PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics
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The rheological properties of colloidal suspensions of spheres, rods, and disks have been studied using a
mesoscopic simulation technique, known as dissipative particle dyngibiB). In DPD, a suspension is
modeled as a system of large colloidal particles in a liquid of interacting point particles. For the calculation of
hydrodynamic interactions, this method is computationally more efficient than conventional techniques using a
continuum model for the solvent. Applying a steady-shear rate to the particulate suspensions, we have mea-
sured the viscosity as a function of shear rate and volume fraction of the suspended particles. The viscosity of
a 30 vol % suspension of spheres displays characteristic shear-thinning behavior as a function of increasing
shear rate. The values for the high- and low-shear viscosity are in good agreement with experimental data. For
higher particulate densities good results are obtained for the high-shear viscosity, although the viscosity at
low-shear rates shows a dependence on the size of the suspended spheres that we attribute to finite size effects.
Dilute suspensions of rods and disks show intrinsic viscosities which are in excellent agreement with theoreti-
cal predictions. For concentrated suspensions of both rods and disks, the viscosity increases with the third
power of the volume fraction. We find the same scaling behavior as predicted by Doi and EfMaiits and
S. F. EdwardsThe Theory of Polymer Dynami¢®xford University Press, New York, 198ffor rod sus-
pensions in the semidilute regime. The DPD simulation technique emerges as a useful tool for studying the
rheology of particulate suspensioi$1063-651X97)08203-3

PACS numbes): 82.70.Dd, 47.50td, 66.20+d, 02.70—c

[. INTRODUCTION ous shapes and sizes. Experimentally, the study of shape
effects in suspensions is difficult, because it is hard to syn-

The rheological properties of concentrated colloidal dis-thesize anisotropic colloidal particles with a monodisperse
persions are of fundamental and widespread interest, withize distribution. Recent work shows that polydispersity has
many industrial applications, ranging from foodstuffs anda significant effect on the hydrodynamics of particulate sus-
chemicals to the upstream and downstream parts of the ofensiond2—4]|. Furthermore, the static and dynamic behav-
industry. Within oil exploration and production, most of the ior of suspensions is usually enriched by colloidal interac-
fluids which are used are colloidal in nature: drilling fluids, tions between the suspended particles. It has been shown that
cement slurries, fracturing fluids, and reservoir injection flu-both attractive and repulsive interactions have a significant
ids are all important cases in point. The performance propeffect on the rheology of suspensions of spherical particles
erties of these fluids depend in large measure on their conj5]. Recent experiments suggest that suspensions of 6ds
ponent particulates: the control of these fluid propertiesare even more sensitive to colloidal attractions than suspen-
evidently depends on an understanding of colloid rheology.sions of spheres.

As a model colloidal suspension, the monodisperse hard- For these reasons computer simulations offer a powerful
sphere system has been extensively studied, experimentallgiternative to study particulate suspensions, as an intermedi-
theoretically, and by computer simulations. High quality ex-ate between theory and experiment. Model particles, like
periments have been performed on well-characterized modepheres, and prolate and oblate ellipsoids, are easily gener-
hard-sphere systemfgl]; theoretical and simulation ap- ated in a simulation. Particles can be created that do not
proaches, on the other hand, generally have to assume highdyffer from polydispersity, or from attractive colloidal inter-
idealized systems, such as dilute suspensions at low-sheactions. Prolate ellipsoids can be considered as a model ap-
rates, as full treatment of hydrodynamics is very difficult. proximation of inflexible, rodlike particles, such as attapulg-
Practical applications, however, often deal with concentrateite or sepiolite clay particles in drilling muds, or molecules
dispersions at high-shear rates. Moreover, many colloidalorming liquid crystalline phases. Likewise, oblate ellipsoids
particulates are not spherical. Therefore there has been receare a model representation of disklike clay particles with a
interest in the rheology of suspensions of particles with varidlow aspect ratio, such as laponiynthetic hectorite which

can form highly thixotropic gels.
Most simulation methods used to date are based on a con-
*Electronic address: boek@cambridge.scr.slb.com tinuum model for the solventdiscretized for numerical
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analysig, such as Browniaf7] and Stokesian dynami¢8].  here; for more details we refer [@2]. The model consists of
To simulate suspensions at high-shear rates, these techniquégarticles, moving in a continuum domain of voluieAs
are computationally very intensive: the calculation of hydro-in MD, the system is determined by the positionsand
dynamic interactions increases cubically with the number omomentap; of each particle. As in a LGA, the system is
suspended particles8]. Therefore the results to date have updated in discrete time ste@ consisting of an instanta-
been restricted to relatively small systems. Instead, in thiseous collision followed by a propagation substep of dura-
paper we advocate a particle-based simulation of the solvention 6t. In the collision phase the momenta are simulta-
by modeling a suspension as a system of large colloidal pameously updated according to the stochastic rule

ticulates in a solvent of point particles, the calculation of

interactions only causes a linear increase of the computing _ -

time with the number of colloidal particulates. There have pi(t+&)_pi(t)+; Qj;8;, 1)
also been some simulations of colloidal systems using

lattice-Boltzmann methodg9-11]. We show here that an- whereg; is the unit vector pointing from particlg to par-
other mesoscopic simulation technique, dissipative particlgcle i and the scalar variabl@;; specifies the momentum
dynamics(DPD), can be successfully applied to study the ansferred from particlg to particlei. In the propagation

rheology of dense supensions of spheres, rods, and diskshase the particle positions change according to a free propa-
This particulate simulation technique was originally devel-gaﬂOn

