to ensure strong oscillationsdamped oscillationgéthe proof is given in Appendix p
This is illustrated in Fig. 2 showing the activations of an  Periodic oscillations We assume the same conditions as
excitatory ring network composed of two identical neuronsthe statement “Strong oscillations.” Then, undamped oscil-
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activation
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before the system reaches a state that cannot be distinguished
from the equilibrium point, within some given precision.
Once the system is in the neighborhood of one of the stable
equilibria, its convergence speed is determined by the char-
acteristic return time defined ag ®{(\)|, where\ is the root

of the characteristic equatidi3.2) with the largest real part
denoted byR(\) [27]. For systemg2.1)—(2.3), \ is real
negative at the stable equilibria.

The map fromK, to R*, that toE=(eg, ... ,en_1) aS-
sociates JA(E)|, the absolute value of the inverse of the
real eigenvalue of characteristic equati@m), is strictly in-
creasingwith respect to the order ii{ ). As E decreases to
zero, the characteristic retufar escapgtime decreases to a
positive limit,g=0, whose value depends on the equilibrium
- point. In other words,

1IN(E)|—qgq=0 asE—(0,...,0, EeK,.

1 Therefore, close to the equilibria, the return and escape
times decrease and the system is accelerated ®tends to
FIG. 3. Schematic phase portrait of an excitatory ring network.zero. When interunit transmissions are instantangaes
The phase space of a ring network is represented by a thredd;=0 for all i) q=0, whereas when at least one of the
dimensional space, in which the three equilibriar,, andrz are  transmissions is delaydde., there ig such thatA;>0), we
positioned. The gray surface represents the boundary separating thaveq>0. This shows that the system without de[§DE
basins of attraction of; andrs. This boundary contains the un- (2.3)] responds instantaneously to a small perturbation near

stable pointr, together with an unstable closed orbit. an equilibrium, a£—0, whereas in the presence of delay,
the systen{DDE (2.1)] responds in a finite time, no matter
lations, when they exist, are asymptotically periodic. how smallE is.

This result shows thds is exactly the union of the stable  The local analysis presented above is extended to the glo-
manifold of r,=0 with those of unstable periodic orbits bal transient behavior of the system in the following sec-
when they exist. This is schematically illustrated in Fig. 3.tions. Cases without and with interunit transmission delays
The phase space of the system is represented by the thresre treated separately, because they present important differ-
dimensional space, the gray surface that divides the planences.
into two regions is3, which containg ,, an unstable periodic
orbit (the closed curve to which some solutions on the A. Instantaneous interunit transmission
boundary tend. The regions below and above the gray sur-

face are the basins of attraction of the stable equilibriand We consider the case wherg=0, and €= 7;¢, with

7;>0 fixed for alli. Under this condition, rescaling the time

rs, respectively. e ) LT
As the output functions,, are odd, the periodic solutions O t' =t/ transforms ODE2.3) into a similar ring network,
' with the same weight®/; and gainsy; . Only all ¢; are set to

of the system, when they exist, are symmetrical in the fol-m_ This shows that the trajectories of solutions of ODE

lowing sens¢[18]: let z be a periodic solution of Eq2.1) (2.3 in the phase spadé" are independent of the parameter

with period T, thenz(t+T/2)= —2z(t) for all t=0. Clearly . ;
this is not the case for the solution presented in Fig. 1. There:: Therefore this parameter does not affect the geometrical

oo . .. “aspect of the phase portrait of ODR.3). However, the
fore the presence of oscillations of the type displayed in F'g'spged with whil?:h the pstate of the Ds(sst()am evolves along a

1 cannot be explained by the analysis of the asymptotic be'iven trajectory increases asis decreased. This is illus-

havior of the system. Such oscillations can only be transient tated in Fig. 4A), which shows the temporal evolutions of

lasting longer than the experimental and numerical observa)z andx. in its left-hand side panel. and the correspondin
tion window. This point is addressed in the following sec-:° 1 pane, P 9

: trajectory inR” in its right-hand side panel, for a symmetrical
tion. . .
two-neuron ring network(i.e., no=7n,=1, Wo=W,;=4,
ap= a1 =5) for two values ofe (5 and 0.4). The solutions
IV. THE TRANSIENT BEHAVIOR with e=5 take longer to reach their steady states than those

with €=0.4 (panel on the lejt Nevertheless, both solutions

In the following sections we study the transient dynamics, e along the same trajectory in the phase sppaeel on
of solutions of system&.1)—(2.3). We show that, in contrast the right.

