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Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics
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The rheological properties of colloidal suspensions of spheres, rods, and disks have been studied using a
mesoscopic simulation technique, known as dissipative particle dynamics~DPD!. In DPD, a suspension is
modeled as a system of large colloidal particles in a liquid of interacting point particles. For the calculation of
hydrodynamic interactions, this method is computationally more efficient than conventional techniques using a
continuum model for the solvent. Applying a steady-shear rate to the particulate suspensions, we have mea-
sured the viscosity as a function of shear rate and volume fraction of the suspended particles. The viscosity of
a 30 vol % suspension of spheres displays characteristic shear-thinning behavior as a function of increasing
shear rate. The values for the high- and low-shear viscosity are in good agreement with experimental data. For
higher particulate densities good results are obtained for the high-shear viscosity, although the viscosity at
low-shear rates shows a dependence on the size of the suspended spheres that we attribute to finite size effects.
Dilute suspensions of rods and disks show intrinsic viscosities which are in excellent agreement with theoreti-
cal predictions. For concentrated suspensions of both rods and disks, the viscosity increases with the third
power of the volume fraction. We find the same scaling behavior as predicted by Doi and Edwards@M. Doi and
S. F. Edwards,The Theory of Polymer Dynamics~Oxford University Press, New York, 1986!# for rod sus-
pensions in the semidilute regime. The DPD simulation technique emerges as a useful tool for studying the
rheology of particulate suspensions.@S1063-651X~97!08203-2#

PACS number~s!: 82.70.Dd, 47.50.1d, 66.20.1d, 02.70.2c
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I. INTRODUCTION

The rheological properties of concentrated colloidal d
persions are of fundamental and widespread interest,
many industrial applications, ranging from foodstuffs a
chemicals to the upstream and downstream parts of the
industry. Within oil exploration and production, most of th
fluids which are used are colloidal in nature: drilling fluid
cement slurries, fracturing fluids, and reservoir injection fl
ids are all important cases in point. The performance pr
erties of these fluids depend in large measure on their c
ponent particulates: the control of these fluid propert
evidently depends on an understanding of colloid rheolo

As a model colloidal suspension, the monodisperse h
sphere system has been extensively studied, experimen
theoretically, and by computer simulations. High quality e
periments have been performed on well-characterized m
hard-sphere systems@1#; theoretical and simulation ap
proaches, on the other hand, generally have to assume h
idealized systems, such as dilute suspensions at low-s
rates, as full treatment of hydrodynamics is very difficu
Practical applications, however, often deal with concentra
dispersions at high-shear rates. Moreover, many collo
particulates are not spherical. Therefore there has been re
interest in the rheology of suspensions of particles with v
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551063-651X/97/55~3!/3124~10!/$10.00
-
th

oil

-
-
-
s
.
d-
lly,
-
el

hly
ear
.
d
al
ent
i-

ous shapes and sizes. Experimentally, the study of sh
effects in suspensions is difficult, because it is hard to s
thesize anisotropic colloidal particles with a monodispe
size distribution. Recent work shows that polydispersity h
a significant effect on the hydrodynamics of particulate s
pensions@2–4#. Furthermore, the static and dynamic beha
ior of suspensions is usually enriched by colloidal intera
tions between the suspended particles. It has been shown
both attractive and repulsive interactions have a signific
effect on the rheology of suspensions of spherical partic
@5#. Recent experiments suggest that suspensions of rod@6#
are even more sensitive to colloidal attractions than susp
sions of spheres.

For these reasons computer simulations offer a powe
alternative to study particulate suspensions, as an interm
ate between theory and experiment. Model particles,
spheres, and prolate and oblate ellipsoids, are easily ge
ated in a simulation. Particles can be created that do
suffer from polydispersity, or from attractive colloidal inte
actions. Prolate ellipsoids can be considered as a mode
proximation of inflexible, rodlike particles, such as attapu
ite or sepiolite clay particles in drilling muds, or molecule
forming liquid crystalline phases. Likewise, oblate ellipsoi
are a model representation of disklike clay particles with
low aspect ratio, such as laponite~synthetic hectorite!, which
can form highly thixotropic gels.

Most simulation methods used to date are based on a
tinuum model for the solvent~discretized for numerica
3124 © 1997 The American Physical Society
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55 3125SIMULATING THE RHEOLOGY OF DENSE COLLOIDAL . . .
analysis!, such as Brownian@7# and Stokesian dynamics@8#.
To simulate suspensions at high-shear rates, these techn
are computationally very intensive: the calculation of hyd
dynamic interactions increases cubically with the numbe
suspended particles@8#. Therefore the results to date hav
been restricted to relatively small systems. Instead, in
paper we advocate a particle-based simulation of the solv
by modeling a suspension as a system of large colloidal
ticulates in a solvent of point particles, the calculation
interactions only causes a linear increase of the compu
time with the number of colloidal particulates. There ha
also been some simulations of colloidal systems us
lattice-Boltzmann methods@9–11#. We show here that an
other mesoscopic simulation technique, dissipative part
dynamics~DPD!, can be successfully applied to study t
rheology of dense supensions of spheres, rods, and d
This particulate simulation technique was originally dev
oped by Hoogerbrugge and Koelman@12#. The method ap-
pears to show much promise in the simulation of hydro
namic behavior of systems too complicated to be tackled
traditional methods, especially in the field of microscale h
drodynamic phenomena, where Brownian effects play an
portant role@13#. This would make the scheme useful esp
cially in the field of simulations of dispersed systems, su
as colloidal suspensions and polymer solutions. Indeed
two subsequent papers@14,15#, the originators of the dissi
pative particle dynamics method set out to prove this po
In particular, they showed that the DPD technique produ
realistic rheological behavior for sphere suspensions at h
shear rates@14#. Other successful applications of the DP
technique include simulations of polymer solutions@15,16#,
immiscible fluids@17#, and single phase fluid flow through
simple model porous medium@12#.

