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Theory of melt fracture instabilities in the capillary flow of polymer melts
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We present a model for the flow of a polymer melt through a capillary with nonlinear slip boundary
conditions at the wall of the capillary. The model consists of the linearized Navier-Stokes equations coupled to
a Maxwell constitutive relation for the viscoelasticity and a phase-field model for a first-order transition
between stick and slip flow at the boundary. Specializing to the case of a two-dimensional capillary, we
perform a linear stability analysis about the steady-state solutions and predict in which parameter regimes the
steady-state becomes unstable. A numerical study of the model shows regions of steady flow, as well as
regimes with periodic oscillations, spatially uniform but temporally chaotic oscillations, and more complicated
spatiotemporal behavior. We show that the oscillations can account for the sharkskin texturing and defect
structures seen in the extrusion of polymer melts.@S1063-651X~97!10401-9#

PACS number~s!: 61.25.Hq, 83.20.Lr, 64.60.My, 47.50.1d
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I. INTRODUCTION

Understanding the instabilities which occur when a po
mer melt is extruded through a capillary~or ‘‘die’’ ! is a
longstanding problem in the plastics and chemical engin
ing communities. The issue was of large technological
portance for the plastics industry in the 1950s and 19
since these instabilities lead to unwanted distortions in
final plastic product, which have been collectively term
‘‘melt fracture.’’ Over time, engineers have found ways
avoid or minimize the problem in practice, but little unde
standing of the origin of these distortions has been reac
and much discussion of the problem has continued in
rheology and non-Newtonian fluid mechanics literature. F
recent reviews, see@1,2#.

The problem can best be described by reference to
sketch of the ‘‘flow curve’’ presented in Fig. 1.~For actual
experimental curves, see, e.g., Refs.@1–4#.! The horizontal
axis specifies the apparent shear rate of the polymer me
the wall of the capillary@5#, while the vertical axis specifie
the shear stress at the wall.~Shear rate and shear stress,
though the more fundamental quantities, are not the m
directly accessible; in terms of physically measurable or c
trolable parameters, the horizontal and vertical axes co
spond to the flow rate and the applied pressure, respectiv!
The inset in Fig. 1 is a cartoon of a typical experimen
setup: a piston or screw feeds the polymer melt into a re
voir and eventually through the die and out the other e
where it cools and solidifies.

As the flow rate in the die is increased, one typically fin
several different regimes@2,3,6#: At the lowest flow rates, the
extrudate is smooth and regular. Next, one encounters a
gime of surface distortion termed ‘‘sharkskin,’’ in which th

*Current address: Bldg. 83, 2nd floor, RL, Eastman Kodak Co
pany, Rochester, NY 14650-2216.
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extrudate develops a sawtooth texturing on its surface. O
a change in the slope of the flow curve is apparent near
onset of the sharkskin, as shown in Fig. 1. At still larger flo
rates, one sees ‘‘stick-slip’’ or ‘‘spurt’’ flow, which is char
acterized by fairly long time oscillations in the flow ra
~e.g., on the order of seconds!, with a noticeable effect on the
extrudate. Sharkskin is frequently seen on the extrudate
ing all or part of the stick portion of the cycle. Finally, at th
highest flow rates, one sees ‘‘gross’’ or ‘‘wavy’’ melt frac
ture which is characterized by a highly irregular extruda
Not all these regimes are necessarily seen for all mate
and, in particular, the ‘‘stick-slip’’ or ‘‘spurt’’ flow is seen
only in those experimental setups where it is the pis
speed, rather than the pressure, which is held fixed. Un
pressure regulation, one instead sees hysteresis, wher
increasing and decreasing pressure the flow rate jumps w
limits of metastability are reached, as shown by the das
lines and arrows in Fig. 1.

There has long been controversy about whether these
fects are due to instabilities inside the die, or are instead
to instabilities at the die entrance or exit, or some combi
tions of these. However, recent ultrasonic measurements@7#
show that anomalous time-dependent behavior in the p
mer flow occurs within the die, far from both the entran
and exit~and even at flow velocities somewhat below tho
where sharkskin first becomes apparent!, thus suggesting tha
instabilities inside the die itself are probably important.

Since the Reynolds number@8# is still very small when
these instabilities occur, it is clear that they cannot be du
turbulence in the die; hence, the instabilities are most lik
to be due to some of the special properties of polymer me
which of course differ from classical fluids in a number
important ways@9#. First, the time scales for relaxation a
long and widely distributed. Therefore, the fluids can beha
elastically on laboratory time scales and must be mode
with viscoelasticconstitutive relations between the stress a
strain. Second, the viscosity in the fluids is often found to
-
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55 2977THEORY OF MELT FRACTURE INSTABILITIES IN . . .
FIG. 1. Sketch of a typical flow curve seen i
experiments on extrusion of polymer melt
adapted from@2–4#. Shown is the shear stress
the wall, sxy

wall , as a function of the shear rate
exy
wall , at the wall. Also shown are the approxima
flow regimes where different imperfections a
seen on the extrudate. For photographs of the
trudate produced in these regimes, see@1#. In the
spurt regime, the flow oscillates in time; altern
tively, if the experiment is performed at consta
pressure, this regime is not accessible and hys
esis is seen instead, as shown by the horizon
dashed lines. The inset shows a typical expe
mental setup where the melt is pushed by a pis
from a large reservoir through the capillary an
out the other end where it solidifies.
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a decreasing function of the shear rate, a phenomenon te
‘‘shear-thinning.’’ The proposed explanation of this is th
under larger shears the polymers tend to line up paralle
the flow and can then more easily slide past one anothe

Third, there is increasing evidence that polymeric flu
might not obey the ‘‘stick’’ boundary condition at the wal
of the container that is standardly assumed in hydrodyn
ics. That slip behavior could occur in polymer melts w
suggested in some of the earliest literature on melt frac
@10#; such ideas were introduced into the physics commu
several years ago by de Gennes@11#. More recently, de
Gennes and co-workers have expanded on this idea, sug
ing that a sharp transition should occur between stick
slip behavior as the shear rate at the walls is increased@12#.
Experimental evidence for the importance of slip has b
accumulating in the study of polymer melts@1,2,13,14#, and
although most of the evidence has been rather indirec
recent elegant experiment by Migleret al. @15# using a poly-
meric fluid in the planar Couette geometry@8# actually mea-
sured the velocity of the fluid within 100 nm of the wa
confirming much of de Gennes’ picture. In particular, t
authors found that as the shear rate was increased there
a sharp transition at which the slip velocity jumped by ab
four orders of magnitude.

In order to understand the phenomenon of melt fractu
we present a hydrodynamic model that describes the flow
a viscoelastic fluid in which the polymer near the surfa
undergoes a first-order transition in conformation as a fu
tion of the shear stress at the wall. This conformatio
change leads to a change in the frictional force between
wall and the polymer in the bulk, producing stick-slip beha
ior, and leading in a natural way to an effectively multiva
ued flow curve@see Fig. 2~a!#, as has been much discussed
the recent literature@1,2,16,17#. When the die is coupled to
large reservoir in which the polymer can be compressed,
find that the multivalued flow curve gives rise to oscillato
spurt flow, as has been discussed previously@2#. More sig-
nificantly, and even in the absence of the effect of the re
voir, we find that theelasticnature of the fluid can give rise
to periodic oscillations, chaotic behavior, and large-sc
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spatial structures in the die, which we conjecture is resp
sible for sharkskin. A shorter communication of our wo
has been presented in Ref.@18#. Here, we give a fuller de-
scription of the model, discuss the determination of t
steady-state solution and the exact linear stability anal
about this solution, and give much more detail of the nume
cal results and relation to experiment.

