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We present a model for the flow of a polymer melt through a capillary with nonlinear slip boundary
conditions at the wall of the capillary. The model consists of the linearized Navier-Stokes equations coupled to
a Maxwell constitutive relation for the viscoelasticity and a phase-field model for a first-order transition
between stick and slip flow at the boundary. Specializing to the case of a two-dimensional capillary, we
perform a linear stability analysis about the steady-state solutions and predict in which parameter regimes the
steady-state becomes unstable. A numerical study of the model shows regions of steady flow, as well as
regimes with periodic oscillations, spatially uniform but temporally chaotic oscillations, and more complicated
spatiotemporal behavior. We show that the oscillations can account for the sharkskin texturing and defect
structures seen in the extrusion of polymer mgB1063-651X97)10401-9

PACS numbg(s): 61.25.Hq, 83.20.Lr, 64.60.My, 47.56d

I. INTRODUCTION extrudate develops a sawtooth texturing on its surface. Often
a change in the slope of the flow curve is apparent near the
Understanding the instabilities which occur when a poly-onset of the sharkskin, as shown in Fig. 1. At still larger flow
mer melt is extruded through a capillafpr “die” ) is a  rates, one sees ‘“stick-slip” or “spurt” flow, which is char-
longstanding problem in the plastics and chemical engineeracterized by fairly long time oscillations in the flow rate
ing communities. The issue was of large technological im<e.g., on the order of secongsvith a noticeable effect on the
portance for the plastics industry in the 1950s and 1960gxtrudate. Sharkskin is frequently seen on the extrudate dur-
since these instabilities lead to unwanted distortions in théng all or part of the stick portion of the cycle. Finally, at the
final plastic product, which have been collectively termedhighest flow rates, one sees “gross” or “wavy” melt frac-
“melt fracture.” Over time, engineers have found ways to ture which is characterized by a highly irregular extrudate.
avoid or minimize the problem in practice, but little under- Not all these regimes are necessarily seen for all materials
standing of the origin of these distortions has been reacheand, in particular, the “stick-slip” or “spurt” flow is seen
and much discussion of the problem has continued in thenly in those experimental setups where it is the piston
rheology and non-Newtonian fluid mechanics literature. Fospeed, rather than the pressure, which is held fixed. Under
recent reviews, se,2]. pressure regulation, one instead sees hysteresis, where on
The problem can best be described by reference to thicreasing and decreasing pressure the flow rate jumps when
sketch of the “flow curve” presented in Fig. {For actual limits of metastability are reached, as shown by the dashed
experimental curves, see, e.g., R¢fs-4].) The horizontal lines and arrows in Fig. 1.
axis specifies the apparent shear rate of the polymer melt at There has long been controversy about whether these ef-
the wall of the capillan{5], while the vertical axis specifies fects are due to instabilities inside the die, or are instead due
the shear stress at the walBhear rate and shear stress, al-to instabilities at the die entrance or exit, or some combina-
though the more fundamental quantities, are not the mosions of these. However, recent ultrasonic measureni&fts
directly accessible; in terms of physically measurable or conshow that anomalous time-dependent behavior in the poly-
trolable parameters, the horizontal and vertical axes corremer flow occurs within the die, far from both the entrance
spond to the flow rate and the applied pressure, respeciivelyand exit(and even at flow velocities somewhat below those
The inset in Fig. 1 is a cartoon of a typical experimentalwhere sharkskin first becomes appayethtus suggesting that
setup: a piston or screw feeds the polymer melt into a reseinstabilities inside the die itself are probably important.
voir and eventually through the die and out the other end, Since the Reynolds numbg8] is still very small when
where it cools and solidifies. these instabilities occur, it is clear that they cannot be due to
As the flow rate in the die is increased, one typically findsturbulence in the die; hence, the instabilities are most likely
several different regimd®,3,6]: At the lowest flow rates, the to be due to some of the special properties of polymer melts,
extrudate is smooth and regular. Next, one encounters a revhich of course differ from classical fluids in a number of
gime of surface distortion termed “sharkskin,” in which the important wayg9]. First, the time scales for relaxation are
long and widely distributed. Therefore, the fluids can behave
elastically on laboratory time scales and must be modeled
*Current address: Bldg. 83, 2nd floor, RL, Eastman Kodak Comwith viscoelastiaconstitutive relations between the stress and
pany, Rochester, NY 14650-2216. strain. Second, the viscosity in the fluids is often found to be
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reservoir

FIG. 1. Sketch of a typical flow curve seen in
experiments on extrusion of polymer melts,
adapted fronj2—4]. Shown is the shear stress at
the wall, 04", as a function of the shear rate,
exg!, at the wall. Also shown are the approximate
flow regimes where different imperfections are
seen on the extrudate. For photographs of the ex-
trudate produced in these regimes, EEg In the
spurt regime, the flow oscillates in time; alterna-
2 tively, if the experiment is performed at constant
wavy pressure, this regime is not accessible and hyster-
spurt esis is seen instead, as shown by the horizontal
—— (gross melt dashed lines. The inset shows a typical experi-

sharkskin fracture) ; )
, mental setup where the melt is pushed by a piston
from a large reservoir through the capillary and
out the other end where it solidifies.

shear
stress
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a decreasing function of the shear rate, a phenomenon termegatial structures in the die, which we conjecture is respon-
“shear-thinning.” The proposed explanation of this is thatsible for sharkskin. A shorter communication of our work
under larger shears the polymers tend to line up parallel thas been presented in REL8]. Here, we give a fuller de-
the flow and can then more easily slide past one another. scription of the model, discuss the determination of the
Third, there is increasing evidence that polymeric fluidssteady-state solution and the exact linear stability analysis
might not obey the “stick” boundary condition at the walls about this solution, and give much more detail of the numeri-
of the container that is standardly assumed in hydrodynameal results and relation to experiment.
ics. That slip behavior could occur in polymer melts was The plan of the paper is as follows: In Sec. Il, we present
suggested in some of the earliest literature on melt fracturéhe basic elements of our model and discuss the Fourier
[10]; such ideas were introduced into the physics communitytransform of the fluid flow equations to reexpress the model
several years ago by de Gennfgdl]. More recently, de in a mixed spectral and real space representation. In Sec. Ill,
Gennes and co-workers have expanded on this idea, suggegte examine the steady-state solutions and their linear stabil-
ing that a sharp transition should occur between stick and
slip behavior as the shear rate at the walls is increfs2d 200 (T — 0.1 e
Experimental evidence for the importance of slip has been C g ;
accumulating in the study of polymer melts,2,13,14, and L
although most of the evidence has been rather indirect, a
recent elegant experiment by Miglet al.[15] using a poly-
meric fluid in the planar Couette geomei8] actually mea-
sured the velocity of the fluid within 100 nm of the wall,
confirming much of de Gennes’ picture. In particular, the 50
authors found that as the shear rate was increased there was
a sharp transition at which the slip velocity jumped by about
four orders of magnitude. 0.0 0.2
In order to understand the phenomenon of melt fracture, v
we present a hydrodynamic model that describes the flow of )
a viscoelastic fluid in which the polymer near the surface FIG. 2. (a _Flow_curve for our mod(_el produced using the param-
undergoes a first-order transition in conformation as a func?tv'farII values given in Table I Shown is the shﬁi.r stress at the wall,
tion of the shear stress at the wall. This conformationa(’xy @ &S & function of the average flow velocity, in steady state,
- L ach point on this curve is associated with a uniform steady-state
change leads to a change in the frictional force between thg

. . . - olution of the model. The dotted part of the curve jas<0 and
wall and the polymer in the bulk, producing stick-slip behav-;; thuspotentially unstable, while the solid part has 1>0 and is

ior, and leading in a_natural way to an effectivel_y multiva!- stable. The inset shows the rangewf, where the steady-state
ued flow curvesee Fig. 28], as has been much discussed ingqytion is actually found to be linearly unstable as a function of
the recent literaturgl,2,16,17. When the die is coupled to a /7 as obtained from an approximate result of the linear stability
large reservoir in which the polymer can be compressed, W@nalysis, Eq(3.24. (b) Local free energy densit§i(¢) for three
find that the multivalued flow curve gives rise to oscillatory gifferent values Ofg\;vya“_ The solid, dashed, and dotted curves are
spurt flow, as has been discussed previoligly More sig-  for shear stresses of/2' = 80, 160, and 200 kPa, respectively. The
nificantly, and even in the absence of the effect of the reserdashed part of the flow curve i@ corresponds to a maximum in
voir, we find that theelasticnature of the fluid can give rise f(y) while the solid part of the curve corresponds to minima in

to periodic oscillations, chaotic behavior, and large-scalef ().
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ity. In Sec. IV, we present numerical results, first briefly dimensionless ratio to consider is the Weisenberg number,
discussing the numerical method, next considering oscillagiven by the product of the shear rate ang. This is esti-

tory solutions which are spatially uniform in the flow direc- mated to be of order 0.1 to 1 in the range where sharkskin
tion, and then considering spatially nonuniform solutions.and spurt flow are seen. Because the convective terms iden-
We conclude Sec. IV with a discussion of two additionaltically vanish for flows that are uniform in the flow direction,
features which must be added to the model in order to fullywe expect that, in analogy with the Reynolds number, the
reproduce features seen in most experiments: compressibilifeisenberg number generally has to be considerably larger
of the melt in the reservoir and nonuniformity in the bound-than one before the convective terms become important.
ary conditions along the walls. Finally, in Sec. V, we con-These terms do play a role in certain cases, such as in pro-
clude with a summary and a brief discussion of avenues foducing higher stresses near the ends of the(dsewill be

future research. discussed in Sec. IV )Cand for the behavior at higher flow
rates, i.e., in the gross melt fracture regime not studied in this
Il. THE MODEL paper. In this regard, we note that a recent paper by Black
) and Graham[19] argues that there exists large-wave-
A. General presentation number instability when terms in their model, analogous to

