
PHYSICAL REVIEW E MARCH 1997VOLUME 55, NUMBER 3
Unsteady crystal growth due to step-bunch cascading

Peter G. Vekilov, Hong Lin, and Franz Rosenberger*
Center for Microgravity and Materials Research, University of Alabama in Huntsville, Huntsville, Alabama 35899

~Received 30 August 1996!

Based on our experimental findings of growth rate fluctuations during the crystallization of the protein
lysozyme@Vekilov, Alexander, and Rosenberger, Phys. Rev.54, 6650~1996!#, we have developed a numerical
model that combines diffusion in the bulk of a solution with diffusive transport to microscopic growth steps
that propagate on a finite crystal facet. Nonlinearities in layer growth kinetics arising from step interaction by
bulk and surface diffusion, and from step generation by surface nucleation, are taken into account. On evalu-
ation of the model with properties characteristic for the solute transport, and the generation and propagation of
steps in the lysozyme system, growth rate fluctuations of the same magnitude and characteristic time, as in the
experiments, are obtained. The fluctuation time scale is large compared to that of step generation. Variations of
the governing parameters of the model reveal that both the nonlinearity in step kinetics and mixed transport-
kinetics control of the crystallization process are necessary conditions for the fluctuations. On a microscopic
scale, the fluctuations are associated with a morphological instability of the vicinal face, in which a step bunch
triggers a cascade of new step bunches through the microscopic interfacial supersaturation distribution.
@S1063-651X~97!14203-9#

PACS number~s!: 81.10.Aj, 47.20.Bp, 68.35.Ct.
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I. INTRODUCTION

The compositional and structural uniformity of a crystal
largely determined by the dynamics of molecular lay
~growth step! spreading. Unsteady layer propagation a
step bunching are often associated with nonuniform impu
trapping and lattice defect formation@1,2#. Most recently, we
have presented experimental evidence for unsteady step
namics during the crystallization of the protein lysozym
from aqueous solutions under steady external conditions@3#.
Based on a scaling analysis, we concluded that the obse
fluctuations originate from the coupling of bulk transpo
with nonlinear interface kinetics. Furthermore, these con
erations suggest that fluctuations in step density may b
rather widespread phenomenon in crystallization. In in
ganic systems, however, only a few observations of unste
growth, that are possibly the result of the nonlinear inter
tion between bulk transport and interface kinetics, have b
reported@4–7#. In protein crystallization, growth steps a
higher and their kinetics are typically slower@8# than in in-
organic systems@9#. Thus, growth unsteadiness may be mo
readily detectable even with the spatial-temporal resolu
limits of current observation techniques.

In this work we test the supposition that the observ
fluctuations root in the coupling between bulk transport a
nonlinear interface kinetics. Retaining the essential geom
of our experiments, we develop a two-dimensional~2D!
model for the diffusive transport from the bulk of a solutio
to microscopic growth steps on a faceted crystal. Both s
chastic and deterministic step generation through sur
nucleation are employed. The step spreading velocity is
sumed to depend on both the local supersaturation and
density. We evaluate this model for transport, kinetics a
step generation parameters characteristic of lysozyme.

*Corresponding author.
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results in growth rate fluctuations of the same magnitude
characteristic time as in our experiments. On increase of
bulk diffusivity ~shift towards kinetically controlled growth!,
the model yields relatively steady step dynamics. Howeve
stronger interaction~surface diffusion field overlap! between
steps, i.e., an increase in the nonlinearity of the step kine
results in a larger amplitude of the fluctuations. On a mic
scopic scale, we find that the unsteadiness is the result
novel morphological instability, in which a cascade of st
bunches forms in response to the perturbation in the inte
cial supersaturation distribution introduced by existi
bunches.

II. MODEL

A. Diffusive bulk transport

The geometry of the transport model is based on the se
used in our experimental investigations of nonlinear grow
layer dynamics@3,10#. As depicted in Fig. 1~a!, the crystal-
lization cell is approximated by a 2D closed domain of 1 m
height and 6 mm width. A crystal of fixed size, 0.6 mm wid
and 0.3 mm high, rests on the middle of the cell bottom. T
model solution consists of the protein lysozyme~component
1! in water. The initial lysozyme mass concentration in t
solution isr1,0550 mg/ml. At 12 °C, and the precipitant con
centration and pH used in the experiments@3,10,11#, the
solubility of lysozyme isr1

eq53.1 mg/ml @12#. Hence, the
initially uniform value of the supersaturations5ln~r1/r1

eq! is
s052.78.

We consider only diffusive transport of a dilute solut
Thus, the conservation equation for lysozyme in the solut
is

]r1
]t

5D1S ]2r1
]x2

1
]2r1
]z2 D , ~1!
3202 © 1997 The American Physical Society
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55 3203UNSTEADY CRYSTAL GROWTH DUE TO STEP-BUNCH . . .
where the diffusivity isD151.0631026 cm2/s @13,14#. Fur-
thermore, due to the symmetry of the transport problem,

]r1
]x

50 ~2!

on the center line of the cell, including the interface. T
walls of the cell are assumed to be impermeable,
“r1•n50, wheren is normal to the wall.

