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Unsteady crystal growth due to step-bunch cascading

Peter G. Vekilov, Hong Lin, and Franz Rosenbefger
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Based on our experimental findings of growth rate fluctuations during the crystallization of the protein
lysozyme[Vekilov, Alexander, and Rosenberger, Phys. Re4.6650(1996], we have developed a numerical
model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps
that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by
bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evalu-
ation of the model with properties characteristic for the solute transport, and the generation and propagation of
steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the
experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of
the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-
kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic
scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch
triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.
[S1063-651%97)14203-9

PACS numbe(s): 81.10.Aj, 47.20.Bp, 68.35.Ct.

[. INTRODUCTION results in growth rate fluctuations of the same magnitude and
characteristic time as in our experiments. On increase of the
The compositional and structural uniformity of a crystal is bulk diffusivity (shift towards kinetically controlled growth
largely determined by the dynamics of molecular layerthe model yields relatively steady step dynamics. However, a
(growth step spreading. Unsteady layer propagation andstronger interactioisurface diffusion field overlgbetween
step bunching are often associated with nonuniform impuritysteps, i.e., an increase in the nonlinearity of the step kinetics,
trapping and lattice defect formatigh,2]. Most recently, we  results in a larger amplitude of the fluctuations. On a micro-
have presented experimental evidence for unsteady step dycopic scale, we find that the unsteadiness is the result of a
namics during the crystallization of the protein lysozymenovel morphological instability, in which a cascade of step
from aqueous solutions under steady external condifi8hs  punches forms in response to the perturbation in the interfa-

Based on a scaling analysis, we concluded that the observe¢h| supersaturation distribution introduced by existing
fluctuations originate from the coupling of bulk transport jy ,nches.

with nonlinear interface kinetics. Furthermore, these consid-
erations suggest that fluctuations in step density may be a
rather widespread phenomenon in crystallization. In inor-

ganic systems, however, only a few observations of unsteady
growth, that are possibly the result of the nonlinear interac- A. Diffusive bulk transport
tion between bulk transport and interface kinetics, have been
reported[4—7]. In protein crystallization, growth steps are ; . ) o .
higher and their kinetics are typically slow8] than in in- used in our (_axperlmental mv_estlggtlon_s of nonlinear growth
organic systemE9]. Thus, growth unsteadiness may be more/@Yer dynamicg3,10]. As depicted in Fig. (), the crystal-

readily detectable even with the spatial-temporal resolutiofization cell is approximated by a 2D closed domain of 1 mm
limits of current observation techniques. height and 6 mm width. A crystal of fixed size, 0.6 mm wide

In this work we test the supposition that the observed@nd 0.3 mm high, rests on the middle of the cell bottom. The
fluctuations root in the coupling between bulk transport andnodel solution consists of the protein lysozyfeemponent
nonlinear interface kinetics. Retaining the essential geometr}) in water. The initial lysozyme mass concentration in the
of our experiments, we develop a two-dimensioaD) solution isp; ;=50 mg/ml. At 12 °C, and the precipitant con-
model for the diffusive transport from the bulk of a solution centration and pH used in the experimef810,11, the
to microscopic growth steps on a faceted crystal. Both stosolubility of lysozyme isp$%=3.1 mg/ml[12]. Hence, the
chastic and deterministic step generation through surfaciitially uniform value of the supersaturatiar=In(p,/p$® is
nucleation are employed. The step spreading velocity is ass,=2.78.
sumed to depend on both the local supersaturation and step We consider only diffusive transport of a dilute solute.
density. We evaluate this model for transport, kinetics andrhus, the conservation equation for lysozyme in the solution
step generation parameters characteristic of lysozyme. This

Il. MODEL

The geometry of the transport model is based on the setup

dp1 Fpy  Ppy
1( ) (1)
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whereuv (n) is the velocity of thenth step,p$=0.82 g/cni is
xtal the protein mass density in the lysozyme cry$te], and
o= X AxMS is the mesh width. Due to the low mass fractioyip
(a()) 1 2 Smm (p: total mass densilyof the protein in the solution, the
above simple form of Fick’s first law is adequate for the

25 (im—15 pm| 0.25 pm diffusive flux [16].
o 2.2 um

25 um

b SE=EEzE
(b) ?1'12235,&"') As in our earlier work8,17,14, we assume that the ve-

el locity of the steps follows the relation

B. Step motion and step generation

S S e
v, (0 0,) p(n)= bstedf (n) _ bstepln[Pl(n)/qu] , 4
108 A} 1+kp(n) 1+kp(n)
(©)
where by, is the step kinetics coefficient anef(n) is the
interfacial supersaturation at théh step, withp$ the protein

q
(global) mass transport, 4621 grid, (b) interfacial (mesoscale mass density at step and pi® the bulk equilibrium concen-

subdomain, 122421 grid, (c) steps moving in interfac¢heavy tration. The grougkp(n), with p(n) the slppe abou_t theth
black line in (b)]. step, accounts for the mutual deceleration of adjacent steps

through overlap of their surface diffusion fields. The stronger

where the diffusivity isD,=1.06x10 ¢ cm?/s [13,14]. Fur-  the competition for nutrient among neighboring steps, i.e.,

thermore, due to the symmetry of the transport problem, the largekp(n), the lower isv(n); for details se¢17]. Note
that, in principle,p$® and, thus,c® are subject to the local

