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Simple expressions are given for the Newtonian viscosjj{¢) as well as the viscoelastic behavior of the
viscosity 7( ¢, ) of neutral monodisperse hard-sphere colloidal suspensions as a function of volume fraction
¢ and frequencyw over theentire fluid range, i.e., for volume fractions<0¢<0.55. These expressions are
based on an approximate theory that considers the viscosity as composed as the sum of two relevant physical
processesy( @, w) = 1,(P) + n.q( P, ), wheren,.(p) = nox(¢) is the infinite frequencyor very short timg
viscosity, with 7y the solvent viscosityx(¢) the equilibrium hard-sphere radial distribution function at
contact, andy.4(¢,») the contribution due to the diffusion of the colloidal particles out of cages formed by
their neighbors, on the Bket time scalerp, the dominant physical process in concentrated colloidal suspen-
sions. The Newtonian viscosityy(¢) = n(¢$,0=0) agrees very well with the extensive experiments of van
der Werff et al, [Phys. Rev. A39, 795 (1989; J. Rheol.33, 421 (1989] and others. Also, the asymptotic
behavior for largew is of the form#..(¢) + 7,A($) (w7p) ~Y2, in agreement with these experiments, but the
theoretical coefficienf(¢) differs by a constant factor 2(¢) from the exact coefficient, computed from the
Green-Kubo formula forp(¢,w). This still enables us to predict for practical purposes the viscoelastic
behavior of monodisperse spherical colloidal suspensions for all volume fractions by a simple time rescaling.
[S1063-651%97)09303-3

PACS numbg(s): 82.70.Dd, 83.50.Fc, 83.50.Gd, 83.10.Ff

[. INTRODUCTION cesses related to the two widely separated basic time scales
in a colloidal suspension: the Brownian timg~10 8

In a number of previous papers we have discussed theuring which a single Brownian particle “forg,ets” its initial
Newtonian viscosity as well as the viscoelastic behavior oNe|OClty and the interaction time or €let time
concentrated colloidal suspensions, consisting of monodisep=0*/4Dq~10"2% s, during and beyond which Brownian
perse neutral hard-sphere particlgs-4]. The motivation Pparticle interactions take place. Heres the diameter of the
was to understand theoretically the very extensive viscositj)ard-sphere colloidal particles arigl, the Stokes-Einstein
measurements on colloidal SuspenSK)ns carried out by Veﬁ:p”(ﬂdal part|C|e diffusion coefficient at infinite dilution. The
der Werffet al. [5,6] (see Table)l In particular, these ex- Viscosity is consequently considered as composed of a sum
penments on Carefu"y prepared Systems seemed to be é}i contributions that take place on a short- and a |Ong -time
ideal tesnng ground for the theory_ In this paper a morescale Although the theory is constructed for concentrated
complete and detailed account of the viscous behavior ofolloidal suspensions with volume fractions €.¢<0.55, it
colloidal suspensions over their fluid range will be given. appears that the theory also gives good numerical results for

In the past, many theoretical investigations have been catower concentrations, so that effectively formulas are ob-
ried out of the rheological properties of colloidal suspen-tained that cover the entire fluid range<@<0.55. Here
sions. Most of this work concerned the shear-rate depend=nma>/6, wheren is the number density of the hard-
dence of the viscosity of dilute or semidiluteharged  sphere colloidal particles.
suspensions consisting of Brownian particles, interacting The suspension is considered as a homogeneous fluid con-
with soft potential§7—9]. Therefore, a comparison between sisting of spherical particles immersed in a continuum sol-
our results and those would only be possible for the Newtonvent. As a consequence, formulas derived for simple homo-
ian viscosity, except for the essential difference in the intergeneous fluids in general, such as the lIrving-Kirkwood
particle potential. The viscoelastic properties of neutral hardexpression for the pressure tengb4,15 or the Green-Kubo
sphere suspensions with which we are exclusively concernei@rmula for the viscosity 16], are also assumed to be appli-
here have been considered by Bradg], and Cichocki and cable here. The formulas for the viscous behavior are derived
Felderhof[11,12. Their work will be discussed and com-
pared, where possible with ours, in some detail below. Blaw-
zdziewicz and Szamdl 3] have considered the shear-rate-
dependent viscosity of semidilute neutral hard-sphere

TABLE |. Characteristic values of the model systems udgé).

System o (nm)(DLS) 70 (10 st m2?) 7 (M9

colloidal suspensions. We will show that our result for thesp 23 28+ 2 8.68 0.0903
Newtonian viscosity reduces in the semidilute limit to their SSF 1 46+ 2 5.29 0.400
result for vanishing shear rate. SJ 18 76= 2 3.20 1.81

Our theoretical approach is based on two physical pro
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under a number of assumptions, which we will try to justify
physically as well as possible, but which, considering the LS
complexity of this strongly interacting system, we have not '
been able to derive from first principles or justify com-
pletely.

The two basic physical processes we referred to are as
follows: (i) At short timest< rg<<7p and nonzero concen-
trations, the viscosity of the suspension effectively increases
when compared to that of th@ure solvent viscosityr, at
infinite dilution, due to the finite probability to find two par-
ticles at contact, andi) at long timest~ 7p> 73, it is dif-
ficult for a Brownian particle to diffuse out of the cage
formed around it by its neighbors, characterized by a cage-
diffusion coefficientD (k; ¢).

As for (i), the probability to find two particles in the sus-
pension at contact is given by the equilibrium radial distri-
bution function at contacgeo; ¢)= x(¢) [17], which fol-
lows from the canonical distribution of the hard-sphere
colloidal particles. As a result, the effective very-high-
frequency viscosity of the suspension satisfies(®)=
nox(®), a relation that is consistent with experiment over
the entire fluid rangd4] (cf. Fig. 2. Similarly, the very-
short-time self-diffusion coefficient of the Brownian par-
ticles past each other is decreased from the Stokes-Einstein
value D, at infinite dilution to a valueD¢(¢)=Dy/x(), ; , ‘
since x(¢) also gives the increase in the binary collision 0 4 8 ko —» 12
frequency in a dense hard-sphere gas in equilibrium as com-
pared to that in a dilute gas. Also this relation has been

CongTOE;d(i?)y t?epigmee-gﬁ‘%llljsion coefficierd (k: ¢) refers tion of k=ko for volume fractions¢) = 0.30 (dotted ling, 0.45
’ 9 o(ki ¢ (dashed ling 0.50 (solid ling), and 0.55(dash-dotted line For

to the diffusion of a particle out of a cage formed by its | _,« 5 the two times are of the same order of magnitue.

neighbors When the particles are distributed periodically irheduced cage-diffusion coefficieBt,(k; ¢)k?s2/Dy, as a function
the solvent with a wave numbér For concentrated SUSPeN- o i from light scattering experiments for a charged collo@)(

sions one should bear in mind that a typical wave number I$=600 nm, ¢=0.48 [56]), a neutral colloid 1) (o=335 nm,
k~k* =2x/ o, corresponding to a surface to surface distancey=0.49 [57]), and from theory(solid line) [Eq. (13)]. The two
of two neighboring Brownian particles of typically 1/10 of minima correspond to the first two maxima 8f(k; ¢). Here the
their diametero, so that the particles “rattle” in their cages diameter of the Debye sphere of the charged colloid is replaced by
before they diffuse out in a time of the order of an effective hard-sphere diameter that is determined by making a
mp~Tc(K*; ) = 1D (K*; $)k*2. In Fig. La) 7(k;¢)/7p is  best fit of the experimental behavior 8(k;¢) of the charged
plotted as a function ofk=ko for four values of ¢. colloid neark*, with an S{(k; ¢) of a corresponding hard-sphere
7.(K; @) and rp are clearly of the same order of magnitude, fluid [19]. Also plotted is the reduced high-density self-diffusion
the pronounced maximum ef,(k; ¢) atk=k* correspond- coefficient Dy(#)k’0*/Do=k??/x(4) [cf. Eq. (45a], around
ing to the “rattling in the cage.” An explicit expression for which the reduced cage diffusion coefficient oscillates and it ap-
the cage-diffusion coefficienD(k;¢) has been obtained Proaches fok—ce.
from kinetic theory[18]. SinceD.(k; $) also characterizes anq that for the nonequilibrium pair distribution function of
the decay of a spontaneous density fluctuation of wave numne colloidal particles to obtain this viscosity from a solution
berk in the suspensiofil9], it can be measured by light or of the latter equation. In Sec. lll this solution is used to
neutron scattering and the expression we give for it belowpbtain an explicit expression for the viscoelastic behavior
has been shown to be in good agreement with such expery(¢,w) of the suspension. Section IV gives a simple for-
ments[cf. Fig. 1(b)] [20]. mula for the zero-frequency or Newtonian viscosity
To incorporate the cage-diffusion process, iR.(k; ¢) nn(d) = n(¢h,w=0), while Sec. V contains the viscoelastic
into the theory, we need to go to a Fouriee., k) represen- behavior of the fluid for finite frequencies. In Sec. VI the
tation, while the starting point of our theory, the two-particle approach ofy(¢,w) to its asymptotic valuey..(¢), via a
Smoluchowski equatiofi2l], is expressed in ordinar§i.e.,  behavior~ 7,A($)(wrp) 2, is discussed and exact results
r) space. This will introduce a fundamental difficulty in the for the coefficientA(¢) are compared with our theory and
development of the theory since the impenetrability of twowith experiment. In Sec. VII the behavior of(¢,w) for
hard-sphere particles, which is easily accounted for in small w is given and Sec. VIII discusses a number of issues
space, will be violated in our theory ki space, a point that raised by the results obtained in the paper, especially in con-
will be discussed further below. nection with the good agreement with experiment, in spite of
The paper is constructed as follows. In Sec. Il we give thehe apparent neglect of hydrodynamic interactions between
basic equation for the viscosity of the colloidal suspensiorthe Brownian particles.