The solution-crystal interface consists of singular terra
between microscopic growth steps. The initially unifor
growth step density is given by the initial vicinal slope of t
interfacep0 and the height of the growth stepsh. With the
typical valuesp05531023 @3# andh5108 Å'0.01mm ~unit
cell dimension in thê110& direction @15#!, about 140 equi-
distant steps initially cover the half facet. In view of the
low values ofp0, we ignore, for the transport calculation
the actual vicinality of the interface and assume that the s
move within a singular horizontal interface, which is repr
sented by the heavy horizontal line in Fig. 1~b!. This simpli-
fication is well supported by scaling arguments. Local hei
differences in the interface morphology, as they may ar
e.g., from macrosteps of heightmh ~bunching ofm elemen-
tary steps! result only in significant supersaturation diffe
ences in thez direction if the step velocityv in the bunch is
significant compared to the characteristic diffusion veloc
D1/mh. Our experimental results~see, e.g., the local minim
of v(t), Fig. 9 in @3#! reveal that for lysozymev in a bunch
is of O~1025 cm/s!, while mh<531026 cm and, thus, the
diffusion velocity about macrosteps is ofO~1021 cm/s!.

To resolve the concentration field about individual grow
steps, we introduce a mesoscale~MS! subdomain above the
interface, see Fig. 1~b! and Sec. III. The interfacial concen
tration boundary condition for the MS domain is tied to t
protein consumption at the moving steps. If there areNsink( i )
steps within thei th mesh in the grid used for the numeric
simulation in the MS domain, flux balance requires that

FIG. 1. Geometry and grids used in the simulations.~a! Bulk
~global! mass transport, 45321 grid, ~b! interfacial ~mesoscale!
subdomain, 1221321 grid, ~c! steps moving in interface@heavy
black line in ~b!#.
.,

s

ps
-

t
e,

(
Nsink~ i !

v~n!r1
ch5D1

]r1
]z U

i

DxMS, ~3!

wherev(n) is the velocity of thenth step,r 1
c50.82 g/cm3 is

the protein mass density in the lysozyme crystal@15#, and
DxMS is the mesh width. Due to the low mass fractionr1/r
~r: total mass density! of the protein in the solution, the
above simple form of Fick’s first law is adequate for th
diffusive flux @16#.

B. Step motion and step generation

As in our earlier work@8,17,18#, we assume that the ve
locity of the steps follows the relation

v~n!5
bsteps

s~n!

11kp~n!
5
bstep ln@r1

s~n!/r1
eq#

11kp~n!
, ~4!

wherebstep is the step kinetics coefficient andss(n) is the
interfacial supersaturation at thenth step, withr 1

s the protein
mass density at stepn andr1

eq the bulk equilibrium concen-
tration. The groupkp(n), with p(n) the slope about thenth
step, accounts for the mutual deceleration of adjacent s
through overlap of their surface diffusion fields. The strong
the competition for nutrient among neighboring steps, i
the largerkp(n), the lower isv(n); for details see@17#. Note
that, in principle,r1

eq and, thus,ss are subject to the loca
curvature of the interface. From a macroscopic point of vie
this capillary effect is only significant if the radius of surfac
curvature is comparable to or smaller thanr s5G/ss, where
G5Va/kBT is the capillary length, withV: the molecular
volume in the crystal anda: the surface free energy@19,20#.
As discussed in@3#, due to the low value ofa, G for
lysozyme is ofO~100 Å!. With a typicalss of order unity,
this suggests that capillary effects can be ignored down
radii of curvature which are comparable to the step heighh
in our model. A more realistic estimate of microscopic cu
vature effects, based on molecular interactions, will like
result in a somewhat larger length scale for capillary effec
However, as we will see in Sec. VI C, the smallestr s’s ob-
tained on step bunching from our model exceedG by several
orders of magnitude. Hence, the use of a constantr1

eq, inde-
pendent of microscopic morphology, is well justified.

In our earlier model calculations, in which step bunchi
was not considered, and step field overlap due to both di
sion in the solutionand on the interface were lumped int
kp(n), we usedk53000 andbstep52.7231024 cm/s @18#.
These parameters resulted in quantitative agreement betw
calculated and experimental local slope variations in
sponse to the macroscopic nonuniformity in interfacial s
persaturation@17,18#. However, in preliminary evaluation
of the current model we found that step bunching enhan
the response of the time-averaged local slope to the non
formity in ss. Hence, for the base cases in the present sim
lations we usek5500. Since experiments yield the rat
bstep/k only, to match the step velocities to the experime
tally observed values@8#, we reducedbstep to 631025 cm/s.
To investigate the effects of step kinetics nonlinearity on
step bunch dynamics, we usedk values of 1000~increased
step interaction!, and k50 ~no step surface field overlap
linear dependence of step velocity on local interfacial sup
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3204 55PETER G. VEKILOV, HONG LIN, AND FRANZ ROSENBERGER
saturation!. The values ofbstepemployed in these simulation
were 1.231024 cm/s and 1.731025 cm/s, respectively.

Growth on a facet ceases when all initially imposed st
have reached the center and the facet has become sing
that is, growth can only be sustained through the replen
ment of growth steps. Hence, in accordance with recent fi
ings for lysozyme@8,17#, we assume that, at thess used in
our simulations, growth steps are generated by 2D nuclea
at the edge of the crystal, where the supersaturation is
highest@18,21–23#.

The probabilityP0 that a nucleus is formed during a sim
lation time stepDt in a segment of the interface of lengthDx
with local supersaturationss is proportional to

P0}JstDxDt5@A8r1exp~2B/ss!#DxDt, ~5a!

P05Ar1exp~2B/ss!, ~5b!

whereJst is the steady-state 2D nucleation rate@24,25#, the
constantA8 contains activation and surface energies as w
as frequency factors@25–27#, andB5pVg2h/(kBT)

2, with
V53310220 cm3 the volume of a lysozyme molecule in th
crystal@15,28#, g51 erg/cm2 the step free energy@9,29#, and
kB the Boltzmann constant. At 12 °C~T5285 K!, this results
in B567.2. The value of the constantA is set as follows.