with the asymptotic behavior which did not depend on the
delay, the transient regime of the system with instantaneous

interunit transmissiofODE (2.3)] greatly differs from that B. Delayed interunit transmission

of the system with delayed interunit transmissifBDE When there ig such thatA;>0, the transient regime of a
(2.1]. trajectory converging to an equilibrium may drastically
For a solution of system§&2.1)—(2.3) converging to an change a£=(eq, ...,ey—1) IS decreased to 0. This is il-

equilibrium point, the transient regime refers to the dynamicdustrated in Figs. 88)—4(D), which represent the time course
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FIG. 4. Transient behavior. Time cour§ganels on the Ieftand trajectories in th&y,x; plane(panels on the rightfor an excitatory
two-neuron ring network, withoutA) and with delay(B), (C), (D), for different values of the characteristic charge-discharge &n@)
Dashed linegy=€,=5, solid linesey=€,=0.4,(B) eg=€,=5, (C) eg=€,=0.4,(D) €,=€,=0.01. In the panels on the left, thick and thin
lines representx, and x;, respectively. In(D) only x, is represented. Parameterdiy=W,;=4, ay=a;,=5; uppermost panels,
Ap,=A,=0, other panel#,=A,;=1. Initial conditions: uppermost panels{, #,) =(—1,2), other panels(¢y(6),$.(6))=(—1,2) for
—1=<6<0. Panels on the left, abscissae: tifdimensionless, rescaled to the dejayrdinates: activatioridimensionless Panels on the
right, abscissa: activatioxy; ordinates: activatiorx,, both dimensionless.
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of activations of a two-neuron network f&=(5,5) [Fig. (4.1 is approximated by the dynamics of E@.2). This
4(B)], E=(0.4,0.4) [Fig. 4C)], and E=(0.01,0.01) approximation is valid provided the absolute values of the
[Fig. 4D)] for the same initial condition derivatives of the solutioa(t,®) of Eq. (4.1) remain much
[(do(0),01(0))=(—1,2)]. We are dealing with the same smaller thare. The dynamical properties of ma&g.3) imply
two-neuron network as in Fig. 2, described in Sec. Il C.that if the initial conditiond satisfiesb<0 (®>0) then the
Thus considerations on the symmetry of the system showolution of the DE(4.2) tends tor, (rg). This is in perfect
that this initial condition lies in the basin of attraction of agreement with the asymptotic behavior of DREL). So,

rs, so that its trajectory will eventually tend to this equilib- for initial conditions that satisfy eitheb<0 or ®>0, the
rium point. It can be seen that, for lar@e this solution of transient regime of(t,®) is essentially determined by the
DDE (2.1 resembles the corresponding solution of ODEmap(4.3) and is independent af.

(2.3) and converges rapidlycompare Fig. @A) and Fig. Now, consider an initial conditio® = (¢, ¢;) such that
4(B)]. As E is decreased, it displays, first, transient oscilla-$,<0 and ¢,>0, such as the one used in Fig. 4. In this
tions during a short timgFig. 4C)], and, then, square-wave- case, as can be seen in FigD% which shows the time
like oscillations that outlast the observation wind¢Rig. course ofx,, the solutiore(t,®) of the DDE(4.1) is initially
4(D)], only Xq is showr]. Only thea priori knowledge that attracted to the period-2 square-wave solution of the DE
the point is in the basin of attraction of allows us to state (4.2) given by

that these oscillations are transient. The change of behavior,

asE is decreased, is also reflected in the trajectories in the y (t)=a, x,(t)=—a, te(2n,2n+1), n=0,1,2, ...
(Xg,X1) plane as shown in the panels on the right in Figs.
4(B)—4(D), where the lowest panel is reminiscent of the pro-
jection of a closed orbit, even though the corresponding traXo()=
jectory will eventually converge tos.