‘rc(k;tb)/tp -

0

<

D (kk's"/D

FIG. 1. (a) Reduced cage-diffusion time,(«; ¢)/7p as a func-
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Il. BASIC EQUATIONS n of the colloidal particles, so thaj(r;¢,o,y,,t) is the

The Shear Viscosity we are Concerned W|th in th|S paper igonequilibrium generalization Of the I’adial diStribution fUnC'
defined as the linear response of the suspension to an applif@N 9ed s ¢) in equilibrium, wheny,=0. Introducing then
shear ratey(t)=yo,e '“! with finite frequencyw and van- . _ . . it

(1) we have, fory,—0,

ny(‘ﬁvwﬁo:t): - 77(¢a‘1)a70at) Y(t)
89(r; b, 0,%0) = ¥099(r; ,w) +O( ) (7b)

Here P,, is thexy component of the pressure tensor of the
suspension, defined by and one finds from Eq6) that in the limit of vanishing shear
p .y )=P o)+ P 0. yo.t), (2 ratey_oﬁo, Puy(b,®,70,1) is proportlona! toy(t) since t_he
(80700 =Prys(¢:70 D+ Puya(br0 70,0, (D LB o ofger; ¢) vanishes. Then, in Eq1), the vis-
whereP,, (¢, 70.t) is the static contributiongg==) to the ~ CoSity 7($,w)=lim, _o7(¢,w,y0,1) is independent ofy,
xy component of the pressure tensor, associated with thendt and is given by
pure solvent contribution and the solvent-colloid
contribution (the stresslet contribution [22,23, and
Pyy.d(®,®,70,t) is the dynamic contribution given by
(14,19

oV(r)
ay

An approximate equation fafg(r; ¢,w) can be obtained
aVv(ry;) > @ in the following way. Neglecting the hydrodynamical inter-
ne

1
2pw)= 7.l 8)+ 50 [ dr sa(rig0x S @

N

1
ny,d(d’-wﬁo-t): - W<J 2 Fij

A T T actions between the Brownian particles transmitted via the
ol iy

solvent, theN-particle Smoluchowski equation for this case
in a shear fieldy(t) can be integrated over the positions of
all N— 2 particles but the two particles 1 and 2. This leads to
an equation for the nonequilibrium pair distribution function,
involving the nonequilibrium three-particle distribution func-
tion. Neglecting the latter, i.e., restricting ourselves to low
densities, transforming to center-of-mass and relative coordi-
hates of the two particles 1 and 2, neglecting the dependence
on the former, i.e., assuming spatial homogeneity and using
gedr; ¢) =exd —BV(r)], one obtains the following equation
for g(r; ¢,w,7p,t) to lowest order in the density:

Here V is the volume of the system; is the position of
particlei(i=1,... N), rj=ri—r;, V(ry) is the interpar-
ticle potential between particles and j at a distance
rij=|ri;|, and the averag¢ ), is taken with respect to a
nonequilibrium distribution function derived from the
N-particle Smoluchowski equation for a suspension unde
shear ratey(t). Kinetic contributions to the&y component of
the pressure tensor can be neglected in the Wit 0, as is
the case in this papé23,24.

The static contribution follows from the limib— < when

the dynamic contribution to the pressure tensor becomes| » J
zero, leaving in Eq(1) only E+2,8D0V-F(r)—2DOV2+ Y(t)X@ g(r;¢,w,70,t)
Puy(d,0=2,y0,1) =P,y (b, v0,t) = = 7..( ) ¥(1). " —-0. (9)

. L . . ., HereF(r)=—VV(r) is the force on particle 1 at a separa-
Carrying out the implied integration on the right-hand S|detion r from particle 2,8=1/kgT, with kg Boltzmann’s con-

(th9) of Eq. (3) over the positions of alN—2 particles but stant andT the absolute temperature. Equati® has been

particles 1 and 2, introducing center-of-mass and relative COonsidered for charged colloidal suspensions in the station-

ordinates byR=(r,+r,)/2 andr=r,—r,, respectively, and ary state, i.e., fow=0 by Dhontet al. [25]. With Eq. (7),
carrying out the integration oveR, one obtains for the dy- Eq. (9) can be written as an equation f6g(r: &, )
namic contribution to the pressure tensor ' e

[—iw+2BDyV-F(r)—2DoV?]8g(r; ¢, w)

n® aVv(r)
ny,d(¢1w7701t):_7J dr g(r;¢1w=701t)x 9 . J
y =—x—e AV, (10)
5 ay
This gives, with Eqs(2) and(4), the expression for the total which has been solved exactly by Cichocki and Felderhof
pressure tensor [11] for hard-sphere particlegf. Appendix A).
From now on we shall explicitly use a hard-sphere poten-
Pxy(¢,0,70,1) = = 7.(¢) ¥(1) tial unless specified otherwise. Neglecting then the force
n2 V(1) term on the left-hand siddhs) of Eq. (10) and taking the
- ?J dr g(r;¢,w,vg,t)X N Fourier transform of Eq(10) with respect ta’, an equation is
y obtained for
(6)
Here ng(r; ¢, w, yo.t) is the nonequilibrium pair distribu- 55("?(75'0)):”] dre*"sg(r; ¢, ). (119

tion function, giving the average number of colloidal particle
pairs at a separationin the suspension at a number density Using that
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. J
seq<k:¢>=1+nfdre'k'f[gequ;qs)—l] (11b) [~iw+204(ki$)]6S(ki b, @) =Ky~ ~Sef ki b),
X

(15
is the static structure factor in equilibrium in general, the_ . :
equation for6S(k; ¢, w) derived from Eq.(10) becomes, to which has the solution
lowest order in the density, ke, Sidkio)

(16)

Ok )= 5 d) e’

kyk
[~i0+2Dok?)8S(k; d,0) =246 27 2(k0), (12 yheresy (k) = dSuk: 6)/dk.

We note thatS.(k;¢) has a very sharp maximum at
where j,(ko) is the spherical Bessel function of order 2 K~ K*=2m/c at high densitie420] indicating a quasiperi-
[26]. od!c ordering of th_e colloidal particles on the length scale

o in cages. Equatioril6) for 5S(k;®,w) can be used to
computern(¢,w) with Egs.(8) and(11). This will be shown
in the next section.

As pointed out in the Introduction, the neglect of the force
term (which is only justified forr > o) in taking the Fourier
transform of Eq.(10) is the source of an error in the theory
used in this paper to obtain the viscosi#y§¢,w). A more
detailed discussion of the nature of this error, its conse- [l GENERAL EXPRESSION FOR THE VISCOSITY
guences, and a way to partially correct for it can be found in

Sec. Vi ?”d Appendlx A . . 7n(¢$,w) we must Fourier transform Ed8). For a hard-
Equation(12) is only valid for dilute suspensions where gppare’ notential such a transformation is not possible. There-

Gedr; @) =€XH—BV(N)], .., Sefki ) =1—24¢js(ko) ko tqre e replace in the spirit of the mean spherical approxi-

and the basic diffusion process of the two particles is freemation[28] V(r) on the rhs of Eq(8) by the equilibrium

diffusion, represented by the ternDgk? on the lhs of Eq. hard-sphere direct correlation functi@y{r; ), i.e.