The plan of the paper is as follows: In Sec. II, we pres
the basic elements of our model and discuss the Fou
transform of the fluid flow equations to reexpress the mo
in a mixed spectral and real space representation. In Sec
we examine the steady-state solutions and their linear sta

FIG. 2. ~a! Flow curve for our model produced using the para
eter values given in Table I. Shown is the shear stress at the w
sxy
wall , as a function of the average flow velocity,v̄x in steady state.

Each point on this curve is associated with a uniform steady-s
solution of the model. The dotted part of the curve hasx̄21,0 and
is thuspotentiallyunstable, while the solid part hasx̄21.0 and is
stable. The inset shows the range ofv̄x , where the steady-stat
solution is actually found to be linearly unstable as a function
tm /t, as obtained from an approximate result of the linear stabi
analysis, Eq.~3.24!. ~b! Local free energy densityf (c) for three
different values ofsxy

wall . The solid, dashed, and dotted curves a
for shear stresses ofsxy

wall 5 80, 160, and 200 kPa, respectively. Th
dashed part of the flow curve in~a! corresponds to a maximum in
f (c) while the solid part of the curve corresponds to minima
f (c).
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2978 55SHORE, RONIS, PICHE´ , AND GRANT
ity. In Sec. IV, we present numerical results, first brie
discussing the numerical method, next considering osc
tory solutions which are spatially uniform in the flow dire
tion, and then considering spatially nonuniform solutio
We conclude Sec. IV with a discussion of two addition
features which must be added to the model in order to fu
reproduce features seen in most experiments: compressi
of the melt in the reservoir and nonuniformity in the boun
ary conditions along the walls. Finally, in Sec. V, we co
clude with a summary and a brief discussion of avenues
future research.

II. THE MODEL

A. General presentation

We consider Poiseuille~pipe! flow @8# in a circular or
rectilinear geometry. Generalization to more complicated
ometries or to other types of flows, such as planar or cy
drical Couette flow@8# is straightforward. We assume per
odic boundary conditions in the flow direction an
impermeable walls on the sides of the capillary.

The bulk fluid flow is specified by the following equa
tions:

r
]v~r ,t !

]t
52g~ t !x̂2¹dp~r ,t !1¹• s↔~r ,t !, ~2.1!

¹•v~r ,t !50, ~2.2!

and

tm
] s↔~r ,t !

]t
52@ s↔~r ,t !2h0 e

↔~r ,t !#. ~2.3!

Equation ~2.1! is the Navier-Stokes equation@8#, which is
simply Newton’s law for the velocityv(r ,t) of a fluid ele-
ment at positionr and timet with densityr. s↔(r ,t) is the
~viscous! stress tensor. The pressure term has been div
into two parts:p(r ,t)5g(t)x1dp(r ,t), whereg(t) is a uni-
form pressure gradient in the flow direction, anddp(r ,t) is
the excess part, which~like all the other variables! is periodic
in the x direction. Equation~2.2! is the continuity equation
which follows from the assumption that the fluid is incom
pressible. In solving these equations, the incompressib
condition and the boundary condition that the perpendicu
component of the velocity must go to zero at the walls
used to determinedp(r ,t). Equation~2.3! is the Maxwell
constitutive relation for a linear viscoelastic fluid@9#, with
h0 the viscosity ande↔ the rate of strain tensor with com
ponentsei j[]v i /]xj1]v j /]xi . By varying the Maxwell re-
laxation time, tm , we can tune between a viscous flu
(tm→0) and an elastic solid (tm ,h0→`).

These three equations together constitute a standard
drodynamic model for an incompressible viscoelastic fl
@9#. Note, however, that we have linearized the equations
replacing the total or convective derivatives that would n
mally appear on the left-hand side of Eqs.~2.1! and ~2.3!
with a simple partial derivative. This is an excellent appro
mation for Eq.~2.1! because the instabilities we will stud
are found to occur at very low Reynolds number@8#, where
these terms are very small. For Eq.~2.3!, the corresponding
-
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dimensionless ratio to consider is the Weisenberg num
given by the product of the shear rate andtm . This is esti-
mated to be of order 0.1 to 1 in the range where sharks
and spurt flow are seen. Because the convective terms i
tically vanish for flows that are uniform in the flow direction
we expect that, in analogy with the Reynolds number,
Weisenberg number generally has to be considerably la
than one before the convective terms become import
These terms do play a role in certain cases, such as in
ducing higher stresses near the ends of the die~as will be
discussed in Sec. IV C! and for the behavior at higher flow
rates, i.e., in the gross melt fracture regime not studied in
paper. In this regard, we note that a recent paper by Bl
and Graham@19# argues that there exists alarge-wave-
number instability when terms in their model, analogous
those proportional to the Weisenberg number discus
above, are large~that is, for high shear rates!. However, here
we believe that the most important nonlinearities in the pr
lem come in through the boundary conditions at the walls
the die.~We could also add additional nonlinearities by i
cluding shear thinning@9# in our model; however, prelimi-
nary investigations showed that considering such a com
cation was not necessary to produce the physics of inte
here.!

The boundary condition for the fluid velocity at the wal
of the die is coupled to the kinetics of a first-order pha
transition@20# describing the conformation of the polymer
the wall by the following equations:

vi~r5r i,t !5l c~r i,t !~ n̂•¹vi!ur5r i
, ~2.4!

F@c#5E
walls

dr iF f ~c!1
j0
2

2
~¹r i

c!2G , ~2.5!

and

t
]c~r i,t !

]t
52

dF

dc~r i,t !
. ~2.6!

Equation~2.4! specifies the slip boundary condition, wit
the slip velocity assumed to depend on the shear rate a
wall @21#. Here, r i denotes a coordinate which ranges on
over the walls,n̂(r i) is defined as the inward unit normal a
the wall, andvi(r i,t)[v i(r i,t) v̂i(r i,t) is the component of
the fluid velocity parallel to the wall.l is a constant with the
dimensions of length andc is a dimensionless quantity de
fined locally at each pointx along the walls at timet. Equa-
tion ~2.4! defines a slipping length,l c, which has the geo-
metric interpretation as the distance between the die wall
the point outside the die at which the tangential velocity
linearly extrapolated based on its value and the value of
gradient at the wall, would go to zero. In particula
l c→0 corresponds to ‘‘stick’’~tangential velocity zero a
the wall! while l c→` corresponds to perfect slip. Equatio
~2.4! is an equation commonly used to describe slip bou
ary conditions@1,12–15#; our one generalization here is t
assume that the slipping length is a local quantity which c
be specified at each point along the wall.

Experiments show that the slipping length jumps shar
at a critical value of the shear@13,15#, while hysteresis is
observed on the multivalued flow curves seen in extrus
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55 2979THEORY OF MELT FRACTURE INSTABILITIES IN . . .
@1,2#. Together, these two features suggest the chang
slipping length is the nonequilibrium analogue of a fir
order phase transition, presumably the result of a transi
in the local conformational state of the polymer at the wa
Equation ~2.5! presents the free energy functional of
Ginzburg-Landau phase-field model@22# for c(x,t). We
consider a standardc4 free energy model with local free
energy density

f ~c!5
c

4
c42

b

3
c31

a

2
c22~H v̂i• s↔•n̂!c. ~2.7!