The following analysis provides a heuristic explanation Since this square wave is discontinuous at integer times,
for the delay-induced transient oscillations. The two-neurorthere will be values ot [the zeros ofz(t,®)] where the
network of the example above is described by derivatives ofz(t,®) will be large. Close to these points
(and only close to thejrthe approximation of the DDE.1)
by the DE(4.2) breaks down. Due to the existence of these
points, the effect of the right-hand side of DI¥E 1) will be,
for most initial conditions, to eliminate very slowly the zeros

d of z(t,®). So z(t,®) will eventually tend to either, or
€5t X1(t) = —X1(t) + Wo ,(Xo(t— 1)), (4.1) r;. We can summarize this argument by saying that the long
transient behavior observed x(t,®) is due to the competi-
wheree>0, b=(aW)2>1. In the limit e—0 the dynamics tion between the two antagonistic asymptotic behaviors of
of this system is formally described by the following systemthe DDE (4.1) and of its formal limit, the DE(4.2), as e

—a, X(t)=a, te(2n+1,2n+2), n=0,1,2,....

d
€ o Xo(1) = =Xo(1) + Wor, (xy (1= 1)),

of difference equation€DE): tends to zero. More general oscillatory initial conditions will
display the same behavior.
Xo(t) =Wao,(x,(t—1)), The following mathematical result corroborates the heu-
ristic analysis presented above. It constitutes a generalization
X1() =Worg(Xo(t—1)), (420 of the analysis of the scalar DDE presented 28] to the

case of systems of DDEs. In order to present this result we

or its discrete-time version, introduce the system of DEs that is obtained from DRH)

Xo(n)=War ,(x1(n—1)), by rescaling the delayg\ppendix B), and settinge=0:
X1(n)=Wo,(Xo(n—1)), (4.3 Xi+1()=Wiiq0,,  (X(t=1)). (4.9
wheren=1,2, ... . The global dynamics of EGt.3) can be

We denote byz(E,t,®) the solution of DDE (2.1),
rescaled such that allAj=1 (Appendix B, with
E=(ey, ...,en-1)>(0,...,0), andz(0t,P) the solution
of DE (4.4), obtained by setting;=0 for all i. The solutions
of Eq. (4.4 are double valued at integer times unless

easily analyzed. Let us denote bythe positive root of the
equationa—Wo ,(a)=0. Asb>1, the map(4.3) has three
fixed pointsr,=(—a,—a), r,=(0,0), andr;=(a,a). The
fixed pointsr, andr are stable and attract all initial condi-
tions (Xg,Xx;) satisfying xo<0x;<<0 andxy,>0x,>0, re- S o o
spectively. Using the fact that, is an odd function, it can the initial condition ~ @ satisfies _¢i+1(0)

be shown that Eq(4.3) has a stable periodic orbit of period — Wi+1%a;,;(¢i(—1)). Then we have the following result.
2 given by the points -ea’a) and (a’_a_). This periodic Transient behaViorForT>O, 77>O, and® e S such that
orbit attracts all initial conditions X,,X;) that satisfy ®i+1(0)=Wiii0,  (#i(—1)), there exist€,>0 such that
XoX1<0 [to see this, notice that xo(n+2) for all OsE<E, |[|z(E,t,®)—2z(0t,®)||<n for all
=Wo (Wa,(Xe(n))), X1(n+2)=Wo  (Wa,(x1(n)))]. O0<t<T.

Now, let us consider DDE4.1) with € small. For an initial The constraint on the value of the initial condition at 0
condition ® = (¢q, ;) that is sufficiently smootlinamely, can be relaxed. For arbitrary initial conditions $) the so-
|depg/dt|,|dg, /dt| are much smaller tham) the left-hand Iution of DDE (2.1) remains transiently close to the solution
side of Eq.(4.1) can be neglected so that the dynamics of Eq.of DE (4.4), except nearby integer time values.
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200.0 abruptly ase is decreased towards zero. Fosmall enough,
the curve representing the TRD as a functioneofan be
fitted by an exponential function of &/ The sharp increase

150.0 - in the TRD corresponds to the onset of transient oscillations.
It indicates the time interval during which the solution of

a DDE (2.1) remains close to the corresponding solution of the
C 1000 | discrete-time network given by D&.4).
= The above numerical results are in accord with analytical
results obtained for two-neuron networks with piecewise
50.0 1 constant output functiong2].
V. DISCUSSION
0.0
0.0