We consider Poiseuillépipe) flow [8] in a circular or those proportional to the Weisenberg number discussed
rectilinear geometry. Generalization to more complicated geabove, are largéhat is, for high shear ratesHowever, here
ometries or to other types of flows, such as planar or cylinwe believe that the most important nonlinearities in the prob-
drical Couette flow[8] is straightforward. We assume peri- lem come in through the boundary conditions at the walls of
odic boundary conditions in the flow direction and the die.(We could also add additional nonlinearities by in-

impermeable walls on the sides of the capillary. cluding shear thinning9] in our model; however, prelimi-
The bulk fluid flow is specified by the following equa- nary investigations showed that considering such a compli-
tions: cation was not necessary to produce the physics of interest
here)
av(r,t) A PN The boundary condition for the fluid velocity at the walls
P4t =~9OxXx=Vop(r.)+V-o(ry), (2.1 of the die is coupled to the kinetics of a first-order phase
transition[ 20] describing the conformation of the polymer at
V-v(r,t)=0, (2.2 the wall by the following equations:
and VH(I’ZI’||,t)=/l//(l’||,t)(ﬁ-VVH)|,.:rH, (2.9
Jr(ry &
T —=—[F(r - ne(r.n]. (23 Fw]=f dry| f()+ 2 (V)2 2.5
ot walls 2 I

Equation(2.1) is the Navier-Stokes equatid®], which is  and
simply Newton'’s law for the velocityw(r,t) of a fluid ele-
ment at positiorr and timet with densityp. @ (r,t) is the aP(r,t) oF

(viscous stress tensor. The pressure term has been divided T a Sy(rt)” (2.6
into two parts;p(r,t) =g(t)x+ dp(r,t), whereg(t) is a uni-
form pressure gradient in the flow direction, a8i(r,t) is Equation(2.4) specifies the slip boundary condition, with

the excess part, whidftike all the other variableds periodic  the slip velocity assumed to depend on the shear rate at the
in the x direction. Equation(2.2) is the continuity equation wall [21]. Here,r| denotes a coordinate which ranges only
which follows from the assumption that the fluid is incom- over the Wallsn(rH) is defined as the inward unit normal at
pressible. In solving these equations, the incompressibilitghe wall, andv”(rH,t)—vH(r”,t)vH(rH,t) is the component of
condition and the boundary condition that the perpendiculathe fluid velocity parallel to the walk” is a constant with the
component of the velocity must go to zero at the walls aredimensions of length ang is a dimensionless quantity de-
used to determineSp(r,t). Equation(2.3) is the Maxwell  fined locally at each point along the walls at timé. Equa-
constitutive relation for a linear viscoelastic flujél], with  tion (2.4) defines a slipping length ', which has the geo-
770 the viscosity and€ the rate of strain tensor with com- metric interpretation as the distance between the die wall and
ponentse;;=dv; /dx;+ dvj/dx; . By varying the Maxwell re- the pointoutsidethe die at which the tangential velocity,
laxation time, 7,,, we can tune between a viscous fluid linearly extrapolated based on its value and the value of its
(7m—0) and an elastic solid(,, 70— ©). gradient at the wall, would go to zero. In particular,
These three equations together constitute a standard hy~y—0 corresponds to “stick”(tangential velocity zero at
drodynamic model for an incompressible viscoelastic fluidthe wal) while /iy— o corresponds to perfect slip. Equation
[9]. Note, however, that we have linearized the equations by2.4) is an equation commonly used to describe slip bound-
replacing the total or convective derivatives that would nor-ary conditions[1,12—15; our one generalization here is to
mally appear on the left-hand side of Eq8.1) and (2.3 assume that the slipping length is a local quantity which can
with a simple partial derivative. This is an excellent approxi-be specified at each point along the wall.
mation for Eq.(2.1) because the instabilities we will study  Experiments show that the slipping length jumps sharply
are found to occur at very low Reynolds numb8}, where at a critical value of the shedd 3,15, while hysteresis is
these terms are very small. For E§.3), the corresponding observed on the multivalued flow curves seen in extrusion
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[1,2]. Together, these two features suggest the change in Having defined the model, it is now useful to summarize
slipping length is the nonequilibrium analogue of a first-some of its basic features. The most important is the intro-
order phase transition, presumably the result of a transitioduction of a first-order stress-induced phase transition for the
in the local conformational state of the polymer at the wall.conformation of the polymer at the wall. The conformational
Equation (2.5 presents the free energy functional of achange couples back to the fluid flow by changing the slip-
Ginzburg-Landau phase-field modg22] for #(x,t). We  ping length at the wall. Since there is a range of values of
consider a standarg/* free energy model with local free |owy| where the local free energy densttfx)) has a double-
energy density welled structure, this gives rise to hysteresis associated with
the spinodal part of the van der Waals loopifi 94, where
c b a the local susceptibilityy=(9?f/d¢?) " is negative, while
f(yp)= 2 Tass 3 S+ 5 Y~ (HY-@-A)y. (2.7  retaining consistency with a sharp first-order phase transition
in the infinite-time limit. This hysteresis in the conformation
of the polymer at the wall leads directly to hysteresis in the
Note the inclusion of a linear term coupling(x,t) to the fluid flow because of the coupling of the polymer conforma-
value of the shear stresg @i, at the wall. The second tion to the slip length”’ys. Such hysteresis has indeed been
term in Eg. (2.5 is a square-gradient term which resists seen experimentally, and much recent theoretical work has
changes iny(x,t) in the direction along the wall. The con- incorporated it in arad hocfashion[1,2,16,17, i.e., by pos-
stantsa, b, ¢, H, and¢, are all taken to be positive, with the iting @ nonmonotonic relation between slip velocity and wall
latter being a bare correlation length. With this choice ofstress, and then assuming a history dependence in determin-
signs, and with the parameter values appropriately choseiig which slip velocity to use in the case where the curve is
[23], the equilibrium value off is zero whero,,=0, with a multivalued. Here, such hysteresis arises naturally from a
first-order transition to a large value ¢f as the stress in- Wwell-accepted description of the dynamics of a first-order
creases. The microscopic picture of de Gennes and cdhase transition.
workers[12] suggests associating larggrwith the stretch- It is not obvious that the instability associated with the
ing and uncoi”ng of some po|ymers attached to the Wa||polymer conformation at the wall will necessarily lead to an
under the action of the shear stress, although it has bedRstability of the entire fluid, and in fact, it might seem rather
suggested that other mechanisms such as desorption of tRerprising that an instability at the wall could be so effective
polymer at the wall may be relevajit4], and in fact that the in driving an instability in a viscous fluid. We will see, in
specific mechanism for the stick-slip transition might evenfact, in Sec. Ill B that thelasticityof the polymer melt plays
vary from one system to anothEIS,lll]. Our model is not @ crucial role in determining whether or not the system is
dependent oh a Speciﬁc microscopic mechanism. Rather, junstable: Only if the fluid is suﬁiciently elastic that it acts as
the spirit of keeping our model simple and general, we as@ solid on the time scales over which the polymer conforma-
sume only that the change in conformation can be specifietion changes at the wallg.e., if 7= rp,) will the system be
by its effect on the slipping lengthy(r|,t) [24]. Note that, able to sustain OSC|II<_':1t|o_r[$26]._ However, before d|§cussmg
although our mesoscopic description is motivated by a mithe origin of the oscillations in the polymer melt in further
croscopic picture, the collective gradient term proportional todetalil, it is useful to rewrite the equations in a form more
&, is a feature particular to our treatment. Since such a terriiseful for the study of the steady-state solutions and their
is the most simple allowed by symmetry, and naturally oc-stability.
curs in mesoscopic descriptions similar to ours, we expect
that coarse graining or renormalizing the microscopic de-
scription will give rise to it. At any rate, we will find that the B. Spectral representation