In this paper we further validate the DPD method by c
culating rheological properties of colloidal suspensions
three dimensions, at different shear rates, and for diffe
shapes and sizes of the colloidal particulates. The visco
of suspensions of spheres is investigated as a functio
shear rate. In particular, we calculate the low-shear viscos
as Koelman and Hoogerbrugge@14# only reported results for
high-shear rates. Furthermore, we calculate the viscositie
suspensions of rods and disks as a function of volume f
tions increasing up to 35%, and compare these with theo
cal and, where available, experimental results. The pape
organized as follows: In Sec. II we will give an outline of th
DPD method; in Sec. III the rheology of spheres, rods, a
disks are discussed; in Sec. IV the simulation results
presented and in Secs. V and VI we discuss the results
present our conclusions.

II. DISSIPATIVE PARTICLE DYNAMICS

The dissipative particle dynamics~DPD! simulation
method was developed by Hoogerbrugge and Koelman@12#
for studying complex fluids and hydrodynamic phenome
By introducing a lattice-gas automaton~LGA! time-stepping
procedure into a molecular dynamics~MD! scheme, they
were able to construct a stochastic particle model for an
thermal fluid system. This model is at the same time mu
faster than MD and very flexible with respect to the additi
of model features. We will only describe the basic mod
ues
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here; for more details we refer to@12#. The model consists o
N particles, moving in a continuum domain of volumeV. As
in MD, the system is determined by the positionsr i and
momentapi of each particle. As in a LGA, the system
updated in discrete time stepsdt consisting of an instanta
neous collision followed by a propagation substep of du
tion dt. In the collision phase the momenta are simul
neously updated according to the stochastic rule

pi~ t1dt !5pi~ t !1(
j

V i j êi j , ~1!

where êi j is the unit vector pointing from particlej to par-
ticle i , and the scalar variableV i j specifies the momentum
transferred from particlej to particle i . In the propagation
phase the particle positions change according to a free pr
gation

r i~ t1dt !5r i~ t !1
pi~ t1dt !

mi
dt, ~2!

with mi being the mass of particlei . For systems of particles
with equal mass, as in our case, the change in momen
V i j can be written as

V i j5W~ ur i2r j u!$P i j2v~pi2pj !•êi j %. ~3!

W(r ) is a dimensionless, non-negative ‘‘weight’’ functio
which is zero forr.r c , wherer c is the radius beyond which
the interparticle interaction vanishes. The functionW(r ) is
normalized such that its volume integral isV/N5n21, where
n is the average number density of the particles. We cho
W(r )5(3/pr c

3n)(12r /r c) if r,r c and zero otherwise.
At least for a single phase system, the dynamics descr

by these equations satisfies the requirements for a valid fl
dynamical model: both mass and momentum are conser
while the equations of motion are isotropic and Galilean
variant so the macroscopically averaged system obeys
Navier-Stokes equations@12,18,20#. The specific choice for
V i j in Eq. ~3! leads to a well-defined asymptotically attaine
equilibrium state. The first, stochastic, term within the brac
on the right-hand side of Eq.~3! causes the system to he
up, while the second, dissipative, term tends to relax a
relative motion. In more detail, the stochastic termP i j
~5 P j i ) is a random number sampled from a distributi
with mean ^P i j &5P0 and variance^(P i j2P0)

2&. Thus
P i j5P01dP i j , whereP0 represents a repulsive intera
tion, ensuring that the particles remain distributed homo
neously, whiledP i j causes fluctuations and prevents ord
ing of the system, that is it represents an effective Brown
motion. The dissipative term, containing the dimensionl
numberv, causes friction and gives rise to a macrosco
viscosity. Both terms acting together have the effect o
thermostat: if the system gets too hot, the dissipative te
~proportional to the relative motion of the particles! will
dominate and cool the system, whereas if it becomes
cold, the Brownian term will dominate and drive the syste
to higher temperatures.

It has been shown that the property of detailed balanc
satisfied by DPD, for the one-component case@18# and the
multicomponent case@19#, and therefore a Gibbsian equilib
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3126 55BOEK, COVENEY, LEKKERKERKER, AND van der SCHOOT
rium state is guaranteed to exist. We have verified the sin
particle velocity distribution for a three-dimensional DP
fluid with an average density ofnrc

353. Indeed, the velocity
distribution matched the Maxwell-Boltzmann distributio
perfectly. In a fluid of identical particles, one would expec
Maxwell distribution on very general grounds, characteriz
by the mean square velocity used to compute the temp
ture. However, Espan˜ol and Warren@20# found that, using
the original DPD model of Hoogerbrugge and Koelman, e
uipartition is not obeyed in a mixture of particles of differe
masses. They suggested two modifications to the basic D
model to ensure that the DPD equilibrium state is the can
cal ensemble. The first is reducing the length of the time s
by a factor of 10, the second is the insertion of an extra fac
of 2(12r /r c) in the dissipative term in the change in m
mentum @Eq. ~3!#, in order to satisfy the fluctuation
dissipation theorem. However, for hydrodynamic simulatio
it is not strictly necessary to be in the regime where Bo
mann statistics holds. In a sense this is the analog of
situation which pertains for virtually all multicomponen
lattice-gas and lattice-Boltzmann automaton models, wh
do not satisfy detailed balance yet which describe hydro
namic behavior well. We have checked this assumption
performing a few calculations with and without the su
gested modifications to the algorithm: indeed it appears
the value of the viscosity of suspensions under shear~as
described later! is not significantly affected. Therefore w
have conducted our simulations using the original algorit
as described above.

