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Density profiles and pair correlation functions of hard spheres in narrow slits
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A hard-sphere fluid confined by hard, structureless, and parallel walls is investigated using a certain version
of the weighted density-functional theory. The density profile, the excess coverage, the finite-size contribution
to the free energy, the solvation force, and the total correlation function are determined as functions of the slit
width L for various bulk number densitigs,. In quantitative agreement with rigorous results, the present
version of density-functional theory yields a constant and large but finite number density profile for the limiting
case that is reduced to the diameter of the hard spheres. Within the Derjaguin approximation, the results for
the slit geometry allows us to obtain the solvation force between two large hard spheres immersed in a fluid of
much smaller hard spherd$1063-651X97)01202-9

PACS numbd(ps): 61.20.Ne, 68.15:¢e, 68.10.Cr

[. INTRODUCTION duced by their confinement including lateral correlations
(see, e.g., Ref§1-4] and references thergin
The knowledge of the structural properties of fluids in  The purpose of the present contribution is to provide an
confined geometries is important for both applied and basiinitial step towards guiding such kind of experiments by cal-
research. For most applications one has to deal with an emulating the two-point correlation function ofterd-sphere
semble of interconnected pores with irregular sizes and géluid between twahard walls (HSHW) based on a weighted
ometries. This severely impedes a quantitative comparisoglensity-functional theoryDFT). Since this approach re-
between theoretical predictions and actual experimental datfuires as a prerequisite the knowledge of the density profiles,
Typically, in this case only general trends and spatially av\We use this opportunity to compare our results for the one-
eraged quantities can be tested reliably. Consequently, iRCINt correlat|qn function with those obtained previously by
such systems many details of theoretical predictions for condifférent techniques for a HSHW; furthermore, we pay par-
fined fluids remain unchecked. ticular attention to the limit of small values &f and to the
Therefore, it is highly welcome that substantial experi-d's‘cus":'Ion ,Of the sqlvaﬂon forces. . : .
mental progress has been made to prepare model pores thatc.)ur ch0|ce for this model system is motivated by its fol-
consist of parallel plates whose surfaces are smooth both oIRW'.ng virtues. - . .
(i) Due to its simplicity, it is particularly well suited for

atomic and mesoscopic scales and that are immersed ".nog%mparisons with simulation data. Systems with soft repul-

L between the plates, one can study the crossover from a i) within the framework of DFT, long-ranged interac-
three-dimensional bulk system to a two-dimensional fluid. tions between the fluid particles are typically incorporated by
From an experimental point of view the structural proper-perturbation theorysee(i)], which needs as a prerequisite
ties of a fluid confined to this slit geometry can be probed orthe results of the corresponding hard-sphere reference sys-
various levels. First, one can determine global propertiesems.
such as the mean density in the slit and the excess density (iii) The investigation of the HSHW model is not only an
compared with a hypothetical bulk system of the same sizamportant step for the study of atomic fluids, but it is also an
Second, ellipsometry and the reflectivity of light, x rays, orappropriate model for the description of other physical sys-
neutrons enable one to determine the density profiles norméms. Under favorable conditions certain colloidal particles
to the slit surfaces. Third, atomic force microscopes allowbetween glass plates behave like hard spheres in a slit and
one to monitor the solvation force acting on the two platescan be investigated by means of video microscidgy Con-
which reflects the change of free energy of the confined fluidined micelles represent another realization of this model
as function ofL. system exhibiting substantial technical and biological inter-
More recently, with the advent of powerful neutron and est[6—8].
synchrotron sources, a fourth component has been added to (iv) The HSHW model is the simplest model that allows
the spectrum of experimental techniques. The analysis of thene to study a nontrivial dimensional crossover from3 to
diffusescattering of x rays and neutrons under grazing inci-d=2. In this model the spheres lose one degree of freedom
dence gives access to the two-point correlation function ofvhen the widthL of the slit is reduced to the diameter of the
the confined fluid. Combined with the knowledge of the one-hard spheres. This raises the question whether this system is
point correlation function, i.e., the density profile, this pro- purely two dimensional and can be characterized as a hard-
vides deep insight into the structural changes of fluids indisk fluid or whether the presence of the three-dimensional
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reservoir requires a different description. Since this is imporwith
tant for the interpretation of experiments with very narrow
slits, in Sec. Il we also introduce the density-functional w, r<ol2
theory of two-dimensional systems and provide a careful in- P(r)=y0, r>a/2, (2.3
vestigation of this limiting case in Sec. IIl.
The HSHW model has already been investigated by a _ ) )
variety of techniques. For certain values of the chemical poZq describes hard spheres, disks, and rods of diansefer
tential and ofL simulations[8—13 have provided density d=3, 2, and 1, respectively. In terms of the number density
distributions and values for the solvation force. The sameperator py(Ri{R})=={ ;8(R—R;)=p(R) the equilib-
quantities and, in addition, the total correlation function havelium density profile of the particles in the presence of the
been studied in the framework of integral theories such as thexternal potentiaV/(R) is given by
Percus-Yevick approximationl4—17. Compared to these
methods, the DFT is computationally less demanding and (R)=:(; (R'{R-})):—l aInZy(u, T;[V(R)])
also enables one to study the free energy of the system. Pd APNLRAT B SV(R)
Simulations face the difficulties that they are restricted to a (2.9
few selected parameter values and that in the grand canonical o ) ) )
ensemble hard sphere fluids confined to narrow slits exhibif he second derivative yields the total correlation function
strong fluctuationg18]. As far as the integral theories are h(R1,Ry),
concerned, it is known that they do not capture interesting 1 8p4(Ry)
phase transitions such as wetting phenomena. Since for fu- _ — (5 p e p
ture work we are interested in them, we implement a specific B 6V(Ry) (P(R1)p(R2))=(p(R1))(p(Rz))
form of DFT [weighted density approximatiditVDA)] that .
is known to capture them. Thus, in a later stage our approach =h(R1,R2)pu(R1)pa(Rz)
will enable us to build on the present results for the descrip- +pa(Ry) 8(R1—Ry). (2.5
tion of the two-point correlation function close to such inter-
facial phase transitions. For these reasons it is worthwhile to Within the framework of the density-functional theory,
analyze the HSHW model in terms of DFT. the equilibrium density profilepg(R) minimizes the grand
In Sec. Il the DFT is introduced and the WDA used herepotential functiona[19]
is specified. In Sec. Il we investigate the limit-20. A
thorough discussion of the density profil®ec. IV and of  Qa([(Pa(R) LT, [V(R) D =F 2L [pa(R)];T)
the correlation functiongSec. V) follows. Section VI sum- (d)r~ _
marizes our main results. +Fig (pa(R)1T)