We have studied the asymptotic and the transient dynam-
ics of excitatory ring networks of GRNs in order to better
FIG. 5. Transient regime duration. Transient regime duration foHnder,Stand the mechanlsms underlying the onset of oscilla-
the system without delathick line) and the system with delay ONS in such networks with delay.
(thin line) as a function of the characteristic charge-discharge time EXcitatory ring networks may display unstable, noncon-

e for an excitatory two-neuron network. Parametatg=W, =4,  Stant, periodic orbits. These have been reported for rings
ap=a;=5, Ay=A,=0 for the system without delay and With five units[29] or more(i.e., N=5), with instantaneous

Ay=A,;=1 for the system with delay. Initial conditions transmission times, and for scalar DDEs with dela@—32
(o, d1)=(—1,2), for the system without delay, and (i.e.,N=1). Yet, as argued in Sec. lll, the existence of these
(o(6),$1(6))=(—1,2), for — 1< =<0 for the system with delay. periodic orbits does not explain the presence of oscillations
Abscissa: charge-discharge time of the neurenglimensionless, such as those displayed in Fig. 1, providing strong support
rescaled to the delayordinates: transient regime duratitimen-  for the hypothesis that the observed oscillations are transient.
sionless, rescaled to the delay We argue in the following that the proposed mechanism ac-
cording to which the system with delay behaves transiently
This result indicates that, for small enoufh the solu- as a discrete-time network, and asymptotically as a
tions of Eq.(2.1) remain close to those of E¢4.4) for some  continuous-time network without delay, accounts for the
transient time whose length depends on the initial conditionproperties of the oscillations observed numerically. We will
In contrast with DDE(2.1), which does not have any focus on the two main characteristics of such oscillations,
stable nonconstant periodic solution, £4) has infinitely  already mentioned in the Introduction, and we show how
many periodic solutions with non-negligible basins of attrac-each one is compatible with the proposed mechanism.
tion (Appendix B. For these initial conditions, each activa- (i) When the network is initialized with oscillating activa-
tion tends to a periodic square-wave-like oscillation, thetions, it displays periodic oscillations for small enough char-
jumps between lower and upper parts of the wave appearingcteristic charge-discharge time of the neurons.
at integer multiples of the period added to the times of sign According to our analysis, these periodic oscillations cor-
changes in the initial condition. Thus the basins of attractiorrespond to trajectories of the continuous-time network with
of the periodic oscillations and their boundaries cover the sedelay transiently attracted to periodic orbits of the discrete-
of weakly oscillating initial conditions, so that, for any such time network. The trajectories susceptible to displaying such
initial condition, and for small enough, the corresponding behavior lie in the basin of attractiaffor the discrete-time
solution of DDE(2.1) displays transient oscillations reminis- network of periodic orbits. The union of these basins of
cent of those of DE4.4). attraction, and their boundaries, corresponds exactly to the
set of oscillating initial conditions.
The main point is that the oscillations constitute long-
lasting transients. The time interval during which the trajec-
For excitatory ring networks with instantaneous transmistory of a given oscillating initial condition displays oscilla-
sion times, the transient regime duratiOrRD) of any con-  tions is also the time during which it remains close to the
verging trajectory is proportional te (where the character- orbit of the corresponding trajectory of the discrete-time net-
istic charge-discharge time akg=en; as defined in Sec. work. This time interval depends on the initial condition and
IV A). Thus the TRD decreases linearly to zeroeas0.  also on the parametd, representing the charge-discharge
This is illustrated by the thick straight line in Fig. 5 that time of the neurons. A& is decreased, the duration of the
shows the TRD as a function @f for the two-neuron net- oscillation increases exponentially. In other words, the solu-
work and initial condition used in Fig.(A). tion of an oscillating initial condition displays transient os-
For the same network with delayed interunit transmissiongillations, whose duration increases exponentiallfEaends
the TRD (thin line in Fig. 9 is close to that of the system to zero. Thus, for small enoudh, any reasonable observa-
without delay(thick straight ling for largee. The TRD isin  tion window is shorter than the duration of these transient
fact almost linear for large enough. This is in accord with oscillations, making them indistinguishable from stationary
the fact that the trajectories of the networks with and withoutoscillations.
delay are similar for large [Figs. 4A) and 4B)]. However, (i) Similar oscillations do not occur in excitatory ring
for small €, the TRD of the system with delay increases networks with instantaneous transmission times.