V i j , as defined in Eq.~3!, can be regarded as an interpa
ticle interaction term. The DPD interactions are very ‘‘sof
as compared with MD interparticle forces, which are char
terized by steep short-range potential functions; the D
particles are in fact to some extent ‘‘transparent’’ as there
no absolute volume exclusion. DPD is computationally a
vantageous relative to MD, because the soft DPD inter
tions allow particle motions of the order of a mean free p
during each time step, whereas MD particle motions are c
strained to smaller distances to accommodate the steep
tentials. The DPD time step is typically two to three orde
of magnitude larger than the time step in a MD scheme. T
fluid particles in DPD should not necessarily be seen as
resentations of molecules, but are more abstract ‘‘carrier
momentum.’’ These fluid ‘‘packets’’ have a mesoscopic n
ture; they are large with respect to the molecular level,
small in comparison with gradients of fluid dynamical qua
tities of interest. Note that DPD should be regarded as ba
on a—highly idealized—microscopic model, which produc
correct mesoscopic and macroscopic behavior~like LGA!.
By contrast, MD delivers correct microscopic, mesoscop
and macroscopic behavior, the last two in principle rat
than in practice. We have used the dissipative particle
namics algorithm, as implemented in the Rheoflex code@21#
by Hoogerbrugge and Koelman. Within the flexible enviro
ment of this fluid model, large solid objects of arbitra
shapes, such as suspended particulates, can be modele
local ‘‘freezing’’ of the fluid particles. Therefore these sol
objects do not have perfectly smooth surfaces. ‘‘Freezin
of the fluid particles is achieved in the following way: fo
lowing a collision, the momenta of all ‘‘frozen’’ particle
comprising a solid object are summed and redistributed o
le
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these particles, according to the Euler equations for rig
body motion. In the subsequent propagation phase all th
particles move together as a solid object, depending on
forces exerted by the surrounding fluid particles. In order
measure the viscosity of a suspension, a macroscopic ste
shear flow regime is imposed on the fluid. Steady unifo
shear is simulated by using Lees-Edwards sliding perio
boundary conditions@22# and the stress tensor is then calc
lated at each time step: the virial expression for the str
tensor consists of contributions from the particle collisio
and propagations, and from the solid objects. For a m
detailed description of this rather complicated calculatio
we refer to@14,21#. The shear viscosity of the suspensio
n, is related to thexy component of the stress tensor,sxy , in
the following way:

n52sxy /ġ, ~4!

whereġ represents the imposed shear rate. The stress te
is normalized by the number of particles, leading to a kin
matic viscosity rather than a dynamic viscosity.

III. RHEOLOGICAL PROPERTIES
OF DENSE PARTICULATE SUSPENSIONS

In this section we give an overview of theoretical expre
sions available for the viscosity of colloidal suspensions
various particulates, including spheres, prolate ellipso
~rods!, and oblate ellipsoids~disks!.

A. Suspensions of spheres

The steady-state shear viscosity of a suspension of mo
disperse spheres depends on two dimensionless groups@23#:
the volume fractionf5(4/3)pra3 ~wherer is the number
density @24# and a is the radius of the particles!, and the
Peclet number Pe, which is defined as

Pe5
ġa2

D0
5
6phsa

3ġ

kBT
, ~5!

whereD0 is the Einstein diffusion coefficient,hs is the sol-
vent viscosity, andkBT is the thermal energy. The Pecle
number expresses the ratio between the hydrodynamic fo
due to shear and the Brownian forces, which tend to res
the equilibrium configuration. In other words, the Pec
number expresses the ratio between two time scales:~1! the
time needed to deform the dispersion structure by shear~1/
ġ) and~2! the time scale of Brownian diffusion that restor
the equilibrium configuration (a2/D0).

Therefore Pe measures the amount of departure f
equilibrium. Except in a few limiting cases, the function
dependence of the viscosity onf and Pe is not known theo
retically.

One of the cases for which this dependenceis known, is
the viscosity of a dilute suspension of hard spheres. Eins
solved this problem in 1906 and 1911@25# by calculating the
extra energy dissipation in the fluid due to the presence
noninteracting spheres, and found

h r5h/hs511~5/2!f, ~6!
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55 3127SIMULATING THE RHEOLOGY OF DENSE COLLOIDAL . . .
where h is the viscosity of the suspension andh r is the
reduced shear viscosity.

The effects of interactions between the suspended
ticles become significant at higher concentrations. This
where theoretical difficulties become severe. For the visc
ity of less-than-dilute suspensions only approximate exp
sions have been derived, up to second order in an expan
of the viscosity in the volume fraction. This term includ
contributions due to hydrodynamic interactions and Brow
ian motion and leads to@26,27#

h r~ ġ !5h/hs511~5/2!f1k2~ ġ !f2. ~7!