(12). In order to obtain an equation for concentrated colloidal A

suspensions we make two corrections: a static one and a V(r)— —KgTCe(T; ¢). (17
dynamic one. The first one replaces the low-density expres-

sion forge{r; ¢) used above by the fufe(r; #) or, equiva-  As discussed in Sec. VI and Appendix A, this replacement
lently, the rhs of Eq.(12 by kydS.{k;¢)/dk,, where corrects partially for the neglect of the force term on the Ihs
Seq(k; @) is the full equilibrium static structure factor of Eq. of Eq. (10), which leads to unphysical contributions from
(11b). For the second correction we postulate that for suctoverlapping particle configurations. Fourier transforming
suspensions the basic diffusion process is cage diffusiothen Eq.(8) by using Parcival’s theorem on the rhs and that
rather than free diffusion. An expression for the relaxationthe Fourier transfornCeq(k;#) of C.{r;¢) is related to
time 7.(k;¢) for cage diffusion for concentrated colloidal Sg{(k;¢) by

suspensions has been derived before from the kinetic theory

In order to use Eq(16) for §S(k;¢,w) to compute

of a dense fluid of hard spheres, as (kealed reciprocal of N 1 19
the lowest eigenvaluB (k; ¢)k? of a linear generalized ki- ed K; Sed ki)’
netic operator, discussed elsewhgt8—-20,27:
one obtains straightforwardly from Eq®) and(11) the ex-
1 e pression
— =D (k,p)k¥=—————d(k). 13
ricd) DT s 1 @3 ) T [l S
ﬂ(¢,w)—ﬂm(¢)+16ﬂ_3 k Seq(k’¢)2 S( ,qS,w).
Here D (k; ¢) is the cage diffusion coefficien8.(k; ¢) is (19

again the equilibrium static structure, and(k)= o . .
1[1—jo(k)+2j,(k)] is a combination of spherical Bessel Substituting Eq(16) into Eq.(19), we obtain, after an angu-
functionsj (k) of orderl=0 andl=2 [26]. We emphasize lar integration ink space,
thatd(k) is due to the collisional transfer between two hard

" - o keT (= Sid ki) ]?
spheres at collision and plays an important roleritk; ¢). _ B e
D.(k; ¢) is plotted as a function df in Fig. 1(b). Writing n(brw)=n-($)+ 60772f0 dk k4[3eq(k;¢)}
1
1 —_— 20
= on(kd), 14 “Zoncd) T 20

for the viscoelastic behavior of the suspension.
the frequencywy (k; @) is the half-width at half height of the Insofar as the integrand in the second term on the rhs of
dynamical structure factoB.{k;w) of the suspension in Eq.(20) contains the eigenvalugs,(k; ¢)] and amplitudes
equilibrium, which is the quantity that can be measured ir[qu(k;¢)/Seq(k;¢)] of two cage-diffusion modes, this term
light scattering experiments. The equaliti4) is very well  can be called a mode-mode coupling contribution to the vis-
supported by experimef0] [cf. Fig. 1(b)]. Then Eq.(12)  cosity. The difference with the usual mode-mode coupling
becomes, with Eq913) and (14), contributions is that here two cage-diffusion modes, which
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describe the diffusion process in and out of two neighboring

particles’ cages, rather than two hydrodynamic mo(kes
occur in the long-time tails or vortex diffusig29]) are used.
We also note that the same expressipd) for 7(¢,w) can
be derived foro=0, by a direct application of mode-mode
coupling theory to the Green-Kubo expression for

7(¢,w=0) [30]. Since the complete derivation appears not

to be in the literature, we briefly sketch it in Appendix B. For
the concentrated suspensions we are mainly interested
here, the most important contributions to the integral in Eq
(20) come from values ok~k*.

We note that thé integral on the rhs of Eq20) is con-
vergent for allw, since the integrand vanishes for~0 and
the asymptotic behavior fdt— o is ~k 2, as for largek:

ji(ko)

Sed ki ¢)=1-24¢x() [1+O(k™?)], (213

ko
A ja(ko) _2
Sed ki) =24 x(p) K [1+O(k 9], (21b
C oy Do 2 -2
oy(K; )= X(¢)k [1+O(k™9)]. (219

This implies that the second term on the rhs of E20)
vanishes forw— o, as it should, sincey(¢$,*)=7..(¢) by
definition.

We still have to obtainz.(¢) in order to compute
7(¢,w). One often writes forp..(#) [9,11,12

()= no[1+3 ¢ +0(47)],

where the terms containingy are corrections to the pure
solvent viscosityrg, obtained by hydrodynamic interactions
(stresslet contribution[22,23. For concentrated solutions,
we propose to set

(229

7:(h) = nox (), (22b)
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FIG. 2. Relative infinite frequency viscosity..(¢)/ 7, as a
function of the volume fractiorp. (1, Zhu et al. [31]; X, van der
Werff et al. [5]; @, Cichocki and Felderhof12], whose points
were obtained by an analysis of van der Weitffal. that is different
from that of the authorécf. Table 1. The solid line corresponds to
Eq. (24).

over the entire fluid range 0¢$<0.55. Here we used the
Carnahan-Starling approximati¢m?7]

1-0.5¢

RN 2

x(@)=

which is very accurate for all sucth. The agreement be-
tween theory and experiment is good, thus confirming Eq.
(22b. We note, however, that a theoretical justification of
Eq. (22b is still lacking (see Sec. VII).

We also included in Fig. 2 the values fax,.(¢) as ob-
tained by Cichocki and Felderhg12]. These values differ
from those used by van der West al. since they obtained
7.(¢) by fitting the tails of the data for larges to
7(&) + 7oA(h) Vo rp instead of using a fit for all,. We
used Cichocki and Felderhof's values fgi.(#) throughout
the papelr(cf. Table II).

We remark that Eq(20), with Eq.(22b) and all the equa-

implying that the effective viscosity of the suspension at very;, < following from them, such as E65) in Sec. IV, con-

high frequencies is not only determined by the pure solvenfying g adjustable parameters and is completely determined
VIS'COSIty but increased by the fraction of colloidal particle by those characterizing the system: the viscosity of the sol-
pairs at co_ntacj((c_ﬁ)_. Physmglly one could argue thaF thes_e vent 5,, the volume fractionp (or, equivalently, the number
tou<_:h|ng, ie., colliding, particles increase the effectlve_ V'S'densityn), and the diameter of the colloidal particles.

cosity proportional to the number of such pairs present in the In Secs. IV and V we will compare the concentration

suspension because they increase the viscous diSSipationd@pendence of Eq(20) for the Newtonian viscosity
the suspension due to the instantaneous exchange of momen- '

tum during their collisions, no matter how short the time

. . o TABLE |l. Parameters discussed in the text.
scale. They constitute therefore an instantaneous contributian

to 7(¢,). Since[17] ¢ System my(d)7e n(Bne m(Dme Ald)  b*
5 5 0.44 SSF1 0.402 4.99 12.2 7.69 0.431
x(¢)=1+5¢+0(¢7), @23 o046 sP23 0421 5.13 131 833 0438
0.47 SJ18 0.776 6.78 17.8 8.45 0.458
Eq. (22b) reduces to the usual expressi@2g for 7..(¢) at 048 SSF1  0.372 6.36 17.3 121 0.458
small concentrations and can therefore be considered asGeb1l SJ 18 0.665 7.45 28.8 17.7 0.498
generalization of Eq(22a to high concentrationgsee also 0.52 SSF1  0.834 7.47 32.7 18.6 0.508
Sec. VIII). 0.54 SSF1 0.912 9.9 50.7 28.8 0.535
In Fig. 2 the behavior ofy..(¢)/ no= x(#) is compared 057 SSF1 3.70 11.5 139 44.7 0.593

with the reduced viscosity measurements by van der Werff 58 sp 23 3.99 10.0 187 60.2

et al. [5] and Zhuet al. [31] at very high frequencies fod
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within a relative accuracy of less than 0.25%. This approxi-
mation yields forzy(¢) the correct Einstein coefficiesip
as well as the same coefficient Of ¢2) as Eq.(25).