most complex spatiotemporal behavior occurs wignis Since, in the description of the bulk fluid hydrodynamics,
much smaller than the other length scales in the system. Egs. (2.1)—(2.3), we have neglected all nonlinear terms,
Finally, Eq.(2.6) is an equation for dissipative relaxation these equations can be Fourier transformed analytically and
of the polymer conformation toward states that are locateduced to a simpler form. Before doing that, however, we
minima in the free energy. The local rate of change/ob  specialize to a specific geometry, namely, a two-dimensional
proportional to the functional derivative of the free energycapillary of sizel, x L, with periodic boundary conditions in
with respect tay. The constant of proportionality is given by the x (flow) direction and impermeable walls g=0 and
1/ where 7 is the characteristic time scale for relaxation of L, in the direction perpendicular to the flow. Since our sys-
the polymer conformatiofi25]. In general, one would also tem is finite in both directions, Fourier series are used and
include noise terms in these equations, with their amplitudegye have a discrete set of wave numbers. Inythdirection
determined by fluctuation-dissipation relatid@8,22. How-  we use a Fourier sine series foy, reflecting the boundary
ever, for our purposes, these terms should be of minor imconditionv,(r,t)=0 at the walls. Once this choice has been
portance and are neglected. It is through EBs)—(2.6) that  made, the ‘structure of Eq&2.1)—(2.3) determines the sim-
nonlinearities enter our description; the equations for theylest choice for the other variables, namely, sine series for
bulk fluid, though viscoelastic, are linear. It is possible that 8, and cosine series far,, oy, oy,, anddp. The trans-
more complicated description of the dynamics of the poly-formation of the equations is then performed by multiplying

mer near the wall would be required to describe some progach equation by sikfy) or cosky) and integrating with
cesses of interest, but in the absence of any substantive jugsspect toy, where

tification, we have chosen as simple a model as the physics
of the problem requires. ky=nmw/Ly, (2.8



2980 SHORE, RONIS, PICI:|EAND GRANT 55

with n=0,1,2 ... . Forterms containing derivatives with and

respect toy, integration by parts is performed; care must be

taken in considering the surface terms which turn out to be i (x,1) _ 3 2

zero in all cases except in the equation for the propagation of  at Y (X, +byi(x.t) —ag;(x.t)

Uy- 5
Straightforward manipulation of the resulting equations in _hilL _ 2 Y (X1
Fourier space is then used to eliminate the variables (=D He 00y =10+ & Xz
op(k,t), T (k,t), andv,(k,t), finally obtaining the follow- (2.15
ing equation forw,(k,t): '

Finally, in order to obtainr,, appearing in Eq(2.19), it is

azvX(k't) oKD 2 necessary to include E¢R.3) specialized to the shear com-
Tm 77—+ + vok“v,(k,t) y .3 sp
Jt Jt ponent of the stress tensor at the walls
2vo ky d Xy =1.0) |
=T Rl DTk Tok 0] 29 T =~ [oy(xy=1.0 = 7 Tj(x.D)].
' (2.16

for ky# 0. For the special cadg =0, v,(ky,k,=0;t)=0 for . ) N
k.#0 and Equationg2.9) and(2.14—(2.16 constitute a rewriting of
Egs.(2.1)—(2.7) in a mixed real space-Fourier space repre-

duy(k=0}) L sentation often more amenable for both analytic and numeri-

P =9+ oy (k=0y D2, (210 cal work. In what follows, we will make use of both the
Y mixed and real space representations, according to which is

In Eq. (2.9), vo=7,/p is the kinematic viscosity8] and we more convenient for our purposes.
have defined a shear rate at the wall as

IIl. STEADY-STATE SOLUTIONS AND LINEAR
Ti(X,)= v (X,1)/3yly-, (2.11) STABILITY ANALYSIS

where j takes on the value ofy at the two walls: A. Steady-state solutions
j={0L,}. When we use a subscript @hor T to indicate at
which wall the corresponding quantity is evaluated, we will
replaceL, simply by L for notational simplicity. Note that
the last term in Eqs(2.9) and (2.10 arises from the afore-
mentioned surface term that appears in the Fourier tran
formed version of Eq(2.1).

vy(kx=0, k,=0}) in Eqg. (2.10 is simply the spatially

The steady-state solutions are obtained from E8<®)
and (2.14—(2.16 by setting all time derivatives equal to
zero. We are interested in steady-state solutions that are uni-
form in thex direction, and thus have only the=0 com-
i)'onents ob,(k) andTj(k,) nonzero. These components are
simply the uniform-inx real space values which we write

o X ; . succinctly az,(k,) andT;. Explicitly summing the Fourier
averaged flow velocity in the die, which we will henceforth series for they component to obtain the velocities in real

den_ote a®, . Experiments are typically run under conditions space at the two walls, we can write H8.14) as
of either constant pressure or constant flow rate. The former

condition is implemented by setting the pressure gradient oz
g(t) equal to a constant in E(2.10. A constant flow rate is L poTo=vyt > vx(Ky) (3.2
implemented simply by taking, equal to a constant, i.e., by n=1
requiring and
vy lot=0, (2.12 .
. P /P T =vy+ —1)"v,(k,), 3.2
which from Eq.(2.10 implies that YTL=vx nzl( )"vx(ky) 3.2
g(t)=ia_ (y t)|Ly (2.13 where we recall Eq(2.8) relating k, and n. (It is worth
L, ¥ ly=0 noting that these equations also hold for a time-dependent

— ) . state provided that it is uniform in the direction)
where gy, (y,t) is the shear stress spatially-averaged along | the steady state, EqR.9) reduces to
the flow direction. Henceforth, we will assume that Eq.

(2.12 holds until we return to discuss constant pressure flow 2Ly[(— )T, —To]
and a more complicated experimental flow condition in vx(ky) = (nm)?2 : (3.3
Sec. IV C.

We will considery only in real space. Hence, Eq®.4— |t e substitute Eq(3.3) into Egs.(3.1) and(3.2), noting that

(2.7) remain essentially unchanged. Here, we simply rewrites=  1/n2— -2/ and 3 (—1)"n2=— 7212 [27], and
them combining Eqs(2.5—(2.7) into one, specializing to -8+ 0T e find that '
our two-dimensional geometry, and incorporating the new 0 L

notation we have introduced (7 +Lyl2)vy

To=— 3.4
(X Y=1,0=(— DM/ g ()Tt (2.1 (Vo Ly3)(/ Ly I3)— L/36 G4
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and 200 T T T T T T T T T T T T T T
—(/ Yo+ LyJ2)0y
R L L ST ’
(7 o+ LyI3) (/P +L[3)—Ly/36 150
Considering Egs(2.15 and(2.16) in the steady state and g:f S

substituting in Eq(3.4) and (3.5), the possible steady-state 100
values ofi, are given by the roots of a sixteenth-order poly-
monial. This polynomial factors into a fourth-order polyno- —
mial which gives those roots that describe steady states sym- 50
metric under reflection about the centerline of the capillary,
and a twelfth-order polynomial describing the asymmetric | | |
steady states. Moreover, only six of the 12 asymmetric solu- 0 R
tions are independent because the solutions must occur in ' - O'(?E/S) 0.03 0.04
pairs related by reflection about the midplane of the capil- *
lary. FIG. 3. Pathological flow curves which can be produced for
The roots of the full sixteenth-order polynomial can be different sets of parameters. The solid curve shéive symmetric
determined using standard numerical technigl®8. For  branch of the flow curve when is reduced by a factor of 100 to
large enough slip length coefficient, the only physical ~=0.0004 m. Note that this curve is multivalued not only as a
roots (those with bothys, and ¢, real and positiveare the  function of oy but also as a function o,. The dashed and
symmetric ones. To investigate these analytically, we notelotted curve is for”’=0.002 m. The new branches of the curve

Tyl

\||||||\||\\||||l|
~

||r|1||||1||l\‘||\

=)
o
o
©
=)
=

that wheny,= 4, , Egs.(3.4) and (3.5 reduce to (dotted are “asymmetric” steady-state solutions, i.e., with differ-
ent slip velocities at the two wall§Such additional branches also
U_x occur for/=0.0004 m, but have not been shown in order to illus-

To=—T=>7—7" (3.6 trate the two types of pathologies separafely.

0 L Yot L6 yp p 9 parafely

) ) _ ) ) B. Linear stability analysis
One can easily verify that this result agrees with the velocity

profile obtained by a direct real-space calculation of the . o ) o )
steady-state solution of the Navier-Stokes equation for pip utions, it is useful to consider qualitatively how the first-
flow with the prescribed boundary conditions order transition ing, and the concomitant flow curvef.