The probability for the generation of a new growth st
within a time tnucl after the creation of the previous nucle
or step can be expressed as@30#

P~ tnucl!512exp@2~ tnucl/Dt !P0#. ~6!

In the calculations we set the constantA such that the aver
age nucleation time at the initial supersaturation is abouh
divided by the average normal growth rateR; which for
R523 Å/s @3,8# is about 4.7 s. This results inA51.653104

ml/mg.
We use two modes of step generation. In thestochastic

mode,P~tnucl! is computed and compared at each time s
with a random number 0<r<1. When r<P~tnucl!, a new
step is formed andtnucl set to zero. Forr.P~tnucl!, tnucl is
increased byDt. For a meaningful comparison between t
different cases simulated using this step generation mode
same sequence of 36 000 random numbers was used. I
deterministicmode, a step is generated wheneverP0/P<« is
satisfied. We set«50.005, which results in an initial nucle
ation rate comparable to that in the stochastic mode.

III. NUMERICAL APPROACH

The time-dependent diffusion equation, Eq.~1!, is solved
using the same implicit, finite volume approach as in@18,21#.
Figure 1~a! illustrates the nonuniform 45321 global grid~su-
perscriptg! used in the simulations of the bulk transpo
This grid is based on our earlier simulations of transport
this geometry@18,21#. To accurately resolve the macroscop
interfacial concentration gradients, the first grid point sp
ing ~mesh width! above the top interface,Dzg, and to the left
of the crystal,Dxg, are both set to 25mm. Finer grids yield
essentially the same global concentration distribution.

To resolve the concentration field about individual grow
steps propagating on the vicinal interface, we solve Eq.~1!,
subject to Eq.~2!, also in a mesoscale~MS! subdomain. The
s
lar;
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n
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1221321 grid used in this subdomain for the simulation
transport about the microscopic growth steps is schem
cally depicted in Fig. 1~b!. Note that the outer boundaries o
the MS domain coincide with the first mesh lines within t
global grid. For the 21 vertical meshes between the cry
corner and the left boundary of the MS domainNsink( i ) in
Eq. ~3! is zero. The remaining 1200 equally spaced g
points on the interface result inDxMS50.25mm; see Eq.~3!.

During unsteady growth, steps can move withv ’s of up to
severalmm/s; see Sec. VI and@3#. To limit the displacement
of even such ‘‘spurting’’ steps during a simulation time st
Dt to less thanDxMS, we choseDt50.025 s. This assure
full utilization of the MS grid for resolving the changes i
concentration due to step~sink! motion. Furthermore, during
this Dt, the characteristic diffusion distanc
dDt'(D1Dt)

1/2'1.6mm. Hence, the concentration along th
two outer boundaries of the mesoscale domain, i.e., 25mm
above and to the left of the crystal~Fig. 1! can be considered
fixed during a simulation time step.

To obtain adequate resolution in the MS concentrat
field normal to the interface, a nonuniform mesh is used
the z direction. It is generated according to

Dzi
MS5~25 mm!F S i

20D
a

2S i21

20 D aG , ~7!

which with a51.8 results in the mesh width increase fro
Dz1

MS50.11mm ~i.e., about 10 step heights! at the interface
to Dz20

MS52.2mm at the upper boundary of the MS domai
Step generation and propagation are simulated as follo

When a new step is generated~see Sec. II B!, the old steps
are renumbered by substitutingn11 for n. When a step
reaches the facet center, it is annihilated. The step posit
are moved along the continuous coordinatex at discrete time
intervals according to

xj11~n!5xj~n!1v j~n!Dt, ~8!

where the indexj , j11,... represents the specific time ste
The step velocity, see Sec. II B, is such that 20–30Dt ’s
elapse before a step passes through a cell of widthDxMS.

The interstep distances of a set of growth step positi
$xj (n)% are

dj~n!5xj~n11!2xj~n!. ~9!

The vicinal slopesp are calculated according to

pj~n!5h/dj~n!. ~10!

Hence, for a total number ofN steps, there areN21 local
slopes and growth rates. To account for the competition
nutrient between a growth step and its nearest neighbor
both sides, we used, somewhat arbitrarily, an effective sl

pj8~n!50.5@pj~n21!1pj~n!# ~11!

in the evaluation of Eq.~4!. Although Eqs.~4! and~11! rep-
resent simplifications, we do not expect more realistic f
mulations for the competition between steps through th
surface diffusion fields to result in qualitative modificatio
of our results.
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55 3205UNSTEADY CRYSTAL GROWTH DUE TO STEP-BUNCH . . .
Another simplifying assumption related to Eqs.~4! and
~11! concerns the maximum reduction inv due to close step
spacing. Note that according to Eq.~4!, whenp(n) becomes,
for instance, 0.2,v is reduced 100-fold. However, in real
systems, steps separated by molecular dimensions can m
with same order of magnitude velocities as more widel
spaced steps@31–33#. Hence, we consider, again somewha
arbitrarily, two steps with interstep distance<5h, as one
step of double height, and replaceh in Eq. ~3! by 2h.

The local normal growth rateR is calculated according to

Rj~n!5pj~n!v j~n!. ~12!