The reduced viscosityh r is now also a function of the ap
plied shear rate, an effect which will become increasin
important with higher volume fractionsf. This dependence
on the shear rateġ is included in the factork2, which has the
following limiting behavior: ~i! in the low-shear limit
(ġ→0), where Brownian motion dominates,k256.2 @27#;
~ii ! in the high-shear limit (ġ→`), where the hydrodynamic
contribution dominates,k255.2 @26#.

Equation~7!, in which only pair interactions are included
is only valid at low concentrations; for higher concentratio
the hydrodynamics should be treated at the many-body le
This would involve calculation off3 and higher order terms
which is theoretically cumbersome.

Many expressions have been proposed which relate
viscosity of concentrated suspensions in an empirical wa
the volume fraction. The most famous is the Kriege
Dougherty relation@28# ~which was later verified theoreti
cally as well@29#!

h r5S 12
f

fmax
D 2[h]fmax

, ~8!

where fmax is the maximum packing fraction or packin
volume fraction~PVF!, that is, the phase volume where th
viscosity is infinite. Quemada@30# noted that experimentally
the exponent2@h#fmax is close to 2, which was confirme
by van der Werff and de Kruif@1#.

Under such conditions, the use of numerical simulatio
may provide more insight into the complex behavior
dense suspensions. Barnes, Edwards, and Woodcock@31#
have given an overview of the state of the art in simulatio
of dense colloidal suspension rheology. Using dissipa
particle dynamics, Koelman and Hoogerbrugge@14# have
simulated the shear flow of suspensions of solid spheres
to volume fractions of 35%; recently this was extended
45% @32#. They found viscosities that are in excellent agre
ment with the experimental data of van der Werff and
Kruif @1# for a sterically stabilized suspension of colloid
silica spheres. The authors only present simulation results
the viscosity at high Peclet numbers.

From an experimental point of view, the dimensionle
Peclet number will always be very small for common lab
ratory shear rates, if small (a 5 10 nm! colloidal particles
are used@see Eq.~5!#. However, for larger particles, the Pe
clet number can be varied from small to large. This w
exploited by van der Werff and de Kruif, who used silic
spheres with radii varying from 28 to 110 nm. In the case
the smallest particles, the viscosity was measured in
r-
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range 1024,Pe,0.2 and in that case only the low-she
viscosity was obtained. For the larger particles, measu
ments were done in the range 1022,Pe,10 and a transition
was observed from the low-shear viscosityh(0) to the high-
shear viscosityh(`). The characteristic Peclet number Pc
for this transition, defined as the value at which

h~Pec!5
1

2
@h~0!1h~`!#, ~9!

depends markedly on the volume fraction of the suspen
spheres@1#.

In the work described here, we have sought to furth
validate the DPD simulation technique by calculating t
high-shearand low-shear viscosity of suspensions of sphe
for volume fractions @33# f50.320.4, and determining
Pec . The results forh(0), h(`), andh(Pec) will be com-
pared with the experimental data of van der Werff and
Kruif @1#. Our results are presented in Sec. IV.

B. Suspensions of slender rods

The calculation of the viscosity of a suspension of rodli
particles is a long-standing problem. An important point
that the dependence of the viscosity on the solid volu
fraction and the applied shear rate is stronger than for sph
cal particles. Shear thinning in suspensions of rods is ma
due toorientationalordering, whereas in sphere suspensio
it is presumably due topositional ordering. In general, the
hydrodynamic motions of nonspherical particles are
scribed as ellipsoids of revolution, having their rotation ax
properly oriented with respect to the flow direction. The
ellipsoidal motions increase the amount of dissipated ene
and therefore the viscosity of the fluid. The viscosity of
suspension of prolate ellipsoids of rotation, with semima
axesa@b5c, can be written as an expansion up to fir
order in the volume fractionf as follows:

hR5
h

hs
511@h#f, ~10!

with

f5 4
3 pab2r, ~11!

wherer5N/V is the number density. Note thathR is defined
as thereducedviscosity, whereas@h# 5 k1 is defined as the
intrinsic viscosity. The intrinsic viscosityk1 was evaluated
by several authors. Taking Brownian motion into accou
Onsager@34# obtained

k15
4
15 ~ a

b !2

ln~ a
b !

. ~12!

Following Onsager, Simha@35# and Kuhn and Kuhn@36#
independently calculated the viscosity from the energy di
pation of noninteracting rods. They found for the rod asp
ratio f5a/b@1
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k15
f 2

15@ ln~2 f !2 3
2 #

1
f 2

5@ ln~2 f !2 1
2 #

1c, ~13!

with c5 14
15 ~Simha! andc51.6 ~Kuhn and Kuhn!. Note that

for f@1, the Onsager result~12! is recovered from Eq.~13!.
The first term in Eq.~13! is the hydrodynamic contribution
and the second term represents Brownian motion. Note
for f@1, the Brownian contribution is exactly three times
large as the hydrodynamic contribution. In fact, forf@1, the
precise shape of the particles~ellipsoid, cylinder! is irrel-

evant; only the aspect ratiof5 a
b is important. This is a resul

of slender body theory@37#.
A further step was taken by Berry and Russel@38#, who

managed to calculate the term of orderf2 in the viscosity.
This includes consideration of the effect of pairwise~hydro-
dynamic! interactions. They found~at low Peclet number!:

hR5
h

hs
511k1f1

2

5
k1
2f2, ~14!

where the intrinsic viscosityk15@h# is equal to the Onsage
k1 coefficient, as given in Eq.~12!. The inclusion of the
f2 term in Eq.~14! implies that this expression can be e
tended to somewhat higher concentrations than Eq.~10!;
nevertheless, it is still limited to the dilute regime. In a dilu
solution of rods, the average distance between the r
r21/3 ~wherer is the rod number density!, is much larger
than their length 2a, i.e., r!a23.