ap1 curvature of the interface. From a macroscopic point of view,
ox @ this capillary effect is only significant if the radius of surface
curvature is comparable to or smaller tham-1'/o®, where
on the center line of the cell, including the interface. Thel'=Qa/kgT is the capillary length, with(): the molecular
walls of the cell are assumed to be impermeable, i.e.yolume in the crystal and: the surface free enerdi9,20.
Vp,-n=0, wheren is normal to the wall. As discussed i3], due to the low value ofe, I" for
The solution-crystal interface consists of singular terracedysozyme is ofO(100 A). With a typical ¢® of order unity,
between microscopic growth steps. The initially uniform this suggests that capillary effects can be ignored down to
growth step density is given by the initial vicinal slope of the radii of curvature which are comparable to the step height
interfacepy and the height of the growth steps With the  in our model. A more realistic estimate of microscopic cur-
typical valuesp,=5x10"2[3] andh=108 A~0.01um (unit  vature effects, based on molecular interactions, will likely
cell dimension in thg110 direction[15]), about 140 equi- result in a somewhat larger length scale for capillary effects.
distant steps initially cover the half facet. In view of theseHowever, as we will see in Sec. VI C, the smalle¥s ob-
low values ofpy, we ignore, for the transport calculations, tained on step bunching from our model excéeoly several
the actual vicinality of the interface and assume that the stepsrders of magnitude. Hence, the use of a congtghtinde-
move within a singular horizontal interface, which is repre-pendent of microscopic morphology, is well justified.
sented by the heavy horizontal line in FigblL This simpli- In our earlier model calculations, in which step bunching
fication is well supported by scaling arguments. Local heightvas not considered, and step field overlap due to both diffu-
differences in the interface morphology, as they may arisesion in the solutiorand on the interface were lumped into
e.g., from macrosteps of heighth (bunching ofm elemen-  kp(n), we usedk=3000 andbstep=2.72><10‘4 cm/s [18].
tary steps result only in significant supersaturation differ- These parameters resulted in quantitative agreement between
ences in the direction if the step velocity in the bunch is calculated and experimental local slope variations in re-
significant compared to the characteristic diffusion velocitysponse to the macroscopic nonuniformity in interfacial su-
D;/mh. Our experimental resul{see, e.g., the local minima persaturatior[17,18. However, in preliminary evaluations
of v(t), Fig. 9 in[3]) reveal that for lysozyme in a bunch  of the current model we found that step bunching enhances
is of O(10 ° cm/9, while mh<5x10 ° cm and, thus, the the response of the time-averaged local slope to the nonuni-
diffusion velocity about macrosteps is 6§10 cm/s. formity in ¢°. Hence, for the base cases in the present simu-
To resolve the concentration field about individual growthlations we usek=500. Since experiments yield the ratio
steps, we introduce a mesoscéléS) subdomain above the bgdk only, to match the step velocities to the expenmen-
interface, see Fig.(b) and Sec. lll. The interfacial concen- tally observed valueg8], we reducedyg;, to 6x10 ° cm/s.
tration boundary condition for the MS domain is tied to the To investigate the effects of step k|net|cs nonlinearity on the
protein consumption at the moving steps. If thereMyg(i) step bunch dynamics, we us&dvalues of 100Q(increased
steps within theéth mesh in the grid used for the numerical step interaction and k=0 (no step surface field overlap,
simulation in the MS domain, flux balance requires that  linear dependence of step velocity on local interfacial super-

FIG. 1. Geometry and grids used in the simulatiof@. Bulk
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saturatiop. The values obg,employed in these simulations 1221x21 grid used in this subdomain for the simulation of
were 1.210* cm/s and 1.X10 ° cm/s, respectively. transport about the microscopic growth steps is schemati-
Growth on a facet ceases when all initially imposed stepally depicted in Fig. (b). Note that the outer boundaries of
have reached the center and the facet has become singultiie MS domain coincide with the first mesh lines within the
that is, growth can only be sustained through the replenishglobal grid. For the 21 vertical meshes between the crystal
ment of growth steps. Hence, in accordance with recent findeorner and the left boundary of the MS domag,(i) in
ings for lysozymg8,17], we assume that, at thes used in  Eqg. (3) is zero. The remaining 1200 equally spaced grid
our simulations, growth steps are generated by 2D nucleatiopoints on the interface result inx“=0.25 um; see Eq(3).
at the edge of the crystal, where the supersaturation is the During unsteady growth, steps can move with of up to
highest[18,21-23. severalum/s; see Sec. VI an8]. To limit the displacement
The probabilityP, that a nucleus is formed during a simu- of even such ‘“spurting” steps during a simulation time step
lation time stepAt in a segment of the interface of lengix At to less thanAxMS, we choseAt=0.025 s. This assures
with local supersaturation® is proportional to full utilization of the MS grid for resolving the changes in
concentration due to stepink) motion. Furthermore, during
PoxJsAXAt=[A'pexp(—B/o®)JAXAL, (58  this At, the characteristic diffusion  distance

In the calculations we set the consta@nsuch that the aver-
age nucleation time at the initial supersaturation is aliout
divided by the average normal growth ra® which for
R=23 A/s[3,8] is about 4.7 s. This results ih=1.65x10"
ml/mg.

We use two modes of step generation. In gtechastic ) . _
mode, P(t,,¢) is computed and compared at each time step Xj+2(M=X;(n)+v;(n)At, ®

with a random number €r<1. Whenr<P(t,), & NeW  \here the index,j+1,... represents the specific time step.
step is formed andy, set to zero. For>P(tnc), thue IS The step velocity, see Sec. I B, is such that 20-430s
increased byAt. For a meaningful comparison between theelapse before a step passes through a cell of wic4S.
different cases simulated using this step generation mode, the e interstep distances of a set of growth step positions
same sequence of 36 000 random numbers was used. In tE‘)@j(n)} are

deterministicnode, a step is generated whenelkgtP<e is

satisfied. We set=0.005, which results in an initial nucle- di(n)=x;(n+1)—x;(n). (9)
. . . i i i

ation rate comparable to that in the stochastic mode.