oped by Hoogerbrugge and Koelmgt2]. The method ap-

pears to show much promise in the simulation of hydrody- p;(t+ 6t)

namic behavior of systems too complicated to be tackled by ri(t+ &):fi(t)JrT&, 2
traditional methods, especially in the field of microscale hy-

|
drodynamic phenomena, where Brownian effects play an imgith m, being the mass of particie For systems of particles
portant role[13]. This would make the scheme useful espe-ith equal mass, as in our case, the change in momentum
cially in the field of simulations of dispersed systems, sucmij can be written as

as colloidal suspensions and polymer solutions. Indeed, in

two subsequent papef$4,15, the originators of the dissi- Qi =W(|ri—ri){IT; —w(p-—p)-é,-}. 3)
pative particle dynamics method set out to prove this point. . bR e

In particular, they showed that the DPD technique producegy(r) is a dimensionless, non-negative “weight” function
realistic rheological behavior for sphere suspensions at highyhich is zero for >r ., wherer. is the radius beyond which
shear rate$14]. Other successful applications of the DPD the interparticle interaction vanishes. The functidgr) is
technique include simulations of polymer solutidd$,16,  normalized such that its volume integraMsN=n"1, where
immiscible fluids[17], and single phase fluid flow through a p, js the average number density of the particles. We choose
simple model porous mediuf12]. W(r)=(3/7rin)(1—r/r.) if r<r and zero otherwise.

In this paper we further validate the DPD method by cal- t |east for a single phase system, the dynamics described
culating rheological properties of colloidal suspensions in,y these equations satisfies the requirements for a valid fluid-
three dimensions, at different shear rates, and for d'ﬁererﬂynamical model: both mass and momentum are conserved,
shapes and sizes of the colloidal particulates. The viscositjhile the equations of motion are isotropic and Galilean in-
of suspensions of spheres is investigated as a function Qfyriant so the macroscopically averaged system obeys the

shear rate. In particular, we calculate the low-shear ViSCOSitM\Iavier-Stokes equatiorfd2,18,20. The specific choice for
as Koelman and Hoogerbrug{d] only reported results for Qi in Eq. (3) leads to a well-defined asymptotically attained

high-shear rates. Furthermore, we calculate the viscosities Qg jjjibrium state. The first, stochastic, term within the braces

suspensions of rods and disks as a function of volume fracs, the right-hand side of Eq3) causes the system to heat
tions increasing up to 35%, and compare these with theorethp, while the second, dissipative, term tends to relax any
cal and, where available, experimental results. The paper i$|stive motion. In more detail, the stochastic teily;
organized as follows: In Sec. Il we will give an outline of the ,_ I1;) is a random number sampled from a diStI’ileJtiOI’l
DPD method; in Sec. lll the rheology of spheres, rods, anéN !

: . - . . ith mean (II;;)=11, and variance((Il;;—II,)?). Thus
disks are discussed; in Sec. IV the simulation results ar =TI+ 6II;;, wherell, represents a repulsive interac-

: : i
presented and in SE.’CS‘ V and VI we discuss the results affon, ensuring that the particles remain distributed homoge-
present our conclusions. neously, whiledsll;; causes fluctuations and prevents order-
ing of the system, that is it represents an effective Brownian
motion. The dissipative term, containing the dimensionless
numberw, causes friction and gives rise to a macroscopic
The dissipative particle dynamic$DPD) simulation  viscosity. Both terms acting together have the effect of a
method was developed by Hoogerbrugge and Koelpd@h  thermostat: if the system gets too hot, the dissipative term
for studying complex fluids and hydrodynamic phenomena(proportional to the relative motion of the particlewill
By introducing a lattice-gas automat@oGA) time-stepping dominate and cool the system, whereas if it becomes too
procedure into a molecular dynami¢s1D) scheme, they cold, the Brownian term will dominate and drive the system
were able to construct a stochastic particle model for an isato higher temperatures.
thermal fluid system. This model is at the same time much It has been shown that the property of detailed balance is
faster than MD and very flexible with respect to the additionsatisfied by DPD, for the one-component cf$8] and the
of model features. We will only describe the basic modelmulticomponent casgl9], and therefore a Gibbsian equilib-

II. DISSIPATIVE PARTICLE DYNAMICS
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rium state is guaranteed to exist. We have verified the singléhese particles, according to the Euler equations for rigid-
particle velocity distribution for a three-dimensional DPD body motion. In the subsequent propagation phase all these
fluid with an average density afr>=3. Indeed, the velocity ~particles move together as a solid object, depending on the
distribution matched the Maxwell-Boltzmann distribution forces exerted by the surrounding fluid particles. In order to
perfectly. In a fluid of identical particles, one would expect ameasure the viscosity of a suspension, a macroscopic steady-
Maxwell distribution on very general grounds, characterizechear flow regime is imposed on the fluid. Steady uniform

by the mean square velocity used to compute the temper hear is simulated by using Lees-Edwards sliding periodic

ture. However, Espanh and Warren[20] found that, using oundary condi_tion$22] and thg stress tensor is then calcu-
the original DPD model of Hoogerbrugge and Koelman, eq_Iated at eaqh time step:_ th(_a virial expressmn.for the.s.tress
uipartition is not obeyed in a mixture of particles of different tensor consists of contributions from_ the partlcle collisions
masses. They suggested two modifications to the basic DP d Propagations, and frpm the solid ot_)Jects. For a more
model to ensure that the DPD equilibrium state is the canoni—e""’“led description of this rath_er cqmphcated calculayon,
cal ensemble. The first is reducing the length of the time steﬁve, refer to[14,21). The shear viscosity of the suspension,
by a factor of 10, the second is the insertion of an extra factof” 'S related to thgy component of the stress tensaty, in

of 2(1—r/r,) in the dissipative term in the change in mo- (€ following way:

mentum [Eq. (3)], in order to satisfy the fluctuation- )

dissipation theorem. However, for hydrodynamic simulations v=—0ylv, (4)

it is not strictly necessary to be in the regime where Boltz- .