At concentrations beyond the dilute regime, hydrod
namic interactions between many rods become import
Whenr@a23, the rods hinder each other in their rotation
and translational motion: they become ‘‘entangled.’’ Stre
relaxation is then believed to be dominated by how rapidl
rod can escape out of the ‘‘cage’’ formed by its neighbo
The cage concept was introduced by Doi and Edwards@39#
for infinitely thin rods; the influence of finite rod widths ha
also been analyzed@40,41#. Within the cage model one find
the following expression for the viscosity of a congest
solution ofcylindrical rods:

h/hs5
32

15p2

f 6

b lnf
f3~12a ff!22, ~15!

in the limit r@a23, f@1, and Pe!1, wherea andb are to
be taken as adjustable parameters@39–41#. The parameter
b is equal to the square of the number of rods required
fully entangle a test rod orientationally. The parametera
measures, loosely speaking, how efficiently the ‘‘free v
ume’’ is reduced by the presence of the rods, and repres
so-called ‘‘log jamming’’ effects. This expresses itself f
instance in a reduced translational diffusion parallel to
rod direction, making it less easy for a rod to escape
cage. Comparison with real as well as computer exp
ments indicates that typicallyb>O(103) @39,42,43# while
a>O(1021) @41,44#. Not too close to the isotropic-nemat
phase transition, which roughly occurs at volume fractio
f' f21 for hard rods@45#, one can presumably neglect th
at
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term involving the parametera, in which case Eq.~15! pre-
dicts thath/hs}f3. As we shall see in Sec. IVB, our simu
lations agree with this scaling behavior. We finally note th
Eqs.~14! and ~15! should, ideally, crossover smoothly.

In this paper, we have performed DPD simulations
suspensions of rods, to investigate how well these res
agree with theoretical results for the dilute and concentra
regime@Eqs.~14! and~15!#, as well as with available experi
mental data. Our results are presented in Sec. IVB.

C. Suspensions of disks

Just as rodlike particles can be modeled by prolate el
soids, disks can be described as oblate ellipsoids of rev
tion. In this way, the intrinsic viscosity@h# of a dilute sus-
pension of disks was evaluated by Kuhn and Kuhn@36#

@h#5
4

9
1

32

15p f
. ~16!

For oblate ellipsoids, the aspect ratiof5 a
b,1, a andb being

the semimajor axes.
Güven @46# found a slightly different expression

@h#5
5

2
1

32

15p S 1f 21D20.628S 12 f

120.075f D . ~17!

Rodlike particles with a high aspect ratio have a much lar
intrinsic viscosity than disklike particles with high values
f21. For instance, forf5100 (f21 for disks!, the intrinsic
viscosity would be roughly 600 for rods and 70 for disk
according to Eqs.~13! and ~16!. These values are muc
larger than@h#52.5 for spherical particles. In Sec. IVC, w
report on the results of our DPD simulations of disks.

IV. SIMULATION RESULTS

In order to simulate a suspension undergoing steady
form shear, we have used sliding periodic boundary con
tions with a three-dimensional simulation box, having a s
of 30330330 dimensionless units. We work in reduce
units so that the time stepdt, the interaction ranger c and the
DPD particle massm have a value of unity. We have use
as in@12#, v54/3,P0 5 1/3, anddP i j was sampled from a
homogeneous distribution on@21/3, 1/3#. In all simulations,
a particle densityn53 was used, corresponding to a total
81 000 DPD particles.

A. Suspensions of spheres

In order to generate a suspension of solid spheres wi
volume fraction of approximately 30%, 45 spheres with
dius 3.5 were defined and randomly positioned within t
simulation box. A snapshot of such a suspension undergo
shear is shown in Fig. 1. In view of the particle dens
n53, each sphere contained about 540 ‘‘frozen’’ fluid pa
ticles. To investigate the possible effects of the~finite! size
of the spheres, we also created suspensions containin
spheres of radius 4.5 and 68 spheres of radius 3.053, res
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FIG. 1. Snapshot of a 30 vol %
suspension of spheres. The do
are basic DPD particles, some o
which are ‘‘frozen’’ into the ap-
proximately spherical particles
The steady shear is applied b
sliding the periodic box above the
central box to the left, and the on
below to the right.
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tively. The only forces acting on the spheres were
Brownian fluctuating forces and the hydrodynamic forces
tween the spheres, both transmitted by the fluid partic
These suspensions were subject to dimensionless ste
shear rates, varying from 331026 to 0.05, thus covering
four orders of magnitude. For each shear rate a sepa
simulation was performed. The shear stress was measur
each time step, and the viscosity was then calculated a
average over all the steps. Measurements of the viscosity
the higher-shear rates are obtained within a few tens of th
sands of DPD steps, which take a couple of hours on a S
con Graphics R10000 processor. In order to get accept
statistics for the shear stress signal: noise ratio, the low-s
rates required several hundreds of thousands of time s
This takes several days of computing time on a Silic
Graphics R10000. The solvent viscosityhs , obtained from a
simulation without suspended particles, was found to be c
stant at a value of 0.0362 in this shear rate regime.~Note that
for ġ.0.1, the solvent as well as the sheared suspens
become unstable and the measured viscosity and kinetic
ergy increase dramatically.! The reduced viscosity is the
calculated as the suspension viscosity divided by the sol
viscosity. Our calculated viscosities for the three sphere s
are shown in Fig. 2 as a function of the Peclet number, us
3kBT 5 0.0033.