Il. DENSITY-FUNCTIONAL THEORY —f JARIL=V(R)Tpy(R).
IN d SPATIAL DIMENSIONS K

2.6
A. One- and two-point correlation functions 2.6

In thermal equilibrium the structural properties of a The ideal gas contribution is given analytically b s the
d-dimensional inhomogeneous fluid consisting of hard genthermal de Broglie wavelength
eralized spheres follow from the grand canonical partition 1
= f (ARg(R)(IN[p4(R)AY] -~ 1).

function R (Pa(RD= 5
I
Zy(u, T;IV(R)]) 2.7

14 §: 1 &R, .. dR The support of the trial functiop4(R) is that domain in
T ENIAN 12N RY where the external potentia(R) differs from infinity;
otherwise py(R)=0. The excess Helmholtz free-energy
functionalFf;i)([ﬁd(R)];T) is not known exactly and an ap-
propriate approximation has to be chos@ee Sec. Il B
Once the density profile4(R) has been obtained by mini-

Xexp( 8 f AR~ V(R pu(RIR]

—BPURDH (2.1)  mizing Eq.(2.6), the direct correlation function
2= (d)
as a function of the chemical potentjaland of the tempera- c?(Ry,Ry;[pg(R)]): = _’Gw 2.9
ture T=1/kgB; {R}={R;, ... Ry}. The particles are ex- pd(R1) dpy(R2)

posed to an external potentd(R), which includes the con- ) . ) )
finement due to the container walls and thus limits the spatigtnd Via the Omstein-Zericke equation
integrations here and in the following. For the pair potential

ha(Ry,Rp)=ci”(Ry,Ry) + dddRs

1 .
B(RD=3 3, HIR-R, (2.2 |

] X (R1,Re)pa(Ra)Na(Rg,Ry) (2.9
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the radial distribution functiorgy(R1,R2)=hy(R{,R,)+1 proximations known in the literatuf®1]. Depending on the

is accessible. physical system and the quantities under consideration, one
We shall compute all quantities for a slit consisting of two chooses an approach that captures the essential features with-

parallel structureless hard walls that are described by theut being computationally too demanding.

external potential For a hard-sphere fluidd= 3) close to a single hard wall,
in a previous publicatioh22] we argued that the calculation

®, z<0, z>L-o of density profiles and of correlation functions can be carried

V(R)=10, o<z<L-o. (2.10  out successfully using the linear weighted density approxi-
mation (LWDA) [23]. In this approach four weighted densi-

Our choice of the origin and the width is motivated by the ties

comparison with an atomistic model of a slit. In this case the _

walls consist of two parallel semi-infinite crystals. The nuclei pu(Ry)= J 3d3R2Wv(| Ri—Ri[)p(Ry) (21D
of the atoms forming the top layer of one of these crystals lie :

in a plane that is located a&=0 for the left wall and at

z=L for the right wall. (We do not consider vicinal sur- jth normalized weight§w= (7/6)0°]

faces) Between these two walls a fluid with a soft interaction

with the substrate has a nonvanishing number density for

0<z<L. If the atoms forming the walls are replaced by hard 1, =0
spheres of diametesr and are smeared out in the lateral

directions, a fluid with a hard-sphere interaction is exposed W,(R)=g—0(s—-R)X
to the potential defined in Eq2.10. Since this substrate

potential is translationally invariant with respect to the lateral 2.12
coordinatesx andy (in d=3), the density profilep;(R)

depends only on the normal coordinat@s long as there is

no freezing that leads to a periodic density variation also inyre introduced. The excess free energy is a functional of
the lateral directionf20]. The total and the direct correlation these weighted densities,

function depend on the normal distanagsandz, from the

wall and on the lateral distance,,=|r,—r,|, where

3 R
1+ —) ( 1— —), v=1,2,3
g

14

R=(r,z)=(x,y,2). (In the case of freezing the two-point 3 .
correlation functions depend onj,=r;—r, instead of Fg‘i:3)[p]=20 d*R{f,(p,(R))
Iri=ral.) sV

+3[p(R)—p,(RIfL(p,(R)}, (2.1
B. The linear weighted density approximation 2[P(R) =P (RIT(p,(R)} (213

Since the exact expression for the Helmholtz free-energy
functional is not known one has to resort to one of the apwhere the functions

( 4
—16+4 1—;>|n(1—7]), v=0
3(—16+26p—77°) 8
Bw 21-mZ T
(=S (1=7) 7 (2.14
n 0, v=2
40— 687+ 257 ( 5 )
-8/ 1——|In(1- v=3
= T ,
(1-7) Ui (=)

\

depend on the dimensionless packing fractipi wp. By  ableu, equivalently in terms of the densipy, of a bulk fluid
construction in the limit of a homogeneous density distribu-with the same chemical potential This facilitates the com-
tion [p(R)=p,] the LWDA free energyF& *[p4_s] and  parison with previous publications in which the results for
the corresponding direct correlation functiofﬁ3(R1,Rz) similar geometries are expressed in termppf22]; in ad-
reduce to the known Percus-Yevi€RY) bulk results[24].  dition, dependences om, are easier to interpret than those
This is important as we need a proper bulk limit in order toon u.

be able to describe correctly the influence of the walls. Fur- There seem to be only very few WDAs that are specifi-
thermore, this allows us to express the results of a slit, whoseally designed to describe an inhomogeneous hard-disk fluid
thermodynamic state is characterized by the intensive vari25]. This dearth is tied to the fact that experimental results
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are rare, as it is difficult to realize a truly two-dimensional and can be compared with results of integral theories such as
system experimentally and that the construction of manyhe hypernetted chaifHNC) approximation and simulations
WDAs relies on the knowledge of an analytic expression fof29]. The pressure calculated within the LWDA approxima-
the bulk fluid free energy and of the direct correlation func-tion is comparable with that of the HNC results, but higher
tion. In three-dimensional systems of spheres the Percushan the one obtained from simulation data. Thus we con-
Yevick closure can be used, but there is no analytic solutiortlude that the suggested functional in E2.16) is a reason-
thereof known for the two-dimensional cagEor an alterna- able but not very accurate approximation for a hard-disk
tive approach see R€i25].) Although it should be possible fluid.