mann statistics holds. In a sense this is the analog of thesherey represents the imposed shear rate. The stress tensor
situation which pertains for virtually all multicomponent is normalized by the number of particles, leading to a kine-
lattice-gas and lattice-Boltzmann automaton models, whictnatic viscosity rather than a dynamic viscosity.

do not satisfy detailed balance yet which describe hydrody-

namic behavior well. We have checked this assumption by Ill. RHEOLOGICAL PROPERTIES

performing a few calculations with and without the sug- OF DENSE PARTICULATE SUSPENSIONS

gested modifications to the algorithm: indeed it appears that

the value of the viscosity of suspensions under shaar In this section we give an overview of theoretical expres-

described latéris not significantly affected. Therefore we sions available for the viscosity of colloidal suspensions of
have conducted our simulations using the original algorithnvarious particulates, including spheres, prolate ellipsoids

as described above. (rods, and oblate ellipsoid&disks.
);;, as defined in Eq3), can be regarded as an interpar-
ticle interaction term. The DPD interactions are very “soft” A. Suspensions of spheres

as compared with MD interparticle forces, which are charac- The steadv-state shear viscosity of a SuSpension of mono-
terized by steep short-range potential functions; the DPD y Y P

particles are in fact to some extent “transparent” as there is?r:zp\%ff;g?re;;‘?ogzie(rﬁg;n ;vgc}vsgneqs;g?snﬁzsngjri%be?
no absolute volume exclusion. DPD is computationally ad-densit [24] and a is the radiFL)Js of the particlﬁsand the
vantageous relative to MD, because the soft DPD interaeﬁ’ecletynumber Pe. which is defined as P

tions allow particle motions of the order of a mean free path ’
during each time step, whereas MD particle motions are con-
strained to smaller distances to accommodate the steep po- A
tentials. The DPD time step is typically two to three orders Do kgT '
of magnitude larger than the time step in a MD scheme. The ) ) S o _
fluid particles in DPD should not necessarily be seen as rep¥hereDy is the Einstein diffusion coefficientys is the sol-
resentations of molecules, but are more abstract “carriers ofént viscosity, anckgT is the thermal energy. The Peclet
momentum.” These fluid “packets” have a mesoscopic na-number expresses the ratio between the hydrodynamic forces
ture; they are large with respect to the molecular level, buglue to shear and the Brownian forces, which tend to restore
small in comparison with gradients of fluid dynamical quan-the equilibrium configuration. In other words, the Peclet
tities of interest. Note that DPD should be regarded as basember expresses the ratio between two time scélgshe

on a—highly idealized—microscopic model, which producestime needed to deform the dispersion structure by stigar
correct mesoscopic and macroscopic behaviige LGA). v) and(2) the time scale of Brownian diffusion that restores
By contrast, MD delivers correct microscopic, mesoscopicthe equilibrium configurationa?/Dy).

and macroscopic behavior, the last two in principle rather Therefore Pe measures the amount of departure from
than in practice. We have used the dissipative particle dyequilibrium. Except in a few limiting cases, the functional
namics algorithm, as implemented in the Rheoflex d@i¢  dependence of the viscosity @hand Pe is not known theo-

by Hoogerbrugge and Koelman. Within the flexible environ-retically.

ment of this fluid model, large solid objects of arbitrary = One of the cases for which this dependersxcknown, is
shapes, such as suspended particulates, can be modeled biyra viscosity of a dilute suspension of hard spheres. Einstein
local “freezing” of the fluid particles. Therefore these solid solved this problem in 1906 and 19[25] by calculating the
objects do not have perfectly smooth surfaces. “Freezing”extra energy dissipation in the fluid due to the presence of
of the fluid particles is achieved in the following way: fol- noninteracting spheres, and found

lowing a collision, the momenta of all “frozen” particles

comprising a solid object are summed and redistributed over 7=l ns=1+(5/2) ¢, (6)

va? 6mpas;
ya? 6mpa’y ©
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where 7 is the viscosity of the suspension ang is the range 10*<Pe<0.2 and in that case only the low-shear
reduced shear viscosity. viscosity was obtained. For the larger particles, measure-
The effects of interactions between the suspended paments were done in the range ¥8<Pe< 10 and a transition
ticles become significant at higher concentrations. This isvas observed from the low-shear viscosit§0) to the high-
where theoretical difficulties become severe. For the viscosshear viscosityy(). The characteristic Peclet number.Pe

ity of less-than-dilute suspensions only approximate expresior this transition, defined as the value at which
sions have been derived, up to second order in an expansion

of the viscosity in the volume fraction. This term includes 1
contributions due to hydrodynamic interactions and Brown- n(P&)= 5[77(0)+ 7(®)], 9
ian motion and leads t[®6,27]

. _ L0 depends markedly on the volume fraction of the suspended
7:(y)= 0l ns=1+(5/2) p+ky(y) p°. (7) sphereg1].