C. Transient regime duration
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For special ranges of parameters an excitatory ring netpropagation along axons, synaptic delay, etc. Delay-induced
work without delay displays unstable periodic orbits. By se-long-lasting transient oscillations could thus take part in vari-
lecting an initial condition close to the stable manifold of ous nervous system operations.
such a periodic solution, it is possible to observe a long- In ANN applications relying on the convergence of the
lasting transient oscillation followed by the convergence ofnetwork to a steady state, control over the transient regime is
the solution to one of the stable equilibria. So, for the systemylso an important issue. Large increase in the transient re-
without delay, there is a set of initial conditions with tran- g|me duration, such as those observed in the networks stud-
sient oscillatory trajectories. Yet, this set does not depend ofed here, can seriously deteriorate the network’s performance
the value of the paramet&. Moreover, even for such initial py slowing down the system. Our analysis shows that the
conditions, the duration of the transient regime tends linearlyresence of delay-induced long-lasting transients can be pre-
to zero ast is decreased. Clearly, excitatory ring networksdicted by the analysis of the dynamics of the associated
without delay, no matter the number of units they contain, dQjiscrete-time network.
not display long-lasting transient oscillations for oscillating
initial conditions as the characteristic charge-discharge time V1. CONCLUSION
is decreased.

We have studied the behavior of excitatory GRN ring
General considerations networks. We have shown that for instantaneous as well as

: . . . . elayed interunit transmission, most trajectories tend to equi-
Transient regimes have received little attention compare

. i : rium poin nd that the remaining on ill roun
to steady states in theoretical studies of neural network mo brium points, and that the remaining ones oscillate around

els. The description of the asymptotic behavior of the syste an unstable equilibrium point. When interunit transmissions
- ! : : . re delayed, the system may dis -lasti [
provides invaluable information about the transients but, a Y Y y display long-lasting transient

shown in our work, this is not always sufficient to account%SCIHatlonS’ which can be analyzed through the study of the

for some of the IMportant aspects in the svstem’s dvnamic behavior of the corresponding discrete-time network. In this
P P ys s dy ' SSense, the behavior of the ring network with delay is inter-

Theor.etlcal studies of transients can help In bettgr ur]derr'nediate between the behavior of the system without delay
standing nervous system operation. Experimentalists havg

long recognized the importance of transients in neural behav—nd that of the discrete-time network. These theoretical re-
'ong 9 por . . sults are important to complement the experimental and nu-
ior as a means to convey information about environmental

well as internal change.g.,[33]). The information con- herical observations made in circuits and digital computers,

; . . SO L : in order to better understand the mechanisms underlying the
tained in the transient regime is all the more important Whensystem’s dynamics

the system evolves in rapidly changing environments wheré
the neural networks involved in information processing do
not dispose of the time lapse necessary to reach a stationary Note added in proofheoretical analysis of the effect of
regime. delay on neural network dynamics is currently an active field
Living neurons act collectively on target neurons, of study, and recently some additional results have been pub-
muscles, etc. The output of such assemblies is a graded rlished that we would like to mention.
sponse observed, for instance, when recording the action po- The two following references deal with the influence of
tential of nervous trunk$éneurogram GRNs model the ac- delay on the asymptoic behavior in a model of a single neu-
tivity of such neuron assemblieglO]. Determining the ron and a network of spiking neurons with delayed recurrent
different parameters that shape the transient behavior of suaxcitatory connectiofiJ. Foss, A. Longtin, B. Mensour, and
neural network models is thus important for understanding). Milton, Phys. Rev. Letf76, 708(1996; W. Gerstner, J. L.
how nervous systems operate. The study of the dynamics &fan Hemmen, and J. D. Cowan, Neural Com#t.1653
GRN ring networks shows that converging neuronal net{1996]. They are complementary to the publications cited in
works may display oscillating transients during extremely[3].
long time intervals. In fact, these transients can be so long Results concerning the asymptotic behavior of
that, practically, the system will not reach its stationary re-continuous-time GNRs in the presence of delay are also pre-
gime during the observation window. sentedY. J. Cao and Q. H. Wu, IEEE Trans. Neural Netw.
Overall oscillatory patterns are frequently observed in the7, 1533(1996; Y. Zhang, Int. J. Syst. ScR7, 227 (1996);
activity of nervous systems. Their roles are either clear as itY. Zhang, S. M. Zhong, and Z. L. Libid. 27, 895(1996); L.
respiration, where they control motor activity, or unex- Olien and J. Blair, Physica D(to be publishe. These are
plained as in the electroencephalogram where they are apparemplementary to the publications cited[@®]. We became
ently related to the brain information processing in a stillaware that a result, concerning the asymtotic behavior of
obscure way. Overall oscillatory patterns are observed wheoontinuous-time excitatory ring neural netowrks with delay,
units discharge periodically and synchronously. It has beesimiliar to the statemenflmost convergenca our paper,
proposed that the latter could be important in a number ofvas independently, and prior to our work, provéh Baldi
functions such as in coordination of motor acts and informaand A. Atyia, IEEE Trans. Neural Netws, 612 (1994)].
tion processinge.g.,[34]). The long-lasting transient oscil- They also mentioned the existence of transient oscillations
lations in excitatory rings of GRNs arise thanks to the presbased on numerical investigations. Our analysis takes these
ence of interunit transmission delays, and are also expectaesults further by providing a description of the basin bound-
to occur in other network architectures. In living nervousary (statement,The basin boundajyand unstable oscilla-
systems, delays are ubiquitous, ranging from a few to severdions (Sec. 1110, as well as elucidating the mechanisms un-
hundreds of milliseconds. They are due to action potentiatlerlying transient oscillation&Sec. 1\).
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We rewrite DDE(2.1) as
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where F from S to R" is defined by F(®)
=(fo(P), ... ,fy_1(P)), with