- : Fig. 2@], can lead to oscillations in the system. Consider the
suk?s?i?jtﬁeg”irr]]gEqu(z(ZEi.)l?v:r(l)db(tii%]@ in the steady state and system with the polymer being pushed into the capillary at a

flow rate where the slope of the flow curve is negative. The
H v, steady-state solution then has a valugjofvhich is a maxi-
cyS—byd+ayy— Ve (3.7 mum rather than a minimum df(). Thus, we might na-
/Yotly ively expect that this solution is unstable. For the moment,

. . we assume the fluid is sufficiently elastic that this instability
Upon multiplying Eq.(3.7) by the denominator of the last still persists when the equation of motion féris coupled to

term, we have a fourth-order polynomial equation. The sig . . . o
of the zeroth-order coefficient implies that the product of th([:‘][he equations of motion for the fluid. Then the kinetics of the

: . ) first-order transition from smally (“stick” ) to large
four roots is negative, and therefore for given values of the(“slip” ) are the origin of oscillations in this regime: Con-
parametergand, in particular, fixed,), we have the follow- oo fiuid initially in the stuck state. The stress along the
ing three possibilities{1) two complex-conjugate roots and

two real ones, one positive and one negati@ three real walls will increase. At a critical stress, the stick state be-
. ’ P . g ' comes metastable; at some stress beyond[thatspinodal,
positive roots and one real negative of®;three real nega-

. . . o which is well-defined here because we have neglected noise
tive roots and one positive one. S Ince only_ real positive rOOt?n Eqg. (2.6)], the stick state becomes absolutely unstable and
are physmal, we see the possibility of either one or thr.eethe system,jumps to the slip state. However, once in the new
physical roots. The most relevant case of a flow curve Whlcr%Iip state, the stress at the walls decreases, the slip state itself

always has only one physical rpot 1S shown in Fig)2 eventually becomes metastable, and a transition to stick
For completeness, we show in Fig. 3 two unusual patholo-

e . . eventually ensues. Hence, the system can repeatedly cycle
gies in the flow curve which can occur in our model for . .
: . between stick and slip.
small values of the slip length coefficent but do not corre-

The range ofv, for which oscillations are expected to
spond, to the best of our knowledge, to any flow curves X :
: . occur for any given parameter values can be determined ana-
which have been observed experimentally. One patholog

occurs when there is a region g where Eq(3.7) has three K/Ucally using .Imear stability _anaIyS|s about the steady state.
. . . We consider linear perturbations to the steady-state values of
physical roots while the other occurs when asymmetri

steady-state solutions appear in the region where the flo(\:}\Pe variables having the form

curve for symmetric solutions is nonmonotoriz9]. In all — ai(ot—kX)y

that follows, we will be interested in the case where the X(r.=e Xky,w), 38
parameters of the model are such that the flow curve is likevhere X has been used to denote a generic variable such as
that shown in Fig. @), i.e., with neither of these two pa- velocity, pressure, o¢. First, substituting this form into Eq.
thologies. (2.3) and defining

Before studying the linear stability of the steady-state so-
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we find that
T=pv,0T. (3.10
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(3.19

KE(k>2(+V—
®

However, because of the boundary conditions, Bgl4) is

an eigenvalue equation which can be satisfied only for par-
ticular linear combinations and accompanying discrete val-
ues ofw. Two conditions on the four coefficients are deter-

Here, and in the equations that follow, we omit the explicitmined by the requirement thav, vanish at the two walls,

functional dependences dq, y, andw for brevity.

Next, substituting the forni3.8) into Egs.(2.1) and(2.2),
and using Eq(3.10 and the fact that Eq(2.2) allows us
to write V- €@ =V2v, we obtain the following equations for
the magnitude of the perturbed valuedv,(ky,y,w),
ovy(ky,y,w), andop(ky,y,w):

pliw+ v, (Ki—3d7)]8v,=ikydp, (3.11)
pliw+v,(kKi—d3)]6v,=—3,5p, (3.12

and
—ikydvy+ 3y v, =0. (3.13

which is easily satisfied by writingv, in terms of hyper-

bolic sine functions. The remaining two conditions are deter-

mined by using Eqs(3.13 and (2.11) to obtain v, and

ST from 6v, and then requiring Eq2.14) be satisfied at the

two walls, i.e.,
du(y=])=(—1)N/(Tjoy+y;6T),  (3.19

where overbars are used to denote steady-state values. We

can rewritedy; in Eq. (3.16 in terms of 5T; by using the

following expression derived from E¢2.15 with the help

of Eq. (3.10:

[lwr+x; *+ (keo) 2183 = (= 1) Hpw,, 6T, . (3.17

Eliminating 8p and dv, from these three simultaneous linear Here, we have defined the inverse susceptibility by

equations then yields
(3.19

which is valid for allk,# 0. The solutions to Eq.3.14) are
linear combinations ofe%Y with (g1,92,93,94) = (Ky,
—k,,x,— k) and

[iw+ v, (ke d2) 1[kz— 951 6v, =0,

HpV(JJT_O V(U
7, Mlaby L)

{¢O+ia)7+x_ol+(kxgo)2 e

Hpv,To
fwr+x. T+ (ke£)? To/Ly

Vo

x| g —

whereh(X4,X,) =Xx;cothf;) —X,coth,).

h(keLy kL)

2

9%
X '= 3cyl—2by;+a.

19_1,0j2: (31&

After some algebra, we find that the coefficients in the solu-
tion to Eq. (3.14 with the prescribed boundary conditions
are nonzero only whem satisfies the following condition:

2
Ky K

Vo 2
w_/} Linh(kay) ~ sinh(kLy)] ’

(3.19

C, or C_ is used to obtain those eigenfrequencies corre-

Finally, specializing to the case of a symmetric steadysponding to perturbations which are symmetric or antisym-

state (o= andTo=—T,), Eq. (3.19 simplifies and we
find, making use of Eq3.6), that the complex eigenfrequen-
ciesw are given by the roots of

[/ §+LyI6][/ ¢+ L,Cu(kyLy iwl?v,)]

B —Hv_xpvw/
B iw7+?l+(kxfo)2’

(3.20

where we have defined

+1
—z[coth(z/2)]**

N

cotl‘( %\/22+ g)
g

C.(z.0)= .
(3.21)

metric with respect to reflection about the midplane of the
capillary, respectively. Note that in E€3.21), z is real but
{ is complex.

Since ¢ is a function of w, the exact stability equation
contains transcendental functionswfand thus can only be
solved numerically. However, from E€3.21), we find

/2 *+1
C. 2= M2

+sinr’(z)

, (322

which is a good approximation fo€.(z,¢) in the limit
[£|<1. Since|w| is typically of order 1f,,, this can be
understood as a condition that a typical hydrodynamic time
scale for a viscous ﬂuide,/uO, be much smaller than the
elastic time scaler,, [25]. Using this approximation, Eq.
(3.20 is quadratic inw and we obtain the following four
roots:
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1 Tm —— 1
w=—{i 1+_m[X_l+(kx§o)2]] T
27 T
L r Stable
. dHv,pvo/ Tl T 0.5 .
A\ [Zy+ Ly 6]/ h+LyC(kely,0)]
T — 1/2 . o
—|1— 7[x—1+<kx§o>2]]) } @23 F 7 I
[In Eqg.(3.23), unlike in EQ.(3.22 or previous equations, the 05l |
signs indicated by the twa- symbols are allowed to vary
independently. In what follows, we assume the correctness
of Eq. (3.23, and then return, at the end, to discuss how we _1 . , . . . | ‘
expect the use of the exact expression to modify our results. 0.2 0.25 0.3 0.35 0.4
Referring back to Eq(3.8), we see that instability occurs v, (m/s)

when any of the eigenfrequencies acquires a negative imagi-

nary part. One can show from E€3.23 that a necessary FIG. 4. Results of linear stability analysis. Solid curves show
condition for instability is that the inverse susceptibility be stability boundaries in the,—k,&, plane forr,/7=2, 5, 10, 100,
negative, or in other words, that we be on the negative slopend 1000(from inside curve to outside curyecomputed using
part of the flow curve in Fig. @ [30]. Interestingly, how- approximate criterior{3.24. For a given value ob,, the steady-
ever, this is not a sufficient condition. There are two casesstate solution is predicted to be linearly unstable to all perturbations
depending on the sign of the quantity in the square root oWith dimensionless wave numbekg¢, having values inside the
Eq. (3.23, or equivalently, whether or not the real part of bounjc_zlaries shown. Point; shown fof/ =2 and_ 10 give t_he exact

w is zero at the point where the imaginary part crosses zerétability boundaries obtained from the numerical solution of Egs.
For the latter case, which seems to occur more generall(3-20 and(3.21) for a few different values ofy, andé,, including
(and, in particular, holds for the parameter values discusse ose values for which the deviations from the curves are most

in this paper, for all values of, 7, &, ork,) [31] we can Pronounced.
see from Eq(3.23 that the condition for linear instability is . ) ) - _
simply given by the criterion Tm/ 7 is too small there is no instability for any, . Instead,
¢ at the walls relaxes to the steady-state value given by
— , 1 setting the left-hand side of E.15 equal to zero. This is
X+ (ko) <(7.m—/7.)- 3824 ye even fory” 1<0, when this steady-state solution of Eq.