IV. SIMULATION PROCEDURE

The simulation procedure is summarized in Fig. 2. Fo
lowing input of the system properties~D1 ,r 1

c,r1
eq,k,bstep!

and initial conditions~r1,0,p0! as well as the total running
time t run5Dt3~number of time steps!, the positions of the
initially equidistant growth steps, and the initially uniform
supersaturation and step velocity are calculated. Then, wh

FIG. 2. Flow chart of the simulation steps.
ove
y
t
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keeping the concentration at its outer boundaries fixed,
concentration distribution in the MS domain, that results
ter a time step in response to the solute flux into the in
face, is computed from Eqs.~1!–~3!. The concentrations a
the global grid points in the horizontal interface@full circles
in Fig. 1~b!# are set to the average value of the MS g
points that lie within6Dxg/2 of the respective global nodes
This interfacialr 1

s(x) is also copied onto the interface on th
side of the crystal. While holding this new interfacial co
centration distribution fixed, the local concentration in t
global domain is calculated from Eqs.~1! and ~2!. This up-
dates ther1 values at the global grid points in the out
boundary of the MS domain@open circles in Fig. 1~b!#. The
concentrations at the MS grid points between the glo
points of this outer boundary are then reset through lin
interpolation between the corresponding new global valu

At the end of a time step the new step positions, lo
slopes and step velocities are calculated from Eqs.~8!–~10!
and Eq. ~4!. Using the new supersaturation at the crys
corner, the nucleation probability is evaluated from Eqs.~5!
and ~6!. After possible creation of a step, all other steps
renumbered. This completes the set of initial condition
the next iteration in the MS domain. The consecutive ite
tions in the MS and global domains are continued un
t5t run.

V. DATA PRESENTATION

A. Comparison with experiment

Initially, using stochastic step generation, we obtain tim
histories ofR, p, andv at certain interfacial locationsx5dm
measured from the crystal corner. To match the spatial
temporal resolution of the presentation as closely as poss
to the experiments@3,10#, we proceed as follows. As indi
cated in Fig. 3, we consider two pairs of points in the vicin
of the locationdm . In both pairs the points are spaced 1mm
apart. This corresponds to the lateral resolution limit giv
by the pixels in the charge coupled device~CCD! camera
used in the experiments@10#. One pair, with positionsxa1
andxa2, straddlesx5dm . The other pair, with positionsxb1
and xb2, straddlesx5dm13 mm. This spacing of the pairs
corresponds to the pixel spacing used for slope determ
tions in the experiments. When a step passes through on
these four points, the surface heightz at that point is in-
creased byh. This results in local heightsza1, za2, zb1, and
zb2; see Fig. 3. To simulate the lateral averaging due to
finite pixel size, these four values are reduced to two throu

FIG. 3. Definition sketch for averaging used to match the out
of simulations with stochastic step generation to the limited spa
resolution of corresponding experiments.
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za5
za11za2

2
and zb5

zb11zb2
2

. ~13!

These averaged coordinates are stored at every fourth
step, i.e., every 0.1 s. To simulate the experimental data
quisition time, theza and zb data sets are resampled at 6
intervals. Then theR, p, andv values are calculated in tw
ways: ~a! To visualize the dynamics of the individual step
that underlies the macroscopic observations, we calcu
from the resampledza andzb data

R~ t !5
za~ t !2za~ t26 s!

6 s
and p~ t !5

za~ t !2zb~ t !

3 mm
.

~14!

~b! To simulate the processing procedures that the exp
mental data are subjected to@3#, the za andzb data sets are
converted to intensity values, as they would result from
terferometry on the interface, according to

I a5I 11I 2cos@2pzb /D intz#,

I b5I 11I 2cos@2pzb /D intz#, ~15!

where I 1 and I 2 are arbitrary intensity values, an
Dintz50.2329mm is half the wavelength, in the solution, o
the laser illumination used in the interferometry setup@10#.
To account for the limited depth resolution of about 200 Å
the experiments, we superimpose a random noise with
plitude corresponding to6h. Then the simulated intensit
traces are processed using the same Fourier signal filte
algorithm as for the actual experimental data@10#. The re-
sulting R- and p-time traces are plotted. Results obtain
without random noise addition prior to filtering are ve
similar, but the higher frequency fluctuations have somew
lower amplitudes.

B. Analysis of step-bunching mechanism

To elucidate the step-bunching mechanism, we outpu
simulation results for layer generation in the determinis
mode. We plotted time traces ofp as obtained every 0.1 s a
various locationsdm . These presentations were supp
mented by spatial profiles of the interface,z(x), and interfa-
cial supersaturation distributions,ss(x), obtained at selec
simulation times. In addition, two-dimensional concentrat
distributionsr1(x,z) in the vicinity of steps were obtaine
from the concentration values on the MS grid.

VI. RESULTS AND DISCUSSION

A. Comparison with experimental results

Results forR(t) and p(t) obtained in the middle of the
half facet ~dm5150 mm!, using the stochastic nucleatio
mode, the diffusivity of lysozyme and a step interaction p
rameterk5500 are shown in Fig. 4. The points in Fig. 4~a!
represent values calculated according to Eqs.~14!. Growth
rates of 18 and 36 Å/s indicate the passage of one and
growth steps, respectively, through bothxa1 andxa2 during
the sampling interval.R values of 9 and 27 Å/s indicate tha
one of the steps that passed throughxa1 has not reachedxa2
during the 6 s. Similarly, thep values of 3.631023 and its
e
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,
te

ri-
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-

ng

at

d
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-

o

multiples indicate that at the sampling time the number
steps betweenxa1 andxa2 differs from the number of step
betweenxb1 and xb2 by an even number. Thep values of
1.831023 and odd multiples indicate that this difference
an odd number.

Figure 4~b! shows the same results after processing of
full data sets to account for the limited spatial resolution
the experiments; see Sec. V A. First we note that in cont
to the experimental results, see Fig. 5 and@3#, both the av-
erage growth rate and slope obtained from the simula
systematically decrease. This is due to the larger ratio
crystal ‘‘surface area’’ to solution ‘‘volume’’ in the 2D
simulation model. As a consequence, the bulk supersat
tion in the model decreases more rapidly than in the exp
ment.