We observe that the viscosity does not depend sign
cantly on the sphere size. This is what one would exp
Furthermore, this figure shows that the viscosity follows
typical shear-thinning curve. Averaged over the vario
sphere sizes, we find that at low Peclet numbers (Pe,1),
h(0) is fairly constant at a value of 4.5, corresponding w
the first Newtonian plateau. Despite running the simulat
for several hundreds of thousands of time steps, the e
bars remain substantial at these low-shear rates. A sh
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thinning regime is observed at higher shear rates
(1,Pe,10) followed by a second Newtonian plateau,
whereh(`) is constant at a value of 3.0. The actual values
for the low- and high-shear viscosities are in good agreemen
with the experimental results~3.77 and 2.99, respectively
@1#!. The characteristic viscosityh(Pec), as defined in Eq.
~9!, is found to be equal to 3.7~taking the values for high-
and low-shear viscosity of 3.0 and 4.5, respectively!. This
value is in good agreement with the experimental value@1#
of 3.4 (60.2!.

FIG. 2. Reduced viscosity of a 30% suspension of spheres as
function of Peclet number, for spheres with radiiR 5 4.5, 3.5, and
3.0.
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Using a smaller box size of 20320320 ~containing
24 000 DPD particles!, we obtain the same value for th
high-shear viscosity of a 30% sphere suspension. The l
shear viscosity on the other hand is found to be significa
larger~5.5! for a sphere size of 3.053. This may be attribut
to finite size effects and will be discussed in Sec. V.

We have also investigated the shear-thinning behavio
a suspension containing a higher volume fraction of sphe
Sixty-one spheres with radius 3.5 were defined within a
bic box of size 30330330 to generate a sphere suspens
of 40% by volume. Simulations were performed at sh

rates in the range 331026<ġ<531022. The measured vis
cosities are shown in Fig. 3 as a function of Peclet num

Pe5ġa2/D0. With increasing shear rate, the viscosity valu
for the spheres with radius 3.5~upper curve in Fig. 3! show
qualitatively the correct shear-thinning behavior, exhibiti
both a first and second Newtonian plateau. The value for
high-shear viscosityh(`) is found to be 4.5, which com
pares reasonably with experimental values of 5.1@1# and 5.9
@47#. However, the value for the low-shear viscosityh(0) of
24.0, is much too large, as compared with the experime
values of 7.8@1# and 10.1@47#. Initially, we believed that this
discrepancy was due to inadequate representation of in
sphere lubrication: the average surface-to-surface distan
only a few times the coarse-graining lengthr c . In order to
check this hypothesis, we repeated the calculations for
spheres with a radius of 3.053, in a computational box of s
30330330. The results of these calculations are shown
Fig. 3 as well, in the lower curve. The low-shear viscosity
much smaller now, having a value of 12.0, which is in go
agreement with the aforementioned experimental data. T
is somewhat surprising, because the larger the radius o
spheres, the more accurate lubrication by the surround
DPD fluid particles should be represented~at constant vol-
ume fraction!. Such behavior may be ascribed to finite si
effects, which will be discussed in Sec. V.

FIG. 3. Viscosity of a suspension of 40 vol % spheres a
function of Peclet number. Two different values for the radiusR of
the spheres has been employed:R53.5 ~upper curve! and
R53.053~lower curve!.
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B. Repulsive rod suspensions

To study hard rod suspensions, we have added pro
ellipsoids to the simulation, in random positions and orie

tations within the simulation box. The aspect ratiof5 a
b of

the prolate ellipsoids was chosen to be equal to 5, wit
length 2a58 and diameter 2b51.6. Up to 260 ellipsoids
were defined within a simulation box of size 20320320, to
obtain volume fractionsf up to 35%.„MD simulations pin
point the isotropic-nematic (I→N) transition for hard prolate
ellipsoids of f55 at a volume fraction of about 37%@48#;
our particles are somewhat soft, so we expect theirI→N
transition at densities quite higher than this.… These suspen
sions were subject to steady dimensionless shear rate
331024 and 331025, corresponding to Peclet numbe
Pe5ġa2/D0 of 0.1 and 1.0, respectively. The viscosity va
ues for dilute suspensions up to 15 vol %, at a shear rat
331024, are shown in Fig. 4. In this figure, theoretical e
pressions for the viscosity of dilute rod suspensions
shown as well, as linear expansions in the volume fracti
according to Eq.~10!. The values for the intrinsic viscosity
k1 ~the slopes of these graphs!, are calculated according t
Eqs.~12!–~14!. Given the aspect ratiof55, we find intrinsic
viscosity values of 4.14, 5.78, and 6.45 from the Onsa
~12!, Kuhn and Kuhn and Simha~13! expressions, respec
tively. Fitting our data by a quadratic function forf,0.14,
we find a linear coefficient of 4.0, which can be interpret
as the intrinsic viscosityk1. A quadratic coefficient of 10 is
obtained, which is of the same order of magnitude as
Berry-Russel@38# prediction (2/5)k1