The reduced viscosity), is now also a function of the ap- !N the work described here, we have sought to further
plied shear rate, an effect which will become increasinglyva"date the DPD simulation technique by calculating the

important with higher volume fractions. This dependence high-sheaandlow-shear viscosity of suspensions of spheres
on the shear ratg is included in the factok,, which has the for volume fractions[33] ¢=0.3-0.4, and .determmmg
following limiting behavior: (i) in the ?c,)w-shear limit P& . The results for(0), 7(c), and 7(Pg) will be com-

. _ " i pared with the experimental data of van der Werff and de
(y—0), where Brownian motion dominatek;=6.2 [27];  Kyyif [1]. Our results are presented in Sec. IV.
(i) in the high-shear limit — <), where the hydrodynamic
contribution dominates,=5.2[26].

Equation(7), in which only pair interactions are included, ] i . ) .
is only valid at low concentrations; for higher concentrations, ~The calculation of the viscosity of a suspension of rodlike
the hydrodynamics should be treated at the many-body leveparticles is a long-standing problem. An important point is
This would involve calculation o2 and higher order terms, that the dependence of the viscosity on the solid volume
which is theoretically cumbersome. fraction and the applied shear rate is stronger than for spheri-

Many expressions have been proposed which relate theal particles. Shear thinning in suspensions of rods is mainly
viscosity of concentrated suspensions in an empirical way tgue toorientationalordering, whereas in sphere suspensions
the volume fraction. The most famous is the Krieger-it is presumably due tpositional ordering. In general, the
Dougherty relation[28] (which was later verified theoreti- hydrodynamic motions of nonspherical particles are de-

B. Suspensions of slender rods

cally as well[29]) scribed as ellipsoids of revolution, having their rotation axes
properly oriented with respect to the flow direction. These
¢ | [ ¢max ellipsoidal motions increase the amount of dissipated energy
7=|1- ' 8 and therefore the viscosity of the fluid. The viscosity of a
¢ma

suspension of prolate ellipsoids of rotation, with semimajor

where ¢, IS the maximum packing fraction or packing axesa>b=c, can be written as an expansion up to first
volume fraction(PVP), that is, the phase volume where the order in the volume fractiop as follows:
viscosity is infinite. QuemadiB0] noted that experimentally
the exponent-[ 7] émay iS close to 2, which was confirmed _7_
by van der Werff and de Kruifd]. R 17l (10

Under such conditions, the use of numerical simulations
may provide more insight into the complex behavior ofwith
dense suspensions. Barnes, Edwards, and Wood&idk
have given an overview of the state of the art in simulations b= % mab? (11)

. . . L 3 P

of dense colloidal suspension rheology. Using dissipative

particle dynamics, Koelman and Hoogerbruggdl] have wherep=N/V is the number density. Note thak is defined

simulated the shear flow of suspensions of solid spheres, u : . o :
to volume fractions of 35%; recently this was extended to&)s thereducedviscosity, whereagy] = k, is defined as the

: - . intrinsic viscosity. The intrinsic viscositk,; was evaluated

45%[32.]' They found_ viscosities that are in excellent agree-by several auth%rs. Taking Brownian r%(]%)tion into account,
ment with the experimental data of van der Werff and deOnsage|[34] obtained
Kruif [1] for a sterically stabilized suspension of colloidal
silica spheres. The authors only present simulation results for
the viscosity at high Peclet numbers.

From an experimental point of view, the dimensionless
Peclet number will always be very small for common labo-
ratory shear rates, if smala(= 10 nm colloidal particles
are usedsee Eq.(5)]. However, for larger particles, the Pe-
clet number can be varied from small to large. This wasFollowing Onsager, Simhf35] and Kuhn and Kuhr{36]
exploited by van der Werff and de Kruif, who used silica independently calculated the viscosity from the energy dissi-
spheres with radii varying from 28 to 110 nm. In the case ofpation of noninteracting rods. They found for the rod aspect
the smallest particles, the viscosity was measured in theatio f=a/b>1

:()2
In(5)

Gl
ol

Ky

. (12)

[
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f2 f2 13 term involving the parameter, in which case Eq(15) pre-
= + +c, 13 dicts thaty/ 7sx ¢>. As we shall see in Sec. IV B, our simu-
3 1 S ’
HIn(2f)= 31 S[in(2f)~- 3] lations agree with this scaling behavior. We finally note that
Egs.(14) and (15) should, ideally, crossover smoothly.
In this paper, we have performed DPD simulations of

The fi in Eq(13) is the hvdrod . buti suspensions of rods, to investigate how well these results
e first term in Eq(13) is the hydrodynamic contribution 5466 with theoretical results for the dilute and concentrated

and the second term represents Brownian motion. Note th%gime[Eqs.(lél) and(15)], as well as with available experi-
for f>1, the Brownian contribution is exactly three times as a4l data. Our results are presented in Sec. IVB

large as the hydrodynamic contribution. In fact, fer 1, the
precise shape of the particlésllipsoid, cylindey is irrel-

evant; only the aspect ratfo=2 is important. This is a result ] . .
of slender body theorj37]. Just as rodlike particles can be modeled by prolate ellip-

A further step was taken by Berry and Ruskgs], who spids, dis!<s can be d.esgrib.ed as oplate eIIipsojds of revolu-
managed to calculate the term of ord#? in the viscosity. tion. _In this way, the intrinsic viscosityn] of a dilute sus-
This includes consideration of the effect of pairwiggdro- ~ Pension of disks was evaluated by Kuhn and K{&6]
dynamiq interactions. They foundat low Peclet number

Ky

with c=1 (Simha andc=1.6 (Kuhn and Kuhi. Note that
for f>1, the Onsager resull?) is recovered from Eq.13).