Sx~(D;At)Y?~1.6 um. Hence, the concentration along the
Po=Ap.exp(—B/o®), (5b)  two outer boundaries of the mesoscale domain, i.e u26
above and to the left of the crystdig. 1) can be considered
whereJg, is the steady-state 2D nucleation ré2#,25, the  fixed during a simulation time step.
constantA’ contains activation and surface energies as well 1o gbtain adequate resolution in the MS concentration
as frequency factork25-27, andB=7Qy*h/(keT)? With  field normal to the interface, a nonuniform mesh is used in
Q=3x10"**cnt® the volume of a lysozyme molecule in the the z direction. It is generated according to
crystal[15,28), y=1 erg/cn? the step free enerdy®,29], and
kg the Boltzmann constant. At 12 °@ =285 K), this results VIS i\a [i—1\2
in B=67.2. The value of the constaAtis set as follows. Az"=(25 pm) (Z) —<%> } (7)
The probability for the generation of a new growth step
within a timet, after the creation of the previous nucleus \nich with a=1.8 results in the mesh width increase from
or step can be expressed[a§)] Az'}"sﬁso.ll wm (i.e., about 10 step heightat the interface
to Az>5°=2.2 um at the upper boundary of the MS domain.
P(thue) = 1= €XH — (thua/ A Pol. 6) Stég generation and propagation are simulated as follows.
When a new step is generatézke Sec. Il B the old steps
are renumbered by substituting+-1 for n. When a step
reaches the facet center, it is annihilated. The step positions
are moved along the continuous coordinata discrete time
intervals according to

The vicinal slopeg are calculated according to

11l. NUMERICAL APPROACH
_ o _ _ p;(n)=h/d;(n). (10

The time-dependent diffusion equation, Efy), is solved
using the same implicit, finite volume approach afli@,21]. Hence, for a total number dfl steps, there ardl—1 local
Figure 1@ illustrates the nonuniform 4621 global grid(su-  slopes and growth rates. To account for the competition for
perscriptg) used in the simulations of the bulk transport. nutrient between a growth step and its nearest neighbors on
This grid is based on our earlier simulations of transport inboth sides, we used, somewhat arbitrarily, an effective slope
this geometn|18,21]. To accurately resolve the macroscopic
interfacial concentration gradients, the first grid point spac- pj’(n)=O.5[pj(n—1)+pj(n)] 11
ing (mesh width above the top interfacé, z¢, and to the left
of the crystal,Ax?, are both set to 2m. Finer grids yield in the evaluation of Eq(4). Although Eqs.(4) and(11) rep-
essentially the same global concentration distribution. resent simplifications, we do not expect more realistic for-

To resolve the concentration field about individual growthmulations for the competition between steps through their
steps propagating on the vicinal interface, we solve (. surface diffusion fields to result in qualitative modifications
subject to Eq(2), also in a mesoscal@S) subdomain. The of our results.
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Input properties (Dy, b, k.01, )
initial conditions (po.p; o)

total running time, t,,,

i

set concentration field and surface
morphology at t=0, p(n) = p,
x(n = poh, o (i) =In(p, oY)
calculate v(n), R(n) from Egs. (4),(11)
T

[ solve Egs.(1)-(3) for m-s domain |
]

set p; on global points on crystal top to average value
of surrounding m-s points, then copy to side facet
[]

solve Egs.(1)-(2) for global domain
update top and left side p, b.c. for m-s domain

| new step positions x(n) after At with v(n)l

| o(n) from p; on nearest m-s point

nucleation
deterministic: Py/ P(t,,e)< 0.005
stochastic: random # r< P(t,,.)

create step

renumber step n=n+1 | n

p(n)—> v(n) - Rn)
Z at selected locations

mod(t,4At)=0

output o, p, v, Rand zat
the selected locations

output the concentration fields of both
global and m-s domains

FIG. 2. Flow chart of the simulation steps.

Another simplifying assumption related to Edd) and
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FIG. 3. Definition sketch for averaging used to match the output
of simulations with stochastic step generation to the limited spatial
resolution of corresponding experiments.

keeping the concentration at its outer boundaries fixed, the
concentration distribution in the MS domain, that results af-
ter a time step in response to the solute flux into the inter-
face, is computed from Eq$l)—(3). The concentrations at
the global grid points in the horizontal interfadell circles
in Fig. 1(b)] are set to the average value of the MS grid
points that lie within+Ax%/2 of the respective global nodes.
This interfacialp3(x) is also copied onto the interface on the
side of the crystal. While holding this new interfacial con-
centration distribution fixed, the local concentration in the
global domain is calculated from Egdl) and(2). This up-
dates thep, values at the global grid points in the outer
boundary of the MS domaifopen circles in Fig. (b)]. The
concentrations at the MS grid points between the global
points of this outer boundary are then reset through linear
interpolation between the corresponding new global values.
At the end of a time step the new step positions, local
slopes and step velocities are calculated from E8)s=(10)
and Eqg.(4). Using the new supersaturation at the crystal
corner, the nucleation probability is evaluated from E&.
and(6). After possible creation of a step, all other steps are
renumbered. This completes the set of initial condition for
the next iteration in the MS domain. The consecutive itera-
tions in the MS and global domains are continued until
t=tyn-