257. Note that agree-
ment cannot be expected to be quantitative, owing to the
aspect ratio of our particles~recall that the Berry-Russel pre
diction assumes thatf@1). From 14% upward, a higher or
der dependence of the viscosity on the volume fraction s
in. In Fig. 5, the viscosity of these rod suspensions is sho

a
FIG. 4. Reduced viscosity of dilute suspensions of prolate el

soids as a function of solid volume fraction, at a steady-shear

ġ50.0003~solid line with error bars, representing rms deviation!.
Theoretical expansions in the volume fraction are also shown fo
aspect ratiof55, as derived by Onsager~dotted line!, Simha
~dashed line!, Kuhn and Kuhn~solid line!, and Berry and Russe
~dashed-dotted line!.
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55 3131SIMULATING THE RHEOLOGY OF DENSE COLLOIDAL . . .
up to 35% volume fraction, for both applied shear rates. T
values of the viscosity, measured at the high-shear rate,
below the ones for the lower shear rate, for each value of
volume fraction. This is what one would expect, assumin
the rods orient themselves in the flow field at high-she
rates, leading to shear-thinning behavior. The higher ord
dependence of the viscosity on the volume fraction f
f.0.13 marks the transition from the dilute regime to th
concentrated regime, where the density is greater th
roughly one particle per average hard-core excluded volu
@49#. ~For our ‘‘soft’’ rods, this value should be considere
as the lower limit.! Equations~14! and ~15! suggest that, in
order to describe the viscosity as a function of volume fra
tion over the whole range of concentrations, we have to
clude the linear and quadratic expansions in the dilute regi
as well as the third-power dependence in the concentra
regime. Therefore we have fitted our data to a third degr
polynomial function. The results are presented in Fig. 5, a
show a good fit to the viscosity curves for both shear rate
The cubic term coefficients for the high- and low-shear rat
are 222 and 584, respectively. It may be possible to rel
these coefficients to theb factor in Eq. ~15! although this
should be treated with care because we neglect log jamm
effects by effectively settinga50. As a guide to the eye, we
have plotted Eq.~15! for several values of theb parameter in
Fig. 5. Our curves correlate with 103,b,104, which is
roughly in agreement with the experimental value o
b58600 for a solution of xanthan gum@38#. Summarizing,
we can say that our results are in agreement with the D
Edwards third-power scaling law. The expression ‘‘scalin
law’’ is justified in this context, because the viscosity contr
butions of the first and second order terms inf are relatively
small compared to the third order contribution.

We have also performed simulations of prolate ellipsoi
with a larger aspect ratio of 10. Because the array dime

FIG. 5. Reduced viscosity of suspensions of prolate ellipsoids

a function of solid volume fraction, at steady shear ratesġ of
0.0003~lower curve! and 0.000 03~higher curve!. The error bars
represent rms fluctuations. The polynomial fits are indicated as so
lines. As a guide to the eye equation~15! has also been drawn for
b5102 ~dotted line!, 103 ~dashed line!, and 104 ~dashed-dotted
line! with a fixed at a value of zero.
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sions of the Rheoflex code limit the number of DPD particles
and therefore the simulation box dimensions at a consta
density of 3, we had to use thin ellipsoids with a diamete
2b50.8. We found that the viscosity of such suspensions di
not show the expected increase as a function of solid volum
fraction. The reason for this is probably that the ellipsoids
have effectively become too thin. The hydrodynamic inter
action radiusr c of the DPD particles was chosen to be equa
to one. Therefore the solvent particles on opposite sides
the long dimension of the ellipsoids will be able to interact,
as they are separated by a distance 2b50.8. Hence, the rod
particles may become effectively ‘‘transparent’’ for the sol-
vent, which causes the unexpectedly low viscosity. For thi
reason it is important to select the dimensions of solid ob
jects carefully.

C. Repulsive disk suspensions

In order to model suspensions of disks, we have adde
oblate ellipsoids to the simulation, having an initially random
position and orientation. The aspect ratio of the disks wa
chosen to be equal to 1/5, whereas the volume of the dis
was equal to the one of the aforementioned prolate ellipsoid
Up to 225 ellipsoids were defined within a simulation box of
size 20320320, to obtain volume fractions up to 30%.
These suspensions were simulated at a steady-shear rate
331024. The reduced viscosity of the oblate ellipsoid sus-
pensions is shown in Fig. 6. As in the case of our simulation
of the rod suspensions, we have fitted our viscosity values
a third degree polynomial function. The result is presented i
Fig. 6, and our data show a good fit to the cubic function
Note that suspensions of spheres also show this third ord
behavior up tof.0.35 @50#. This agreement may be ex-
plained by the fact that, thermodynamically, disks behav
very much like spheres~the excluded volume of a sphere is
approximately equal to that of a disk!, and therefore disks

s

lid

FIG. 6. Reduced viscosity of suspensions of oblate ellipsoids a
a function of solid volume fraction at a steady-shear rate

ġ50.0003. Theoretical expansions in the volume fraction are
shown for an aspect ratiof55, as derived by Kuhn and Kuhn
~dotted line! and Güven ~dashed line!. The polynomial fit is indi-
cated as a solid line.
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may conform to a similar ‘‘virial’’ expansion. Returning t
our viscosity data, we find a linear coefficient of 4.71, whi
can again be interpreted as the intrinsic viscosity. This re
is in excellent agreement with the value of 4.71 as deriv
from the expression by Gu¨ven @Eq. ~17!#, and compares rea
sonably to the Kuhn and Kuhn prediction of 3.84@Eq. ~16!#.
The third degree coefficient has a value of 147, which
lower than for rod suspensions~222 at the same shear rate!.
One might speculate that the number of solid objects nee
for jamming or entanglement is lower for rods than for dis

Note that, even in the case of an aspect ratio as low
f55, the intrinsic viscosity of rodlike particles (k1 5 5.67 in
our case! is higher than the intrinsic viscosity of a suspensi
of disks having the same aspect ratio. This is in gene
agreement with previous observations@46#. Summarizing,
we confirm the theoretical linear behavior at low volum
fractions and predict a third-power scaling law for conce
trated suspensions of disks.