Note the inclusion of a linear term couplingc(x,t) to the
value of the shear stress,v̂i• s↔•n̂, at the wall. The second
term in Eq. ~2.5! is a square-gradient term which resis
changes inc(x,t) in the direction along the wall. The con
stantsa, b, c, H, andj0 are all taken to be positive, with th
latter being a bare correlation length. With this choice
signs, and with the parameter values appropriately cho
@23#, the equilibrium value ofc is zero whensxy50, with a
first-order transition to a large value ofc as the stress in
creases. The microscopic picture of de Gennes and
workers@12# suggests associating largerc with the stretch-
ing and uncoiling of some polymers attached to the w
under the action of the shear stress, although it has b
suggested that other mechanisms such as desorption o
polymer at the wall may be relevant@14#, and in fact that the
specific mechanism for the stick-slip transition might ev
vary from one system to another@13,14#. Our model is not
dependent on a specific microscopic mechanism. Rathe
the spirit of keeping our model simple and general, we
sume only that the change in conformation can be spec
by its effect on the slipping lengthl c(r i,t) @24#. Note that,
although our mesoscopic description is motivated by a
croscopic picture, the collective gradient term proportiona
j0 is a feature particular to our treatment. Since such a t
is the most simple allowed by symmetry, and naturally o
curs in mesoscopic descriptions similar to ours, we exp
that coarse graining or renormalizing the microscopic
scription will give rise to it. At any rate, we will find that th
most complex spatiotemporal behavior occurs whenj0 is
much smaller than the other length scales in the system

Finally, Eq.~2.6! is an equation for dissipative relaxatio
of the polymer conformation toward states that are lo
minima in the free energy. The local rate of change ofc is
proportional to the functional derivative of the free ener
with respect toc. The constant of proportionality is given b
1/t wheret is the characteristic time scale for relaxation
the polymer conformation@25#. In general, one would also
include noise terms in these equations, with their amplitu
determined by fluctuation-dissipation relations@20,22#. How-
ever, for our purposes, these terms should be of minor
portance and are neglected. It is through Eqs.~2.4!–~2.6! that
nonlinearities enter our description; the equations for
bulk fluid, though viscoelastic, are linear. It is possible tha
more complicated description of the dynamics of the po
mer near the wall would be required to describe some p
cesses of interest, but in the absence of any substantive
tification, we have chosen as simple a model as the phy
of the problem requires.
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Having defined the model, it is now useful to summari
some of its basic features. The most important is the in
duction of a first-order stress-induced phase transition for
conformation of the polymer at the wall. The conformation
change couples back to the fluid flow by changing the s
ping length at the wall. Since there is a range of values
usxyu where the local free energy densityf (c) has a double-
welled structure, this gives rise to hysteresis associated
the spinodal part of the van der Waals loop in] f /]c, where
the local susceptibilityx[(]2f /]c2)21 is negative, while
retaining consistency with a sharp first-order phase transi
in the infinite-time limit. This hysteresis in the conformatio
of the polymer at the wall leads directly to hysteresis in t
fluid flow because of the coupling of the polymer conform
tion to the slip lengthl c. Such hysteresis has indeed be
seen experimentally, and much recent theoretical work
incorporated it in anad hocfashion@1,2,16,17#, i.e., by pos-
iting a nonmonotonic relation between slip velocity and w
stress, and then assuming a history dependence in deter
ing which slip velocity to use in the case where the curve
multivalued. Here, such hysteresis arises naturally from
well-accepted description of the dynamics of a first-ord
phase transition.

It is not obvious that the instability associated with t
polymer conformation at the wall will necessarily lead to
instability of the entire fluid, and in fact, it might seem rath
surprising that an instability at the wall could be so effecti
in driving an instability in a viscous fluid. We will see, i
fact, in Sec. III B that theelasticityof the polymer melt plays
a crucial role in determining whether or not the system
unstable: Only if the fluid is sufficiently elastic that it acts
a solid on the time scales over which the polymer conform
tion changes at the walls~i.e., if t&tm) will the system be
able to sustain oscillations@26#. However, before discussin
the origin of the oscillations in the polymer melt in furthe
detail, it is useful to rewrite the equations in a form mo
useful for the study of the steady-state solutions and th
stability.

B. Spectral representation

Since, in the description of the bulk fluid hydrodynamic
Eqs. ~2.1!–~2.3!, we have neglected all nonlinear term
these equations can be Fourier transformed analytically
reduced to a simpler form. Before doing that, however,
specialize to a specific geometry, namely, a two-dimensio
capillary of sizeLx3Ly with periodic boundary conditions in
the x ~flow! direction and impermeable walls aty50 and
Ly in the direction perpendicular to the flow. Since our sy
tem is finite in both directions, Fourier series are used a
we have a discrete set of wave numbers. In they direction
we use a Fourier sine series forvy , reflecting the boundary
conditionvy(r ,t)50 at the walls. Once this choice has be
made, the structure of Eqs.~2.1!–~2.3! determines the sim-
plest choice for the other variables, namely, sine series
sxy and cosine series forvx , sxx , syy , anddp. The trans-
formation of the equations is then performed by multiplyi
each equation by sin(kyy) or cos(kyy) and integrating with
respect toy, where

ky[np/Ly , ~2.8!
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2980 55SHORE, RONIS, PICHE´ , AND GRANT
with n50,1,2, . . . . For terms containing derivatives with
respect toy, integration by parts is performed; care must
taken in considering the surface terms which turn out to
zero in all cases except in the equation for the propagatio
vx .

Straightforward manipulation of the resulting equations
Fourier space is then used to eliminate the variab
dp(k,t), s↔(k,t), andvy(k,t), finally obtaining the follow-
ing equation forvx(k,t):

tm
]2vx~k,t !

]t2
1

]vx~k,t !
]t

1n0k
2vx~k,t !

5
2n0
Ly

ky
2

k2
@~21!nTL~kx ,t !2T0~kx ,t !# ~2.9!

for kyÞ0. For the special caseky50, vx(kx ,ky50,t)50 for
kxÞ0 and

r
]vx~k50,t !

]t
52g~ t !1

1

Ly
sxy~kx50,y,t !uy50

Ly . ~2.10!

In Eq. ~2.9!, n0[h0 /r is the kinematic viscosity@8# and we
have defined a shear rate at the wall as

Tj~x,t ![]vx~x,t !/]yuy5 j , ~2.11!

where j takes on the value ofy at the two walls:
j5$0,Ly%. When we use a subscript onc or T to indicate at
which wall the corresponding quantity is evaluated, we w
replaceLy simply by L for notational simplicity. Note that
the last term in Eqs.~2.9! and ~2.10! arises from the afore
mentioned surface term that appears in the Fourier tra
formed version of Eq.~2.1!.

vx(kx50, ky50,t) in Eq. ~2.10! is simply the spatially
averaged flow velocity in the die, which we will hencefor
denote asv̄x . Experiments are typically run under condition
of either constant pressure or constant flow rate. The for
condition is implemented by setting the pressure grad
g(t) equal to a constant in Eq.~2.10!. A constant flow rate is
implemented simply by takingv̄x equal to a constant, i.e., b
requiring

] v̄x /]t50, ~2.12!

which from Eq.~2.10! implies that

g~ t !5
1

Ly
s̄xy~y,t !uy50

Ly , ~2.13!

where s̄xy(y,t) is the shear stress spatially-averaged alo
the flow direction. Henceforth, we will assume that E
~2.12! holds until we return to discuss constant pressure fl
and a more complicated experimental flow condition
Sec. IV C.

We will considerc only in real space. Hence, Eqs.~2.4!–
~2.7! remain essentially unchanged. Here, we simply rew
them combining Eqs.~2.5!–~2.7! into one, specializing to
our two-dimensional geometry, and incorporating the n
notation we have introduced

vx~x,y5 j ,t !5~21! j /Lyl c j~x,t !Tj~x,t ! ~2.14!
e
of

s

l

s-

er
nt

g
.
w

e

and

t
]c j~x,t !

]t
52cc j

3~x,t !1bc j
2~x,t !2ac j~x,t !

1~21! j /LyHsxy~x,y5 j ,t !1j0
2 ]2c j~x,t !

]x2
.

~2.15!