Cichocki and Felderhof have obtained, on the basis of the
pair Smoluchowski equation, exact results fg¢s,w) to
O(¢?). Their result toO(¢?) for 7y(¢) is, without Brown-
ian motion contribution$33],

N/, -

5
N(®)=1+ 5 +5.0047, (283

while with Brownian motion contributions they fif@4]

5
)=1+ = ¢+5.91¢%. (28b)
FIG. 3. Relative Newtonian viscosityy(¢)/ 1 as a function of m(é 2 ¢ a

the volume fractionp. X, van der Werff and de Kruif6]; A, van ) . ) .
der Werffet al.[5] (cf. Table I); ®, Joneset al.[49]; [, Papirand | hiS can be compared with the approximate result we obtain

Krieger[50]. The solid line corresponds to E@5) and the dashed from Eq. (25),
line to 7..(¢)/ no=x(¢) [Eq. (24)]. 5
() =1+ 5 ¢+6.037, (289
7v(d) = n(é,0=0) and the concentration and frequency N 2
dependence ofy(¢$,w) of Eq. (20) with the experimental

2 . . .
results of van der Werfét al. and others. where the term 6.08° contains a contribution 4.5 from

7.(¢) and a contribution 1.44° from the secondmode-
mode couplingterm in the large square brackets on the rhs
IV. NEWTONIAN VISCOSITY of Eq. (25). Since for $<0.25 the cage-diffusion contribu-

Settingw=0 in Eq. (20) and using Eqs(13), (14), and tion to 7(¢;w) can be neglected, EqR2b) then reduces to

(22b), we obtain the simple expression for the Newtonian”N(®) = 7-:(¢) = 70x(¢). Equations(280) and (28¢) both
viscosity give then a good representation of the experimental values

for 7n( ).
- ’ . 2
n(B) = nox()| 1+ if dx KZM V. VISCOELASTIC BEHAVIOR
407 Jo Sed k3 p)d(K) |’ )
(25) For w#0, 5(¢,w) of Eq. (20) is complex, so that the
viscoelastic behavior of the suspension can be written in the
wherex=ko and the Stokes-Einstein relation form
T n(¢,0)=7n"(d,0)+in"($ ), (29)
B
023777700 (260  where 7'(d,w) and n"(¢p,w) are the real and imaginary

parts of 5(¢,w), respectively. It is convenient and custom-
ary [5] to consider instead ofy'(¢,w) and 7"(¢,w) re-

H 2
has been used. We note that for smglli.e., toO(¢°), the duced quantities defined by

second term on the rhs of E®5) reduces to an expression

obtained by Blawzdziewicz and Szanjé&B] for y,=0. , _ / _
Although the expressio(25) for ny(¢) has been derived 7e(h,0)= U (¢'g))_ 77(¢;O°°) -7 (d)’w)_ 7-(9)
for large ¢(0.3<$<0.55), where cage diffusion is the (P00 =n(d.=) o) ’7°°(¢)(306)

dominant finite-time contribution to the viscosifyia Egs.
(13) and(14)], Eq. (25) nevertheless appears to describe thegpq
¢ dependence ofyy(¢) for small and intermediate concen-

trations also, due to the presence of thgy(¢) term (cf. . 7' (), w)

Fig. 3. Figure 3 also shows that the cage diffusion describes 7 ($,w)= D) =D’ (30b)
the very rapid increase ofny(¢) with ¢ for ”

0.40<$<0.55 very well. where the reduced real payk($,w) varies as a function of

Equation(25) has been evaluated using the Hendersony, petween 1(for w—0) and O(for w—x) for all ¢ and
Grundke correctio32] to the Percus-Yevick equation for 7" (¢, ) vanishes forw—0 andw— =, exhibiting a maxi-
the computation,of the hard spheBg(k; ¢) andS,;q(k;¢). mum in between. In Fig. 47%(¢,») and 77 (¢, w) are
A convenient Padapproximation ofyy(¢) for practical use  compared with the experimental data of van der Wetfél.
for all 0<¢$<0.55 is as a function of a reduced for all available ¢ for

0.44< $<0.57[5]. As van der Werffet al. state, the values
B 1.444%x(¢)* they find for the reduced quantitiesys($,w) and
()= nox(¢) 1+ 1—0.1241p + 10.464> @7 7¥ (¢, ) are very weakly dependent @, which is consis-
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e mation in the complex/w plane, whose location is derived
from the experimentally measured valug§®( ¢), 7="( )

and three additional parameters, one of them being a relax-
ation time. From these three poles the'(¢,0) and
7"(¢$,w) as a function ofw can be derived. For the three
concentrationgp=0.44, 0.46, and 0.53, for which their pro-
cedure could be implemented;’ (¢,w) and 7"(¢,w) are
consistent with our results within the experimental errors. As
was shown by Cichocki and Felderhof, the strongly deviating
cloud of points neaw,(¢$)~1 in the imaginary part of the
reduced viscosityy; (¢,w) [cf. Fig. 4b)] can be disgarded
since they violate the Kramers-Kronig relations between the
real and the imaginary part af( ¢, ) and must therefore be
erroneoug12].

n(bi0) -

VI. LARGE- w BEHAVIOR

For largew, Eq. (20) for 5(¢,w) can be written as

0 (i) >

_ 1
(1+i)+0

w

(32

9
7(b,0) = 7.($) + 5 H*x "m0
(l)Tp

where the square-root singularity fer— o is induced by the

largek behavior of the integrand on the rhs of Eg0), as

given by Eq.(21). We note that the correctio®(1/w) is an

exact result for low concentrations @($?) (cf. Appendix
FIG. 4. () Real and(b) imaginary parts of the reduced viscosi- A) and is consistent with what is found in the mode-mode

ties ni(dw) and nf(¢,w), respectively as a function of COUPling approximation. . .

w7,(¢). Experimental points are from van der Weeff al. [5]: © Using Eq.(32) in Eq. (30) and comparing with Eq(31)

for ¢ = 0.44,0 for ¢ = 0.46,0 for ¢ = 0.47,00 for ¢ = 0.48,  gives, forr(¢p) the theoretical expression,

V for ¢ = 0.51,x for ¢ = 0.52,X for ¢ = 0.54, andA for ¢ =

0.57. Theory is from Eqgs(20), (25, and (30). Dashed line, . 25 () 2 33
$=0.55; solid line,»=0.50; dotted liness = 0.45. The cloud of D)= 55| e XD e (33
points in(b) nearw7,(#) =1 should be discarded since they do not

satisfy the Kramers-Kronig relatiofi 2]. which is plotted in Fig. 6 and is consistent with the experi-

mentally usedr;(¢) up to abouté~0.55, averaging at a
tent with the crowding of all experimental points around thevalue of aboutrp/4 (cf. Sec. IV B in Ref.[5]). The system-
theoretical curves, inside the experimental errors. The scahtically too low theoretical value of;(¢) corresponds to the
ing of w for the experimental data was performed in thesystematically too high theoretical value of the coefficient of
same way as was done by van der Weiffl. by fitting the  the w2 singularity in Eq.(32) as compared to the exact

data for largew by the expressioficf. Sec. V) value given in Eq(41) below.
In fact, in order to investigate this behavior further, an
32 1 independent evaluation of(¢,w) for large ® was made,
nR(d,0)=71(¢,0)= 57— —, (31 starting from a Green-Kubo-like formula fof( ¢, ) rather
27 oy($) than from Eq.(8):

where 71(¢) is a phenomenological time for the experi- B (= ot
ments. Ther,(¢) used for the theoretical results is given in 7(p,0)=7(p)+ VJO dtp,(t;¢)e'. (34)
Sec. VI, Eq.(33).