C. Suspensions of disks

_4 32 16

7 2
mR= - =1tkiptgkig?, (14
S
For oblate ellipsoids, the aspect rafie 2<1, a andb being

where the intrinsic viscosity, =[ 7] is equal to the Onsager the semimajor axes. , _

k, coefficient, as given in Eq(12). The inclusion of the Guven [46] found a slightly different expression

¢ term in Eq.(14) implies that this expression can be ex-

tended to somewhat higher concentrations than &@); 5 32 /1 1-f

nevertheless, it is still limited to the dilute regime. In a dilute [7]==+ _<_ - 1) —O.62£<—

solution of rods, the average distance between the rods, 2 157\ f 1-0.075

p~ 13 (wherep is the rod number densityis much larger

than their length 3, i.e., p<a™ 3. Rodlike particles with a high aspect ratio have a much larger

At concentrations beyond the dilute regime, hydrody-intrinsic viscosity than disklike particles with high values of

namic interactions between many rods become important.~!. For instance, fof =100 (f ! for disks, the intrinsic

Whenp>a~3, the rods hinder each other in their rotational viscosity would be roughly 600 for rods and 70 for disks,

and translational motion: they become “entangled.” Stressaccording to Egs(13) and (16). These values are much

relaxation is then believed to be dominated by how rapidly darger thar{ ]= 2.5 for spherical particles. In Sec. IVC, we

rod can escape out of the “cage” formed by its neighbors.report on the results of our DPD simulations of disks.

The cage concept was introduced by Doi and Edw§Bd$

for infinitely thin rods; the influence of finite rod widths has IV. SIMULATION RESULTS

also been analyzdd0,41]. Within the cage model one finds

the following expression for the viscosity of a congested In order to simulate a suspension undergoing steady uni-

solution ofcylindrical rods: form shear, we have used sliding periodic boundary condi-
tions with a three-dimensional simulation box, having a size
of 30xX30x30 dimensionless units. We work in reduced

. @A

32 f° 3 s units so that the time stefy, the interaction range; and the
7l 7s= 1572 Binf ¢*(1-afd) %, (15 DPD particle massn have a value of unity. We have used,

as in[12], =4/3,11, = 1/3, anddll;; was sampled from a
homogeneous distribution dr-1/3, 1/3. In all simulations,

i imit o>a- 3 fs N . .
in the limit p>a ~ f>1, and Pe<1, wherea andf are to 5 paricle density=3 was used, corresponding to a total of
be taken as adjustable parameti88—-41. The parameter g1 300 pPD particles.

B is equal to the square of the number of rods required to
fully entangle a test rod orientationally. The parameter
measures, loosely speaking, how efficiently the “free vol-
ume” is reduced by the presence of the rods, and represents In order to generate a suspension of solid spheres with a
so-called “log jamming” effects. This expresses itself for volume fraction of approximately 30%, 45 spheres with ra-
instance in a reduced translational diffusion parallel to thedius 3.5 were defined and randomly positioned within the
rod direction, making it less easy for a rod to escape thaimulation box. A snapshot of such a suspension undergoing
cage. Comparison with real as well as computer experishear is shown in Fig. 1. In view of the particle density
ments indicates that typicallg=0(10% [39,42,43 while  n=3, each sphere contained about 540 “frozen” fluid par-
a=0(10"1) [41,44. Not too close to the isotropic-nematic ticles. To investigate the possible effects of ffiaite) size
phase transition, which roughly occurs at volume fractionsof the spheres, we also created suspensions containing 21
¢~1f~1 for hard rodg45], one can presumably neglect the spheres of radius 4.5 and 68 spheres of radius 3.053, respec-

A. Suspensions of spheres
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FIG. 1. Snapshot of a 30 vol %
suspension of spheres. The dots
are basic DPD particles, some of
which are “frozen” into the ap-
proximately spherical particles.
The steady shear is applied by
sliding the periodic box above the
central box to the left, and the one
below to the right.

Vi

Bl

N A
Y(STOP) Timesteps: 33260; #neighbours: 0,000000; temp: 0,0000

00

tively. The only forces acting on the spheres were thehinning regime is observed at higher shear rates
Brownian fluctuating forces and the hydrodynamic forces be{1<Pe<10) followed by a second Newtonian plateau,
tween the spheres, both transmitted by the fluid particlesvhere 5(=) is constant at a value of 3.0. The actual values
These suspensions were subject to dimensionless steadyr the low- and high-shear viscosities are in good agreement
shear rates, varying from>310"° to 0.05, thus covering with the experimental resulté3.77 and 2.99, respectively
four orders of magnitude. For each shear rate a separaf)). The characteristic viscosity(Pe,), as defined in Eq.
simulation was performed. The shear stress was measured(ggy is found to be equal to 3.#aking the values for high-
each time step, and the viscosity was then calculated as ajq |ow-shear viscosity of 3.0 and 4.5, respectiyvehis

average over all the steps. Measurements of the viscosity fQfje is in good agreement with the experimental vdllie
the higher-shear rates are obtained within a few tens of thoyss 5 4 (0.2,

sands of DPD steps, which take a couple of hours on a Sili-
con Graphics R10000 processor. In order to get acceptable
statistics for the shear stress signal: noise ratio, the low-shear
rates required several hundreds of thousands of time steps. °° ' ' " ‘ '
This takes several days of computing time on a Silicon
Graphics R10000. The solvent viscosity, obtained from a
simulation without suspended particles, was found to be con-
stant at a value of 0.0362 in this shear rate regifNete that

for y>0.1, the solvent as well as the sheared suspensions
become unstable and the measured viscosity and kinetic en-
ergy increase dramatical)yThe reduced viscosity is then
calculated as the suspension viscosity divided by the solvent
viscosity. Our calculated viscosities for the three sphere sizes
are shown in Fig. 2 as a function of the Peclet number, using
3kgT = 0.0033.