From thep(t) trace in Fig. 4~b! one sees that the growt
rate fluctuations are due to the passing of step bunches.
characteristic time between the passage of major s
bunches is several minutes. This is about two orders of m
nitude longer than the average step generation~nucleation!
time of ;5 s.

To facilitate their quantitative comparison, we have d
composed the simulated and experimentalR(t) of Fig. 4~b!
and Fig. 5, respectively, into their Fourier components;

FIG. 4. Growth rateR(t) and slopep(t) obtained in the stochas
tic nucleation mode withk5500 andD5D lysozymeat the middle of
the half facet;~a! before and~b! after data processing to reduc
spatial resolution to those of our experiments@3,10#.
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55 3207UNSTEADY CRYSTAL GROWTH DUE TO STEP-BUNCH . . .
Fig. 6. To correct for the model-induced decrease in aver
growth rate, we disregard the four lowest frequency com
nents; see the dashed lines in Fig. 6~a!. The inset in Fig. 6~a!
showsR(t) after deduction of these lowest components,
gether with a trace resulting from the superposition of th
components alone. In comparing Figs. 6~a! and 6~b! we see
that the simulation reproduces both the amplitude and c
acteristic time of theR fluctuations observed in the exper
ments rather well.

B. Effects of bulk transport and step kinetics nonlinearity

To test our earlier supposition@3# that the fluctuation am-
plitude depends on both the nonlinearity of the interfac
kinetics and the relative importance of bulk transport a

FIG. 5. Experimental results obtained with lysozyme ats52.84
andT512 °C; from @3#.

FIG. 6. Fourier decomposition ofR(t). ~a! Simulation results
~Fig. 4!; inset: subtraction of four lowest frequency components
R(t), for details see text.~b! Experimental results~Fig. 5!.
e
-

-
e

r-

l
d

interface kinetics, we have varied the model input para
eters. Figure 7 presents the result of a simulation with
parameters the same as for Fig. 4, except for a tenfold
crease inD1. Comparing Figs. 7 and 4~b! we see that this
shift towards kinetics control drastically reduces the fluctu
tion amplitude.

To illustrate the role of the step surface interaction para
eterk, we returned to our base case of Fig. 4~i.e., withD1!
and setk50. Thus, in this simulation, nonlinearity in ste
kinetics is only due to overlap of the steps’ bulk diffusio
fields @31,33–35# and step generation through~stochastic!
nucleation. Figure 8 shows that theR andp fluctuations are
weaker than in Fig. 4~b!. Apparently, the nonlinearity result
ing from the step generation process suffices for the de
opment of the remaining long-term fluctuations. In Sec. V
we will see that the key nonlinearity lies in the stochas
nature of the step generation. In simulations with determ
istic step generation but otherwise identical assumptio
practically no fluctuations were obtained.

These results unambiguously confirm our expectat
that, similar to the unsteady behavior of other systems

f

FIG. 7. Growth rateR(t) and slopep(t) obtained in the stochas
tic nucleation mode withk5500 andD510D lysozyme ~after data
processing! at the middle of the half facet.

FIG. 8. Growth rateR(t) and slopep(t) obtained in the stochas
tic nucleation mode withk50 andD5D lysozyme~after data process
ing! at the middle of the half facet.
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volving coupled bulk transport and nonlinear kinetics@36–
38#, both the nonlinearity in growth step kinetics and mix
transport-kinetics control of the crystallization process
necessary conditions for the growth rate fluctuations.

C. Phenomenology of step bunching

Stochastic nucleation obscures the details of interac
between transport to the interface and step motion. To g
insight into the microscopic mechanism underlying t
growth rate fluctuations, we removed the random elemen
the step generation by using the deterministic nuclea
mode for all following simulations.

Figure 9 shows a temporal sequence of interface pro
obtained for otherwise same conditions as those for Fig
Each point corresponds to a single step. The contour fort50
represents the initially equidistant step train correspondin
p05531023. Consecutive contours are plotted such that
dividual steps propagating inwards on the facet retain
same z coordinate throughout this sequence. Hence,
changes inz values between consecutive contours acco
for the growth between the times noted. This sequence
interface profiles reveals that growth is associated wit
morphological adjustment over the whole vicinal face: N
steps are generated, according to the supersaturation a
facet corner, at a lower rate than is required to maintain
initial p0. This causes a kink in step density~see the arrow
on the 3 min profile in Fig. 9! which moves toward the
middle of the facet. During this inward motion, a step bun
of continuously increasing local slope evolves from th
kink. Simultaneously, a cascade of new bunches forms ah
of the first one, which steepen as they move toward the fa
center. For the discussion of possible capillary effects in S
II B it is important to note that the smallest radius of inte
facial curvature associated with these step bunches is o
order of 100mm, i.e., four orders of magnitude larger tha
the capillary length of this system.