o (2.19 alone[with o, (x,y=i,t) held constant at the steady-

Note that the dependence on in Eq. (3.24) enters implic-  state valug¢is unstable, i.e., when the value #fat the walls
itly through x 1. In a recent paper, an instability was found corresponds to a maximum rather than a minimuni (af).
by Georgiou[17] for a viscoelastic fluid in the Couette ge- Thus, as we would expect, the coupling to the viscous fluid
ometry. Georgiou assumed perfect stick at one wall and @roduces a stabilizing effect on E.15), but this stabiliz-
highly nonlinear slip-stick boundary condition at the othering effect becomes weaker as the fluid becomes more elastic.
such that the resulting flow curve was nonmonotonic, as ifrhis can be understood intuitively as follows: If the change
Fig. 2. This is related to our present treatment of Poiseuillen the polymer conformation occurs on a time scalehich
flow, in the limits 7=0 and £,=0. However, within our is short compared te,, then the fluid responds in an elastic
model we find that the Couette flow cageith stick-slip  (solidlike) manner and, in particular, has the ability to
transitions at both surfacesvill generically lead to addi- “spring back.” However, if the change in polymer confor-
tional branches of the flow curve involving asymmetric mation occurs on a time scale long compared jahen the
steady-state solutions analogous to those shown by thituid responds in a viscoudluidlike) manner and the oscil-
dashed and dotted curve in Fig. 3. This suggests a morations are damped.
complicated scenario where instabilities occur in some but Note that, to the extent that criteriof8.24 holds, the
not all regimes; in particular, we find evidence of linearly stability is independent of any of the bulk hydrodynamic
stable, but nonlinearly unstable, states. Further details of thisroperties of the liquid besides, [32]. Numerical investi-
work will be presented in a future communication. gations of our model to be presented in Sec. IV confirm the

Equation(3.24 shows that whery~ ! become sufficiently  prediction of Eq.(3.24) that it is the ratio of the two relax-
negative, there will be an unstable band of wave numberation times,r,,/ 7, which primarily determines the behavior;
centered abouk,=0. The criterion for instability depends there is only very weak dependence of the behavior of the
on the relative magnitudes of the elastic time scale, and  system on the value af,, for fixed 7,/ 7, provided that time
the time scale for relaxation of the conformation of the poly-is measured in units of,,.
mer at the surfaces. The curves in Fig. 4 show the stability =~ We conclude this section with a few comments on the
boundaries in thev,—k,&, plane for various values of accuracy of our approximate stability criteri¢®.24), given
Tm/ T @s given by Eq(3.24), while in the inset to Fig. 2 we our use of Eq(3.23 for the case where the real part ofis
have plotted the range of, for which the steady-state solu- nonzero at the stability boundafg1]. To test it against the
tion is unstable as a function af,/7 (using the fact that exact analysis, we have used a nonlinear root-finding routine
k,=0 is the most unstable wave numpeWe see that if [28] to numerically solve for the roots of E¢3.20 using
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Eq. (3.2)) for various values ofr, and &, at r,,/7=2 and TABLE |. Standard values chosen for various parameters. The
10, and a range ok.&,. The resulting stability boundaries last four parameters appear in the free energy, Eq(2.7).

are shown by the symbols in Fig. 4. We find that the symbols

approach the curves in the limitsLZ/(vo7y)—0, — density p 740. kg/m?
L2/ (voTm)—o, andkey—. That they seem to agree in VISCOSItY 70 1.x 10" Pas
these latter two limits in addition to the first one may at firstdie width N Ly 0.004 m
seem surprising. It is because the arguments leading to E§'P length coefficient 4 0.04 m
(3.24 still hold to a good approximation even if we substi- a 5
tute C. (z,¢) for C.(z,0) in Eq.(3.23, provided that any b 13
imaginary part or any negative real part®f is small[and c 10

H 3.2x 1078 pa'l

that the real part of the entire term inside the square root in
Eq. (3.23 remains positivg In fact, one can show that the
z—*oo limiting behavior of C.(z,{) is the same as
C-(z,0) provided the additional requiremerft=|{| is sat-

. - . 2
isfied [33]. = Conversely, for [{|—e with z°<|g], +=N,m/L,}, where the values of the function at the positive
Ci(z,g)—>1-/\/Z and thus |C..(z,0)] i becomes_small, . S0 and negative wave numbers are complex conjugates of each
L,C..(2,{) is only a small perturbation on théy term in  oiher Typical values used for the discretization were
Eg. (3.23. o , N,=15-100; forN,, we useN,=32-2048, depending on
_ Because the exact stability criterion agrees withB®4  the sjze of the structure present in the solution. For the “one-
in all these limits, the actual stability boundaries never seenyimensional” case, where the system is forced to be uniform
to deviate very far from those determined by E824). This i, the flow direction, we have checked that there is very
can bg seen in Fig. 4, where we have included the Iargei}ood agreement between this mixed real-space-spectral
deviations that were found, which seem to occur roughly fof,athod and a method employing real-space finite-
Ly/(vo)~20. We expect that other sets of parametersyifferencing of the original partial differential equations.
would show similarly small deviations. _ The model has a large number of parameters and it is
Finally, we note that if we had assumed that the slip veygijther feasible nor useful to systematically investigate the
locity is proportional to the shear stress rather than the sheaffects of variations in all of them. Rather, the parameter
rate of strain in Eq(2.4) [21], then the effect would have gjues that we study are guided by experiment wherever pos-
been to multiply/ ¢ in the secondbracketed term of Eq. sible. Except when otherwise noted, the values used are
(3.20 by a factor ofv,/v,. This, in turn, makes the analysis those given in Table |. For the material parameterand
somewhat more complicated, but the most general conclug,, we have chosen values typical of commodity polymers
sions concerning the possibility of an instability when such as polyethylene. The parametgisa, b, ¢, andH, in
Xo <O remain unaltered. The approximat®.24 is re- Egs.(2.14 and(2.15 are chosen so that steady-state solu-
placed by a more complicated criterion; however, in the limittions of the equations give a multivalued flow curiég.

points used in real spacel§, then the set of discrete wave
numbers considered isk,={0,=27/L,,*4x/L,, ...,

m/ 71, criterion(3.24) is again recovered. 2(a)] typical of ones seen experimentally,2,23. Since we
have neglected shear thinning and gdrmodel is the most
IV. NUMERICAL RESULTS simplistic, we have only attempted to roughly reproduce ex-

perimental flow curves, rather than actually fitting our pa-
Further investigation of our model is carried out numeri-rameters to experimental data. We will find it instructive to
cally. We do this using the mixed real space spectral repreinvestigate the model over various ranges of the phenomeno-
sentation introduced in Sec. Il. The infinite set of equationdogical parameters, 7,,, and&g, and the length of the cap-
for vy(k,t) are reduced to a finite number by neglectingillary, L,, but will also discuss what values we would expect

those beyond a maximum wave number in bethandk, ; these parameters to have in a typical experiment.
for example, we restrict ourselvesitie=N, in Egs.(2.8) and
(2.9. These equations, along with the real-space equations A. Spatially uniform solutions

(2.14-(2.16 dlscret|_zed_ In thq coort_jlnate, can then he We will first consider the limity,=L,, where the system

propagated forward in time using Bulirsch-Stoer or Runge- . . L . .
: : . . . A . 2~ is uniform in the flow direction(For most experiments, this

Kutta routines for integrating ordinary differential equations.

L7 is probably not the relevant limit, since typical die lengths
Eﬂd\z/ﬁvrz Q?S'lcr"e?iztzﬁoiecond derivative in E§.15 by the are on the order of I°—10"* m, while &, is expected to be

a length on the order of polymer dimensions, i.e., on the
order of 108 m, to at most 10® m. However the limit is
A2yl dxe— PXin) + ‘/’(Xile) —29(x) . (4.1) still useful because it is simpler to study and serves as a start
(Ax) toward understanding the more complicated nonuniform re-
gime) In such a limit, we find that any initial nonuniformity
Note that in Egs.(2.14—(2.16), the values ofv, and  of ¢;(x,t) along the walls decays away. Indeed, in order to
dvy/dy in real space are needed only at the walls and thus istudy this limit most efficiently, we have often used a “one-
is only there that numerical Fourier transforms need to belimensional” version of the code in which the flow direction
performed at each integration step. Since we use discreie ignored altogether. This eliminates the need to perform
Fourier transforms, the discretization in thedirection is  Fourier transforms in the direction; it also makes it unnec-
related in a natural way to the cutoff ky : if the number of  essary to specify the actual valueslgfand &,.
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for the stick-slip transition in some systertfer example, a
surface adsorption-desorption mechanism, as has recently
been suggestefil4]), then the dependence af could be
different. Clearly, the value of,,,/ 7 relevant for experimen-

tal systems warrants further study. In most of our simula-
tions, we have chosen,,/7=10, which gives oscillations
over most of the velocity regime whege ! is negative with

an oscillation period ranging frony 2.1 to ~3.27,, over the
unstable regime of, using the parameters in Table |I.