to construct a WDA also for this case, following the concept If the width of a slit filled with a hard-sphere fluid is
of Curtin and Ashcroff26], which does not requiranalytic ~ decreased one could be inclined to expect that in the limit
expressions for the bulk quantities, it is natural to analyze ah — 20 [compare Eq(2.10] the density profile reduces to a
alternative approacfR7] that amounts to evaluating the ex- § distribution as in Eq(2.19 and consequently that in this
cess free-energy functiong(®=% p4_3] [Eq. (2.13] of the limit the system is described by the density-functional theory

hard-sphere fluid for of a two-dimensional system, e.g., by the one proposed
above. However, if Eq(2.19 is inserted into the expression
p3(R)=pa(X,y) 8(2) (219  for the ideal gas contribution to the free-energy functional

) ] [Eg. (2.7) for d= 3], one obtains a mathematically ill-defined
and leads(for the LWDA) to the following approximate eypression. Since this defect is not cured by the LWDA ex-
expression for the two-dimensional hard-disk fluid in an aregggg free-energy functional, a well-defined grand canonical
A: functional Q[p] [Eg. (2.6)] can only be constructed if

p(R) remains a finite function even in the limit—20.

3
Féi)[Pz]:E fdxdy{ lpz(x,y)f’v(ﬁ(x,y,z=0)) Indeed Hendersoh30] has .sht.)wn. that in first order of
i=0 JA 2 L:=L— 20 the contact density is given exactly by
o _ 1 _ -
+f dz fV(pV(R))——pV(R)fL(pV(R))H- ~ L)\?
-0 2 p(z=0")=A3ex kﬁT 1-p(o)ma’L+0 =
(2.16 (3.39
The fact that this approximation originates from a theory A3
designed for three spatial dimensions is especially apparent - eXpAu) 1+7702EA*3exp(ﬂ,u)
in the weighted densities ~
|
_ o o g . +0O[ | =] |. (3.3b
PRI~ | axdy ooy (VX Ty =y T2, s
(2.17 L : . . .
This implies that in the grand canonical ensemble in the limit
which still depend on three coordinates. L— 20 the fluid is squeezed out of the slit and that the num-
ber density(N)Y/A=[.""dz p(z) of the particles per area
I1l. COMPARISON OF A HARD-DISK FLUID still contained inside the slit vanishes linearly as the width is
WITH A HARD-SPHERE FLUID decreased: IirgLO(N)/Aep(z:a*)'I:. Due to this small
IN A NARROW SLIT number of particles per area the fluid behaves like an ideal

as and in zeroth order the density is determined by the

oltzmann distributiof Eq. (3.3b]. On the other hand, the
{ocal number density is rather high because the value of the
chemical potential. is imposed by the bulk reservoir. It is
interesting to note that one obtains the same limit for rods
confined to a finite line segment in the limit of a vanishing
length of the segmeniB1]:

In order to assess the quality of the approximation leadin
to the free-energy functional in Eq2.16 of a hard-disk
fluid we consider the special case of a homogeneous densi
distribution. By settingo,(X,y) =pyp in Eq. (2.15 the ex-
cess free energy in Eq2.16) can be compared with the
results of the scaled-particle thedi$PT) [28]

BFEp2p]=Ap2y 11’2772 —In(1- 772)} 3.1 ~|im<N>/T:_>(1/A)ex|g(,u,3),

L—0
where A denotes the cross section of the slit and
772:’??vb(77/4)‘72 the packing fraction. Itturns outthatforall | orger to investigate the limit—0 within the frame-
densities the values of the LWDA free enerdsn. (2.16]  \york of the LWDA the functionals in Eq2.13 and in Eq.
are h_|gher than the S_PT results andsthe dlfferenqe increases 7) are simplified according to the following approxima-
with increasing density,p,. For popo~=0.6 there is a de- 0o For small values df the local density in the slit can
viation of about 17%. The pressure of the system is given b¥)e taken to be constant and equabte ). Also the weights
2 2 2 H i
JE@ HEDT o N W, (VX1 =Xl +]y1 = Y2l *+]21—2,]%) do not vary signifi-
= — % T,szg% (32) Cantly for O'<Zl<|__0' for V:0,1,2,3 and(l,XZ,yl,yz,Zz
p2 TN e R fixed. With the resulting functionals
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3 The mechanism, which leads to a finite density in the

1 ~
Fg)[P(U)]:zo fAdXdY[ 5P(0)LE(p,(X,y,2=0)) limit L—0, is revealed by Eq(3.8). The grand canonical
“

potential is split into the excess paitr2mp(o)2L2, which
L . 1 j— captures the contribution of the interaction between the par-
+ fo dz f,(p,(R))— §Pv(R)f»(Pv<R))H' ticles, the ideal gas parp(co)L{IN[A%p(c)]—1}, which
mainly takes into account the entropy; and the part
(3.4 —,utp(a‘),B, due to the chemical potential. As the excess
_ part is quadratic i it becomes less important as the width
E(R):j dx’dy’ p(a)Lw,( \/|x—x’|2+|y—y’|2+ 2%, of the slit decreases and ultimately the ideal gas part deter-
R? mines the behavior of the system. Thus the entropy is re-
(3.9 sponsible for the fact that the local density in the slit remains
and finite in the limit L—0.
BFPp(a)1=ALp(a){IN[A%p(0)]—1}, (3.6 IV. CHARACTERIZATION OF HARD-SPHERE FLUIDS

IN NARROW SLITS

the grand canonical potential i i
Since lateral ordering phenomena are beyond the scope of

B p(a)]1=BIFPp(a)]1+F D[ p(0)]} - BuALp(o) the present work, we focus on sufficiently small densities
(3.7 that are below the onset of such freezing transitions. In the
homogeneous bulk freezing occurspio3=0.94[32], but

is determined. Sincp(o) remains finiteL p(o) vanishes in ~ already near a single wall prefreezing sets in at a slightly

the limit L—0 and the functiong in Eq. (3.4) can be ex- lower density[20]. Experiments in slit§33,34 revealed a

panded into a Taylor series yielding rich structure mcludlng_ phase transitions between dlff_erent
ordered states as the width of the slit varies. For these kind of