Finally, in order to obtainsxy appearing in Eq.~2.15!, it is
necessary to include Eq.~2.3! specialized to the shear com
ponent of the stress tensor at the walls

tm
]sxy~x,y5 j ,t !

]t
52@sxy~x,y5 j ,t !2h0Tj~x,t !#.

~2.16!

Equations~2.9! and~2.14!–~2.16! constitute a rewriting of
Eqs. ~2.1!–~2.7! in a mixed real space-Fourier space rep
sentation often more amenable for both analytic and num
cal work. In what follows, we will make use of both th
mixed and real space representations, according to whic
more convenient for our purposes.

III. STEADY-STATE SOLUTIONS AND LINEAR
STABILITY ANALYSIS

A. Steady-state solutions

The steady-state solutions are obtained from Eqs.~2.9!
and ~2.14!–~2.16! by setting all time derivatives equal t
zero. We are interested in steady-state solutions that are
form in thex direction, and thus have only thekx50 com-
ponents ofvx(k) andTj (kx) nonzero. These components a
simply the uniform-in-x real space values which we writ
succinctly asvx(ky) andTj . Explicitly summing the Fourier
series for they component to obtain the velocities in re
space at the two walls, we can write Eq.~2.14! as

l c0T05 v̄x1 (
n51

`

vx~ky! ~3.1!

and

2l cLTL5 v̄x1 (
n51

`

~21!nvx~ky!, ~3.2!

where we recall Eq.~2.8! relating ky and n. ~It is worth
noting that these equations also hold for a time-depend
state provided that it is uniform in thex direction.!

In the steady state, Eq.~2.9! reduces to

vx~ky!5
2Ly@~21!nTL2T0#

~np!2
. ~3.3!

If we substitute Eq.~3.3! into Eqs.~3.1! and~3.2!, noting that
(n51

` 1/n25p2/6 and (n51
` (21)n/n252p2/12 @27#, and

solve forT0 andTL , we find that

T05
~ l cL1Ly/2!v̄x

~ l c01Ly/3!~ l cL1Ly/3!2Ly
2/36

~3.4!
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and

TL5
2~ l c01Ly/2!v̄x

~ l c01Ly/3!~ l cL1Ly/3!2Ly
2/36

. ~3.5!

Considering Eqs.~2.15! and~2.16! in the steady state an
substituting in Eq.~3.4! and ~3.5!, the possible steady-stat
values ofc0 are given by the roots of a sixteenth-order po
monial. This polynomial factors into a fourth-order polyn
mial which gives those roots that describe steady states s
metric under reflection about the centerline of the capilla
and a twelfth-order polynomial describing the asymme
steady states. Moreover, only six of the 12 asymmetric s
tions are independent because the solutions must occu
pairs related by reflection about the midplane of the ca
lary.

The roots of the full sixteenth-order polynomial can
determined using standard numerical techniques@28#. For
large enough slip length coefficientl , the only physical
roots ~those with bothc0 andcL real and positive! are the
symmetric ones. To investigate these analytically, we n
that whenc05cL , Eqs.~3.4! and ~3.5! reduce to

T052TL5
v̄x

l c01Ly/6
. ~3.6!

One can easily verify that this result agrees with the veloc
profile obtained by a direct real-space calculation of
steady-state solution of the Navier-Stokes equation for p
flow with the prescribed boundary conditions.

Considering Eqs.~2.15! and~2.16! in the steady state an
substituting in Eq.~3.6!, we obtain

cc0
32bc0

21ac02
Hh0v̄x

l c01Ly/6
50. ~3.7!

Upon multiplying Eq.~3.7! by the denominator of the las
term, we have a fourth-order polynomial equation. The s
of the zeroth-order coefficient implies that the product of
four roots is negative, and therefore for given values of
parameters~and, in particular, fixedv̄x), we have the follow-
ing three possibilities:~1! two complex-conjugate roots an
two real ones, one positive and one negative;~2! three real
positive roots and one real negative one;~3! three real nega-
tive roots and one positive one. Since only real positive ro
are physical, we see the possibility of either one or th
physical roots. The most relevant case of a flow curve wh
always has only one physical root is shown in Fig. 2~a!.

For completeness, we show in Fig. 3 two unusual patho
gies in the flow curve which can occur in our model f
small values of the slip length coefficent but do not cor
spond, to the best of our knowledge, to any flow curv
which have been observed experimentally. One pathol
occurs when there is a region inv̄x where Eq.~3.7! has three
physical roots while the other occurs when asymme
steady-state solutions appear in the region where the
curve for symmetric solutions is nonmonotonic@29#. In all
that follows, we will be interested in the case where t
parameters of the model are such that the flow curve is
that shown in Fig. 2~a!, i.e., with neither of these two pa
thologies.
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B. Linear stability analysis

Before studying the linear stability of the steady-state
lutions, it is useful to consider qualitatively how the firs
order transition inc, and the concomitant flow curve@cf.
Fig. 2~a!#, can lead to oscillations in the system. Consider
system with the polymer being pushed into the capillary a
flow rate where the slope of the flow curve is negative. T
steady-state solution then has a value ofc which is a maxi-
mum rather than a minimum off (c). Thus, we might na-
ively expect that this solution is unstable. For the mome
we assume the fluid is sufficiently elastic that this instabil
still persists when the equation of motion forc is coupled to
the equations of motion for the fluid. Then the kinetics of t
first-order transition from smallc ~‘‘stick’’ ! to large c
~‘‘slip’’ ! are the origin of oscillations in this regime: Con
sider the fluid initially in the stuck state. The stress along
walls will increase. At a critical stress, the stick state b
comes metastable; at some stress beyond that@the spinodal,
which is well-defined here because we have neglected n
in Eq. ~2.6!#, the stick state becomes absolutely unstable
the system jumps to the slip state. However, once in the n
slip state, the stress at the walls decreases, the slip state
eventually becomes metastable, and a transition to s
eventually ensues. Hence, the system can repeatedly c
between stick and slip.

The range ofv̄x for which oscillations are expected t
occur for any given parameter values can be determined
lytically using linear stability analysis about the steady sta
We consider linear perturbations to the steady-state value
the variables having the form

X~r ,t !5ei ~vt2kxx!X̂~kx ,y,v!, ~3.8!

whereX has been used to denote a generic variable suc
velocity, pressure, orc. First, substituting this form into Eq
~2.3! and defining

FIG. 3. Pathological flow curves which can be produced
different sets of parameters. The solid curve shows~the symmetric
branch of! the flow curve whenl is reduced by a factor of 100 to
l 50.0004 m. Note that this curve is multivalued not only as
function of sxy

wall but also as a function ofv̄x . The dashed and
dotted curve is forl 50.002 m. The new branches of the curv
~dotted! are ‘‘asymmetric’’ steady-state solutions, i.e., with diffe
ent slip velocities at the two walls.@Such additional branches als
occur for l 50.0004 m, but have not been shown in order to illu
trate the two types of pathologies separately.#
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nv[
n0

11 ivtm
, ~3.9!

we find that

d s↔5rnvd e↔ . ~3.10!

Here, and in the equations that follow, we omit the expli
functional dependences onkx , y, andv for brevity.

Next, substituting the form~3.8! into Eqs.~2.1! and~2.2!,
and using Eq.~3.10! and the fact that Eq.~2.2! allows us
to write ¹• e↔5¹2v, we obtain the following equations fo
the magnitude of the perturbed valuesdvx(kx ,y,v),
dvy(kx ,y,v), anddp(kx ,y,v):

r@ iv1nv~kx
22]y

2!#dvx5 ikxdp, ~3.11!

r@ iv1nv~kx
22]y

2!#dvy52]ydp, ~3.12!

and

2 ikxdvx1]ydvy50. ~3.13!