The evolution of these step bunches can be followed o
the whole simulation period in Fig. 10, which presents tim
traces of the slope at the three locations~dm515, 150, and

FIG. 9. Interface profiles obtained at various simulation times
the deterministic nucleation mode withk5500 andD5D lysozyme.
Changes inz values atx50 account for layers generated betwe
times noted, i.e., individual steps propagating inwards on face
tain equalz. Horizontal arrow illustrates passage of individual ste
through step bunches. Vertical arrow points at initial slope per
bation that triggers the bunch cascade seen in later profiles.
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285 mm! schematically indicated in the insets. As expect
from Fig. 9, one sees that the number and magnitude of
maxima, which represent the passage of step bunches
pend on the sampling location. Close to the crystal edgep
decreases rather monotonically from the initialp05531023

to 131023. In the middle of the half facet, however,p(t)
shows several spikes of successively increasing amplit
and spacing. Close to the facet center, the number, size
spacing further increase. The fine spikes, superimposed
the larger ones, indicate the passage of individual gro
steps of heighth. They become apparent only in such
group of closely spaced steps, since we calculatep from the
distances between nearest steps. By comparison with F
we see that the steepest bunch, which arrives last at a g
location, is the one that originated from the initial kink
step density. All other peaks, that arrive earlier, repres
bunches which formed in front of the first one at later time

In Sec. VI D we will show that this steepening and ca
cading of step bunches results from a more complex mec
nism than that underlying the kinematic wave descriptions
the evolution of a single step bunch@39,40#. Yet, it is inter-
esting to find that the original kinematic wave concept c
account for some of the features of the simulation resu
Most importantly, as anticipated in@39,40#, the elementary
steps move through the slower traveling bunches. This
illustrated, for instance, by the arrow connecting the group
three advancing steps in the 6 and 9 min profiles of Fig
While the velocity of all bunches, as evaluated from the
plots, is aboutvbunch'0.16mm/s, the individual steps trave
with v'0.5mm/s in the same direction. Using the kinema
wave velocity as defined in@39#,

vwave5
]R

]p
, ~16!

we can write for the velocity of a bunch, using Eqs.~4! and
~12!,

n

e-

r- FIG. 10. Time traces of slopep obtained in the deterministic
nucleation mode withk5500 andD5D lysozyme, at the three inter-
face locationsdm515 mm, 150 mm, and 285mm. Large spikes
indicate passage of step bunches; small spikes, passage of
vidual steps.
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vbunch5
]R

]pU
bunch

5
bsteps

s

~11kp!2
U
bunch

5
v

11kpU
bunch

. ~17!

For the abovek5500 and p5531023, Eq. ~17! yields
v/vbunch53.5, in reasonable agreement with the above sim
lation result. Furthermore, kinematic wave theory predi
that the number of steps in a bunch does not changeen route
across a facet. Figure 9 shows that all bunches consist o
same number of individual steps, irrespective of a bunc
steepness and position.

Recently, step bunching, with and without solution flo
has been analyzed in terms of linear stability theory, ass
ing step interaction in the bunch through the bulk diffusi
fields only @41–44#. The velocity of step bunches, that for
in crystallization from solutions under diffusive transpo
conditions, has been related to the velocity of the individ
steps by@42#

vbunch5vS 11
bstepp̄

Dkx
D 21

. ~18!

Here p̄ is the macroscopic slope of the vicinal face andkx is
the wave number of the step bunch~harmonic perturbation in
step density! parallel to the interface. Evaluation of Eq.~18!
with the previously introduced parameters for lysozyme a
kx50.4mm21 ~corresponding to an approximate waveleng
of 15 mm deduced from Fig. 9! results inbstepp̄/Dkx'1024.
Thus, in contrast to the above findings, Eq.~18! predicts
vbunch'v. This further emphasizes that the step bunch
mechanism observed in our work differs from the linear m
phological instabilities obtained in@42–44#.

Note that in Fig. 9, after readjustment of the interfa
shape to the growth-induced nonuniformity in interfacial s
persaturation@17,18,21,45,46#, step bunching ceases. Yet,
the experiments, and the simulations with stochastic s
generation, fluctuations prevail as long as growth occ
This can be understood in terms of the intrinsically unste
nature of growth step sources. Dislocation groups typica
produce step trains with varying interstep distance@31,47–
49#. Similarly, 2D nucleation sources produce steps in s
chastic sequence. Hence, both step generation mechan
are prone to incessantly produce morphological perturbat
in the form of local slope variations. While moving acro
the facet, these slope nonuniformities readjust their s
spacing to the prevailing transport and kinetics conditio
As we will see in more detail below, nonlinearities in kine
ics can lead to a new step bunching cascade each time
source creates such a perturbation.

D. Nutrient supply and dynamics of step-bunch cascading

Insight into the dynamics of the above step bunching a
cascading can be obtained from correlations of the interf
morphology to underlying concentration and supersatura
distributions. Figure 11 presents the evolution of a section
the interface in higher spatial resolution and for shorter ti
increments than Fig. 9. The corresponding interfacial sup
saturation profilesss(x) are given in Fig. 12. The overa
slope of thess(x) curves reflects the monotonic decrease
supersaturation from the edge to the center of facets of gr
ing crystals@18,21–23#. Negative spikes are superimpos
-
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on this monotonic drop-off. By overlaying Figs. 11 and 1
one recognizes that these spikes are located at the steps
also sees that at the location of step bunches~shaded areas in
Fig. 11! the spike pattern inss(x) is modulated. As empha
sized in the magnified part of the 360 s trace in Fig. 12,
supersaturation values between and at the steps in a b
are, respectively, lower and higher than the values expe
for equidistant steps at the same location. The lower val
at the step bunches reflect the higher local step~sink! den-
sity; see Eq.~3!. The higher values at the individual steps
a bunch~see also Fig. 13 for thess values at all step loca
tions of Fig. 9! are a consequence of the reduction in sol
consumption rateper stepdue to the closer step spacing; s
Eq. ~4!. The corresponding reduction of the concentrati
gradient at a step bunch, in both thex and z directions, is
further illustrated by the isoconcentration lines,r1(x,z) in
Fig. 14.