V. DISCUSSION OF FINITE SIZE
AND RESOLUTION EFFECTS

In this section we want to discuss the finite size effe
observed in our simulations of sphere suspensions,
clarify the difference between ‘‘finite size effects’’ an
‘‘resolution effects.’’ The latter may be attributed to the fa
that the solvent particles are not of negligible size compa
to the colloidal particulates, and, hence, the continuum li
is not obeyed.

For a 30% sphere suspension in a 30330330 system
size, we observed that spheres of sizes 3, 3.5, and 4.5
essentially the same results for the viscosity. This imp
two independent things:~1! The size of the system~in terms
of number of colloidal particles! is large enough.~2! A reso-
lution as small as 3:1 is also enough. Here 3 refers to
radius of the sphere and 1 to the radius of the fluid partic
The ‘‘continuum limit’’ seems to be achieved already b
cause by increasing the resolution to 4.5:1 nothing is gain
Using larger particles it may be expected that finite size
fects will show up.

For a 30% sphere suspension in a 20320320 system, we
observed that the low-shear viscosity is too large. It may
expected that the results will get worse as the radius
creases. In order to investigate this point, we have perform
simulations for different sphere sizes at a constant 30%
ume fraction. Indeed, we found that the low-shear visco
increases systematically from 5.5 to 6.6 with sphere s
increasing stepwise from 3.0 to 4.5. This implies that
continuum limit is well represented, as the resolution 3:1
sufficient, but the system size is actually too small.

At 40% volume fraction, we observed that, for
30330330 system size, spheres of sizes 3 and 3.5 give
ferent results for the viscosity; the result for the sm
spheres is better. In this simulation the resolution 3:1 se
to be fine but what fails is the system size. Increasing
resolution to 3.5:1 yields no improvement because the s
tem size is then too small. For this reason it may be expe
that, considering a sphere size of 3~resolution 3:1! in a
smaller system (20320320), the results will worsen in the
same direction as by increasing the radius to 3.5 in the big
system (30330330). Indeed, from simulations performe
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for both systems mentioned, we observed that the low-sh
viscosities are 28.7 and 24.0, respectively, compared t
value of 12.0 for the spheres of size 3.0 in the bigger syst

One may speculate that the reason why finite size effe
arise sooner for concentrated suspensions can be attribut
direct interactions between colloidal particles. In princip
two colloidal particles that are in contact can interpenetr
because they are ‘‘soft.’’ Note that at high concentratio
interpenetration is more favorable, due to lack of availa
free volume. A suspension of interpenetrating spheres m
have enhanced viscosity because of the fact that the part
are rigid bodies. In a sense, if the particles are rigid and t
are ‘‘anchored’’ to each other~through interpenetration! the
overall response of the system could be more ‘‘rigid,’’ that
more viscous. In other words, if the colloidal particles a
forced into one another’s interaction radius, the dissipat
term in Eq.~3! will increase. This could lead to an increas
of viscosity for the large spheres over that for the sm
spheres just as we have found. This effect manifests it
mainly at low-shear rates; at high-shear rates, the struc
present in the suspension is suppressed by the applied s
and the situation is in a sense similar to a dilute suspens

In summary, it seems that in all the cases considered
resolution is sufficient~even in the 40% suspension!. How-
ever, there are finite size effects that are more importan
the volume fraction increases.

VI. CONCLUSIONS

We have performed simulations of the rheology of den
particulate suspensions using a mesoscopic simulation t
nique, known as dissipative particle dynamics. Within t
flexible environment of the Rheoflex DPD code, it is easy
define solid particulates of various sizes and shapes. In
report we have studied the steady-shear flow of suspens
of spheres, rods, and disks at various concentrations
shear rates. For sphere suspensions up to 30%, we find s
thinning behavior consistent with experiment; the values
both the high- and low-shear viscosity are, in fact, in go
agreement with experimental results. Furthermore, these
sults are independent of the size of the suspended sph
Denser suspensions~40%! give good results for the high
shear viscosity; for low-shear rates, however, the size of
simulation box should be augmented to eliminate finite s
effects. Therefore, we consider DPD to be a valuable al
native to Brownian and Stokesian dynamics as a simula
method for studying particulate suspensions, particularly
higher-shear rates; as with other methods, at lower-sh
rates, in the regime where Brownian motion dominates,
computing time required to obtain statistically significant r
sults increases strongly.

Dilute suspensions of rods and disks, subject to a stea
shear rate, show a linear increase in the reduced visco
with increasing volume fraction. The slopes of these fun
tions, corresponding to the intrinsic viscosities of rods a
disks, respectively, are in excellent agreement with theor
cal linear expansions as a function of the aspect ratio.
higher concentrations, in the concentrated regime, our
cosity data for both rods and disks scale with the third pow
of the volume fraction. For suspensions of rods, this sca
behavior is consistent with a theoretical expression deri
by Doi and Edwards@39# for the semidilute regime.
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In conclusion, we have shown that the DPD simulati
technique produces realistic hydrodynamic behavior
complex suspensions containing solid objects of vari
sizes and shapes. Therefore, we believe that DPD is a p
erful tool for studying the flow behavior of complex colloid
fluids.
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