Nevertheless, a more detailed comparisonmifi(4,@)  Here the stress-stress autocorrelation funciigft) is de-
as a function of¢ can be made, although the large experi-fined by
mental uncertainties of the data and the difference in the
basic inputs in _the theoryqﬁ( and ) anq experiment p”(t;¢)=<2;’ye“‘2)’<7y>eq, (35
(o, c, and 7q, with c the weight concentration of the col-
loidal particles complicate considerably a compelling de- where the angular brackets denote an equilibrium ensemble
tailed comparison of theory and experiment. Examples ar@verage. Here, instead of using the microscopic pressure ten-
given in Fig. 5. In the same figure the results of a genera$or (the expression in the angular brackets of &).in Sec.
phenomenological description of the viscoelastic behavior ofl), we use in this context the more customary microscopic
colloidal suspensions due to Cichocki and Felderhof arestress tensoE;’y,which is equal but opposite in sign and can
given[12]. This description is based on a three-pole approxite written as
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’\‘3\ 15 © 15 \ @ FIG. 5. Relative real and imaginary parts of
= the  viscoelastic  viscosity, respectively:
>~ ’ ”
=10 > ] 10 7' (¢, 0) 7o (O) and 7"(d,w)/70 (X), as a
o function of w7 ( ), for eight suspensions studied
5t N 5 ] experimentally by van der Werft al. [5] from
N x ¢$=0.44 up togp=0.57 (cf. Table I)). In order to
0 . ; - .
102 10° 102 10 ?0-2 10° 102 10° m_ake a fal_r and reallst!c comparison of the theory
with experiment, keeping in mind the 4% uncer-
(‘)Tl(d)) - tainty in the determination o$ [58] and the ex-
30 40 treme sensitivity of the denominator of
) 7R (¢, ), as already pointed out by van der
' 30 Werff et al. [5], we assign to the experimental
20 data an effective volume fractiop* such that
£ 2 TN(6) = n(8%) = (P — 72P(P)
3 10 within the experimental uncertainty @f. Dotted
n 10 i . . .
& ine, phenomenological results by Cichocki and
; 0bs . - . _2 . - . Felderhof[12] (only available for¢ = 0.46,
10 10 10 10 10 10 10 10 0.54, and 0.5 solid line, theory from Eqs(20)
b and(29) using ¢= ¢* (cf. Table I)).
- 60
£
3
= 40
~
[=
20
0= 05~ . .
107 10° 10° 10° 107 10° 10° 10
(‘)Tl(d)) -
N
S4=2 TisFiy, (36) PP ,

with  F=—V,®(rN) the force on particle i
(Vi=dlory), ®(r™M)==,_,V(r;;) the total potential en-
ergy of the colloidal particles, and

T, (0), -

N
Q=D.2, [Vi+BF]-V, (37

the N-particle Smoluchowski operat¢f1,35 with Dy re-
placed by the short-time self-diffusion coefficiddt(¢) to
make Eq.34) applicable to all fluid densities. This is further
discussed below. Fdd=2 andx(¢)=1 the adjoint opera-
torfﬁgifolrr:_:i?ﬁepsghiwgrllg;h?tv_vzl)(l dee(igfrzkifgs(?g(]a. large- F_IG. 6. Ratio.of 71(P) gnd 7p as a function of the volume

. . A . fraction ¢. Experimental points are from van der Wedf al. [5]
w behawor_ Of?7(¢.' w). Since for hard _spheres the |nt_erpar- (cf. Table Il). Dashed line, theory from E¢33); solid line, theory
tlclg potential is singular, one detgrmmes the short-tlmg beusing Eq.(41) instead of Eq(32) in Eq. (30) in order to get the
havior of p,(t;¢) by first using a soft potential correct coefficient of the square-root singularity at large frequencies
V\(r)=e(o/r)', wheree is the two-particle interaction en- (cf. Sec. VI and Fig. ¥
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ergy for r=0¢, and then lettingl —o0, so thatV,(r) ap-

proaches a potential between two hard spheres of diameter
o. Forl—, one can then derive for,(t,$) the expression 601 ]
[36]
2mn2Voliy( )l T 40p i
()= ——Fzz—r(t"), (389 =
p?] 15B ( < 7
with 201 ]
- - 29 2| 9
r(t*)=| dse Sexpt*||s*—+s—s“|—|;s, 0
0 Js Js 0 0.8
(38b
where
FIG. 7. Coefficient of the square-root singularity at large fre-
2Dst|2 guenciesA(¢) as a function of the volume fractiof. Experimen-
*= e (380 tal points are from van der Werft al. [5] (cf. Table I). Dashed

line, mode-mode coupling theofq. (32)]; solid line, exact result
The leading term of r(t*) for lim,olim, ie. starting from the Green-Kubo relatidftqg. (41)]; dotted line, the
t* ~t12—, which determines the short time behavior of Ne0retical result wittD(¢) =D, [cf. Sec. VI, Eq.(40)].

p,(t;¢) for a hard-sphere potential, reaids] sphere impenetrability incurred by the Fourier transform

from Eq. (10) to Eq. (12) (cf. Appendix A). The first ap-
) (39)  Proximation was intended to incorporate the calculation of
at* 7n(®,w) contributions due to more than two isolated par-
_ o ticles, i.e., correcting for the neglect of the three-particle dis-
USIng Eq5(34), (38), and(39) and the Stokes-Einstein rela- tribution function in the equatio('g) for g(r;¢,w'y0’t)_

r(t*)=

tion (26), one obtains forn(¢,w) for large w and for a As pointed out before, the second approximation is nec-
hard-sphere potential for agh the exact expression essary to perform a Fourier transform of E§). It also cor-

) rects partly for the unphysical contributions from overlap-

18 , Y21+ ping particle configurations due to the neglect of the proper
n(¢,w)~nw(¢)+§¢ x()7o Ds(¢)| Vorp hard-sphere boundary conditidof. Appendix A. We re-

(400  mark that the Fourier transform of E(B) was due to the
necessity of introducing the relaxation timegk; ¢) related
Using then thaD¢(¢)=Dgy/x(¢) (cf. Sec. VIIl) one has to the cage diffusion for concentrated colloidal suspensions,
which have only been determined for periodic particle ar-
rangements, characterized by a wave nunibeHowever,
neither of these two approximations seems to be responsible
(42) for the incorrect asymptoti® behavior of 7( ¢, ).

As for the third approximation, if we compare E§2) for
Equations(32) and(41) are both compared with the experi- low densities, i.e.,x(¢)=1, with the exact solution for
mental data for large» and for most experimental values of 7(¢,») obtained by Cichocki and Felderhdfll] to
¢ in Fig. 7. We emphasize that in order to get agreemen©(¢?), we see that the second term on the rhs of B8) is
with experiment it is necessary to replace the low-densitysmaller by a factor 2. Cichocki and Felderhof considered Eq.
Stokes-Einstein diffusion coefficieBt, by the self-diffusion  (10) with the correct hard-sphere boundary conditionrin
coefficentD¢(¢) in the basic Smoluchowski operatpef.  space and solved it exactly. If we solve Efj0) in the same
Eg. (37) and Fig. 7 [36]. We also emphasize that the exact manner but neglect the force term on the (b Appendix
result of Eg.(41) constitutes a generalization of Cichocki A), we obtain, however, Eq32) in the limit of largew with
and Felderhof’s low-concentration result to all concentra-x(¢)=1. This suggests that the third approximation, the ne-
tions in the fluid range. A detailed derivation of E¢1) will glect of the force term on the lhs of E@.0), and the ensuing
be given elsewherg36]. violation of the proper hard-sphere boundary condition in

It is clear that the experiments agree very well with Eq.real space in making the Fourier transform from Eif) to
(41) and not with Eq(32), consistent with the systematically Eq. (12) are the main reason for the erroneous expression
lower theoretical values of;(¢) in Fig. 6. This could well  (32).
be related to the approximations made to obtain(B8): (i) We note that Eqs(32) and(41) show that the difference
the use of the complet8.(k; ¢) (i.e. for all ¢) in the two-  between the exact and the mode coupling result for the co-
particle equation(15) and the use oty (k;¢) as the only efficient of o~ 2 is a constant factor g{¢). This only af-
basic relaxation time(ii) the replacement of the potential fects the approach t@=o, not 7.(¢) itself, and is of no
V(r) in Eq. (8) by the direct correlation functio@e((r; ¢), influence if one plots the mode coupling theory on the phe-
and (i ) the neglect of the force term on the lhs of Efj0) nomenological time scale 71(¢) using Eq.(33) (cf. Fig. 5.
and consequenly the correct boundary condition of hardThis may be of practical importance for predicting the vis-

18
7, 0)~ 7.(h) + 5 ¢°x(6) g (1+1i).