Now we are in a position to elucidate the step bun
formation and cascading mechanism in detail. As indica

FIG. 11. High-resolution interfacial profiles for conditions o
Fig. 9. The 360 s profile is the central section of the 6 min profile
Fig. 9. Shaded areas indicate step bunches. Arrow illustrates
accelerated departure of the leading step of a bunch to form
bunch ahead of old one.

FIG. 12. High-resolution interfacial supersaturation profiles c
responding to Fig. 11. Inset: magnified section of the 360 s pro
with step bunch about the arrow. Note the increase ofss at the steps
of a bunch~dotted line!, decrease ofss over the bunch~dashed line!
compared toss for equidistant step train~thin solid line!.
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3210 55PETER G. VEKILOV, HONG LIN, AND FRANZ ROSENBERGER
in the preceding section, the first bunch forms at the init
kink in step density; see the vertical arrow at the 3 m
profile in Fig. 9. In passing through this kink, due to les
competition from the rear, a step is better supplied than
steps ahead of it. Hence, it catches up with them and form
bunch. Bunching, as discussed above, is accompanied b
increase inss at the steps of the bunch. Note that the env
lope of the increasedss values~dotted line in the inset of
Fig. 12! is akin of the supersaturation that the steps encou
ter en route through the bunch. As a consequence, ste
moving through a bunch, in particular the leading step whi
experiences less competition from the nearest, wider spa
step outside the bunch, can catch up with the steps in fron
them~see arrow in Fig. 11!. This initiates the formation of a
new bunch ahead of the already existing one.

The bunch cascading and steepening can also be un
stood in terms of an expansion of the kinematic wave theo
~KWT! @39#. In its original version, the KWT of step bunch
ing is based on the premise that thevwave depends only on
the step density, that is, onp. Thus, the bunch cascading
observed in this work is not predicted in@39#, and a continu-
ous increase in bunch steepness is found only under the
tion of impurities@39,40,50,51#. However, as we have seen
in connection with Eq.~17!, in our system,vwave is also a
function of interfacial supersaturation. In the following w
will accommodate this dependence.

Differentiating Eq.~17! with respect top we get

]vbunch
]p

52
2kbsteps

s

~11kp!3
,0. ~19!

As a bunch moves towards the facet center,ss decreases due
to both the global gradient and the protein depletion in t

FIG. 13. Supersaturations at the step locations of Fig. 9.

FIG. 14. High-resolution concentration distribution,r1(x,z), in
midsection of the 15 min profile of Fig. 9. Note reduction of grad
ents around step bunch~three steps! at '155mm.
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closed system~see Sec. VI A!. As a consequencevbunch de-
creasesen route; see Eq.~17!. Since, according to Eq.~19!,
]vbunch/]p is negative, the continuous reduction invbunch is
accompanied by steepening of the bunch. As in step mo
against a spatial supersaturation gradient@17,18#, this effect
is strongly amplified by the decelerating interstep interacti
so that asstepdecrease from 2.715 to 2.68~Fig. 13! results in
an increase in bunch slope by an order of magnitude~Fig.
10!.

For discussing the bunch cascading within the framew
of the KWT, we present in Fig. 15 a modification of Fig. 4
@39#. Note that the original figure illustrates dissolutio
rather than growth. According to the KWT, if, as original
assumed,vwave depends onp only, each section of a ste
train evolves along straight characteristic lines in the (p,x,t)
space. The slope of the projections of these characteris
into the (x,t) plane is inversely proportional tovwavedefined
in Eq. ~16!. With ]vbunch/]p,0 from Eq.~19!, the higher the
p of a section of the step train, the steeper is its characte
tics. Hence, as schematically indicated in Fig. 15, whate
the initial profile in a bunch, on its way across a facet it w
develop a discontinuity of slope at the rear and become
creasingly rounded at the front. Steps outside a bunch tr
with constantvwave and are, thus represented by paral
characteristics, implying that no new bunches form.

In our case, as we have discussed in connection with
12, step bunching results in increased supersaturation a
steps in the bunch. Hence, as can be deduced from Eq.~17!,
vwave increases most at the bunch’s head, wherep is lowest
within the bunch. Thus, as indicated by the dashed curv
the (x,t) plane in Fig. 15, the slope of the characteristics
this section of the step train will continuously decrease. T
will lead to the appearance of a new step bunch ahead o
existing one, at the location of intersection of this curv
characteristics with another less curved one.

FIG. 15. Expansion of kinematic wave model. Progressive d
placement and change of shape of step bunch. Straight lines: c
acteristics resulting from kinematic wave theory; dashed lin
modification due to dependence ofvwave on supersaturation
Growth steps move from left to right. For details see text.
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E. Step motion in the direction of the global interfacial
supersaturation gradient

The wavelike evolution of step bunches is not limited
step motion from a facet edge to its center. Figures 16 an
present the results of a simulation identical to that underly
Figs. 9–14, except that steps are generated at the facet c
and move towards the crystal edge. Thez(x) profiles reveal
again a step bunching cascade associated with the mor
logical transition. The correspondingp(t) traces in Fig. 18
show that the magnitude of thep maxima is comparable to
those obtained in the case of the inward motion of the ste
However, the number of bunches is increased and their s
ing is slightly decreased. Furthermore, in comparing th
and 6 min profiles in Figs. 16 and 17 to those in Figs. 9 a
13, we see that step bunching occurs somewhat earlier
ing the outward step motion.