A definite value to use for the elastic timg, itself is
likewise not easy to determine, since there is a large distri-
bution of elastic time scales in polymeric materi@s How-
ever, considering the values obtained by Joseph, Riccius, and
Arney for high molecular weight silicone oils using their
shear wave speed metg86], we believe thatr,~10 3% s
should be a good order-of-magnitude estimate for long-chain
polymer melts[37]. Such an estimate yields an oscillation
period which corresponds reasonably well, given the flow
rate, to the wavelength of experimentally observed sharkskin
[3]. We thus believe that the viscoelastic oscillations that we
observe correspond to the sharkskin texturing seen in experi-
ments. This connection will be further elucidated below.

Over much of the unstable regimedry, the oscillations
are simple, with the two walls approximately 180° out of
phase. However, for values af, which are close to the
minimal and maximal ranges of the unstable regiine.,
near the maximum and minimum in the flow curve of Fig.
2(a)], we find some of the more complex oscillatory behavior

FIG. 5. Behavior ofy; at the two walls foré,=L,, at various sta.nd.ardly seen in Qriven, d'amped nonlinear §ySFE3835 '
flow rates all within the dashed region of the flow curve in Fig. 2. This includes chaotic behavior as well as oscillations with
On the left, we present both time trac@ssets and power spectra periodicities that are integer multiples of the fundamental
(main graphsof ;(t) for (a) period 1,(b) period 3,(c) period 6, ~ oscillation period. For some values of, more than one
and(d) chaotic oscillations. Walls at=0 andL, are indicated by ~ stable attractor exists in the phase space and thus one finds
solid and dashed lines, respectively. The graphs on the far righdifferent behavior depending upon the initial conditions.
show phase space portraits, i.¢g(t) vs ¢ (t) with timet treated  Sometimes the initial conditions can even determine whether
as a parametric variable; the range for both axes is the same as thait not the system oscillates at §84]. Examples of the be-
for the ordinate axis in the time traces. Parameters usedr@re havior seen are presented in Fig. 5. Note the period doubling
=10"%s, rp/7 = 10; the exact values of, andL, are not rel-  jn going from §b) to 5(c). Also, note that the phase space
evant. attractor need not be symmetric about the line

(1) = o(1) [e.g., Fig. Bb), 5(c), and §d)]; however, when

The results of the linear stability analysis are confirmedit is not, the attractor related to this one by interchange of the
by the numerics. In particular, the stability criteria for two walls[ ¢ (t)« ¢o(t)] is also a stable attractor.
ky=0 are in excellent agreement with where oscillating so- As was noted above, the oscillations ¢f at the two
lutions first occur in our numerical simulatiofi34]. Some  walls are most often out of phase. Of course, in a real three-
numerical results are shown in Fig. 5. The period of thedimensional physical system, the walls of the container are
oscillations isO(7y,), increasing from within about a factor not independent because they are connected to each other.
of 2 of 7, in the limit 7,,/7—o° to several times,, when  Treating the two walls independently therefore describes the
Tm/ 7 becomesO(1). There is also some dependence of thelimit of a slit with an aspect ratio large compared to the
period onv, ; except very near the stability boundaries, thelength over whichy is correlated perpendicular to the flow
tendency is for the period to become longewasncreases. direction. In order to also simulate the other extreme, where

In order to make contact with experiment, it is necessarthe walls are forced to remain completely in phase, we have
to estimate reasonable values fof and 7. Eq. (3.24 ex-  started the system with initial conditions in whigk(x) is
presses the approximate criterion for the ratjp/7 in order  equal at the two walls. Because there is no noise in the sys-
that oscillations occur. It is generally believed thaf, tem to break this initial symmetry, this effectively enforces
which in a melt involves the dynamics of polymer entangle-mirror symmetry in the system with respect to the centerline
ments, is proportional to the reptation tirfi@5]. Since the aty=L,/2 for all times. Oscillations still occur in this case,
stick-slip mechanism proposed by Brochatcal.[12,15 in-  although we have not found any of the more complicated
volves a large change in polymer conformation, the limitingbehavior(larger period motion or chapthat is present when
factor is again likely to be polymer entanglements, and hence(x) at the two walls varies independently.

7 should also be proportional to the reptation tirf5]. Finally, we have performed some limited studies with a
However, if a different physical mechanism is responsiblereal-space finite-difference code that allows us to include
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shear thinning in the model. We choose a local viscosity
which varies with the magnitude of the local rate of strain
tensor,e=(3e :€)'? as

7o

n(e)= T+ (eleg T ™" (4.2

-

T
WO

with, e.g.,e,=1.4s"1 andn=0.3 [9]. The results suggest
that the qualitative features described here remain un-
changed, with the period of the oscillations decreasing as the
shear thinning becomes more pronounced.
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B. Spatially nonuniform solutions

Spatially uniform behavior in the flow directiomvith ei-
ther periodic or temporally chaotic motiprs the rule when
L, is small and¢, is large; however, whe#, is sufficiently
small, the behavior can become quite complicated with more
complicated structure, including what we believe to be spa-
tiotemporal chaog39], occurring. The behavior does not de-
pend only on the ratio ok,/&;, since even forg,=0, we FIG. 6. Typical spatiotemporal patterns seendg«L, . (a) and
find only uniform behavior for small enough aspect ratios(c) show space-time plots of;(x,t) along the top and bottom
L«/Ly. This is because, as we will see below, the develop<hannel walls, respectively. The value ¢f is indicated by the
ment of complicated structure involves the formation of ve-brightness on this gray scale pléb) shows the flow pattern in the
locity rolls and these rolls seem to have a minimum characchannel at the latest time i@ and (c)._Shown is the velocity
teristic size on the order of the channel WidIl]l. relative to the mean flow velocity(x,y) —vX, with the magnitude

The behavioat least over the times that we can Iﬁneasmé_in ar_bitrary unit3 indicated by the siz_e of the arrow. Not.g\ that the
it) also depends on the initial conditions. If we start the wallglime increases from top to bottom i) in order to facilitate a

with only a small amount of nonuniformitjfor example comparison of the latest time it with the top wall in(b). The
variations in ¢(x) of magnitude 102 or 10_2] then for, defect structures evident (@ and(c) are associated with the rolls

Lsty or L,=&, we find that this nonuniformity decays. in the channel shown ifh). Parameters used are the same as in the

. ottom panel of Fig. 5, except hegg = 0 m andL, = 0.1 m. Note
Er?rtlhaerg;erh;\!/i:)r;efosrozagfu?’ﬁfg?xo(r:egi'gl(fattf?:evmaﬁjg%?‘?spen hat only part of the channel has been shown in these figures.
such that the uniform case produces simple periodic behav-, - N . . .
ior then the variation along the walls r(fma?ns smiallt sharkskin in a cylindrical die often has a spiral pattern with
does not necessarily decay away completely as for smallgfPPosite sides OT the extrudate being out of phase.

L,). If the uniform case produces chaos or complicated pe- Finally, we point out that the c_omp_hcated spatiotemporal
riodic behavior, then we get spatiotemporal chaos. patterns at the two walls, shown in Figgagand @c), have

The scenario is less clear when the initial condition has ésr?rﬂg&?gts eir):?ﬁ(relTh?gﬂirzoennssﬁggiﬁeiﬁéi Z?azei’nagl?r igﬁlﬁ%ous
larger amount of nonuniformityfor example, variations in

#(x) of magnitude 0.3D In this case, the nonuniformity still tion, should manifest themselves as defects on the surface of

decays forL,=<L, or L=, However, for larger length the extrudate. Although no direct comparison can be made

capillaries, spatiotemporal chaos seems to be the rule, indt‘e"flthom including the third dimension in our model, we are

pendent of the value af,. This could be simply transient encouraged by recent experime#j showing defect pat-

behavior, but it seems to be true out to times corres ondinternS on the surface of the extruddfeg. 7) similar to the
' P Batterns seen in thet plane in Fig. §a) and Gc). (For other

to several hundred oscillations with no indication that theex erimental bictures of the extrudate surface during shark-
nonuniformity along the walls is decaying. skiFr)1 sed3 42]p) 9

The spatiotemporal behavior we see/if(x,t) also mani-
fests itself as complicated structures in the melt velocity in-
side the die. In particular, we see rolls spanning the die, Fig.
6(b), when we look at the velocity relative to the mean flow
velocity, v(x,t)—vX. If there is only one roll across the In order to make closer contact with the experiment, two
width of the die, then the velocity at the two walls will be more features must be included in our mod@): the com-
anticorrelated at any point along the die. Since the velocity isressibility of the polymer in the reservoir, af@) the fact
proportional to the slip length’y;(x,t) at the wall, this that the stresses are not constant along the die, but tend to be
would be expected to lead to out-of-phase oscillations ofarger near the exitand may also vary due to randomness
#;(x,t) at the two walls[40]. In fact, there does generally produced, for example, by imperfections in the die itself
seem to be one velocity roll across the capillary and thehus leading to nonuniform boundary conditions along the
oscillations ofy;(x,t) are most often out of phagdl]. That  wall.