B 1 _ _ systems canonical Monte Carlo simulation were able to re-
KQ[p(O’)]ZEUZWp(O')ZLZ'F p(a)L{IN[A3p(0)]—1} produce the phase diagram satisfactof8$]. By analyzing
the total correlation function of Monte Carlo simulation data
—ulp(o)B8, L—0. (3.99  Chuetal.[8] have shown that fok =3¢ a hexagonal pack-

ing close to the walls occurs. Thus, besides a complete freez-
Minimizing this expression with respect to the contact dendng of the whole slit, also lateral ordering in parts of the slit

sity p(o) leads to close to the walls seems possible. Therefore, we have limited
our present investigations tp,o>=0.68. For this density
A3p(0) :exqﬂlg_p(g)wgf[] (3.9  extensive Monte Carlo simulatiofi$1] gave no hints for an

onset of lateral ordering.
and via further expansion to EQS.SQ. This renders the
satisfying result that in the limit —0 up to first order in A. Properties of the density profile

L the LWDA reduces to the exact result. Using various mesh sizes (0.0850.057) for the inte-
Since, as shown above, the LWDA is capable of bothyration the grand potential in EG2.6) was minimized for
describing reasonably well a hard-disk fluid and reproducing, ;merous slit widths I(=2.001r—120). If the width L is
correctly in first order oL the limitL—0, for a hard-sphere |arger than 12, the resulting density profiles close to one of
fluid we are in the position to compare these two differentthe walls agree well with those near the single wall of the
physical systems within one and the same approach. Theyrresponding semi-infinite systgi22]. In this limit the wall
excess free-energy functionals in £g.16 and in Eq.(3.49  theorem[p(o*)=BP] is fullfilled. Figure 1 shows the den-
can be mapped onto each other using the replacemesfy profile for two different slit widths I(=5.1c and
pap>Lp(o). This replacement only states that the numben_=3.85). They are symmetric and exhibit a layered struc-
densities per area have to be the same for both systems: ture due to packing effects. Due to the absence of rigorous
N results the accuracy of our results can only be assessed by
otL _T To\ comparing them with simulation data. Surprisingly, to our
L dzp(2)=Lp(0) +O(LT)=pap. (3.19 knowledge there is only a single publication, namely, a
molecular-dynamics simulatiod 3], that allows us ajuan-
Obviously, this mapping cannot be used to relate the ideditative comparison. In this case the chemical potential of the
gas contributions of a hard-disk flu[dEq. (2.7) with d=2]  fluid is not known and one has to use a different parameter in
and of a fluid in a slifEq. (3.6)]. For them no simple map is order to be able to map the two approaches onto each other.
found. Thus we conclude that the hard-sphere fluid withinSince the LWDA is not an exact theory, the degree of agree-
narrow slits and connected to a reservoir does not resemblaent depends on the choice of this parameter. Here we use
the genuinely two-dimensional hard-disk fluid. If one wantsthe mean density,, [see Eq(4.3)] of the particles in the slit,
to prepare a quasi-two-dimensional system with a nonvanistbut we correct the value of the LWDA by a factor
ing densitypy—, one has to resort to the canonical ensemblep(z= o) simuiation/ #(Z= ") Lwoa= Pcs/ Ppy= 1.03 in order
i.e., one has to restrict a fixed number of particles to a finite¢o take into account the fact that the LWDA slightly under-
volumeV=Ag. estimates the pressure of the bulk flui}y, denotes the pres-
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21 (a) — LWDA 1 — [p(o)-p.(0)] 6* LWDA
. - MD 1 T * [p(c)-p.(0)] 0° MC
% p,0°=0.546 . L [p(L /2)-p,] c° LWDA
< 14 L /6=5.1 1 S 211 0,0°=0.683
=%
0.5 0+
0 .
0 1 L 2 3 4 5 6 7 8
L/o
4 T : FIG. 2. Within the LWDA the contact density(a) (full line)
(b) and the densityp(L/2) in the center of the slidotted ling of a
hard-sphere fluid are shown for a bulk densitygé>=0.683. The
- slit width L varies between 2d and 8. In the limit L—o the
2 contact density approaches the constant valugr)o°=3.84. In
N 2 the limit L— 20 the two densitiep(o) and p(L/2) approach the
< same limitA ~3exp(u/kT) as given by Eq(3.3b. The dots denote
results of grand canonical Monte Caf@lC) simulations[11].
0 value of the slit width for which these two extrema can no

0 0i5 1 1j5 2 2t5 3 3j5 L longer be distinguished because it depends sensitively on the
approximations entering the LWDE7]. For L=3.98 the
contact density attains its third maximum and the density
. . ) S profile has a pronounced W-like shape. For increasiribe

FIG. 1. Density profile of a fluid of hard spheres with diameter peak in the center broadens and starting at abetd.5c it

o between two_hard walls located &tco_andz:l__ [compare Eq. splits into two peaks located approximately zt 20 and

( 2.10] according to the LWDA density-functional theoijull 7=L—20. In between there is a local minimum. which
curvg for the slit widths (@ L=5.1c (ie., L=3.10) and (b)  4eepens and is smallest far=5.10 (see Fig. 2 The slit
L=3.80 ('-e-’3'-=1-8")- In (a) the corresponding bulk density is  contains now four layers. If the width is further increased
chosen agy0”=0.546 to allow a comparison with molecular dy- -6 |ayers are added by a similar mechanism. The extrema

namics (MD) simulation data[13]. In (b) the bulk density is  na 5 cterizing this process are given in Table I. The values
ppo>=0.683, as in all remaining figures.

z/o

. . TABLE |. Characteristics of a hard-sphere fluid between two
sure of a homogeneous LWDA fluid ak is the almost hard walls of widthL at a bulk density,c®=0.683. The table lists

exa_\ct Carnahan-Starling press@%]. Figu_re 1a) reveals_ & those slit widths/o for which the contact density(o), the den-
satisfactory agreement with the simulation dgta. Similar tosity p(L/2) at the center, the coverag&L) [Eq. (4.1], and the
the case of a hard-sphere fluid close to a single wall of gjte-size contribution to the free energy(L) [Eq. (4.6)] attain
semi-infinite systenj22], the first minimum is slightly t00  their extremaia) minima and(b) maxima.