V. DATA PRESENTATION

(11) concerns the maximum reductionindue to close step
spacing. Note that according to Eg), whenp(n) becomes,
for instance, 0.2p is reduced 100-fold. However, in real Initially, using stochastic step generation, we obtain time
systems, steps separated by molecular dimensions can molitories ofR, p, andv at certain interfacial locations=d,,
with same order of magnitude velocities as more widelymeasured from the crystal corner. To match the spatial and
spaced steps31-33. Hence, we consider, again somewhattemporal resolution of the presentation as closely as possible
arbitrarily, two steps with interstep distanee5h, as one to the experiment$3,10], we proceed as follows. As indi-
step of double height, and replabein Eg. (3) by 2h. cated in Fig. 3, we consider two pairs of points in the vicinity
The local normal growth ratR is calculated according to of the locationd,,. In both pairs the points are spaceguh
apart. This corresponds to the lateral resolution limit given
by the pixels in the charge coupled devi@CD) camera
used in the experimen{d0]. One pair, with positions;
andx,,, straddlex=d,,. The other pair, with positions,;
andx,,, straddlesx=d,,+3 um. This spacing of the pairs
The simulation procedure is summarized in Fig. 2. Fol-corresponds to the pixel spacing used for slope determina-
lowing input of the system propertie®;,p$,pi%k,bge)  tions in the experiments. When a step passes through one of
and initial conditions(p; o,po) as well as the total running these four points, the surface heightat that point is in-
time t,,,=AtX(number of time stepsthe positions of the creased byh. This results in local heights, , z,,, z,;, and
initially equidistant growth steps, and the initially uniform z,,; see Fig. 3. To simulate the lateral averaging due to the
supersaturation and step velocity are calculated. Then, whilénite pixel size, these four values are reduced to two through

A. Comparison with experiment

R;j(n)=pj(n)v;(n). 12

IV. SIMULATION PROCEDURE
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Zat+2Z Zpt+2Z
Za:alTaZ and Zb:¥ (13) 40 oo x| My I !
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These averaged coordinates are stored at every fourth time=<. P21 ) .
step, i.e., every 0.1 s. To simulate the experimental data ac- & |
quisition time, thez, andz, data sets are resampled at 6 s RO TORMOCROI000C M 00CMC IHOCIRAL 200X H0K]
intervals. Then th&R, p, andv values are calculated in two 0 % d ' ' '
ways: (a) To visualize the dynamics of the individual steps, 12 | T | T 7
that underlies the macroscopic observations, we calculate X -
X XXX X
from the resampled, andz, data o 8 " N A
[y]
o -
Zo() = 24(1=6 9 Za(t) = 24(1) T4 o xR OO
R(t): and p(t): T a MK XO00INK MOV SO X MO XDOOIONK J0HX FBEN I O]
6 S 3 Mm O 1 1 [ 1 ]
(14 0 10 20 3 40 50 60
(b) To simulate the processing procedures that the experi- Time [min]

mental data are subjected [8], the z, and z, data sets are
converted to intensity values, as they would result from in-
terferometry on the interface, according to

l,=11+1,c0§272,/Az],

lp=11+1,c08 27z, /A inizZ], (15 0 ' ' ' ' '

where 1, and |, are arbitrary intensity values, and 8

Aiz=0.2329um is half the wavelength, in the solution, of

the laser illumination used in the interferometry sef@p].

To account for the limited depth resolution of about 200 A in

the experiments, we superimpose a random noise with am-
H H : H H 1 | 1 | |

plitude corresponding t¢h. Then the S|mullated' |nten.5|ty. 00 10 20 20 20 50 50

traces are processed using the same Fourier signal filtering i )

algorithm as for the actual experimental dat®]. The re- Time [min]

sulting R- and p-time traces are plotted. Results obtained

without random noise addition prior to filtering are very  FIG. 4. Growth ratéR(t) and slopep(t) obtained in the stochas-

similar, but the higher frequency fluctuations have somewhaii¢ nucleation mode with=500 andD = Dysozymeat the middle of
lower amplitudes. the half facet;(a) before and(b) after data processing to reduce

spatial resolution to those of our experimef&sl0].

10%p

B. Analysis of step-bunching mechanism multiples indicate that at the sampling time the number of

To elucidate the step-bunching mechanism, we outputtegdteps betweer,; andx,, differs from the number of steps
simulation results for layer generation in the deterministicbetweenx,, andx,, by an even number. Thp values of
mode. We plotted time traces pfas obtained every 0.1 s at 1.8x10 * and odd multiples indicate that this difference is
various locationsd,,. These presentations were supple-an odd number.
mented by spatial profiles of the interfa@€x), and interfa- Figure 4b) shows the same results after processing of the
cial supersaturation distributions;*(x), obtained at select full data sets to account for the limited spatial resolution of
simulation times. In addition, two-dimensional concentrationthe experiments; see Sec. V A. First we note that in contrast
distributions py(x,z) in the vicinity of steps were obtained to the experimental results, see Fig. 5 488 both the av-

from the concentration values on the MS grid. erage growth rate and slope obtained from the simulation
systematically decrease. This is due to the larger ratio of
VI. RESULTS AND DISCUSSION crystal “surface area” to solution “volume” in the 2D

simulation model. As a consequence, the bulk supersatura-
tion in the model decreases more rapidly than in the experi-
Results forR(t) and p(t) obtained in the middle of the ment.
half facet (d,,=150 um), using the stochastic nucleation  From thep(t) trace in Fig. 4b) one sees that the growth
mode, the diffusivity of lysozyme and a step interaction pa-rate fluctuations are due to the passing of step bunches. The
rameterk=500 are shown in Fig. 4. The points in Figa# characteristic time between the passage of major step
represent values calculated according to E@d). Growth  bunches is several minutes. This is about two orders of mag-
rates of 18 and 36 A/s indicate the passage of one and twoitude longer than the average step generatiarcleation
growth steps, respectively, through bothy andx,, during  time of ~5 s.
the sampling intervalR values of 9 and 27 A/s indicate that ~ To facilitate their quantitative comparison, we have de-
one of the steps that passed through has not reacher,, = composed the simulated and experimefRél) of Fig. 4(b)
during the 6 s. Similarly, the values of 3.610 2 and its  and Fig. 5, respectively, into their Fourier components; see

A. Comparison with experimental results



55 UNSTEADY CRYSTAL GROWTH DUE TO STEP-BUNB . .. 3207
24 T I | |
— 16 - |
(2
i L _
o 8- .
0 ! 1 1 L 1 0 ! 1 1 1 !
T I I T I
8 _
o o - |
> L 4l i
0 1 1 1 l 1 0 I 1 1 I L
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [min] Time [min]

FIG. 7. Growth ratéR(t) and slopg(t) obtained in the stochas-
tic nucleation mode wittk=500 andD = 10D ys,,yme (after data
processingat the middle of the half facet.