#;(x,t) at the walls in the two-dimensional capillary is most ~ The inclusion of the extrinsic effect of compressibility in
often out of phase correlates with the experimental fact thathe reservoir is motivated by recent wdrk,1] showing that

C. Reservoir compressibility and nonuniform boundary
conditions



55 THEORY OF MELT FRACTURE INSTABILITIES IN ... 2987

200 T T T T T 77 T T T T T
150 A
) ]
ol i -
A i .
~ 100 -
I ]
= i .
FIG. 7. The surface of linear low-density polyethylene extrudate 50 i ]
at two different extrusion rates in the sharkskin regime from the .
experiment of Ref[7]. Shown are gray scale plots of the height [ | | ]
with white representing peaks and black representing valleys. The o——— E— !
polymer melt was extruded in the upward direction, relative to the 0.0 02 _ 0.4 0.6
orientation of these images, out a slit die0.15 m long with a Ve (m/s)

rectangular cross section approximately 0.04xm0.002 m. The
images show a region of the surface approximately 0.01 m across. FIG. 8. The spurt flow regime. The bold solid curve shows our
Note that the patterns on the extrudate look qualitatively similar tostandard flow curve with” = 0.04 m. When reservoir compress-
the defect structures seen in Figéa)6and Gc). ibility is included and the piston speed is such that average flow rate
is in the unstable part of the flow curve, the system cycles clock-
the long time-scale oscillations seen in the “spurt” regimeWise arqund the multivalued portion of the rov_v curve. The Ieﬁmost
are controlled by the volume and compressibility of the poly-2ranch IS the stuck part of the cycle and the rightmost branch is the
. . 7 slip part of the cycle; the horizontal solid lines show the rapid
mer 1n t.he reservoir, as had been Suspected for some ti mps between the stuck and slipping portions. The dashed, and the
[43]. This was demonstrated by showing that the flow rat otted curves are flow curves fgt = 0.04, and 0.006 m, respec-
exiting the die os_cillgtes sig_nificantly in time and that eXperi'tively. If we allow /” to vary along the wall of the capillary, then we
mentally the oscillation period for the spurt flow is propor- iy effectively have different flow curves in different regions of the
tional to the length of that part of the reservoir which con-capillary, with the possibility of interesting behavior as discussed in
tains the melt. In the case of RER], a model was also ihe text.
introduced in which the reservoir was considered roughly as
a spring which coupled the constant velocity motion of theg,iting the reservoir and entering the die, the density and
melt into the reservoir to the resulting varying rate at whichpesgyre of the melt in the reservoir will increase. When this
the melt enters the die. It was found that th.e numerlca! ehressure exceeds the critical pressure given by the local
sfults of thl_s; model well prpduced the experimental oscilla- 4 vimum in the flow curve, the polymer at the wall in the
tions both in form and period. o _ die will change conformation and enter the slip state, and the
_The incorporation of reservoir compressiblity by consid-y rate in the die will jump to the right branch of the flow
ering the reservoir roughly as a sprifig] will give us one ;e (as shown by the upper horizontal solid line in Fig. 8
additional second-order differential equation for the averageyqyever, at that point, the melt is now exiting the reservoir
fluid velocity in the die; we will then see “reservoir com- 4 5 faster rate than the piston is forcing it, and thus the
pressibility oscillations” which have the expected linear be'density and pressure of the melt in the resenaind die
havior on the volume of polymer in the reservoir. Note thatdecreases, until the local minimum in the flow curve is
the inclusion of compressibility in the reservoir, while still reached, at which point the polymer at the wall of the die
ignoring it in the hydrodynamic equations we solve in the di€rgenters the stuck state, i.e., the system jumps back to the
itself, is reasonable: In most experiments, the volume CONfgmast branch of the flow curve and the cycle repeats. Note
tained in the reservoir is very large compared to the volumey, o+ this scenario is similar in some respects to that which
in the die and therefore a small change in the density of thg,o 4 g the viscoelastic oscillations we discuss in the rest of
polymer in the reservoir can lead to a change in volume ipe haner The primary difference is that here it is the com-
the reservoir which, though small on the scale of the reserg eqginility of the fluid in the reservoir rather than the fluid's
voir, is large on the scale of the die. o shear elasticity that allows for the storage of energy. Also,
The role of the reservoir can be explained qualitatively ag)ocquse the volume of the polymer in the reservoir depends
foIIows:. Let us consider the piston in the reservoir rr_10v_ing atyn details of the experimental design and on how much poly-
a velocityvg such that the steady-state flow velocit§f in e remains in the reservoir, these oscillations are a less
the die is in the unstable reginti particular, intrinsic part of the experiment than those leading to shark-
A—70A 4.3 ski_n. The final distinctiqn is tha_t this scenario leads to osgil—
URART Uxd > : lations in the flow rate in the die, whereas when we consid-
ered only viscoelastic oscillations the flow rate was
with Az and A4 being the cross-sectional areas of the resereonstrained to remain constant in the ¢dthough the dis-
voir and die, respective)ylf the die is first in the stuck state, tribution of the velocity field across the die varjed
then the flow rate and pressure in the die will be at some We now derive an approximate equation which governs
point near the leftmost branch of the multivalued flow curvethis process. The approach is essentially the same as in Ref.
shown by the bold solid curve in Fig. 8. Since material is[2] except that here we concentrate on the basic physics
being pushed by the piston into the reservoir faster than it isather than including terms to get all the quantitative behav-
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ior correct(e.g., shear-thinning effects, etdf we denote the not easy to determine very precisely for either part of the
mass of the polymer in the reservoir B and the volume cycle, but from Fig. 2a) it seems thaﬂvx~5§7/2 is a rea-
by Vg then the change in rate of change in mass in th&onable estimate to use for each part of the cj4f. Fur-
reservoir can be written as thermore,AMr=AgLrAp where the change in density of
B the fluid isAp=pBAp. The pressure changkp is deter-
dMg/dt=pdVr/dt+Vedp/dt. 44 mined from the difference in the wall stredsr,, between
the local minimum and maximum in the flow curve:
Ap=2Aao,L/L,. Combining all this together gives us the

Using the fact thatlp=pBdpg, Where

B=—(1N)(dV/dp) following estimate for the period of the oscillations:
is the compressibility, and notinglVg/dt=—Agvg and T 8ARLrLxBA Ty 4.9
dMg/dt=—pAgvy (because the mass leaving the reservoir AdvxﬁLy ' '

must be flowing into the dje we can rewrite Eq(4.4) as
Note that this formula has a very different dependence on
various quantitiesuch as the volume of polymer in the
reservoij than would be derived by assuming that the period
was the inverse of the natural oscillation frequency in Eq.
where we have made use of E@.3). Assuming that the (4.7); it agrees with the experimentally observed fdetL
pressure in the reservoir is given by the pressure at the dig2] for spurt oscillations.
entrancd44], pr(t)=—g(t)L,, we can use conservation of  To study the effect of reservoir compressibility numeri-
momentum in the fornficf., Eq.(2.13)] cally, we must use values for the various parameters describ-
_ ing the reservoir dimensions and the melt compressibility.
Ux _ _g(t)+ Lio'_xy(y!t)wio 4.6 However, all these new parameters appear in(&q) in one
y

_ dp
Ag(v 0=~ LeArB g 4.5

P at coefficient and thus there is only one new independent pa-
o _ rameter that enters the equation. Noting thaw,,
to eliminatepg(t) from Eq. (4.9. After rearranging terms, ~3.85x10* Pa for our flow curve in Fig. @), using a rea-
this gives sonable materials value for the bulk compressibility of
a5 A 1 oyt | B=1.0x10"° Pa !, and choosing a reasonable value for the
L. d = 99D (4.77  die length ofL, = 0.1 m, we can then consider the control
dt* = AgLgLypp pL, dt parameter to be the ratio of the volumes of the reservoir and
of the die,Vi/V4. Figure 9 shows the observed oscillation
Equation(4.7) is an additional equation which must be period as a function of this control parameter #Jr= 0.30
integrated in time, replacing the trivial ER.12. It incor- m/s, 7.,/ =10 and three different values of,. We see that
porates the effect of reservoir compressibility when an eXi, the limit in which the volume of the reservoir is much
periment is performed by regulating the speed of the pistongrger than the volume of the die, the period of the oscilla-
We see that the effect of the compressibility is thus totons in the die is controlled by reservoir compressibility and
make the flqw_ rate in the capillary vary, even if the piston injg in good agreement with E@4.9). We find that these os-
the reservoir is pushed at a constant speed. Note that Egjjations are in phase at the two walls, with large oscillations
(4.7) is that for a driven harmonic oscillator. The driving in the flow rate in the die. In the opposite limit in which the
term couples the oscillator to the equations we have alreadyolume of the reservoir is much smaller than that of the die,
investigated. The oscillator is in a strongly driven regimethe period of the oscillations in the die is controlled by the
where the relevant frequency of the spurt oscillations will beelasticity of the fluid, the oscillations are generally out of
determined not simply from the natural frequency of oscilla-phase at the walland, can show chaotic behavipwith
tion in Eq. (4.7), but instead can be estimated very simply 3imost no oscillation in the flow rate in the die.
f_rom th_e gualitative discgssion of th_e origin Qf the oscilla-  The two types of oscillations do not appear to coexist; In
tions given above: Consider the point as which the systerfhe |imit where the reservoir compressibility oscillations
has just jumped from the stuck to the sliding state. The timgominate, the flow rate in the die switches rapidly from a
t that it takes for enough mass of materiaMg to drain  gmal| value to a large value, spending very little time at a