We observe that the viscosity does not depend signifi- R=35
cantly on the sphere size. This is what one would expect.
Furthermore, this figure shows that the viscosity follows a 2L s - L .
typical shear-thinning curve. Averaged over the various 10° 1o 0 et ember 10 10
sphere sizes, we find that at low Peclet numbers<(Pg
7(0) is fairly constant at a value of 4.5, corresponding with
the first Newtonian plateau. Despite running the simulation FIG. 2. Reduced viscosity of a 30% suspension of spheres as a
for several hundreds of thousands of time steps, the errGtinction of Peclet number, for spheres with radii= 4.5, 3.5, and
bars remain substantial at these low-shear rates. A sheas:0.
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FIG. 3. Viscosity of a suspension of 40 vol % spheres as a FIG. 4. Reduced viscosity of dilute suspensions of prolate ellip-

function of Peclet number. Two different values for the radiusf soids as a function of solid volume fraction, at a steady-shear rate
the spheres has been employeB=3.5 (upper curvg and v=0.0003(solid line with error bars, representing rms deviatjons
R=3.053 (lower curve. Theoretical expansions in the volume fraction are also shown for an

aspect ratiof=5, as derived by Onsagddotted ling, Simha

) ) o (dashed ling Kuhn and Kuhn(solid line), and Berry and Russel
Using a smaller box size of 2020X20 (containing (dashed-dotted line

24 000 DPD particlgs we obtain the same value for the

high-shear viscosity of a 30% sphere suspension. The low-

shear viscosity on the other hand is found to be significantly ]

larger(5.5) for a sphere size of 3.053. This may be attributed 10 Study hard rod suspensions, we have added prolate

to finite size effects and will be discussed in Sec. V. ellipsoids to the simulation, in random positions and orien-
We have also investigated the shear-thinning behavior ofations within the simulation box. The aspect ratie § of

a suspension containing a higher volume fraction of sphereghe prolate ellipsoids was chosen to be equal to 5, with a

Sixty-one spheres with radius 3.5 were defined within a culength 2a=8 and diameter B=1.6. Up to 260 ellipsoids

bic box of size 330X 30 to generate a Sphere Suspension\Nere defined within a simulation box of size2@0xX 20, to

of 40% by volume. Simulations were performed at shea©btain volume fractiongs up to 35%.(MD simulations pin

rates in the range 810 6< y<5x10"2. The measured vis- point the isotropic-nematid (= N) transition for hard prolate

cosities are shown in Fig. 3 as a function of Peclet numbe‘?”'psoIdS off=5 at a volume fraction of about 37948,

-, . . ] . our particles are somewhat soft, so we expect theiN
Pe=ya®/Do. With increasing shear rate, the viscosity valuesyansition at densities quite higher than thihese suspen-
for the spheres with radius 3(Gpper curve in Fig. Bshow  sjons were subject to steady dimensionless shear rates of
qualitatively the correct shear-thinning behavior, exhibiting3x 10-4 and 3x10°°, corresponding to Peclet numbers
bpth a first and se.cond Ngwtoman plateau. The yalue for the o ¥a2/D, of 0.1 and 1.0, respectively. The viscosity val-
high-shear viscosityp(«) is found to be 4.5, which com- 5 for dilute suspensions up to 15 vol %, at a shear rate of
pares reasonably with experimental values of[3/land 5.9 3% 1074 are shown in Fig. 4. In this figure, theoretical ex-
[47]. However, the value for the low-shear viscosiff0) of  pressions for the viscosity of dilute rod suspensions are
24.0, is much too large, as compared with the experimentadhown as well, as linear expansions in the volume fraction,
values of 7.§1] and 10.1[47]. Initially, we believed that this  according to Eq(10). The values for the intrinsic viscosity
discrepancy was due to inadequate representation of intek; (the slopes of these graphsre calculated according to
sphere lubrication: the average surface-to-surface distance ys.(12)—(14). Given the aspect ratib=5, we find intrinsic
only a few times the coarse-graining length In order to  viscosity values of 4.14, 5.78, and 6.45 from the Onsager
check this hypothesis, we repeated the calculations for 9112), Kuhn and Kuhn and Simhél3) expressions, respec-
spheres with a radius of 3.053, in a computational box of sizdively. Fitting our data by a quadratic function fgr<0.14,

30x 30X 30. The results of these calculations are shown irwe find a linear coefficient of 4.0, which can be interpreted
Fig. 3 as well, in the lower curve. The low-shear viscosity isas the intrinsic viscositk;. A quadratic coefficient of 10 is
much smaller now, having a value of 12.0, which is in goodobtained, which is of the same order of magnitude as the
agreement with the aforementioned experimental data. ThiBerry-Russel[38] prediction (2/5)<f=7. Note that agree-

is somewhat surprising, because the larger the radius of thaent cannot be expected to be quantitative, owing to the low
spheres, the more accurate lubrication by the surroundingspect ratio of our particlgsecall that the Berry-Russel pre-
DPD fluid particles should be represent@d constant vol- diction assumes thdt>1). From 14% upward, a higher or-
ume fraction. Such behavior may be ascribed to finite sizeder dependence of the viscosity on the volume fraction sets
effects, which will be discussed in Sec. V. in. In Fig. 5, the viscosity of these rod suspensions is shown