Two numerical integration methods were used to investi-
gate the dynamics of DDR2.1). Both methods were applied _ — ‘ o .
to the system after rescaling all delays to ¢Agpendix B. fi(®)==di(0)+Wiga (¢i-1(= 1)) ei.

The first method is the Gear predictor-corrector formula
[35] adapted for the special case of DIE1]) for which the
nonlinear term is delayed. In this particular case only theD0
corrector formula is required.

The second method consists in writing solutions of DDE
(2.1 in integral form, and then evaluating the integral using -
a trapezoidal approximatiofe.g.,[36]). P<¥ and®(0)="(0), wehaveF(®)<F(¥).

For both methods, the time steps used depended on both In Sec. Il, _stgtemgmponotomcnyshows that the follow-
Ing hypothesis is satisfied.

;heeniﬁsé?masﬁﬂ%ﬁfxgg };T%:;ngl conditions. The conver- Hypothesis (H2)DDE (2.1) is strongly monotone, in the
' sense that it verifie@H1) and ford <V and® # V¥, there is
t,=0 such thatz,(®)<z/(W¥) for all t=t;.
We assume that; <@ for all i, where ¢ is the unique
We consider Eq(2.1) with delayed interunit transmission. solution of
It is possible to reindex the variables so thg§>0 and
Ag=A1=-- - =A_1=0. Let A=(Agt+---+AN_1)/N, N
Ko=0, Kp=pA—(Ay+---+A,) for 1<sp<N-1, and -1+ 79{1—”1
ui(t)=x;(t—K;). Then the variables); satisfy DDE (2.1)
with Aj=A for all i. By rescaling the time unit to the delay Then, the analysis of the real roots of the characteristic equa-
A that is t,:t/A, Gi,zéi /A, the new Variablesyi(t,) tion (32) leads to Hypothes|é—|3)
=U;(t/A) satisfy the following system of delay differential  Hypothesis (H3)The characteristic equatid8.2) has one

APPENDIX A: NUMERICAL INTEGRATION METHODS

F satisfies the following hypothesis.

Hypothesis (H1). Fis continuous on its domain, sends
unded sets df into bounded sets d&, and is such that
DDE (2.1) has one and only one solution starting from any
given data® e S. For every pair®, ¥ in S, such that

APPENDIX B: RESCALING THE DELAYS

=0.