Fig. 6. To correct for the model-induced decrease in average ; Kineti h ied th del i
growth rate, we disregard the four lowest frequency compo!Nterface kinetics, we have varied the model input param-
nents; see the dashed lines in Fig@6The inset in Fig. &) eters. Figure 7 presents the result of a simulation with gll
showsR(t) after deduction of these lowest components, toParameters the same as for Fig. 4,deé<cept for ahtenf(r)ll_d in-
gether with a trace resulting from the superposition of thes&€ase D, Qom_parmg Figs. 7 an (8) we see that this

components alone. In comparing Figéa)éand 6b) we see shift towards kinetics control drastically reduces the fluctua-

that the simulation reproduces both the amplitude and chafion amplitude. , _
acteristic time of theR fluctuations observed in the experi- To illustrate the role of the step surface_ Interaction param-
ments rather well eterk, we returned to our base case of Figi.4., withD,)

and setk=0. Thus, in this simulation, nonlinearity in step
kinetics is only due to overlap of the steps’ bulk diffusion
fields [31,33—35 and step generation througktochastig

To test our earlier suppositidi3] that the fluctuation am- nucleation. Figure 8 shows that tReandp fluctuations are
plitude depends on both the nonlinearity of the interfacialweaker than in Fig. &). Apparently, the nonlinearity result-
kinetics and the relative importance of bulk transport andng from the step generation process suffices for the devel-
opment of the remaining long-term fluctuations. In Sec. VI F
we will see that the key nonlinearity lies in the stochastic

FIG. 5. Experimental results obtained with lysozymerat2.84
andT=12 °C; from[3].

B. Effects of bulk transport and step kinetics nonlinearity

g 12 (@) o fy A igher comporents {10 nature of the step generation. In simulations with determin-
o 1-07 i Simulation istic step generation but otherwise identical assumptions,
S o8l practically no fluctuations were obtained.
= | L e ] These results unambiguously confirm our expectation
06 i Four lowest frequency components —= . . .
£ ; ob—0 -10 that, similar to the unsteady behavior of other systems in-
<L o4 0 10 20 30 40 50 60
2 i Ti i
Sesulirl N Tt
I.E 0 ||| ll || ||||||||||“||I|
0 0.002 0.004 0.006 0.008 0.010 w 16
Frequency [s1] <
@ sk
- 1.2 _@ T T T T 0 B I | | | 1 ]
'% 1.0+ Experiment = | | | | |
3 osf - sk i
2 o6 T o
T 04r ' 4
Kintliiin ' : ‘
S 0.
I.E 0 || | I|I||||||I||I|| 1 0 L I L L L
0 0002 0004 0006 0.008 0.010 0 020 3 40 50 60
Frequency [s] Time [min]

FIG. 6. Fourier decomposition dR(t). (a) Simulation results FIG. 8. Growth ratdR(t) and slopg(t) obtained in the stochas-
(Fig. 4); inset: subtraction of four lowest frequency components oftic nucleation mode witlk=0 andD = Dy.,yme(after data process-
R(t), for details see texib) Experimental resultgFig. 5). ing) at the middle of the half facet.
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FIG. 9. Interface profiles obtained at various simulation times in ‘ 1
the deterministic nucleation mode wik=500 andD = D ysqyme- oL— . .
0 10 20 30 40 50 60

Changes irz values atx=0 account for layers generated between

times noted, i.e., individual steps propagating inwards on facet re-
tain equalz. Horizontal arrow illustrates passage of individual steps ) ) ) o
through step bunches. Vertical arrow points at initial slope pertur- /G- 10. Time traces of slopp obtained in the deterministic

bation that triggers the bunch cascade seen in later profiles. nucleation mode witlk=500 andD =D ysozyme, at the three inter-
face locationsd,=15 um, 150 um, and 285um. Large spikes

volving coupled bulk transport and nonlinear kinetj&6— in_dicate passage of step bunches; small spikes, passage of indi-
38], both the nonlinearity in growth step kinetics and mixed Vvidual steps.

transport-kinetics control of the crystallization process are ] o ) ]
necessary conditions for the growth rate fluctuations. 285 um) schematically indicated in the insets. As expected
from Fig. 9, one sees that the number and magnitude of the