Eliminatingdp anddvx from these three simultaneous line
equations then yields

@ iv1nv~kx2]y
2!#@kx

22]y
2#dvy50, ~3.14!

which is valid for allkxÞ0. The solutions to Eq.~3.14! are
linear combinations ofeqjy with (q1 ,q2 ,q3 ,q4)5(kx ,
2kx ,k,2k) and
d

-

t

k[S kx21 iv

nv
D 1/2. ~3.15!

However, because of the boundary conditions, Eq.~3.14! is
an eigenvalue equation which can be satisfied only for p
ticular linear combinations and accompanying discrete v
ues ofv. Two conditions on the four coefficients are dete
mined by the requirement thatdvy vanish at the two walls,
which is easily satisfied by writingdvy in terms of hyper-
bolic sine functions. The remaining two conditions are det
mined by using Eqs.~3.13! and ~2.11! to obtain dvx and
dT from dvy and then requiring Eq.~2.14! be satisfied at the
two walls, i.e.,

dvx~y5 j !5~21! j /Lyl ~ T̄jdc j1c̄ jdTj !, ~3.16!

where overbars are used to denote steady-state values
can rewritedc j in Eq. ~3.16! in terms ofdTj by using the
following expression derived from Eq.~2.15! with the help
of Eq. ~3.10!:

@ ivt1x̄ j
211~kxj0!

2#dc j5~21! j /LyHrnvdTj . ~3.17!

Here, we have defined the inverse susceptibility by

x j
21[

]2f

]c j
2 53cc j

222bc j1a. ~3.18!

After some algebra, we find that the coefficients in the so
tion to Eq. ~3.14! with the prescribed boundary condition
are nonzero only whenv satisfies the following condition:
F c̄01
HrnvT̄0

ivt1x̄0
211~kxj0!

2 2
nv

ivl Ly
h~kxLy ,kLy!G

3F c̄L2
HrnvT̄L

ivt1x̄L
211~kxj0!

2 2
nv

ivl Ly
h~kxLy ,kLy!G52F nv

vl G2F kx
sinh~kxLy!

2
k

sinh~kLy!
G2, ~3.19!
re-
m-
he

me

.

whereh(x1 ,x2)[x1coth(x1)2x2coth(x2).
Finally, specializing to the case of a symmetric stea

state (c̄05c̄L and T̄052T̄L), Eq. ~3.19! simplifies and we
find, making use of Eq.~3.6!, that the complex eigenfrequen
ciesv are given by the roots of

@ l c̄1Ly/6#@ l c̄1LyC6~kxLy ,ivLy
2/nv!#

5
2H v̄xrnvl

ivt1x̄211~kxj0!
2 , ~3.20!

where we have defined

C6~z,z![

Az21zFcothS 12Az21z D G61

2z@coth~z/2!#61

z
.

~3.21!
y
C1 or C2 is used to obtain those eigenfrequencies cor
sponding to perturbations which are symmetric or antisy
metric with respect to reflection about the midplane of t
capillary, respectively. Note that in Eq.~3.21!, z is real but
z is complex.

Since z is a function ofv, the exact stability equation
contains transcendental functions ofv and thus can only be
solved numerically. However, from Eq.~3.21!, we find

C6~z,z→0!5
@coth~z/2!#61

2z F17
z

sinh~z!G , ~3.22!

which is a good approximation forC6(z,z) in the limit
uzu!1. Since uvu is typically of order 1/tm , this can be
understood as a condition that a typical hydrodynamic ti
scale for a viscous fluid,Ly

2/n0, be much smaller than the
elastic time scaletm @25#. Using this approximation, Eq
~3.20! is quadratic inv and we obtain the following four
roots:
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v5
1

2tm
F i H 11

tm
t

@x̄211~kxj0!
2#J

6S 4H v̄xrn0l tm /t

@ l c̄1Ly/6#@ l c̄1LyC6~kxLy ,0!#

2H 12
tm
t

@x̄211~kxj0!
2#J D 1/2G . ~3.23!

@In Eq. ~3.23!, unlike in Eq.~3.22! or previous equations, th
signs indicated by the two6 symbols are allowed to vary
independently.# In what follows, we assume the correctne
of Eq. ~3.23!, and then return, at the end, to discuss how
expect the use of the exact expression to modify our res

Referring back to Eq.~3.8!, we see that instability occur
when any of the eigenfrequencies acquires a negative im
nary part. One can show from Eq.~3.23! that a necessary
condition for instability is that the inverse susceptibility b
negative, or in other words, that we be on the negative sl
part of the flow curve in Fig. 2~a! @30#. Interestingly, how-
ever, this is not a sufficient condition. There are two cas
depending on the sign of the quantity in the square roo
Eq. ~3.23!, or equivalently, whether or not the real part
v is zero at the point where the imaginary part crosses z
For the latter case, which seems to occur more gener
~and, in particular, holds for the parameter values discus
in this paper, for all values oft, tm , j0, or kx) @31# we can
see from Eq.~3.23! that the condition for linear instability is
simply given by the criterion

x̄211~kxj0!
2,

21

~tm /t!
. ~3.24!

Note that the dependence onv̄x in Eq. ~3.24! enters implic-
itly through x̄21. In a recent paper, an instability was foun
by Georgiou@17# for a viscoelastic fluid in the Couette ge
ometry. Georgiou assumed perfect stick at one wall an
highly nonlinear slip-stick boundary condition at the oth
such that the resulting flow curve was nonmonotonic, as
Fig. 2. This is related to our present treatment of Poiseu
flow, in the limits t[0 and j0[0. However, within our
model we find that the Couette flow case~with stick-slip
transitions at both surfaces! will generically lead to addi-
tional branches of the flow curve involving asymmet
steady-state solutions analogous to those shown by
dashed and dotted curve in Fig. 3. This suggests a m
complicated scenario where instabilities occur in some
not all regimes; in particular, we find evidence of linear
stable, but nonlinearly unstable, states. Further details of
work will be presented in a future communication.

Equation~3.24! shows that whenx̄21 become sufficiently
negative, there will be an unstable band of wave numb
centered aboutkx50. The criterion for instability depend
on the relative magnitudes of the elastic time scale,tm , and
the time scale for relaxation of the conformation of the po
mer at the surface,t. The curves in Fig. 4 show the stabilit
boundaries in thev̄x—kxj0 plane for various values o
tm /t as given by Eq.~3.24!, while in the inset to Fig. 2 we
have plotted the range ofv̄x for which the steady-state solu
tion is unstable as a function oftm /t ~using the fact that
kx50 is the most unstable wave number!. We see that if
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tm /t is too small there is no instability for anyv̄x . Instead,
c at the walls relaxes to the steady-state value given
setting the left-hand side of Eq.~2.15! equal to zero. This is
true even forx̄21,0, when this steady-state solution of E
~2.15! alone@with sxy (x,y5 i ,t) held constant at the steady
state value# is unstable, i.e., when the value ofc at the walls
corresponds to a maximum rather than a minimum off (c).
Thus, as we would expect, the coupling to the viscous fl
produces a stabilizing effect on Eq.~2.15!, but this stabiliz-
ing effect becomes weaker as the fluid becomes more ela
This can be understood intuitively as follows: If the chan
in the polymer conformation occurs on a time scalet which
is short compared totm then the fluid responds in an elast
~solidlike! manner and, in particular, has the ability
‘‘spring back.’’ However, if the change in polymer confo
mation occurs on a time scale long compared totm then the
fluid responds in a viscous~fluidlike! manner and the oscil
lations are damped.

Note that, to the extent that criterion~3.24! holds, the
stability is independent of any of the bulk hydrodynam
properties of the liquid besidestm @32#. Numerical investi-
gations of our model to be presented in Sec. IV confirm
prediction of Eq.~3.24! that it is the ratio of the two relax-
ation times,tm /t, which primarily determines the behavio
there is only very weak dependence of the behavior of
system on the value oftm for fixed tm /t, provided that time
is measured in units oftm .