WTp
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coelastic behavior of concentrated colloidal suspensionsurs without considering explicitly any hydrodynamical in-
since the scaling in time does not affect the Newtonian beteractions between the colloidal particles in the theory pre-

havior of the viscosity37]. sented here may appear rather puzzling. We do not have an
explanation for this, other than that at high concentrations,
VIl. SMALL- @ BEHAVIOR where 0.3 ¢<0.55, the surface to surface distance between

N ) ) the hard spheres is so small that a “quenching” of hydrody-
For low densities toO(¢~) the smallw behavior of amical effects is not unthinkable.
7($,w) follows from Egs.(20), (21), and(29) to be There may, however, be a deeper justification for the ne-
, glect of the usual hydrodynamical interactions in our theory.
7'($,0) = 7(¢) :( S_B_E(WTP)Z ot - - It seems that in a number of cases the same concentration
70 25 175 dependence of a physical quantity of the suspension can be
(429 obtained by theories with and without hydrodynamical inter-
. actions between the Brownian particles. In this respect the
M: ﬁ(m. Y2+ - - - (42n)  following two observations are relevant.
7o 175 °°F ' (i) The concentration dependence of the infinite frequency

. . . . iscosity 7..(¢) as well as of the Newtonian viscosity
This can be compared with the exact results of Cichocki ancY (#) for low and intermediate concentrations

2 . n
Felderhof{11] to O(¢) for w—0: 0=< ¢=<0.25 is described by our relatiofsf. Egs.(22b) and

, - (29]
n ((]5,(,0) ﬂW(¢):[1—2—1—6(w7p)2]¢2+1
7 5 81 433 () = 1ox ()
"(pw) 8 =no[1+3¢+45%°+0(4%] (449
7 no’_w - l_5¢2(wfp)+ el (43b  and

, [Sif i )T

The agreement of Eq$42a and (42b) with Egs. (439 and 14 LJ'de «
407 Jo Sed k; P)d(k)

(43b) for small  and low concentrations, in particular of the
coefficient of @7p)? in the real parts, is better than that of
Egs.(32) and (41) for large w. This is probably due to the =no[1+35¢+6.03p%+0(¢°)], (440
fact that the neglect of the proper hard-sphere boundary con- ,

dition in the mode-mode coupling theory is more serious for€SPectively. The rhs of Eq¢44d and (44b) can be com-
a description of the short-time behavior than the long-timg®ared with Beenakker's expressipsg]

behavior of the suspension. We remark, however, that the € ) = lim[ n(K: )]

difference in the first terms on the rhs of Eq42g and 7 Ko 7

(439, i.e., 36/25 and 12/5, respectively, is a direct conse-

guence of the violation of the proper hard-sphere boundary =no[1+3¢+4.84p2+0(¢>)] (4490
condition[cf. Appendix A, in particular Eq(A25)].

n(P) = 10X (D)

for what he calls the effective viscosity. Beenakker’s
VIIl. DISCUSSION AND CONCLUSIONS 7°M($) is derived from a wave-vector-dependent viscosity
n(k; @), a complicated function d{, by using the quasistatic
The w dependence ofy(¢,w) is well represented by Eq. Stokes equation to describe the motion of the fluid, neglect-
(20) for all ¢ on the phenomenological time scalg(¢) or  ing inertial effects. This implies, as he points out, that his
if plotted as a function ofv 75, when an overall shift to the equation is valid forrg<t<rp. Our relations(443 and
theoretical curves of Z{ ¢) is applied 37]. The latter is due  (44b), however, are valid fot<rg andt>7p, respectively.
to the fact that the asymptotic mode-mode coupling resulThus his resulfEq. (4409] can be regarded as between Egs.
(32) for the largee behavior of (¢, w) is not correct be- (443 and(44b) [cf. Fig. 8a)]. While for low concentrations
cause of the incomplete incorporation of the hard-sphere imthe difference between the three expressiasswell as Egs.
penetrability in the theory. The mode-mode coupling contri-(28g and (28b)] is marginal since it does not appear to be
bution to n(¢,w) should be best for values @b around relevant for comparison with experiment, we emphasize that
wTi(@)~1, where there are rather few experimental pointsthe strong experimental increase of the Newtonian viscosity
It would be interesting therefore if a more detailed compari-for higher concentrationg>0.3 can only be described by
son between theory and experiment could be made in thithe integral on the rhs of Eq44b) [cf. Figs. 2 and &)].
w regime to obtain a more appropriate test for the validity of  (ii) Also, the concentration dependence of the short-time
the mode-mode coupling theory used here. self-diffusion coefficientD¢(¢) for low and intermediate
The result(20) for 7(¢,w) is based exclusively on the concentrations & ¢=<0.45 can be equally well described,
instantaneous time behavior gi.(¢) and the cage-diffusion within the experimental uncertainties, by our relation
relaxation mechanism. From the agreement;0%,w) and
nn( @) with experiment, it would seem that these two physi- _ Do
cal processes essentially suffice to understand the Newtonian Ds(¢)= (&) (453
as well as the viscoelastic behavior in the entire fluid range
of hard-sphere colloidal suspensions. That this agreement oas by the Beenakker and Mazur expresgid®
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FIG. 8. (a) Inverse relative infinite frequency viscosity
10! 1.(p) [@®, experimental points from van der West al. [5];
dashed line, theory from E@24)] and inverse relative Newtonian
viscosity 7o/ (@) [X, experimental points from van der Werff
et al. [5,6]; solid line, theory from Eq(25)] as a function of the
volume fraction¢. Dotted line, Beenakker's expressi¢fic) [38]
[cf. Sec. VI, observatiorii)]. (b) Relative short-time self-diffusion
coefficientD4(¢)/Dy as a function of the volume fractiog. (1,
Zhuet al.[31]; X, van Megeret al.[40]; ®, Pusey and van Megen
[41]. The solid line corresponds to E@5a and the dashed line to
the Beenakker and Mazur expressiddb) [39]. (c) Inverse relative
infinite frequency viscosityyy/ 7..(¢) (®, Zhuet al.[31]; H, van
der Werff et al. [5]) and relative short-time self-diffusion coeffi-
cientDg(#)/Dg (O, Zhuet al.[31]; O, van Megeret al.[40] as a
function of the volume fractionp. Solid line, theory from Eq.
(47b); dotted line, BeenakkdB8]; dashed line, Beenakker and Ma-
zur[39].

Ds(¢p)= lim D(k; ), (45b)

k—oo

whereD(k; ¢) is a wave-vector-dependent collective diffu-
sion coefficient, which is, likep(k; ¢), a complicated func-
tion of k. While our relation(45g for D¢(¢) is valid for
t<r7gz, Beenakker and Mazur's expressi@hbb) is, like their

viscosity, valid for rg<t<7p. On this larger time scale
D4(¢) will contain extra, in their case hydrodynamic, con-
tributions in addition to our instantaneous contributions,
leading to slightly larger values for the short-time self-
diffusion coefficient. The same obtains for the experiments
of van Megeret al.[40] and Pusey and van Megé#l] [cf.

Fig. 8b)].

Beenakker and Mazur consider only purely hydrodynamic
interactions between the particles in that they study the hy-
drodynamical effect of a number of stationary particles on
the motion of one moving particle. In our case no hydrody-
namics enters explicitly at all; essentially only molecular
considerations are used. For short times (8tatig equilib-
rium radial distribution at contacy(¢), derived from the
canonical distribution of the colloidal particles in equilib-
rium, occurs, yet a comparable agreement with experiment is
obtained. It appears therefore that ouip) replaces effec-
tively the hydrodynamic interactions considered elsewhere.
For long times there is an extfdynamig contribution due
to the increasing difficulty for a particle to diffuse out of the
cage formed by its neighbors.

We believe that for a complex system such as a colloidal
suspension there could be apparently very different alternate
descriptions of the same phenomena. Perhaps the simplest
and most striking example of this is the observation that
Einstein’s low concentration result for the viscosity of a col-
loidal suspension, derived from Stokes hydrodynarfé&

7.(P)

7o

5
=1+§¢+0(¢2), (463

can also be obtained, using an Einstein relafioh Egs.
(449 and(453]

77w(¢)_ Do E ,
70 Dyg) Lfz9t0(#).  (46b

Although these equivalent alternate descriptions of colloidal
suspension properties, and especially Egb), could well

be a fluke, a deeper origin cannot be ruled out in our opinion
either.

In fact, for the equivalence of Einstein’s expressid6a
and our(46b) the following physical argument can be given.
Felderhof has showi43], and it also follows from the
Green-Kubo expression(34), that #(¢,w)=nl[l+
3¢+ n,(w) ¢?]. Therefore, the first two terms in the expan-
sion of (¢, w) in powers of¢ are independent ab. This
implies that when computed for any they should give the
same answerio[ 1+ 3¢]. Einstein, as represented in Landau
and Lifshitz[44], did the computation fow=0, i.e., he used
a long-time stationary state hydrodynamic calculation to ob-
tain the extra resistance of the suspension to shear from the
change of the velocity field of the fluid due to a single Stoke-
sian hard-sphere particle placed in it.