maxima, which represent the passage of step bunches, de-
pend on the sampling location. Close to the crystal egge,
Stochastic nucleation obscures the details of interactiogiecreases rather monotonically from the inifig=5x10 2
between transport to the interface and step motion. To gaifp 1x10 3. In the middle of the half facet, howeven(t)
insight into the microscopic mechanism underlying theshows several spikes of successively increasing amplitude
growth rate fluctuations, we removed the random element ind spacing. Close to the facet center, the number, size and
the step generation by using the deterministic nucleatiogpacing further increase. The fine spikes, superimposed on
mode for all following simulations. the larger ones, indicate the passage of individual growth
Figure 9 shows a temporal sequence of interface prOﬁ|e§tepS of he|gh]h They become apparent on|y in such a
obtained for otherwise same conditions as those for Fig. Lbroup of C|ose|y Spaced steps, since we Ca|cqbaimm the
Each point corresponds to a single step. The contowr@  distances between nearest steps. By comparison with Fig. 9
represents the initially equidistant step train corresponding tgve see that the steepest bunch, which arrives last at a given
Po=5%10"°. Consecutive contours are plotted such that in-jocation, is the one that originated from the initial kink in
dividual steps propagating inwards on the facet retain thetep density. All other peaks, that arrive earlier, represent
same z coordinate throughout this sequence. Hence, thgunches which formed in front of the first one at later times.
changes inz values between consecutive contours account |n Sec. VI D we will show that this steepening and cas-
for the growth between the times noted. This sequence afading of step bunches results from a more complex mecha-
interface profiles reveals that growth is associated with gjsm than that underlying the kinematic wave descriptions of
morphological adjustment over the whole vicinal face: Newthe evolution of a single step bunfB9,4Q. Yet, it is inter-
steps are generated, according to the supersaturation at thgting to find that the original kinematic wave concept can
facet corner, at a lower rate than is required to maintain th@ccount for some of the features of the simulation results.
initial po. This causes a kink in step densitsee the arrow  Most importantly, as anticipated 89,40, the elementary
on the 3 min profile in Fig. Pwhich moves toward the steps move through the slower traveling bunches. This is
middle of the facet. During this inward motion, a step bunchijjystrated, for instance, by the arrow connecting the group of
of continuously increasing local slope evolves from thisthree advancing steps in the 6 and 9 min profiles of Fig. 9.
kink. Simultaneously, a cascade of new bunches forms aheagihile the velocity of all bunches, as evaluated from these
of the first one, which steepen as they move toward the facefjots, is about,,~0.16 um/s, the individual steps travel
center. For the discussion of possible capillary effects in SeGyjth v ~0.5 um/s in the same direction. Using the kinematic
Il B it is important to note that the smallest radius of inter- wave velocity as defined if89],
facial curvature associated with these step bunches is of the
order of 100um, i.e., four orders of magnitude larger than dR
the capillary length of this system. Vwave™ 5y (16
The evolution of these step bunches can be followed over
the whole simulation period in Fig. 10, which presents timewe can write for the velocity of a bunch, using E¢4). and
traces of the slope at the three locatiqds, =15, 150, and (12),

Time [min]

C. Phenomenology of step bunching
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07p bunch (1 + kp) bunch 1+ kp bunch

For the abovek=500 and p=5x10"3 Eq. (17) yields 055

v/vpunei=3.5, in reasonable agreement with the above simu-
lation result. Furthermore, kinematic wave theory predicts
that the number of steps in a bunch does not chamgeute
across a facet. Figure 9 shows that all bunches consist of the
same number of individual steps, irrespective of a bunch’s 0.35
steepness and position.

Recently, step bunching, with and without solution flow,

0.45

z[pm]

has been analyzed in terms of linear stability theory, assum- 40 50 60 7'0 80 90 100 110 120
ing step interaction in the bunch through the bulk diffusion Distance from Corner x [um]

fields only[41—44. The velocity of step bunches, that form '

in crystallization from solutions under diffusive transport FIG. 11. High-resolution interfacial profiles for conditions of
conditions, has been related to the velocity of the individuaFig. 9. The 360 s profile is the central section of the 6 min profile in

0.25 1 L

steps by[42] Fig. 9. Shaded areas indicate step bunches. Arrow illustrates the
accelerated departure of the leading step of a bunch to form new
bstepo_)‘1 18 bunch ahead of old one.
Upunch— U 1+ 18
Dk on this monotonic drop-off. By overlaying Figs. 11 and 12,

one recognizes that these spikes are located at the steps. One
also sees that at the location of step bundsbaded areas in

Fig. 11) the spike pattern im>(x) is modulated. As empha-
ized in the magnified part of the 360 s trace in Fig. 12, the
upersaturation values between and at the steps in a bunch
are, respectively, lower and higher than the values expected
; o : for equidistant steps at the same location. The lower values
Thus, in contrast to the abov<_a findings, EQ8) predicts . at the step bunches reflect the higher local s&pk) den-
Ubunch=- This further_ empha5|zes_ that the step bunChIngsity; see Eq(3). The higher values at the individual steps in
mecha_msm obse_r\_/_ed n our_worl_< difiers from the linear mora bunch(see also Fig. 13 for the® values at all step loca-
phological instabilities obtained i2-44. tions of Fig. 9 are a consequence of the reduction in solute

e o e e e Consumpton e tepe o th cloer stp spacin: see
P 9 y Eqg. (4). The corresponding reduction of the concentration

persaturation17,18,21,45,45 step bunching ceases. Yet, in radient at a step bunch, in both theand z directions, is
the experiments, and the simulations with stochastic ste rther illustrated by the ,isoconcentration lines(x,2) ,in
generation, fluctuations prevail as long as growth occur ig. 14 '

This can be understood in terms of the intrinsically unsteady =\~
nature of growth step sources. Dislocation groups typicallyfor
produce step trains with varying interstep distafig#,47—

49]. Similarly, 2D nucleation sources produce steps in sto-
chastic sequence. Hence, both step generation mechanisms
are prone to incessantly produce morphological perturbations
in the form of local slope variations. While moving across
the facet, these slope nonuniformities readjust their step
spacing to the prevailing transport and kinetics conditions.
As we will see in more detail below, nonlinearities in kinet-
ics can lead to a new step bunching cascade each time the
source creates such a perturbation.

Herep is the macroscopic slope of the vicinal face dgds
the wave number of the step bun@tarmonic perturbation in
step densityparallel to the interface. Evaluation of E{.8)
with the previously introduced parameters for lysozyme ami
k,=0.4 um™! (corresponding to an approximate wavelength
of 15 um deduced from Fig. Presults inbsteﬁDkxwlo"‘.

Now we are in a position to elucidate the step bunch
mation and cascading mechanism in detail. As indicated

2.725

o
~
N
S

D. Nutrient supply and dynamics of step-bunch cascading 2715 |

Insight into the dynamics of the above step bunching and
cascading can be obtained from correlations of the interface I ;
morphology to underlying concentration and supersaturation 27258575 80 85 100 110 120
distributions. Figure 11 presents the evolution of a section of Distance from Corner X [um]
the interface in higher spatial resolution and for shorter time
increments than Fig. 9. The corresponding interfacial super- giG. 12. High-resolution interfacial supersaturation profiles cor-
saturation profilesr5(x) are given in Fig. 12. The overall responding to Fig. 11. Inset: magnified section of the 360 s profile
slope of theo®(x) curves reflects the monotonic decrease inwith step bunch about the arrow. Note the increase®ait the steps
supersaturation from the edge to the center of facets of growsf a bunch(dotted ling, decrease of* over the bunclidashed ling
ing crystals[18,21-23. Negative spikes are superimposed compared tas® for equidistant step traifthin solid ling.