We conclude this section with a few comments on t
accuracy of our approximate stability criterion~3.24!, given
our use of Eq.~3.23! for the case where the real part ofv is
nonzero at the stability boundary@31#. To test it against the
exact analysis, we have used a nonlinear root-finding rou
@28# to numerically solve for the roots of Eq.~3.20! using

FIG. 4. Results of linear stability analysis. Solid curves sh
stability boundaries in thev̄x—kxj0 plane fortm /t52, 5, 10, 100,
and 1000~from inside curve to outside curve!, computed using
approximate criterion~3.24!. For a given value ofv̄x , the steady-
state solution is predicted to be linearly unstable to all perturbati
with dimensionless wave numberskxj0 having values inside the
boundaries shown. Points shown fortm /t52 and 10 give the exac
stability boundaries obtained from the numerical solution of E
~3.20! and~3.21! for a few different values oftm andj0, including
those values for which the deviations from the curves are m
pronounced.
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Eq. ~3.21! for various values oftm and j0 at tm /t52 and
10, and a range ofkxj0. The resulting stability boundarie
are shown by the symbols in Fig. 4. We find that the symb
approach the curves in the limitsLy

2/(n0tm)→0,
Ly
2/(n0tm)→`, and kxLy→`. That they seem to agree i

these latter two limits in addition to the first one may at fi
seem surprising. It is because the arguments leading to
~3.24! still hold to a good approximation even if we subs
tute C6(z,z) for C6(z,0) in Eq. ~3.23!, provided that any
imaginary part or any negative real part ofC6 is small@and
that the real part of the entire term inside the square roo
Eq. ~3.23! remains positive#. In fact, one can show that th
z→6` limiting behavior of C6(z,z) is the same as
C6(z,0) provided the additional requirementz2@uzu is sat-
isfied @33#. Conversely, for uzu→` with z2!uzu,
C6(z,z)→1/Az and thus uC6(z,z)u becomes small, so
LyC6(z,z) is only a small perturbation on thel c̄ term in
Eq. ~3.23!.

Because the exact stability criterion agrees with Eq.~3.24!
in all these limits, the actual stability boundaries never se
to deviate very far from those determined by Eq.~3.24!. This
can be seen in Fig. 4, where we have included the lar
deviations that were found, which seem to occur roughly
Ly
2/(n0t)'20. We expect that other sets of paramet

would show similarly small deviations.
Finally, we note that if we had assumed that the slip

locity is proportional to the shear stress rather than the s
rate of strain in Eq.~2.4! @21#, then the effect would have
been to multiplyl c̄ in the secondbracketed term of Eq
~3.20! by a factor ofnv /n0. This, in turn, makes the analys
somewhat more complicated, but the most general con
sions concerning the possibility of an instability whe
x̄0

21,0 remain unaltered. The approximate~3.24! is re-
placed by a more complicated criterion; however, in the lim
tm /t@1, criterion~3.24! is again recovered.

IV. NUMERICAL RESULTS

Further investigation of our model is carried out nume
cally. We do this using the mixed real space spectral rep
sentation introduced in Sec. II. The infinite set of equatio
for vx(k,t) are reduced to a finite number by neglecti
those beyond a maximum wave number in bothkx andky ;
for example, we restrict ourselves ton<Ny in Eqs.~2.8! and
~2.9!. These equations, along with the real-space equat
~2.14!–~2.16! discretized in thex coordinate, can then b
propagated forward in time using Bulirsch-Stoer or Run
Kutta routines for integrating ordinary differential equatio
@28#. We handle the second derivative in Eq.~2.15! by the
standard discretization

d2c/dx2→
c~xi11!1c~xi21!22c~xi !

~Dx!2
. ~4.1!

Note that in Eqs.~2.14!–~2.16!, the values ofvx and
]vx /]y in real space are needed only at the walls and thu
is only there that numerical Fourier transforms need to
performed at each integration step. Since we use disc
Fourier transforms, the discretization in thex direction is
related in a natural way to the cutoff inkx : if the number of
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points used in real space isNx , then the set of discrete wav
numbers considered iskx5$0,62p/Lx ,64p/Lx , . . . ,
6Nxp/Lx%, where the values of the function at the positi
and negative wave numbers are complex conjugates of e
other. Typical values used for the discretization we
Ny515–100; forNx , we useNx532–2048, depending on
the size of the structure present in the solution. For the ‘‘o
dimensional’’ case, where the system is forced to be unifo
in the flow direction, we have checked that there is ve
good agreement between this mixed real-space-spe
method and a method employing real-space fin
differencing of the original partial differential equations.

The model has a large number of parameters and i
neither feasible nor useful to systematically investigate
effects of variations in all of them. Rather, the parame
values that we study are guided by experiment wherever p
sible. Except when otherwise noted, the values used
those given in Table I. For the material parametersr and
h0, we have chosen values typical of commodity polyme
such as polyethylene. The parametersl , a, b, c, andH, in
Eqs. ~2.14! and ~2.15! are chosen so that steady-state so
tions of the equations give a multivalued flow curve@Fig.
2~a!# typical of ones seen experimentally@1,2,23#. Since we
have neglected shear thinning and ourc4 model is the most
simplistic, we have only attempted to roughly reproduce
perimental flow curves, rather than actually fitting our p
rameters to experimental data. We will find it instructive
investigate the model over various ranges of the phenome
logical parameterst, tm , andj0, and the length of the cap
illary, Lx , but will also discuss what values we would expe
these parameters to have in a typical experiment.

A. Spatially uniform solutions

We will first consider the limitj0*Lx , where the system
is uniform in the flow direction.~For most experiments, this
is probably not the relevant limit, since typical die lengt
are on the order of 1022–1021 m, while j0 is expected to be
a length on the order of polymer dimensions, i.e., on
order of 1028 m, to at most 1026 m. However the limit is
still useful because it is simpler to study and serves as a
toward understanding the more complicated nonuniform
gime.! In such a limit, we find that any initial nonuniformity
of c j (x,t) along the walls decays away. Indeed, in order
study this limit most efficiently, we have often used a ‘‘on
dimensional’’ version of the code in which the flow directio
is ignored altogether. This eliminates the need to perfo
Fourier transforms in thex direction; it also makes it unnec
essary to specify the actual values ofLx andj0.

TABLE I. Standard values chosen for various parameters.
last four parameters appear in thec4 free energy, Eq.~2.7!.

density r 740. kg/m3

viscosity h0 1. 3 104 Pa s
die width Ly 0.004 m
slip length coefficient l 0.04 m

a 5
b 13
c 10
H 3.23 1026 Pa21
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The results of the linear stability analysis are confirm
by the numerics. In particular, the stability criteria f
kx50 are in excellent agreement with where oscillating
lutions first occur in our numerical simulations@34#. Some
numerical results are shown in Fig. 5. The period of
oscillations isO(tm), increasing from within about a facto
of 2 of tm in the limit tm /t→` to several timestm when
tm /t becomesO(1). There is also some dependence of t
period onv̄x ; except very near the stability boundaries, t
tendency is for the period to become longer asv̄x increases.