T"‘g)

equations: and only one real root. This root has multiplicity one.
Hypothesis (H4)Let z be a solution of DDE2.1) such
, dyieg ) ) that z oscillates weakly and does not oscillate strongly, then
€1 gp (V)= Vi) T Wisyo, (it —1)). z(t)—0, ast— + .
(B1) Proof. Let us verify that DDE(2.1) satisfies(H4). Let
z=(Xg, - . . Xn_1) be a weakly oscillating solution of DDE

(2.1 such thatx;(t)#0, for allt=T and alli. There is nec-
essarilyj, such thatx;(t)<0 andx;,,(t)>0 for all t=T.
Thusx;(t) is a strictly decreasing bounded function, and

In order to prove that weak oscillations imply strong os-we havex; . ,(t)—1;, 1 with |;,,=0, ast— +. From this
cillations, we show that DDEZ2.1) satisfies the hypotheses we derive that for alk

APPENDIX C: PROOF THAT WEAK OSCILLATIONS
IMPLY STRONG OSCILLATIONS

Xj+i() =1y @s t—+oo, wherelj, =W oo (Wiik-10q,, (W00 (1j:1)))=0. (C2

In particular, fork=N—-1, we getx;(t)—1;=0, hencel;=0, and consequently;=0 for all i. Thus z(t)—0, as
t—+o. W
We rewrite Eq.(2.1) as

dz
gLzt (@), (C3

whereL:S—RN is the linear map defined by(®)=M®(—1)+M’'®(0), with M andM’, two NX N matrices defined as
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0 0
a W, 0
€1
= W
M 0 VW 0
€2
_1Wp-
0 aN-1VWN-1

EN-1

andf=(fg, ...,fy_1):S—RN is the map defined by
Wity
fira(P)= P~ [og, ,(di(—=D))—ai1¢i(—1)].
I
(CH
For Y=(Yo,...Yn-1)€R"N, we denote by ||Y]|

=lyol+---+lyn-a|. Let W=max(|W;/g|) and
a=max(|a;]) andg:R—R the real function defined by

g(u)=NW(au—o,(u)). (Co
We haveg(u)/u—0 asu—0 and
|[f(@)|[=g(|P(=D)[]). (C7)

The linear parlL satisfies the following hypothesis.

Hypothesis (HY. L(®)=M®(—1)+ % .dn(6)P(6),
whereM is nonsingular, and21+d77(0)(13(0):N(I)(0).

The nonlinear parf satisfies the following hypothesis.

Hypothesis (HY. For the nonlinear part of DDE (2.1),
there exists a functiog defined fromR* into R* such that
g(u)/u—0 asu—0 and||f(P)||<g(|P(—=D)).

Thus Proposition 5p. 278 in [26], implies that DDE
(2.1) satisfies the following hypothesis.

Hypothesis (H5)DDE (2.1) does not have any solution
z such that each component afis #0 for eacht large
enough and(t) —0 faster than any exponential &s» +oo.

Moreover, from Eq(C7) we deduce that

[[f(®)]|=0(||®]2). (C9

We have thus checked all the hypotheses of Theorem

(p. 28)) in [26] showing that the notions of weak and strong

oscillations coincide.

APPENDIX D: PERIODIC OSCILLATIONS

Monotone cyclic feedback systems such as syst@ms—
(2.3 admit a discrete Lyapunov function, denoted

[15,17,18. We present some of the properties of this func-
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aoWo
€0
0
M’ = diad — -t c4
O ) =dia E_O, "'1€N_l ( )
0

valued. It decreases along trajectories of systeéhig—(2.3),
hence the reference to Lyapunov functions, which are usu-
ally continuous valued energy functions decreasing along
trajectories of many physical systems.

One important implication of the existence of the function
V is that the PoincarBendixson theorem holds for systems
(2.1)—(2.3) [15,18. In other words, the dynamics of ring
networks cannot be more complex than that of two-
dimensional systems. More precisely, this implies that trajec-
tories on the boundarg tend either to the unstable equilib-
rium pointr,, are asymptotically periodic, or “approach” an
orbit homoclinic tor,, that is, an orbit that starts a} and
moves back to the same point. Therefore, to show that all
undamped solutions on the boundary are asymptotically pe-
riodic, we need to prove that there are no homoclinic orbits
throughr,. This result has been proved for scalar DDEs with
monotone feedback37]. We use the same method as in
those papers, which was also appliedi30,31. It consists in
showing that the value of the discrete Lyapunov function for
any nontrivial solution tending to, ast— +« is larger than
its value for any nontrivial solution tending to, as
t— —oo. Thus if there is a nontrivial solution connecting
to itself, the discrete Lyapunov functiodhwould be increas-
ing along this solution, which contradicts the fact thais
decreasing along any trajectory.

We consider the cases aft)—r, ast——o and as
t—oo separately.