B. Repulsive rod suspensions
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FIG. 5. Reduced viscosity of suspensions of prolate eIIi_psoids S FIG. 6. Reduced viscosity of suspensions of oblate ellipsoids as
a function of solid volume fraction, at steady shear rajesf  a function of solid volume fraction at a steady-shear rate
0.0003 (lower curve and 0.000 03higher curve. The error bars . 0003. Theoretical expansions in the volume fraction are
represent rms fluctuations. The polynomial fits are indicated as Songhown for an aspect ratib=5, as derived by Kuhn and Kuhn

lines. As a guide to the eye equatidb) has also been drawn for  y4ted ling and Given (dashed ling The polynomial fit is indi-
B=10° (dotted ling, 10° (dashed ling and 10 (dashed-dotted .atad as a solid line.

line) with « fixed at a value of zero.

Ub 1o 35% volume fraction. for both applied shear rates Thesions of the Rheoflex code limit the number of DPD particles
P 0 , . ’ pplied "~ _and therefore the simulation box dimensions at a constant
values of the viscosity, measured at the high-shear rate, a

r . . L > .
below the ones for the lower shear rate, for each value of thaeensny of 3, we had to use thin ellipsoids with a diameter

. . .~ 2b=0.8. We found that the viscosity of such suspensions did
volume fraction. This is what one would expect, assumin . . )

. . . ; ot show the expected increase as a function of solid volume
the rods orient themselves in the flow field at high-sheal

(A S L
rates, leading to shear-thinning behavior. The higher Ordefrractlon. The reason for this is probably that the ellipsoids

dependence of the viscosity on the volume fraction forhave effectively become too thin. The hydrodynamic inter-

¢>0.13 marks the transition from the dilute regime to theaCtion radiug’, of the DPD particles was chosen to be equal

) Lo to one. Therefore the solvent particles on opposite sides of
concentrated regime, where the density is greater tha] . : o ; .

) e long dimension of the ellipsoids will be able to interact,
roughly one particle per average hard-core excluded volume

[49]. (For our “soft” rods, this value should be considered as they are separated by a distante=2.8. Hence, the rod

as the lower limit. Equations(14) and (15) suggest that, in particles may become effectively “transparent” for the sol-

order to describe the viscosity as a function of volume frac-vem' which causes the unexpectedly low viscosity. For this

tion over the whole range of concentrations, we have to inreason it is important to select the dimensions of solid ob-
clude the linear and quadratic expansions in the dilute regimlse‘:tS carefully.
as well as the third-power dependence in the concentrated
regime. Therefore we have fitted our data to a third degree
polynomial function. The results are presented in Fig. 5, and In order to model suspensions of disks, we have added
show a good fit to the viscosity curves for both shear ratespblate ellipsoids to the simulation, having an initially random
The cubic term coefficients for the high- and low-shear rategosition and orientation. The aspect ratio of the disks was
are 222 and 584, respectively. It may be possible to relatehosen to be equal to 1/5, whereas the volume of the disk
these coefficients to thg factor in Eq.(15) although this was equal to the one of the aforementioned prolate ellipsoid.
should be treated with care because we neglect log jammingp to 225 ellipsoids were defined within a simulation box of
effects by effectively setting=0. As a guide to the eye, we size 20<20x 20, to obtain volume fractions up to 30%.
have plotted Eq(15) for several values of thg parameterin  These suspensions were simulated at a steady-shear rate of
Fig. 5. Our curves correlate with 4@ 8<10%, which is  3x 10 “. The reduced viscosity of the oblate ellipsoid sus-
roughly in agreement with the experimental value ofpensions is shown in Fig. 6. As in the case of our simulations
B=28600 for a solution of xanthan guf38]. Summarizing, of the rod suspensions, we have fitted our viscosity values to
we can say that our results are in agreement with the Doia third degree polynomial function. The result is presented in
Edwards third-power scaling law. The expression “scalingFig. 6, and our data show a good fit to the cubic function.
law™ is justified in this context, because the viscosity contri- Note that suspensions of spheres also show this third order
butions of the first and second order termspimre relatively  behavior up top=0.35[50]. This agreement may be ex-
small compared to the third order contribution. plained by the fact that, thermodynamically, disks behave
We have also performed simulations of prolate ellipsoidsvery much like sphereghe excluded volume of a sphere is
with a larger aspect ratio of 10. Because the array dimenapproximately equal to that of a diskand therefore disks