From a macroscopic point of view, these results app
surprising: Step motion in the direction of the supersatu
tion gradient results in interfacial supersaturations that
higher at the leading steps than at the trailing steps o
bunch. This should lead to acceleration of the leading st
and deceleration of the trailing ones, and, thus, to debun
ing. Yet, on a more local scale, there are two effects t
counteract debunching. First, during growth through s
generation at the facet center, the initial shape perturba
that triggers the bunch cascade is stronger than in the ca

FIG. 16. Interface profiles obtained for outward motion of ste
at various simulation times in the deterministic nucleation mo
with k5500 andD5D lysozyme.

FIG. 17. Supersaturations at steps of Fig. 16.
17
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Figs. 9–14. This is because of the larger difference betw
p0 and the lowp that results from step generation at th
lower supersaturation of the facet center. Second, as
mised above, the bunch cascading is caused by the hi
supersaturation, in particular, at the leading edge of a bun
In this case, both the global gradient inss and the localss

increases from bunching cause an increase in supersatur
in front of the leading steps. This causes stronger casca
than in inward step motion.

As another consequence of the mutual enhancement o
global supersaturation gradient and the localss perturba-
tions, the kinematic wave nature of the bunch evolution
comes more apparent. The transition from a symmetric sh
of newly formed bunches to the slope discontinuity at t
trailing edge in ‘‘older’’ ones is well reflected in Fig. 16
Figure 17 shows that this asymmetric bunch morphology
associated with asymmetric peaks inss at the steps of
‘‘older’’ step bunches.

This comparison of the inward and outward motion
steps points also at an interesting difference with respec
the morphological stability of facets. Step bunching stron
modifies the response of the interface shape to the glo
supersaturation gradient. Note that if step bunching is
considered, the lower global supersaturation at the facet
ter should lead to step retardation and, thus, to a higher l
slope. This is expected irrespective of the location of s
generation and the direction of step motion, see the disc
sion in @41#. However, the steepening of the bunches alo
their path leads to an additional decrease in the tim
averaged step velocity. For inward motion of the steps, a
Fig. 9, this results in a stronger nonuniformity in the tim
averaged local slope at the facet center. Yet, in outward
motion, this retardation results in ahigher slope at the facet
periphery, see Fig. 16. These effects of the step bunch
should have important consequences for the morpholog
stability of faceted crystals growing from a nonuniform su
ply field discussed in@45,46,52,53# and references therein.

s
e

FIG. 18. Time traces of slopep obtained in deterministic nucle
ation mode for outward moving steps withk5500 andD5D lysozyme
at dm515 mm, 150mm, and 285mm.
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F. Effects of bulk transport and step kinetics nonlinearity
on bunch cascading

To further explore the dependence of the bunch casca
on the relative weight of interfacial kinetics and bulk tran
port, and on the degree of nonlinearity in kinetics, we ha
performed simulations identical to the case of Fig. 10, exc
for changes in the diffusivityD and the step interaction pa
rameterk.

Figure 19 shows p(t) traces obtained with
D510D lysozyme. By comparison with Fig. 10, one sees th
in response to this shift towards kinetics control, the fluct
tion amplitude is reduced by about one order of magnitu
On the other hand, withD lysozymean increase in the nonlin
earity of kinetics through the doubling ofk to 1000 results in
significant increases in the amplitude and characteristic t
of the fluctuation~Fig. 20!. Finally, with k50, the morphol-

FIG. 19. Time traces of slopep obtained in deterministic nucle
ation mode for inward moving steps withk5500 and
D510D lysozyme.

FIG. 20. Time traces of slopep obtained in deterministic nucle
ation mode for inward moving steps withk51000 and
D5D lysozyme.
ng
-
e
pt

t
-
e.

e

ogy readjustment in our system occurs without step bun
ing, Fig. 21.

The results of these parameter variations well corro
rates our supposition that the fluctuations represent the n
linear response of the coupled bulk transport and step mo
in the mixed control regime@3#.

VII. SUMMARY AND CONCLUSIONS

We have developed a numerical model that combines
fusion in the bulk of a solution with diffusive transport t
microscopic growth steps that propagate on a finite cry
facet. Nonlinearities in layer growth kinetics arising fro
step interaction by bulk and surface diffusion, and from s
generation by surface nucleation, are taken into account.
have evaluated the model with properties characteristic
the solute transport, step generation and propagation in
lysozyme solution growth system. The model reproduces
time scale and amplitude of the fluctuations in norm
growth rate and local slope obtained experimentally. T
fluctuation time scale is large compared to that of step g
eration. The local slope variations indicate that the fluct
tions stem from step bunching. Variations of the govern
parameters of the model reveal that the step bunching in
tigated here represents the nonlinear response of the
interaction kinetics to step generation perturbations, un
mixed transport-kinetics control. Thus, with stronger kinet
control of growth, the step bunching was practically none
istent, while stronger step kinetics nonlinearity resulted
more pronounced bunching.

These findings bear considerable practical consequen
Depending on the transport and kinetics parameters of a
tem, a change of the role of transport through a change
convection can either enhance or reduce unsteadines
growth. Since the associated step bunching is typically as
ciated with the formation of structural and composition
nonuniformity, such imposed shifts in growth control can
expected to result in system-dependent improvement or d
radation in crystal homogeneity.

On a microscopic scale, we found that the fluctuatio
result from a morphological instability of the vicinal face,

FIG. 21. Time traces of slopep obtained in deterministic nucle
ation mode for inward moving steps withk50 andD5D lysozyme.
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which a step bunch triggers a cascade of new step bun
through modifications of the interfacial supersaturation d
tribution. Leading steps in a bunch are accelerated and
catching up with steps in front of the bunch, form a ne
bunch. Finally, we have shown that both the continuo
steepening of step bunches and the bunch cascading obt
in the simulations can be interpreted in terms of an expan
kinematic wave model.
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