Supersaturation o® = ¢n (p$/p%%)
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FIG. 13. Supersaturations at the step locations of Fig. 9. £

in the preceding section, the first bunch forms at the initial
kink in step density; see the vertical arrow at the 3 min
profile in Fig. 9. In passing through this kink, due to less F|G. 15. Expansion of kinematic wave model. Progressive dis-

competition from the rear, a step is better supplied than th@jacement and change of shape of step bunch. Straight lines: char-
steps ahead of it. Hence, it catches up with them and forms gcteristics resulting from kinematic wave theory; dashed lines:
bunch. Bunching, as discussed above, is accompanied by afbdification due to dependence af,,, ON supersaturation.
increase ino® at the steps of the bunch. Note that the enve-Growth steps move from left to right. For details see text.

lope of the increased® values(dotted line in the inset of
Fig. 12 is akin of the supersaturation that the steps encoun-
ter en route through the bunch. As a consequence, stepé,:Iosed systenfsee Sec. VI A AS a CONSeqUeNQey, g, de-

moving through a bunch, in particular the leading step which''€asEEN _route see Eq(17). S'T‘CQ’ accordmg to_Eq19_),
buncdP IS negative, the continuous reductionug,,cn IS

experiences less competition from the nearest, wider spacé’?d’

step outside the bunch, can catch up with the steps in front Oqccgmpanied l_:)y steepening O_f the bunch. As in.step motion
them (see arrow in Fig. 111 This initiates the formation of a 292inst a spatial supersaturation gradfem,18, this effect

new bunch ahead of the already existing one. is strongly amplified by the decelerating interstep interaption,
The bunch cascading and steepening can also be undéi© that arge,decrease from 2.715 to 2.6Big. 13 results in
stood in terms of an expansion of the kinematic wave theorf" increase in bunch slope by an order of magnit(ig.
(KWT) [39]. In its original version, the KWT of step bunch- 10).
ing is based on the premise that thg, . depends only on For discussing the bunch cascading within the framework
the step density, that is, op. Thus, the bunch cascading of the KWT, we present in Fig. 15 a modification of Fig. 4 of
observed in this work is not predicted[i89], and a continu- [39]. Note that the original figure illustrates dissolution
ous increase in bunch steepness is found only under the amther than growth. According to the KWT, if, as originally
tion of impurities[39,40,50,51 However, as we have seen assumedy .. depends orp only, each section of a step
in connection with Eq(17), in our systemp,,. iS also a train evolves along straight characteristic lines in thex(t)
function of interfacial supersaturation. In the following we space. The slope of the projections of these characteristics

Surface Coordinate x

will accommodate this dependence. into the (x,t) plane is inversely proportional i, defined
Differentiating Eq.(17) with respect top we get in Eq. (16). With dv,,/dp<0 from Eq.(19), the higher the
o Kb S p of a section of the step train, the steeper is its characteris-
bunch_ _ ster” <0. (19)  tics. Hence, as schematically indicated in Fig. 15, whatever
ap (1+kp)3

the initial profile in a bunch, on its way across a facet it will

As a bunch moves towards the facet centérdecreases due deVvelop a discontinuity of slope at the rear and become in-
to both the global gradient and the protein depletion in thecreasingly rounded at the front. Steps outside a bunch travel
with constantv,,,.. and are, thus represented by parallel

4 . ; , . . characteristics, implying that no new bunches form.
45.98 4594/ 4590 4586 Ay =0.02mg/ml In our case, as we have discussed in connection with Fig.
—_ 45.96 45,92 45.68 4684 /4580 . L. .
E , 4585 p 12, step bunching results in increased supersaturation at the
N 02 oo /470 steps in the bunch. Hence, as can be deduced froni1Ey.
5. . .
4578/ 45.76 1
o o A G . | (5577 Uwave INCreases most at the bunch’s head, wheis lowest
140 145 150 155 160 165 170 within the bunch. Thus, as indicated by the dashed curve in

Distance from Corner x [um] the (x,t) plane in Fig. 15, the slope of the characteristics of
this section of the step train will continuously decrease. This
FIG. 14. High-resolution concentration distributign(x,z), in  Will lead to the appearance of a new step bunch ahead of the
midsection of the 15 min profile of Fig. 9. Note reduction of gradi- e€xisting one, at the location of intersection of this curved
ents around step bundthree stepsat ~155 um. characteristics with another less curved one.
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FIG. 16. Interface profiles obtained for outward motion of steps b
at various simulation times in the deterministic nucleation mode 0 .

i 0 10 20 30 40 50 60
with k=500 andD = Dysozyme- Time [min]

E. Step motion in the direction of the global interfacial
supersaturation gradient FIG. 18. Time traces of slope obtained in deterministic nucle-

. . . . ation mode for outward moving steps wkis=500 andD = D ys7yme
The wavelike evolution of step bunches is not limited t04¢ g —15 4m, 150 um, and 285um.