C. Repulsive disk suspensions
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may conform to a similar “virial” expansion. Returning to for both systems mentioned, we observed that the low-shear
our viscosity data, we find a linear coefficient of 4.71, whichviscosities are 28.7 and 24.0, respectively, compared to a
can again be interpreted as the intrinsic viscosity. This resulalue of 12.0 for the spheres of size 3.0 in the bigger system.
is in excellent agreement with the value of 4.71 as derived One may speculate that the reason why finite size effects
from the expression by &en[Eq. (17)], and compares rea- arise sooner for concentrated suspensions can be attributed to
sonably to the Kuhn and Kuhn prediction of 3.f#q. (16)]. direct interactions between colloidal particles. In principle,
The third degree coefficient has a value of 147, which iswo colloidal particles that are in contact can interpenetrate
lower than for rod suspensiorig22 at the same shear rate Pecause they are "soft.” Note that at high concentrations
One might speculate that the number of solid objects needdgt€rPenetration is more favorable, due to lack of available
for jamming or entanglement is lower for rods than for disks./'€€ VOlUMe. A suspension of interpenetrating spheres may
Note that, even in the case of an aspect ratio as low a ave e_nhanc_ed viscosity bec_ause of the fact tha_t 'Fhe particles
f=5, the intrinsic viscosity of rodlike particle&{ = 5.67 in are rigid bodies. In a sense, if the particles are rigid and they

our casgis higher than the intrinsic viscosity of a sus ensionare "anchored” to each othelthrough interpenetratirthe
9 y P verall response of the system could be more “rigid,” that is

of disks ha"'f‘g the same zspect _ratlo. This is n generainore viscous. In other words, if the colloidal particles are
agreement with previous o _servat|o[|t6]__ Summarizing,  ¢5rceq into one another’s interaction radius, the dissipative
we confirm the theoretical linear behavior at low volume;q . i Eq.(3) will increase. This could lead to an increase

fractions and predict a third-power scaling law for concen-y¢ viscosity for the large spheres over that for the small

trated suspensions of disks. spheres just as we have found. This effect manifests itself
mainly at low-shear rates; at high-shear rates, the structure
V. DISCUSSION OF FINITE SIZE present in the suspension is suppressed by the applied shear,
AND RESOLUTION EFFECTS and the situation is in a sense similar to a dilute suspension.
In this section we want to discuss the finite size effects " summary, it seems that in all the cases considered the

observed in our simulations of sphere suspensions, angselution is sufficienteven in the 40% suspensjorHow-
clarify the difference between “finite size effects” and ever, there are finite size effects that are more important as

“resolution effects.” The latter may be attributed to the fact th€ volume fraction increases.

that the sol_vent par'tlcles are not of negligible size compgrgd VI. CONCLUSIONS

to the colloidal particulates, and, hence, the continuum limit

is not obeyed. We have performed simulations of the rheology of dense

For a 30% sphere suspension in ax&DX 30 system particulate suspensions using a mesoscopic simulation tech-
size, we observed that spheres of sizes 3, 3.5, and 4.5 giveque, known as dissipative particle dynamics. Within the
essentially the same results for the viscosity. This impliedlexible environment of the Rheoflex DPD code, it is easy to
two independent thing41) The size of the systertin terms  define solid particulates of various sizes and shapes. In this
of number of colloidal particless large enough(2) A reso-  report we have studied the steady-shear flow of suspensions
lution as small as 3:1 is also enough. Here 3 refers to thef spheres, rods, and disks at various concentrations and
radius of the sphere and 1 to the radius of the fluid particlesshear rates. For sphere suspensions up to 30%, we find shear-
The “continuum limit” seems to be achieved already be-thinning behavior consistent with experiment; the values of
cause by increasing the resolution to 4.5:1 nothing is gainedoth the high- and low-shear viscosity are, in fact, in good
Using larger particles it may be expected that finite size efagreement with experimental results. Furthermore, these re-
fects will show up. sults are independent of the size of the suspended spheres.

For a 30% sphere suspension in a2DXx 20 system, we Denser suspensiong0%) give good results for the high-
observed that the low-shear viscosity is too large. It may behear viscosity; for low-shear rates, however, the size of the
expected that the results will get worse as the radius insimulation box should be augmented to eliminate finite size
creases. In order to investigate this point, we have performeeffects. Therefore, we consider DPD to be a valuable alter-
simulations for different sphere sizes at a constant 30% volnative to Brownian and Stokesian dynamics as a simulation
ume fraction. Indeed, we found that the low-shear viscositynethod for studying particulate suspensions, particularly at
increases systematically from 5.5 to 6.6 with sphere sizehigher-shear rates; as with other methods, at lower-shear
increasing stepwise from 3.0 to 4.5. This implies that therates, in the regime where Brownian motion dominates, the
continuum limit is well represented, as the resolution 3:1 iscomputing time required to obtain statistically significant re-
sufficient, but the system size is actually too small. sults increases strongly.

At 40% volume fraction, we observed that, for a Dilute suspensions of rods and disks, subject to a steady-
30x 30X 30 system size, spheres of sizes 3 and 3.5 give difshear rate, show a linear increase in the reduced viscosity
ferent results for the viscosity; the result for the smallwith increasing volume fraction. The slopes of these func-
spheres is better. In this simulation the resolution 3:1 seemtons, corresponding to the intrinsic viscosities of rods and
to be fine but what fails is the system size. Increasing thalisks, respectively, are in excellent agreement with theoreti-
resolution to 3.5:1 yields no improvement because the syszal linear expansions as a function of the aspect ratio. At
tem size is then too small. For this reason it may be expecteldigher concentrations, in the concentrated regime, our vis-
that, considering a sphere size of(@solution 3:1 in a  cosity data for both rods and disks scale with the third power
smaller system (2820x 20), the results will worsen in the of the volume fraction. For suspensions of rods, this scaling
same direction as by increasing the radius to 3.5 in the biggdyehavior is consistent with a theoretical expression derived
system (3 30x 30). Indeed, from simulations performed by Doi and Edward$39] for the semidilute regime.
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