We propose to do a computation@at o, i.e., for a very
short (in fact, instantaneoygime. Then the placing of one
particle, or even many mutually separated particles, in the
solvent will not have any effect on the viscous resistance of
the suspension. The only way the presence of the particles
can produce an extra flow resistance is from pairs of particles
(already in contact, where an “instantaneous” collision
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takes place adding to the viscous dissipation in the susperb>0.5[10], where¢,,=0.63 is the volume fraction of ran-
sion. Therefore, fow == the increase in the effective fluid dom close packing of hard spheres. Furthermore, the relative
viscosity as a function oty will be given by the relative short-time self-diffusion coefficier¢(¢)/Dy is taken from
increase in the number of particle pairs at contact in equilibLadd’s computer simulations for<0¢<0.45[47] and from
rium as a function ofp, which is y(¢). On the basis of this Phung’s Stokesian dynamics simulations ¥ 0.45[48].
argument one would conjecture that fer=, the increase This leads to a curve fony(¢), as given by Eq(49), that is
in suspension viscosity, when compared to that of the pureirtually indistinguishable from ousy () based on Eq25)
solvent, would bex(¢) for all ¢, not just 1+ 3¢ to O(¢).  for 0<$<0.55. We remark that Eq49), with the just-
This conjecture is consistent with experimgas shown in  mentioned determination of 7..(¢), gef0:¢p), and
Fig. 2 and should be derivable from kinetic thed#p]. Ds(¢)/Dg, also describes very well the experimental data
We also remark that the Einstein relation for nn(@) [5,6,49,5Q for 0.55< ¢<0.60, where the precise
thermodynamic state of the suspension is not clear, while Eq.
_ keT (479 (25) gives then too low values fagy(¢). Virtually the same
0" 37 me0 result as Brady’s description afy(¢) for 0<$<0.60 can
o ) ) be obtained by using in his E9) for all ¢ our Egs.(22b)
appears to hold not or)Iy for infinitely dilute suspensions, b“tand(45a for 7..(#) andDy(¢)/Dy, respectively, as well as
for all concentrations in the forri4] his representation @{c; ¢). It is clear that the precipitous

D KaT increase ofpy(¢) for ¢>0.55 is then a direct consequence
Dy(¢p)= —= 3 B , (47 of the pole ingefo; }) at ¢= .
x(¢) 3mwn.d)o However, for the viscoelastic behavior, when plotted as a

function of w7,(¢), Brady’s results do not agree well with
[tge experiments of van der Weréft al. [10,51. This may
well be related to the fact that the basic ingredient of Brady’s
theory that causes the increase g§( ) for large ¢ is a

as can be seen in Fig(d@. The physical reason for this
seems to be that as long as the times of observation al
sufficiently short(or the frequencies sufficiently highso
that no significant motion of the colloidal particles can take™ ™" .
place, no hydrodynamical effects will occur and only theStatic one, related to the behavior ofefo;¢)~

a i Lo .
instantaneous effects due to particles at contact, which dodg ~ ¢/ ¢m) " as random close packing is approached, while
not require any time to occur, i.ex(¢), will be relevant. in our theory it is a dynamic one: the increasing difficulty of

Therefore, in considering Fig.® one should bear in mind diffusion of a particle out of the cage formed by its neigh-
that most measurements are not made at0 (or, equiva- bors. It appears that only the latter one is able to account for
lently, for very short times when 14(¢) obtains, and also thehfrequency behavpr ﬁ’f’(d’f; w). The dqfr;derlyl.nghplhysms
that there are considerable experimental uncertainties, as c ﬁt € t.WO pr_ocessesllst erefore very eren.t. whiie we use
be seen by the spread of the data at the same the typical hlgh-densny_mechanlsm of cage dlffu5|on_, Bra_dy
Recently Brady[10] has published a different model for upgrades the low-density physics by effectively scaling with

the Newtonian as well as the frequency-dependent viscosit)geq(‘r;d’) and[?s(d?). | [52 h fully ad q
His results can be obtained from the low-density result of ey recently Liuet al.[52,53 have succesfully adapte

: : ; ; the Newtonian viscosity equatid25) to charged and neutral
Cichocki and Felderhdf11] (cf. Appendix A with only two ) LY X X .
modifications:(i) a scaling of their exact solutidiEgs. (A2) micelles. This indicates that the physics contained in(Eg).

and (A6)] for the low-density two-particle Smoluchowski !s applicable to a wider class of suspensions than considered

equation(10) [Eq. (Al)] by replacing the Stokes-Einstein n torllis pa(ljper. Finlglly, we note théu essgntiall)r/] the same
diffusion coefficientD, by the short-time self-diffusion co- mode-mode coupling term as In @5 gives the steep
efficient Dy(#) and (i) the additon of a factor viscosity rise at high densities for atomic liquids since the

o ) — ; : atoms, like the colloidal particles, find themselves in cages
JedF =0, ¢)=x(¢) to the low-density expression for the P T . i, '
potential contribution of the viscosity in terms of the pair CUt Of which they can only escape with increasing difficulty

distribution function[cf. the second term on the rhs of Eq. with increasing densitj29,30.
(8)]. This leads directly to Brady’s expression fgf ¢,w)
[cf. Egs.(Al1l) and (A12)], which in our notation reads ACKNOWLEDGMENTS

Do E.G.D.C. gratefully acknowledges support from the U.S.
D(d) (48)  Department of Energy under Contract No. DE-FG02-88-
s ER13847 and R.V. support from the Netherlands Foundation
and reduces fow=0 [with Eq. (A12)] to his expression for for Fundamental Research of Mat(&OM).
the Newtonian viscosityyy(¢),

7(h,0)=7.($)+ nod* (@) Ged 75 b)

12 D APPENDIX A
”N(‘f’):”w(¢)+§’70¢299q(‘7;¢)r35)- (49) Here we compare for low densitie$—0 and hard
s spheres the exact dynamic viscosiyf ¢,w) as obtained

However, in his calculations Brady determines the three bafrom Eqgs.(8) and(10) by Cichocki and Felderhdfl1] with
sic ingredients of his theory empirically..(¢) is derived the mode-mode coupling approximatigrc(¢,w) given by
from measurements and Stokesian dynarfi&47), while Eqg. (20). We first give the exact solution of Eq10) for
Je0: @) is taken to be given by the Carnahan-Starling ap-69(r;¢,w) as obtained by Cichocki and Felderhof. For
proximation(24) for 0< ¢<0.5 and by 1.2(+ ¢/ ¢,,,) ~* for $—0, ger; ) =exd —BV(r)], so that Eq(10) reads
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[—iw+2DV-{BF(r)—V}159(r; ¢, o)

=BV (e P, (A1)

with V' (r)=dV(r)/dr. The solution of Eq(A1) can be writ-
ten as

5g(r;¢>,w)=):—zf(i;;w)e‘ﬂv“). (A2)

Substitution of Eq(A2) into Eq. (A1) and using that

{BF(r)—V}e #V"=0, (A3)
one obtains in the hard-sphere limit(r)=Iim,_.V,(r)
=lim,_.e(r/o)' the following equation forf(u;w), with
u=r/o:

with the boundary condition
f'(1,w)= —2 A5
( 1 ) 2D 1 ( )
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n($;0)=7..(p)+ nod?ay(w) (A11)
with
_ 36 a’+3a+3 ALD
av(w)= 5 a3+4a?+9a+9 ( )

and o= a(w) given by Eq.(A8).

In the mode-mode coupling theory, on the other hand, one
neglects the force=(r) on the lhs of Eq.(Al), so that
09uc(r; ¢, w) satifies

[—iw—2D0V2]5gMC(I’;d),w):ﬂxr—yV’(r)e*BV(r)_
(A13)

The solution of this equation can be written in the form

Xy r
59Mc(ri¢,w)=r_2fmc(;§w)- (A14)

Substitution of Eq(A14) into Eq.(A13) yields the following
equation forfyc(u; w):

where f'(u;w) = df (u;w)/du. This boundary condition en- With boundary condition {— 0)

sures that the rhs of EqA1), which diverges at = ¢ for

hard spheres, cancels exactly a similar divergent term arising

from F(r) on the lhs. The solution of EgA4) with Eq. (A5)
is, forr=0 (u=1),

3 o2 ky(au)
~ 2Dg aky(a)’

f(u;w) (A6)

with k,(x) the modified spherical Bessel functifi@6] of the
third kind,

Ky(x)=e X{x 14+3x 2+3x" 3}, (A7)
and
a:a(w):(l—i)\/z)—go. (A8)

We note that for hard spherdgr/o;w) is continuous at
r=o so thatég(r; ¢,w) in Eq. (A2) shows a jump at=¢
due to the factor exp-BV(r)]=0(r— o) with @(x) the
Heaviside step function. In particulagg(r;¢,w)=0 for