Let us assume tha(t) is a solution of DDEK2.1) tending
to r, ast— —o. Then, by definitionz(t) is in the unstable
manifold of r,. In the vicinity of r,, this manifold is finite
dimensional and can be approximated by the unstable mani-
fold of the linearized equation ap. Thus fort negative with
t| large enoughz(t) is close to a fundamental solution of
the DDE (2.1) linearized atr,. For such solutions, the dis-
crete Lyapunov function has been estimated in Corollary 3.3
(p. 404 in [17]. It should be noted that the fundamental
solution associated tp ast— — corresponds to an eigen-
value A of the characteristic equation with strictly positive
real part.

tion that are useful in the following. Rigorous definitions and A solutionz'(t) of DDE (2.1) tending tor, ast— + is
analyses can be found in the original papers cited abovevithin the stable manifold of ,. The associated manifold of
This Lyapunov function counts the number of sign changeshe linearized equation at, is infinite dimensional so that
of the activations during an interval of length equal to thez’ may tend tar, faster than any exponential. Yet, thanks to
delay plus those between activations. Therefore it is integeidypothesigH5) in Appendix C, we know that this is not the
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case and that’ is close to a fundamental solution of the

DDE (2.1) linearized atr,. ThusV(z'(t)) ast— + is also
estimated thanks to Corollary 3(B. 404 in [17].
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We recall that the equilibria of DDE2.1) are denoted by
I’1= _(ao, P ,aN,]_), I‘2=0, and I’3=(a0, PR ,aN,l),
with a;>0. These are also the equilibria of D&.4). Let

The important difference between the two cases is that fop be defined as above, then the solutiaf0t,Ps) of

z' the real part of the eigenvalue’ of the characteristic pg
equation is strictly negative. Hence we have necessarilyy p.(g)=sa is k(J)
A<\, which from the estimates if17] implies that

(4.4 with initial condition PseS defined
periodic with z(0;t,Py)

=(8iag,0i+181, - - - ,0i_18n_1) Tfor all i—=1+nk(5)

V(2)<V(z'), which finishes the proof that there are no ho- < +nk(8) with 0<i<k(8) andn=0.

moclinic orbits througtr,.

APPENDIX E: ASYMPTOTIC BEHAVIOR
OF THE DISCRETE-TIME N-RING NETWORK

The asymptotic behavior of DE.4) for initial conditions
in Sis derived from the description given jd4]. We intro-
duce the following notations. Fa§= (g, . ..,0y_1) such
that 6,e{—1,0,+1}, we define the shift of order by
Si(0)=(6i,0i+1, - -
positive integer such thaf ;= 6. For 6 such thats;# 0, for
all i, we denote byKs; the cone in RN defined
by Ks={x=(Xo, ... Xn_1) € RN:6x;>0 O<i=N-1},
and by W; the wedge inRN defined byW;=K;UK_;.

,6i_1), andk(6) >0 the lowest strictly

Asymptotic behavior of solutions of DE (4.4et ® € S,
Q) If ®(0)eW for all —1<0<0, then there is5 with §;
#0 for all i, such that Z(O,t,(I))EKSi((g) for all
i—1+nk(d)<t=i+nk(s) with 0<i<k(s) and n=0,
moreover, ag increases to infinityz(0t,®) tends to the
k() periodic solutionz(0t,P;); (2) in the same way if
®(6) eH; for all —1<6<0, there isé with §,=0, such
thatz(0t,®) e Hj,; for all i — 1+ nk(5)<t<i+nk(5) with
0=<i<Kk(6) andn=0, moreover, as increases to infinity,
z(0t,®) tends to thek(s) periodic solutionz(0t,P;); and
(3) for arbitrary® e S, we haved ~}(W)=U,,(I;,I{), and
O H(H) = 5[m; ,mi], with ®[(l;,1{)]CK;, for somes
with  &#0, and ®[(m;,m/)]JCH, for some k

There are ¥ such cones and™>'! wedges. We denote by €{0.... N—1}. The analysis perforr}qed in the two previ-
W the union of the wedges. The complement of the union oPUS cases shows that fofe(m;,m;) [respectively, 6

the wedges is formed by the unibhof N hyperplanedd; in
R" defined byH;={x=(Xo, . .. Xn_1) € RN:x;=0}.

e(li,I{)], z(0,6+n,®) tends to the periodic sequence
Ps(6+n) asn—oo.
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