shallow, but the phases of the oscillations agree rather wellk

If one investigates the changes in the form of the density (o) p(L/2) T'(L) ¥(L)

profile upon increasing the slit width, one finds the follow-

ing scenario: At very small widths the contact dengifyr) @

is very high and the profile between the walls is almost flat. ~ 2-39 2.63 2.18
If L is increased the profile develwp U shape with a single 3.41 3.07 3.62 3.12
minimum atz=L/2 and bothp(o) and p(L/2), which are 4.42 4.60 4.22
shown in Fig. 2 as the full and the dotted lines, respectively,  5.43 5.12 5.60 5.21
decrease rapidly. As a function bf the contact value attains 6.43 6.60 6.21
a minimum atL=2.3% and reaches again a maximum at 7.42 7.12 7.60 7.20
L=3.0lo. As a function ofL the value of the density

p(L/2) in the center reaches its first minimumlat 3.070 (b)

and then increases slowly. At about=3.40 two local 2.06 2.76
maxima in the density profile(z) appear at approximately 3.01 3.10 3.74
z=20 andz=L—2¢ [compare Fig. (b)], which are each 3.98 4.12 4.10 4.72
approximately one hard-sphere diameterapart from the 4.95 5.10 5.71
first layer at the distant wall. These two extrema merge into 5.95 6.15 6.09 6.71
a single maximum when the slit width is further increased 6.93 7.08

(L=4.00). It is difficult to determine reliably the precise
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of the contact density and of various other quantities that will
be defined belowsee Fig. 3oscillate as a function df with

a period of aboutr. Within each of these oscillations another 0.2 1
layer is added to the slit. The denspy(L/2) at the center of
the slit has a minimum if an even number of layers are in the
slit and a maximum if there is an odd number. Therefore, this

[T T/
- Bly(L)-v(=)] 6

O +
guantity exhibits a periodicity of abouto2
A useful global description of the density distribution in
the slit is given by the excess coverage 02
L
rL):= Jo d7p(2) = p] (4.9)
L/o

and the related mean density

FIG. 3. Coveragd’(L) and finite-size contribution to the free

1t energy - i
= v(L) [Eq. (4.6)] of a hard-sphere fluid between two flat hard
pm(L): Lfo dzp(2), (4.2 walls for various slit widthsL=2.70—8c at a bulk density of

pp0°=0.683. In the limit L—o the coverage approaches

or I'(%)=—0.9202 and y(L) reaches the valugy(»)o?=—1.95.

pm(L)=pp+T(L)/L. (4.3) The behavior of y(L) in the intermediate regime be-

tween these two limits is displayed in Fig. 3. The differ-
ence y(L)— y() decreases oscillatorily with increasing
slit  width. The maxima decay exponentially

As shown in Fig. 3I'(L) exhibits oscillations with a period
of abouto. Due to the factor 1/ [see Eq.4.3)] the corre-

sponding oscillations 0prm(L) are less pronounced. [~exp(—1.23/0)]; their positions are given in Table I.

In the limit L—c the coveragd’(L) equals twice the The force between the two plates is an experimentally

coverage of a hard-sphere fluid close to a single wall, whichyccessible quantitj6]. Based on thermodynamics, this so-
has been discussed in R¢R2]. For L larger than & the

; ; thar called solvation force per aredL) is given ag39]

coverage differs only slightly from the limiting value

I'(0): 1
f(L)=—lim A

PO 5 0a, L5 4.4 "

09) P 4.9
ETH —Fpy. .
JL TaA

Using Eq.(4.6) one obtains

This specifies the range of validity for the well-known ap- dy
proximation p,,= pp+ I'(>)/L [38]. In the limit L— 20 the f(L)=—+ : (4.9
T,u,A

aL
densityp(z) is constanfEq. (3.3b)], so that Eq(4.2) yields
_ so that
I'(L—20)=[L—20][A " exp(Bu) — o]
L
- W=y == [ aUt). @0
+0 ;) — 0. (4.5 *
Sincey(L—20)=0 [Eq. (4.7)] it follows that
B. Finite-size contribution to the free energy %
and resulting solvation forces y(o)=— [ dL'f(L")=2yq. (4.11

20
In the context of a slit geometry, a particularly interesting

quantity is the finite-size contribution to the grand potential Thus the surface tensiopy= y(>)/2 of a hard-sphere fluid

close to a hard wall is a measurable quantity accessible to
o1 force measurements. Equatioh1l) remains valid even for
V(L)'_/llinw K(Q[p]Jr[L_zU]PPY)’ (4.6 softly interacting spheres close to a hard wall, but not if the
hard wall is replaced by a soft substrate potential.

wherePpy is the pressure of a homogeneous bulk liquid at _The solvation force can also be expressed in terms of the
the same chemical potential. In the limit L—o, y(L)  difference between the contact density at the finite slit width
reduces to twice the surface tension of a hard-sphere fluili, (), and at infinite slit widthp..(o) (see Ref[40] and
close to the single hard wall of a semi-infinite system. Insertthe Appendix:
ing Eg. (3.9 into the expansions in Eq$3.8) and (4.6

yields, in the opposite limit — 20, Bt (L)=p(o) = p=(0). 4.12
1 T2 This difference is shown in Fig. 2. Minimizing the grand
_ _| = _ _ L canonical potential within the LWDA, we obtain both the
(L) ,BP(U) Pey|lL=20]+0 0') ) .0 density profile as the minimizing function, which leads to the
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b by moving the wallb from L=2¢ to L=«. Thus the gen-
eration of these two additional solid-fluid interfaces is favor-
O able.
O The negative sign ofyy may provoke the question
O 8 whether the hard-sphere fluid is actually stable against the
O O spontaneous formation of cavities. The effect of the forma-
O tion of such cavities on the density distribution of the fluid
O can be thought of to be same as the effect induced by the
immersion of, e.g., a hard walFig. 4 with a minimum
® O G O thicknesso. The difference in free energ§F between the
O homogeneous and the corresponding perturbed system con-
sists of the two surface contributiongA and the bulk free-
energy density times the excluded voluméa of the cavity:
AF/A=2vyy+ Ppyo. Although v is negative, it turns out
that AF is positive[41], so that the cavity formation is dis-
FIG. 4. Schematic plot of a model system consisting of a planafgyored.