In order to make contact with experiment, it is necess
to estimate reasonable values fortm and t. Eq. ~3.24! ex-
presses the approximate criterion for the ratiotm /t in order
that oscillations occur. It is generally believed thattm ,
which in a melt involves the dynamics of polymer entang
ments, is proportional to the reptation time@35#. Since the
stick-slip mechanism proposed by Brochardet al. @12,15# in-
volves a large change in polymer conformation, the limiti
factor is again likely to be polymer entanglements, and he
t should also be proportional to the reptation time@25#.
However, if a different physical mechanism is responsi

FIG. 5. Behavior ofc j at the two walls forj0*Lx , at various
flow rates all within the dashed region of the flow curve in Fig.
On the left, we present both time traces~insets! and power spectra
~main graphs! of c j (t) for ~a! period 1,~b! period 3,~c! period 6,
and ~d! chaotic oscillations. Walls aty50 andLy are indicated by
solid and dashed lines, respectively. The graphs on the far r
show phase space portraits, i.e.,c0(t) vs cL(t) with time t treated
as a parametric variable; the range for both axes is the same a
for the ordinate axis in the time traces. Parameters used artm
5 1023 s, tm /t 5 10; the exact values ofj0 andLx are not rel-
evant.
d
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e
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e

e

for the stick-slip transition in some systems~for example, a
surface adsorption-desorption mechanism, as has rece
been suggested@14#!, then the dependence oft could be
different. Clearly, the value oftm /t relevant for experimen-
tal systems warrants further study. In most of our simu
tions, we have chosentm /t510, which gives oscillations
over most of the velocity regime wherex̄21 is negative with
an oscillation period ranging from;2.1 to;3.2tm over the
unstable regime ofv̄x using the parameters in Table I.

A definite value to use for the elastic timetm itself is
likewise not easy to determine, since there is a large dis
bution of elastic time scales in polymeric materials@9#. How-
ever, considering the values obtained by Joseph, Riccius,
Arney for high molecular weight silicone oils using the
shear wave speed meter@36#, we believe thattm'1023 s
should be a good order-of-magnitude estimate for long-ch
polymer melts@37#. Such an estimate yields an oscillatio
period which corresponds reasonably well, given the fl
rate, to the wavelength of experimentally observed sharks
@3#. We thus believe that the viscoelastic oscillations that
observe correspond to the sharkskin texturing seen in exp
ments. This connection will be further elucidated below.

Over much of the unstable regime inv̄x , the oscillations
are simple, with the two walls approximately 180° out
phase. However, for values ofv̄x which are close to the
minimal and maximal ranges of the unstable regime@i.e.,
near the maximum and minimum in the flow curve of Fi
2~a!#, we find some of the more complex oscillatory behav
standardly seen in driven, damped nonlinear systems@38#.
This includes chaotic behavior as well as oscillations w
periodicities that are integer multiples of the fundamen
oscillation period. For some values ofv̄x , more than one
stable attractor exists in the phase space and thus one
different behavior depending upon the initial condition
Sometimes the initial conditions can even determine whe
or not the system oscillates at all@34#. Examples of the be-
havior seen are presented in Fig. 5. Note the period doub
in going from 5~b! to 5~c!. Also, note that the phase spac
attractor need not be symmetric about the li
cL(t)5c0(t) @e.g., Fig. 5~b!, 5~c!, and 5~d!#; however, when
it is not, the attractor related to this one by interchange of
two walls @cL(t)↔c0(t)# is also a stable attractor.

As was noted above, the oscillations ofc j at the two
walls are most often out of phase. Of course, in a real thr
dimensional physical system, the walls of the container
not independent because they are connected to each o
Treating the two walls independently therefore describes
limit of a slit with an aspect ratio large compared to t
length over whichc is correlated perpendicular to the flo
direction. In order to also simulate the other extreme, wh
the walls are forced to remain completely in phase, we h
started the system with initial conditions in whichc(x) is
equal at the two walls. Because there is no noise in the
tem to break this initial symmetry, this effectively enforc
mirror symmetry in the system with respect to the centerl
at y5Ly/2 for all times. Oscillations still occur in this case
although we have not found any of the more complica
behavior~larger period motion or chaos! that is present when
c(x) at the two walls varies independently.

Finally, we have performed some limited studies with
real-space finite-difference code that allows us to inclu
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2986 55SHORE, RONIS, PICHE´ , AND GRANT
shear thinning in the model. We choose a local viscos
which varies with the magnitude of the local rate of stra
tensor,e[( 12 e↔ : e↔)1/2, as

h~e!5
h0

11~e/e0!
12n , ~4.2!

with, e.g.,e051.4s21 and n50.3 @9#. The results sugges
that the qualitative features described here remain
changed, with the period of the oscillations decreasing as
shear thinning becomes more pronounced.

B. Spatially nonuniform solutions

Spatially uniform behavior in the flow direction~with ei-
ther periodic or temporally chaotic motion! is the rule when
Lx is small andj0 is large; however, whenj0 is sufficiently
small, the behavior can become quite complicated with m
complicated structure, including what we believe to be s
tiotemporal chaos@39#, occurring. The behavior does not d
pend only on the ratio ofLx /j0, since even forj050, we
find only uniform behavior for small enough aspect rat
Lx /Ly . This is because, as we will see below, the devel
ment of complicated structure involves the formation of v
locity rolls and these rolls seem to have a minimum char
teristic size on the order of the channel widthLy .

The behavior~at least over the times that we can meas
it! also depends on the initial conditions. If we start the wa
with only a small amount of nonuniformity@for example,
variations inc(x) of magnitude 1023 or 1022# then for
Lx&Ly or Lx&j0 we find that this nonuniformity decays
For largerLx , the sort of behavior we get seems to depe
on the behavior for the uniform case: If the value ofv̄x is
such that the uniform case produces simple periodic beh
ior, then the variation along the walls remains small~but
does not necessarily decay away completely as for sm
Lx). If the uniform case produces chaos or complicated
riodic behavior, then we get spatiotemporal chaos.

The scenario is less clear when the initial condition ha
larger amount of nonuniformity@for example, variations in
c(x) of magnitude 0.30#. In this case, the nonuniformity stil
decays forLx&Ly or Lx&j0. However, for larger length
capillaries, spatiotemporal chaos seems to be the rule, i
pendent of the value ofv̄x . This could be simply transien
behavior, but it seems to be true out to times correspond
to several hundred oscillations with no indication that t
nonuniformity along the walls is decaying.

The spatiotemporal behavior we see inc j (x,t) also mani-
fests itself as complicated structures in the melt velocity
side the die. In particular, we see rolls spanning the die,
6~b!, when we look at the velocity relative to the mean flo
velocity, v(x,t)2 v̄xx̂. If there is only one roll across th
width of the die, then the velocity at the two walls will b
anticorrelated at any point along the die. Since the velocit
proportional to the slip lengthl c j (x,t) at the wall, this
would be expected to lead to out-of-phase oscillations
c j (x,t) at the two walls@40#. In fact, there does generall
seem to be one velocity roll across the capillary and
oscillations ofc j (x,t) are most often out of phase@41#. That
c j (x,t) at the walls in the two-dimensional capillary is mo
often out of phase correlates with the experimental fact
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sharkskin in a cylindrical die often has a spiral pattern w
opposite sides of the extrudate being out of phase.

Finally, we point out that the complicated spatiotempo
patterns at the two walls, shown in Figs. 6~a! and 6~c!, have
important experimental consequences: These, and analo
structures in the third dimension not included in our calcu
tion, should manifest themselves as defects on the surfac
the extrudate. Although no direct comparison can be m
without including the third dimension in our model, we a
encouraged by recent experiments@7# showing defect pat-
terns on the surface of the extrudate~Fig. 7! similar to the
patterns seen in thex-t plane in Fig. 6~a! and 6~c!. ~For other
experimental pictures of the extrudate surface during sh
skin, see@3,42#.!

C. Reservoir compressibility and nonuniform boundary
conditions

In order to make closer contact with the experiment, t
more features must be included in our model:~1! the com-
pressibility of the polymer in the reservoir, and~2! the fact
that the stresses are not constant along the die, but tend
larger near the exit~and may also vary due to randomne
produced, for example, by imperfections in the die itse!,
thus leading to nonuniform boundary conditions along
wall.