7 2?6 9% Ll =0, (AL

%u % 2D0 u MC(uvw)_ ’ ( )
0_2

flo(ltew) —flo(l-ew)=a—,  (A16)
2D,

which follows from the rhs of Eq(A13) in the hard-sphere
limit, using Eq.(A9). Thusfyc(r/o;w) is continuous for all
r with a jump in its derivative at = ¢ given by Eq.(A16).
The solution of Eqs(A15) and(A16) is, foru<1,

o2 —K(a) iy(au)
2Dg 1+K(a) aij(a)

fuc(Uu; )= (A17)

and foru=1,

o? 1 ky(au)
2Dg 1+K(a) akj(a)’

fmc(U;w)= (A18)

where a= a(w) is defined in Eq(A8), ky(x) in Eq. (A7),
i»(x) is the modified spherical Bessel function of the second
kind [26],

r<o, reflecting the inpenetrability of two hard spheres. Next

we substitute(A2) for 69(r; ¢,w) in Eq. (8) for n(¢;w).
Using that for hard spheres
V'(r)e AV =—kTo(r—o), (A9)

one obtains straightforwardly

2T
7($:0)=n.($)~ 7ekeTPo f(Liw).  (AL0)

i5(X)= FJF X sinhx— %coshg (A19)
and
~ ke(@)ig@)
= @i (A20)

Substitution of Eqs(A6) and (A7) leads to the final result Thus 8gyuc(r; ¢, ) given by Eqs.(Al4), (A17), and(A18)

for ¢—0,

is continuous for alkr and nonvanishing for <o, allowing
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two spheres to overlap. To exclude such unphysical configutice since for low concentrations the main contribution to
rations in Eq.(8) for the viscosity (¢,w) we replace #%(¢,w) comes fromz.(¢). For high concentrations the

V(r) by —kgTCe(r;¢) [Eq. (17)]. Using thatCe((r;¢) factor 2 is reduced by a factgr(4) due to the replacement

=exd —BV(r)]—1 for $—0, dV(r)/dx in Eq. (8) is then  of Dy by D¢(¢) in the two-particle Smoluchowski equation

replaced by (6) (cf. Sec. V).

aVv(r) 7ﬁv(r)(9V(r)

—e

oX oX

(A21) APPENDIX B

Here we derive Eq(20) for 7(¢,w) directly, using the
and the factor ep-8V(r)] so obtained excludes the un- mode-mode coupling approximatiqMMCA) for concen-
physical contributions indgyc(r; ¢,») for r<0 and thus trated suspensions Gs36<0.55, in analogy with what is
partially compensates for the error made in the boundarglone for atomic liquids[29]. The basic idea behind the
condition of Eq.(A13) as far asy(¢,w) is concerned. Sub- MMCA is that fluctuations(or “excitations”) of a given
stitution of Eg.(A14) in Eq. (8) with the replacemen(A21) dynamical variable decay predominantly into pairs of modes
and using Eq(A9) leads to associated with conserved single-particle or collective dy-

5 namical variable$54]. If we restrict ourselves to the over-
_ _cT 2 3 . damped case without hydrodynamic interactions, the only
Mac($,0) = 1($) = ke T o uc(1;0), (A22) important mode is the cage diffusion mode, i.e., the Fourier

o o ) transform of the single-particle density fluctuations
which is completely similar to EQA10) for 7(¢, ). Using

Eq. (A18) for fyyc(1;w) yields the final result N _
n(k)=>, (e mi— (e )0 (B1)
=1

1
Muc( P, @)= 1..(¢) + 770¢2av(w)m, (A23)
In this case the lowest-order MMCA takes into account bi-

; ; linear products of cage-diffusion modegk)n(—k) [55].
with iven by Eq.(A12), K by Eq. (A20), and )
a:ac(z(\l,)gwb)ygEq.(Ag. A.(A12), K(a) by Eq. (A20) We start from the Green-Kubo expressidB4) for

The result(A23) for pyc(¢,w) follows from Eg. (20) 77(¢,_w) and Eq. (35 fqr the stress-stress autocorrelation
provided one uses there the low-density expression fofdnction p,(t;¢). The first approximation of the MMCA
Sedk; ) and wn(K)=Dok? To compare the exact expres- cggresp_onds t_o the replacement of the full evolution operatpr
sion (A1) for 7(¢,w) with Eq. (A23) for yyc(é,w) we e by its projection onto the subspace of the product vari-
note that for large frequencies—o, a—o [cf. Eq.(A8)], ablesn(kyn(—k),

andK(«)=1 [cf. Egs.(A7), (A19), and(A20)], so that then et peftp (B2)

1
(@, @) — 7.(d)==[ (b, 0)— 7.(P)]. (A24)  Here () is the N-particle Smoluchowski operatdcf. Egs.
2 (35 and (37)] and P the normalized projector operator de-

For w—0, a—0 [cf. Eq.(A8)] andK(0)=2/3, so that then "ed bY

= In(IN(=K))eg n(KIN(=K)|

2N?S;(k; ¢) ' B3

3
Muc($,0) = 17:() = gl n(¢,0) = 7:($)].  (A25)

Thus it appears that the mode coupling theory underestiwhere S(k; ¢)=(1/N){(n(k)n(—k))eq is the equilibrium
mates the two-particle Smoluchowski contribution tostatic structure factor ankl runs over the reciprocal lattice.
n(¢,w) by a factor 2 at high frequencies and 5/3 at low From Egs.(35), (B2), and(B3) we find for the stress-stress
frequencies. The relevance of these factors is limited in pracautocorrelation function

(S n(K)N(—K))egn(K)N(—K)en(k IN(—K"))eg{n(k")N(—K" )27
ptid)=2 od e o=k ))ed = (B4)
et AN*SZ(K; ) SE(K'; )
|

The second approximation is to assume that the two (n(k)n(—=k)en(k" )N(—K'))eq
modes appearing in the product variables propagate indepen-
dently from each other. This means that the four-variable =(n(k)e™n(—k'))edn(—k)e™n(K’))eq
correlation function{n(k)n(—k)e*'n(k’)n(—k’))eqin Eq. ¢ . ) ,
(B4) can be factorized into products of two-variable correla- +(n(k)e™n(k"))egn(—k)e*N(—k"))eq
tion functions(as already used in the normalizationPfEq. _ NZng(k;t)(ﬁk,kr + 8 i), (B5)

(B3)]), giving
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with Feq(k;t)=(1/N)<n(k)emn(—k)}eq the equilibrium in-

whererN=r, ... r
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n- Equation(B9) follows from partial

termediate scattering function. As outlined in Sec. Il theintegration and using the explicit form of the equilibrium

main diffusion process at long times and high concentrationglistribution function. Substituting Eq.36) for NS

in EQ.

0.3=¢=<0.55 is the cage-diffusion process rather than fregB8) and using Eq(B9) yields

diffusion. Thus the long-time decay of the equilibrium inter-

mediate scattering function is determined ®y(k; ¢), the
lowest eigenvalue, given by Eqdl3) and(14), correspond-

ing to the eigenfunctiom(k) of a kinetic operator defined

elsewherd 18—2Q. This gives

Fed ki) =Seq k; )&~ onlso), (B6)

Performing the summation ovkr and changing the summa-

tion overk to an integral ovek in the limit of large volume
V, we find from Eqs(B4)—(B6)

2
p,](t;(ﬁ): 167 fdk[ Vq(l((k;) e—ZwH(th/’)t’ (B7)
where
1
V, (k)= N@;’yn(k)n(— K))eq (B8)

is the strength of the coupling between the microscopic stress
tensorE” [Eg. (36)] and two microscopic densities. To

evaluaté\/(k) we use that for an arbitrary functidigr) one
has
- kBT<Vif(rN)>eq1

(Ff(r™))eq= (B9)

N

keT 5
v,,(k)=—%i2<rlxa n(kn(—k)) . (B10)

eq

From Eq.(B1) for n(k) and the expression belo3) for
Se(k; ¢) it follows straightforwardly that

V, (k)= kBTky eq(k ) (B11)
or, equivalently,
KKy
V,(k)=—kgT K Sed ki ). (B12)

Substitution in Eq(B7) and performing angular integrations
in k space leads to the final result fpr(t; ¢), i.e.,

Sed k #) )|
Sed K, #)

e 20n(k H)t

T2V
poftit)= Y | axe
(B13)

Then Eq.(20) for 7n(¢,w) follows immediately from Egs.
(34) and (B13).
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