hard wall(a) on the left side and a hard pistdb) that is in front of The above discussion is concerned with the particular
and parallel to the Ieft_ wall. It can be fixed at diﬁgrent distancescasesl_zzg and L=co. For general it is worthwhile to
L. The hard-sphere fluid betweanandp and to the_rlght ob are note that the extrema af(L) correspond to the zeros of the
con.n.ec.ted o the same grand canonical reservoir and.thus are ddivation forceF (L), which are documented in Table 1. If in
equilibrium with each other. The force per area &ad@ acting on : - .
the piston is given by8f (L) = p() — p..(¢) and is plotted in Fig, 2 Fig. 4 the wallb is allowed to float freely., thg minima of
as the full line. * v(L) correspond to the most favorable slit widths. Accord-
ing to Fig. 3, the global minimum is located bt=2.185.
Thus, in thermal equilibrium the optimum configuration in
force via Eq.(4.12, and the value of the minimuf[p],  Fig. 4 corresponds to the case in which the walsndb are
which yields the force using E¢4.8). We find numerically  separated such that a monolayer of hard spheres fits in be-
that both routes lead to the same result. This can be anticiween with a little bit of space left. However, one should
pated because any WDA is thermodynamically self-keep in mind that this statement is valid only if the mass of
consistent with respect to this relatigeee the Appendix  the piston is much larger than the masses of the hard spheres.
Here it serves as a helpful check of the numerical calculaotherwise the fluctuations of the position of the piston must
tions. be treated on the same footing and together with those of the
For a physical understanding of the above results it ishard spheres. In this sense, the above line of argument, i.e.,
rewarding to consider the system depicted in Fig. 4. Thehat the equilibrium position of the piston is determined by
solvation force per are&(L) is the net force exerted on the the minimum ofy(L), corresponds to a Born-Oppenheimer
wall b and it is positive if it is directed outward, i.e., to the approximation.
I’Ight ForL>2¢ it is shown in Fig. 2 and for<L<2¢ it At the width L=no just n—1 spheres fit on top of each
IS constant, other into the slit. One may wonder whether this peculiar
matching condition leaves a particular signature inlthde-
pendence of the various quantities studies above. The corre-
sponding ¢l — 2)-dimensional problem of hard rods of length
o confined to a segment of lengthon a line can be solved
exactly[31] and one finds in this case that the second deriva-
tive of the mean number of rods exhibits discontinuities at
because the particles on the right side of walkexert the L=no whose magnitudes decrease for increasing values of
constant bulk pressuiepy=(1/8)p..(o) to the left. Starting L [31]. Since the additional spatial dimensions of a three-
with the wall b at a position corresponding to a slit width dimensional slit allow for an easier rearrangement of the
L the work y(L) — y(«) is gained Eq. (4.10] if one moves spheres upon packing, we expect thatlin 3 these discon-
it to infinity (see Fig. 3. If one now considers the particular tinuities are either smeared out or shifted to higher deriva-
caseL=20¢" the above process starts from a configurationtives. Although, in principle, one should be prepared for the
involving only asingle surface and leads to a configuration occurrence of such singularities in, e.g(L) or f(L), they
of three independent solid-fluid interfaces without changingurn out to be so weak that they do not show up in our
the bulk contribution to the free energy of the total system,present LWDA approach on the scale of the numerical reso-
but increasing theurfacecontribution to the free energy by lution we used.
27y . This provides a transparent interpretation of Egll)
because the integral over the solvation force is the work ap-
plied to the system during this process. In addition these
considerations show that E¢4.11) is valid in general and
not only within the LWDA. Together with the general rela-  So far our analysis has been confined to the study of the
tion in Eg. (4.10, this implies that the equation slit geometry that may be applicable to force microscope
v(L—20)=0 is also valid in general. Finally, sincg, is = measurements of confined colloidal particles whereby the
negative[22] these arguments also tell that ogainswork  solute particles only contribute to the effective interaction

Z

N
O

O
O

f(L)I—%pw(U), oc<L<20, (4.13

C. Derjaguin approximation for the force
between large spheres
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. + 4 such systems the PY theory rules out phase separation at all
— PBo?f(h)/(xR) densities and size ratiogt5]. However, modern integral
,,,,,,, Bo W._(h)/(z R) theories indicate that phase separation can othir

V. TWO-POINT CORRELATION FUNCTION

The two-point correlation function of the HSHW model
. depends on the normal distanagsandz, from the left wall
p,o = 0.683 and on the lateral distangg, (see Sec. Il A The system is
specified by the bulk density, of the corresponding homo-
geneous system with the same chemical potential and by the
width of the slitL. Thus the correlation function depends on
h /o five independent variables. Within the context of a research
paper, a complete graphical account of the dependences on
FIG. 5. Forcef (h) between two fixed hard spheres of a large all five variables is not feasible. Therefore we have decided
radiusR immersed in a fluid of hard spheres of diametetR as  to discuss the general mechanism governing the behavior of
function of the minimum distancl between the surfaces of the the total correlation function on the basis of the Percus test-
large spherefsee Eq(4.14]. The centers of the large spheres are particle theoren{see the following paragrapland to select
at a distance R+h—o. The dotted curve represents the effective the display of the dependence oy (with z,=2z, and fixed
interaction potential between the two large spheres. py, in all plots) for L fixed and various values @ as well as

. ) o for z, fixed and various values @f. Here and in the follow-
between them; in the present context this effective interacing we discuss the case=3 only.

tion is approximated by a hard-core repulsion potential. "|n the present context the Percus test-particle theorem

However, it turns out that the results for the slit geometry[40] states that the produp(z,)g(r 12,21 ,2,) [see Eq(2.9)]
can even be used to analyze this latter effective interactiofyy 3 hard-sphere fluid in a slit of width is equal to

potential between large colloidal particles of radRsthat  the one-point conditional density distributiorp(R;
are immersed in a solute composed of small particles with- (.., 7 )|R,=(0,z,)) of a hard-sphere fluid exposed to an
diametero [42]. (For R—c this problem reduces to the eyteral potential consisting of a slit of width and, in ad-

standard slit geometrylf the centers of the two large hard dition, of a hard sphere of diameterwhose center is fixed
spheres are kept at a fixed distand@2h— o, in the limit 5, R,=(0,2,). For p,03=0.546,L=5.1, andz,=o this