70\ _
(Ux—vy) =
y=0

the system to return to the stuck state is given by of Fig. 9). As a result, there is very little time to excite the
elastic oscillations which thus show up only weakly, as a
AM R H 1" : ” H H
f=——— (4.8  transient “ringing” effect in the velocity(and, to a much
pAglAv,| lesser extent, iny itself) following the transition between

_ stick and slip. Thus, reservoir compressibility oscillations be-
whereAv, is the average difference during the slipping partcome the controlling phenomenon when they are included.
of the cycle between thespatially averagedvelocity in the By contrast, experiments show that sharkskin texturing can
die and the average of the flow velocity in the die over anoccur during part of the cycle in the spurt regime; further-
entire period,ﬂg. A similar equation can be written down for more, it also occurs at velocities below that at which the flow
the time it takes for mass to build up in the reservoir duringcurve for the die appears to be multivalued at all.
the stuck part of the cycle, and the peridf oscillation is To reconcile our model with the experimental observa-
then equal to the sum of the two times. The quantity, is  tions, it is necessary to include one important feature of the
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FIG. 9. Observed period of the oscillations when the com-  gne of the two capillary walls, as a function of the positioalong
pressibility of the polymer in the reservoir is included, as a functionihe \all and the time, for the case where = 0.004 m in 80% of

of the ratio of the reservoir and die volumé&/Vy. Parameters e capillary and” = 0.002 m in the last 20%. Here,/7=10
used arev] = 0.30 m/s,7,/7=10 and three different values of 7m=10"5s, andVg/V4=1. The values ot? are(a) 0.15 m/s and

7m (top to bottom: 7, = 1072, 10°% and 10° s). In the limit () 0,30 m/s. Note that only the last 40% of the capillary is shown.
where the reservoir is large, the oscillation period is in good agree-

ment with the approximate formula for the period of reservoir com-
pressibility oscillations, Eq(4.9), shown by the solid line. In the
opposite(less physical limit, the oscillation period is determined
by the elasticity of the fluid and is given b~2.37r,, (shown by
dotted lineg. The inset shows,(t) for about one complete oscil-

for the end of the die. It also allows for the possibility of
more complicated behavior: at higher flow rates, the system
is in the unstable regime for the primary flow curve and
should execute reservoir compressibility oscillations which,
lation for Vg/V4 = 10 andr,, = 10-3 s. The flow rate in the die during the stuck_part of the cycle, will put the flow rate int_o
jumps very rapidly through the unstable regime and the only evitn€ unstable regime of the flow curve for the end of the die.
dence of any oscillations at a period on the orderrgfis the  This allows the possibility of elastic oscillations superim-
“ringing” effect following the jump. (We show here an unusually Posed on the reservoir compressibility oscillations during
dramatic case; a¥g/Vy becomes larger, the time interval over this part of the cycle.
which such ringing is observable becomes a much smaller part of Figure 10 shows us the expectations discussed above are
the total cycle. indeed realized: Foa_ef(’ = 0.15 m/s, shown in 1@), we see
that the system does not execute compressibility oscillations
system which has been neglected until now: the fact that disince we are in the stable part of the primary flow curve, but
is not uniform and, in particular, that full solutions of the that there are elastic oscillations in the end of the die where
fluid flow equations with realistic constitutive laws show thatthe system is in the unstable part of the flow curve. This is in
higher stresses are present near the exit of thglgi®]. We  agreement with the experimental fact that sharkskin is ob-
expect that the critical stresses at which the polymer conforserved in a regime before spurt flow begins when the flow
mation changes will be unaltered but that the flow rate aturve for the capillary as a whole is not yet multivalued.
which such stresses are reached will be lower in the enffurthermore, we find that this is true whether or not the
region of the die. We can implement this most simply bypolymer is pushed into the reservoir at a constant flow rate or
assuming that a portioftend” ) of the die has a smaller slip a constant pressufalthough, of course, which stable branch
length coefficient”, cf. Eq.(2.14), and thus the flow curve of the flow curve the system settles upon at a given pressure
for that region is shifted to the left of the primary flow curve depends on the initial conditionsThis is understood as fol-
(see Fig. 8. lows: for an incompressible fluid, the average flow rate must
For example, we assume that 20% of the die hag &alf ~ be uniform along the length of the die. Hence, the stable flow
that in the remainder of the disee the dashed curve in Fig. in the majority of the die effectively enforces a constant flow
8). Of course, in the real systers, might be expected to rate through the end region even when the polymer is pushed
vary smoothly along the wall. However, the overlappinginto the die at a constant pressure. This behavior is again in
flow curves which we choose here should reproduce the mog&greement with experimeng]. sharkskin is insensitive to
important aspects of the physics and will allow us to repro-whether the experiment is performed at constant pressure or
duce all the important features seen in experiments. In paiflow rate.
ticular, they allow for the possibility of choosing flow rates ~ For v = 0.30 m/s, shown in Fig. 1B), compressibility
at which the system is in a stable regime with respect to the@scillations occur as expected. Furthermore, during the stuck
primary flow curve but an unstable regime of the flow curvepart of the cycle, the flow rate spends a large amount of time
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in the unstable regime of the flow curve for the end of the die V. CONCLUSIONS
and, as a result, elastic oscillations are set up in the end of
the die. Indeed, experimentally, sharkskin is frequently ob- In summary, we have presented a model for the melt frac-
served on this part of the extrudate in the spurt flow regimeure instabilities seen in the extrusion of polymer melts. It
[2]. includes a first-order transition between stick and slip behav-
In order to gain insight into how robust the behavior de-jor of the polymer at the walls as a function of the shear
scribed above is, we have also considered several alternaigess. The incorporation of the viscoelasticity of the fluid
choices for the variation_in the value ofalong the die: For |eads to oscillations. The system can in fact display very
example, we have considered the case where the final 10%mpjicated spatiotemporal behavior which we suggest can
of the die has” = 0.006 m, producing the flow curve shown gy ain sharkskin texturing. The additional incorporation of
by the dotted line in Fig. 8. In this case, the behavior iSy s exirinsic effect of the compressibility of the fluid in the
qualitatively the same except that in the_spurt regime We NQasaryoir allows us to obtain a unified description of both the
longer see sharkskin superimposed. This is because, duri arkskin and spurt flow regimes seen in experiments
the spurt oscillationg;, never drops low enough to enter the The mechanism for the oscillations in our model is.very

unstable regime of the flow curve for the end of the die, as .
can be predicted by referring to Fig. 8. simple—when the stress at the walls becomes too large, the

A more realistic case would havé varying continuously polymers at the walls orient themselves so that slip occurs.

along the wall near the die exit from its value in the rest 0fThi_s, in turn, results in a decrease in the stress at the walls
the die to some smaller value; this continuous variation igVhich eventually causes the polymers to reorient themselves
expected to make the sharkskin behavior more robust sindeack to the stick condition. Provided that the fluid in the bulk
there will be a continuous distribution of local flow curves in fésponds to the change in boundary conditions in a suffi-
the end region, with some overlapping the flow curve for theciently elastic manner, this scenario leads to oscillations of
main part of the die such that simultaneous spurt and sharkhe fluid.

skin are produced. As an example, we have investigated a Finally, we should point out that we have not attempted
system in which/”’ = 0.04 m in 80% of the die and then here to model how the oscillations in the flow in the die
decreases linearly t¢ = 0.02 m in 10% before increasing translate into texturing on the surface of the extrudate. How-
linearly back to” = 0.04 m in the final 10%. As we would €ever, it seems clear that such oscillations should in general
expect, for;g = 0.30 m/s there are reservoir compressibility lead to features on the extrudate, particularly once the effects
oscillations with viscoelastic oscillations at a given point in Of variations in the normal stre§8] are considered. In future
the last part of the die occurring when the flow rate is suchvork, we hope to explicitly consider the behavior of the fluid
that it is in the unstable regime for a flow curve withat the ~ Once it exits the die. Such a study might be particularly use-
given value. Finally, in real systems, we expect that the walldul in order to understand the gross melt fracture regime
will be quite inhomogeneous. To account for this, we havevhere the extrudate becomes most severely distorted.
investigated a case wheré is chosen to have a random

value between 0.02 and 0.04 m at each of the discretized
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