step motion from a facet edge to its center. Figures 16 and 17
present the results of a simulation identical to that underlying . o ]
Figs. 9—14, except that steps are generated at the facet Cer?[:égs. 9-14. This is because of the larger dlfferen_ce between
and move towards the crystal edge. T#{&) profiles reveal Po and the lowp that results from step generation at the
again a step bunching cascade associated with the morph§wer supersaturation of the facet center. Second, as sur-
logical transition. The correspondim(t) traces in Fig. 18 mised above, the bunch cascading is caused by the higher
show that the magnitude of th® maxima is comparable to supersaturation, in particular, at the leading edge of a bunch.
those obtained in the case of the inward motion of the stepdn this case, both the global gradientdri and the localo®
However, the number of bunches is increased and their spagicreases from bunching cause an increase in supersaturation
ing is slightly decreased. Furthermore, in comparing the 3n front of the leading steps. This causes stronger cascading
and 6 min profiles in Figs. 16 and 17 to those in Figs. 9 andhan in inward step motion.
13, we see that step bunching occurs somewhat earlier dur- As another consequence of the mutual enhancement of the
ing the outward step motion. global supersaturation gradient and the loodl perturba-
From a macroscopic point of view, these results appeafions, the kinematic wave nature of the bunch evolution be-
surprising:  Step motion in the direction of the supersaturagzomes more apparent. The transition from a symmetric shape
tion gradient results in interfacial supersaturations that argg¢ newly formed bunches to the slope discontinuity at the
higher at the leading steps than at the trailing steps of §jjing edge in “older” ones is well reflected in Fig. 16.

bunch. This should lead to acceleration of the leading Step?igure 17 shows that this asymmetric bunch morphology is

g e, . . I et ssocited wih asymmetrc peaks af at the steps of
g ' ' older” step bunches.

counteract debunching. First, during growth through step . . : .
generation at the facet center, the initial shape perturbation This comparison of the inward and outward motion of

that triggers the bunch cascade is stronger than in the case {eps points al_so at an _mterestmg difference W'Fh respect to
the morphological stability of facets. Step bunching strongly

modifies the response of the interface shape to the global

278 A ' supersaturation gradient. Note that if step bunching is not
~ L 1 considered, the lower global supersaturation at the facet cen-
”\2: 273 s min | ter should_ Ie_ad to step re_tardation_ and, thus, to a _higher local
z L slope. This is expected irrespective of the location of step
7;0 \ 6 ] generation and the direction of step motion, see the discus-
g 271p e N T sion in[41]. However, the steepening of the bunches along
B e 12 their path leads to an additional decrease in the time-
5 157 averaged step velocity. For inward motion of the steps, as in
§ 2691 - Fig. 9, this results in a stronger nonuniformity in the time-
g averaged local slope at the facet center. Yet, in outward step
@ I motion, this retardation results intagher slope at the facet

2B 00 periphery, see Fig. 16. These effects of the step bunching

Distance from Corner x [um] should have important consequences for the morphological
stability of faceted crystals growing from a nonuniform sup-
FIG. 17. Supersaturations at steps of Fig. 16. ply field discussed if45,46,52,53 and references therein.
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FIG. 21. Time traces of slope obtained in deterministic nucle-
FIG. 19. Time traces of slope obtained in deterministic nucle-  ation mode for inward moving steps with=0 andD = Dyysozyme-
ation mode for inward moving steps witkk=500 and

D = 10D ysozyme- ogy readjustment in our system occurs without step bunch-
o o ing, Fig. 21.

F. Effects of bulk transport and step kinetics nonlinearity The results of these parameter variations well corrobo-

on bunch cascading rates our supposition that the fluctuations represent the non-

To further explore the dependence of the bunch cascadingnear response of the coupled bulk transport and step motion
on the relative weight of interfacial kinetics and bulk trans-in the mixed control regime3].
port, and on the degree of nonlinearity in kinetics, we have
performed simulations identical to the case of Fig. 10, except VIl. SUMMARY AND CONCLUSIONS
for changes in the diffusivityp and the step interaction pa-

rameterk. We have developed a numerical model that combines dif-

FGUe 19 shows pl) aces bianed win Sen 1 e bk of  sooon win difuste varspor o
D =10Dys0zyme- BY cOmparison with Fig. 10, one sees that_facet_ Nonlinearities in layer growth kinetics arising from

in response to this shift towards kinetics control, the fluctua : . g
tion amplitude is reduced by about one order of magnitude§telo interaction by bulk and sgrface d|ﬁu5|on, and from step
On the other hand, Wit q,,mean increase in the nonlin- generation by surface nucleation, are taken into account. We

earity of kinetics through the doubling &fto 1000 results in have evaluated the model with properties characteristic for

significant increases in the amplitude and characteristic tim € solute transport, step generation and propagation in the
of the fluctuation(Fig. 20. Finally, with k=0, the morphol- ysozyme solution grovyth system. The modgl repr_oduces the
' ' time scale and amplitude of the fluctuations in normal

growth rate and local slope obtained experimentally. The

o T ] fluctuation time scale is large compared to that of step gen-
40t W 1 eration. The local slope variations indicate that the fluctua-
sl i %/X'}?} ] tions stem from step bunching. Variations of the g(_)ver_ning
I ] parameters of the model reveal that the step bunching inves-
0 . - - A . tigated here represents the nonlinear response of the step
60— — — interaction kinetics to step generation perturbations, under
I e ] mixed transport-kinetics control. Thus, with stronger kinetics
o 40 777 \ :
& I x-tal control of growth, the step bunching was practically nonex-

. istent, while stronger step kinetics nonlinearity resulted in

I more pronounced bunching.

These findings bear considerable practical consequences.
: Depending on the transport and kinetics parameters of a sys-
i tem, a change of the role of transport through a change in
] convection can either enhance or reduce unsteadiness in
growth. Since the associated step bunching is typically asso-
ciated with the formation of structural and compositional
nonuniformity, such imposed shifts in growth control can be
expected to result in system-dependent improvement or deg-

FIG. 20. Time traces of slope obtained in deterministic nucle- radation in crystal homogeneity.
ation mode for inward moving steps wittk=1000 and On a microscopic scale, we found that the fluctuations
result from a morphological instability of the vicinal face, in

0 10 20 30 40 50 60
Time [min]

D=D lysozyme:
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