R> o the solvation force between them is given by the Der'product is shown in Fig. 6. In the limit;,—x it reduces to

jaguin approximation43] the density profile in Fig. (), which corresponds to the
- same slit width and the same chemical potential. This com-
fs(h):wa dL’ f(L")=#mR[y(h)— y(<)], (4.19 parison reveals that approximatelp(R;=(r2,z;)|R>
h =(0,z,)) is the superposition of the density profile of Fig.
1(a) and the oscillatory density distribution around a fixed
where Eq.(4.1]) has been used. The large spheres touclharq sphere placed in a previously homogeneous bulk fluid.
each other foh=o; in this case there is no small sphere pccordingly, the coordinates, of the maxima and minima
between the two large sphgres _along th(_e symmetry axis. At p(Ry|R,) which are denoted in Fig. 9 by the dots and
cording to Eq.(4.14), the finite-size contribution to thiteee  ¢jrcles; respectively, almost coincide with those of the den-
energyof a slit of width h is proportional to theforce be- ity profile of Fig. 1a) and thus in Fig. 9 they line up nearly
tween two hard spheres of radit&s For slit widths larger  parallel to the wall. This general mechanism was also borne
than 2r the free energy is given by Fig. 3 and for gyt in previous analyseshe PY approximation for a fluid in
0<L<20 Eq.(4.13 is used in Eq(4.14. The combination 5 s|it [16] and the LWDA for a fluid close to a single wall
of these results leads to Fig. 5. [22]) and has proven to yield a roughly correct picture of the
The global minimum ath=o¢ indicates that a strong radial correlation function in confined geometries.

depletion force will press the two spheres together if they |t is rewarding to investigate for different slit widthsthe

namically most favorable separation one must consider the , je. parallel to the wall witle, =z, fixed. This reveals

effective interaction potential the influence of the distant wall on the correlation function
N close to the near wall. This dependence is of particular inter-
W, = j dh’f(h') (4.15 est because it can be measured dire_ctly by using digital video

o microscopy{5]. Although such experimental data are not yet

accurate enough to facilitate a quantitative comparison with
between the two large spheres. This is shown in Fig. 5 as thilneoretical results, we surmise that in the near future the
dotted line. For low densitiesp><0.4) this quantity has experiments will be improved sufficiently. For a bulk density
been investigated in the framework of an expansion intaf p,o°=0.683 the radial distribution function is shown for
powers ofp [44]. The present density-functional theory ex- z,=z,=o0 andz,;=z,=1.5¢ in Figs. 7a) and 1b), respec-
tends these results to higher densitieser alia, the interest tively. Compared with the corresponding radial distribution
in this effective potential arises from the question whether dunction of a homogeneous bulk fluid with the same chemi-
binary mixture of hard spheres can exhibit flocculation. Forcal potential(see the dashed—double-dotted lines in Fig. 7
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FIG. 6. Within the LWDA the conditional singlet density 0.6 bt et \ :bu ( )
p(R1|R;)=p(21)9(r 12,21,2,=0) of a hard-sphere fluid in a slit of 12 14 16 18 2 22 24 26 28 3

width L=5.1¢ at a reference bulk density @f,o°=0.546 in the
presence of a hard sphere of the same diameter whose center is
fixed atR,=(r1,=0,z,=0). (This position is marked by a crogs. T t + t
Due to g(rqp—=,z;,2,)=1 one recovers for,,—o Fig. 1(a), 12 1 p,o’=0.683 |
which corresponds to the same valued.oéndp,. The dots and
circles in the contour line plot at the bottom of the figure denote the
positions of the local maxima and minima, respectively. The dashed
line indicates the excluded volume due to the test particle; it is not
an isodensity line. The value of the singlet density varies by an
amount 0.3 between neighboring contour lines. The contour
lines are shown only for values less thand.@. (In the actual
calculations a mesh size of 082n the z and ther ,, direction has
been used.As can be seen from the contour lines, the perturbation
of the density distribution in the slit due to the presence of the fixed
sphere aR,=(0,0) dies out forr,=30 or z;=30.

ro/c

o(ry,,2,=2,=1.50)

08 1

the amplitude of the oscillations is reduced fgr=2z,= o,

but enhanced for;=z,=1.5¢. Since the increase @ by 0.6 A
the radius of a sphere already alters the amplitudes so pro- 12 14 16 18 2 22 24 26 28 3
foundly, we conclude that accurate measurements of parallel
correlations require a spatial resolution in théirection of
about 0.1 or better. For increasing the radial distribution
function reduces rapidly to that of the corresponding semi- FIG. 7. Radial distribution functiory(ry,,2;,2,) of a hard-
infinite system[22]. In Fig. 7(a) for a slit width of L=50 sphcsare fluid for various slit WidthB at the_ reference bulk density
(L=30) for all values ofr ;, the influence of the distant wall #*7 ?0‘68_3' T;.he Ollat?rr?l distance,, Va(;'es_betwgenbl‘i aﬂd
already is no longer visible within the resolution of the plot. 3.00 for 2,=2, fixed with 2, = o in (&) andz,=15¢ in (b). In the

This is remarkable because for this width only four sphere%n;'t_zr f_i;]((fa)thaeng 02rr8e|_a§olnirfijbn)cgggznugi%rgee;sne_ r?\%?;yﬂ:(;tvviues
fit side by side into the slit. N s )

> have used the same scales of the axe&)nand (b) in order to
In Sec. IV we have discussed the HSHW model for WOt cilitate a direct comparison of the two cases. In both plots the

sets of the parametets and py, in terms of the one-point = yashed—double-dotted curves denote the correlation function of the

correlation function and related quantities. In Figs. 8 and %orresponding homogeneous bulk fluid within the PY approxima-
the same cases are now investigated in terms of the tWQon. In (a), for all values ofr,, the correlation function cannot be

point correlation functions as a function of, for various  distinguished from its semi-infinite forif22] for L=5g.

values ofz; =z, and forp,0°=0.546 and_/o=5.1 in Fig. 8

[compare Fig. @] and for p,0®=0.683 andL/c=3.8 in  spond to the minima of the density profile these amplitudes
Fig. 9 [compare Fig. (b)]. The various values of; are of the oscillations in g(rq»,z;,2,=2;) are enhanced,
chosen to coincide with the positions of the extrema in thewhereas for those values »f corresponding to the maxima
corresponding density profilesee Fig. 1L For both systems of p(z) these amplitudes are reduced. This is surprising be-
in the casez;= o the contact valug(r,=0,21,2,=2,) is  cause the amplitudes of the oscillations in the bulk correla-
strongly reduced as compared to the bulk vafyg(o),  tion functiongpy(r;p,) decrease with decreasing . Thus
whereas for larger distancem these contact values are the natural attempt to approximate the radial distribution
rather close to each other and to the bulk value. This is ifunction such that in the case;=z, it reduces to
accordance with the results obtained for a semi-infinite hardg(r ,5,z1,2,=2z1)~gpy(r =r12;pp=p(z1)) is unsuccessful
sphere fluid near a single wdlR2]. A further analysis of because this approximation renders the opposite tendency of
these results reveals that for those valuegzothat corre-  the actual oscillatory behavior at least for the values of the

— bulk (PY)

re/c
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incorporate the peculiar behavior of the actual radial distri-

'i — z=100¢ bution function described above, the reliability of these ap-
‘ Lic=51 e 2=164c proximations is rather limited.
PR --- z=2200
\‘ -— z=2550 VI. SUMMARY
—- bulk (PY)

9(r221,2,=2,)

r,/c

25 3

We have obtained the following main results for a fluid of
hard spheres of diameterconfined to parallel and structure-
less hard walls at a distante

(i) On the basis of the linear weighted density approxima-
tion, which describes an inhomogeneous three-dimensional
fluid in the grand canonical ensemble, we have constructed
an approximation for the two-dimensional analogue of a ho-
mogeneous hard-disk fluid. This approximation compares fa-
vorably with simulation data.

(i) As proved by Hendersof30] in the limit that the
width L of the slit is reduced such that it can accommodate at
most a monolayer of the fluidL(—20), the density profile
approaches a large but finite constant value. This implies that

FIG. 8. Radial distribution function(r 1,2, ,z,=2,) of a hard- in this limit the fluid is squeezed out of the slit. Up to first
sphere fluid in a slit of widthL=5.10 at a bulk density oOrderinL=L—2oc we find that the LWDA reproduces this

pyo2=0.546. The decay of the correlations parallel to the walls islimit exactly.

shown for various values of;=z,. According to Fig. 1a), (iii) The two-dimensional hard-disk fluid and the three-
z,=1.0c corresponds to the contact with the leftwall=1.64sto ~ dimensional hard-sphere fluid confined to a narrow slit have
the first minimum,z;=2.20 to the first maximum, and;=2.55  been compared in the grand canonical ensemble. For finite

to the midpoint of the density profile of this system.

chemical potentials and slit widths considered here. On th
basis of a known expression for the bulk correlation function
g(r) there have been effor{g7,48 to construct a suitable

ansatz for the radial distribution function for a hard-spher
fluid close to a hard wall. Since such an ansatz does ndf'°U

— z=1000

chemical potentials the confined hard-sphere fluid does not
resemble the genuinely two-dimensional hard-disk fluid.

e (iv) The density profilesp(z) calculated within the
LWDA compare satisfactorily with simulation dat&ig. 1).

The dependence of the contact dengifg= o) on the slit

eWidth L is close to that obtained from simulation data, al-

gh the amplitude of the oscillations in this dependence
as obtained from LWDA is slightly smaller than that ob-
tained from the simulationgFig. 2).

(v) Both within the framework of exact thermodynamics

T and within LWDA, the finite-size contribution to the free
£ Lio=38 e z=146¢ energyy(L) [see Eq(4.6) and Fig. 3 represents the poten-
£ --- z=178¢ tial of the solvation forcef(L). The minima ofy(L) (see
—— z=190¢ Table ) correspond to metastable distances between freely
~ — bulk (PY) movable plates immersed into a fluid reserv@iig. 4). Fur-

r,/c

FIG. 9. Radial distribution functiog(r1»,2;,2,=2;) of a hard-

thermore, within the Derjaguin approximatiorfL) renders
the force between two large spheres suspended in a liquid of
small spheregsee Eq.(4.14)].

(vi) Within the LWDA and based on the above results, we
have determined the direct correlation function. By inverting
the Ornstein-Zernike equation the total correlation function
has been calculated. We have discussed it within the frame-
work of the Percus test-particle theordFig. 6).

(vii) The influence of the distant wall on the radial distri-
bution functiong(r ;»,2z,= 0,z,= o) along the near wall de-
creases rapidly with increasing slit width(see Fig. 7.

(viii) For a fixed slit width and bulk reference density
pp We have analyzed the dependence of the radial distribu-
tion functiong(r15,21,2,=24) onz;. We find that for those
values ofz; for which the density profilep(z) exhibits a

sphere fluid in a slit of widthL=3.80 at a bulk density e . . i
ppo®=0.683. As in Fig. 8, the decay of the correlations parallel tolocallmlnlmum(mammur.ﬁ, the amphtude of th_e oscillations
the walls, i.e., as a function af;,, is shown for various values of Of this correlation function as a function of; is enhanced
2,=12,. According to Fig. 1b), z,=1.00 corresponds to the contact (reduced compared to the corresponding bulk correlation
with the left wall,z, = 1.460 to the first minimumz,=1.78 to the  function.

first maximum, andz; =1.9¢ to the midpoint of the density profile A major advantage of the present density-functional
of this system. theory is that it is computationally much less demanding than
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integral equation theories or numerical simulations without
losing its competitiveness as far as the quantitative reliability
is concerned. Furthermore, density-functional theory yields
relatively easy access to free energies and solvation forces.
Therefore, we are encouraged to extend this analysis to fluids
governed by dispersion forces in order to refine the presently
available ansatz for the two-point correlation functions in

such system§47].
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APPENDIX

Upon differentiating the equilibrium grand canonical po-
tential in Eqg.(2.6) one obtains, by using the chain rule,

o0 oF[p] op(R")

. dpr) P4 _ '
N(R) P(R)+de R [ 5p(R) [u—=V(R"] SV((R) )
Al

B. GOTZELMANN AND S. DIETRICH

(aQ) _J d 80 IV(R)
aL rua I OVR) AL
:f dddRp(R)
R
1 dexd — BV(R)]
X —Eexr{BV(R)]ﬁ—L
_
-~ 3 Hdd Rp(R)exd BV(R)]

X%[@(Z—a)%—@(L—a‘—z)—l]

1
:_AE{p(z)equV(Z)]}FLw

——Al L— ——AE (A2)
= Bp( )= Bp(tr)-

The penultimate step in EA2) is based on the fact that the

For the equilibrium density distribution the expression within productp(z)exd 8V(2)] is continuous as a function af[49],

the curly bracket vanishes. This is true evendpproximate
expressions for the function&®[p]=Fp]+Fedp] such
as, the one used for the LWDA. According to £g.10, the
external potential/(R) depends parametrically dn so that
with Eq. (A1) one has

so that the value of this product a& L — o can be obtained

by considering the limiz—L —o—0, whereV(z)=0. This
renders the equivalence between the two definitions in Egs.
(4.8) and (4.12 both for exact and for approximate expres-
sions forF[ p].
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