The inclusion of the extrinsic effect of compressibility
the reservoir is motivated by recent work@2,1# showing that

FIG. 6. Typical spatiotemporal patterns seen forj0!Lx . ~a! and
~c! show space-time plots ofc j (x,t) along the top and bottom
channel walls, respectively. The value ofc j is indicated by the
brightness on this gray scale plot.~b! shows the flow pattern in the
channel at the latest time in~a! and ~c!. Shown is the velocity
relative to the mean flow velocity,v(x,y)2 v̄xx̂, with the magnitude
~in arbitrary units! indicated by the size of the arrow. Note that th
time increases from top to bottom in~a! in order to facilitate a
comparison of the latest time in~a! with the top wall in ~b!. The
defect structures evident in~a! and~c! are associated with the roll
in the channel shown in~b!. Parameters used are the same as in
bottom panel of Fig. 5, except herej0 5 0 m andLx 5 0.1 m. Note
that only part of the channel has been shown in these figures.
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the long time-scale oscillations seen in the ‘‘spurt’’ regim
are controlled by the volume and compressibility of the po
mer in the reservoir, as had been suspected for some
@43#. This was demonstrated by showing that the flow r
exiting the die oscillates significantly in time and that expe
mentally the oscillation period for the spurt flow is propo
tional to the length of that part of the reservoir which co
tains the melt. In the case of Ref.@2#, a model was also
introduced in which the reservoir was considered roughly
a spring which coupled the constant velocity motion of t
melt into the reservoir to the resulting varying rate at wh
the melt enters the die. It was found that the numerical
sults of this model well produced the experimental osci
tions both in form and period.

The incorporation of reservoir compressiblity by cons
ering the reservoir roughly as a spring@2# will give us one
additional second-order differential equation for the aver
fluid velocity in the die; we will then see ‘‘reservoir com
pressibility oscillations’’ which have the expected linear b
havior on the volume of polymer in the reservoir. Note th
the inclusion of compressibility in the reservoir, while st
ignoring it in the hydrodynamic equations we solve in the
itself, is reasonable: In most experiments, the volume c
tained in the reservoir is very large compared to the volu
in the die and therefore a small change in the density of
polymer in the reservoir can lead to a change in volume
the reservoir which, though small on the scale of the res
voir, is large on the scale of the die.

The role of the reservoir can be explained qualitatively
follows: Let us consider the piston in the reservoir moving
a velocity vR such that the steady-state flow velocityv̄x

0 in
the die is in the unstable regime~in particular,

vRAR5 v̄x
0Ad , ~4.3!

with AR andAd being the cross-sectional areas of the res
voir and die, respectively!. If the die is first in the stuck state
then the flow rate and pressure in the die will be at so
point near the leftmost branch of the multivalued flow cur
shown by the bold solid curve in Fig. 8. Since material
being pushed by the piston into the reservoir faster than

FIG. 7. The surface of linear low-density polyethylene extrud
at two different extrusion rates in the sharkskin regime from
experiment of Ref.@7#. Shown are gray scale plots of the heig
with white representing peaks and black representing valleys.
polymer melt was extruded in the upward direction, relative to
orientation of these images, out a slit die;0.15 m long with a
rectangular cross section approximately 0.04 m3 0.002 m. The
images show a region of the surface approximately 0.01 m acr
Note that the patterns on the extrudate look qualitatively simila
the defect structures seen in Figs. 6~a! and 6~c!.
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exiting the reservoir and entering the die, the density a
pressure of the melt in the reservoir will increase. When t
pressure exceeds the critical pressure given by the l
maximum in the flow curve, the polymer at the wall in th
die will change conformation and enter the slip state, and
flow rate in the die will jump to the right branch of the flow
curve~as shown by the upper horizontal solid line in Fig. 8!.
However, at that point, the melt is now exiting the reserv
at a faster rate than the piston is forcing it, and thus
density and pressure of the melt in the reservoir~and die!
decreases, until the local minimum in the flow curve
reached, at which point the polymer at the wall of the d
reenters the stuck state, i.e., the system jumps back to
leftmost branch of the flow curve and the cycle repeats. N
that this scenario is similar in some respects to that wh
leads to the viscoelastic oscillations we discuss in the res
the paper. The primary difference is that here it is the co
pressibility of the fluid in the reservoir rather than the fluid
shear elasticity that allows for the storage of energy. Al
because the volume of the polymer in the reservoir depe
on details of the experimental design and on how much po
mer remains in the reservoir, these oscillations are a
intrinsic part of the experiment than those leading to sha
skin. The final distinction is that this scenario leads to os
lations in the flow rate in the die, whereas when we cons
ered only viscoelastic oscillations the flow rate w
constrained to remain constant in the die~although the dis-
tribution of the velocity field across the die varied!.

We now derive an approximate equation which gove
this process. The approach is essentially the same as in
@2# except that here we concentrate on the basic phy
rather than including terms to get all the quantitative beh

e
e

e
e

s.
o

FIG. 8. The spurt flow regime. The bold solid curve shows o
standard flow curve withl 5 0.04 m. When reservoir compress
ibility is included and the piston speed is such that average flow
is in the unstable part of the flow curve, the system cycles clo
wise around the multivalued portion of the flow curve. The leftmo
branch is the stuck part of the cycle and the rightmost branch is
slip part of the cycle; the horizontal solid lines show the rap
jumps between the stuck and slipping portions. The dashed, an
dotted curves are flow curves forl 5 0.04, and 0.006 m, respec
tively. If we allow l to vary along the wall of the capillary, then w
will effectively have different flow curves in different regions of th
capillary, with the possibility of interesting behavior as discussed
the text.
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2988 55SHORE, RONIS, PICHE´ , AND GRANT
ior correct~e.g., shear-thinning effects, etc.!. If we denote the
mass of the polymer in the reservoir byMR and the volume
by VR then the change in rate of change in mass in
reservoir can be written as

dMR /dt5rdVR /dt1VRdr/dt. ~4.4!

Using the fact thatdr5rbdpR , where

b[2~1/V!~dV/dp!

is the compressibility, and notingdVR /dt52ARvR and
dMR /dt52rAdv̄x ~because the mass leaving the reserv
must be flowing into the die!, we can rewrite Eq.~4.4! as

Ad~ v̄x2 v̄x
0!52LRARb

dpR
dt

, ~4.5!

where we have made use of Eq.~4.3!. Assuming that the
pressure in the reservoir is given by the pressure at the
entrance@44#, pR(t)52g(t)Lx , we can use conservation o
momentum in the form@cf., Eq. ~2.13!#

r
dv̄x
dt

52g~ t !1
1

Ly
s̄xy~y,t !uy50

Ly ~4.6!

to eliminatepR(t) from Eq. ~4.5!. After rearranging terms
this gives

d2v̄x
dt2

1
Ad

ARLRLxrb
~ v̄x2 v̄x

0!5
1

rLy

ds̄xy~y,t !

dt U
y50

Ly

. ~4.7!

Equation~4.7! is an additional equation which must b
integrated in time, replacing the trivial Eq.~2.12!. It incor-
porates the effect of reservoir compressibility when an
periment is performed by regulating the speed of the pis

We see that the effect of the compressibility is thus
make the flow rate in the capillary vary, even if the piston
the reservoir is pushed at a constant speed. Note that
~4.7! is that for a driven harmonic oscillator. The drivin
term couples the oscillator to the equations we have alre
investigated. The oscillator is in a strongly driven regim
where the relevant frequency of the spurt oscillations will
determined not simply from the natural frequency of oscil
tion in Eq. ~4.7!, but instead can be estimated very simp
from the qualitative discussion of the origin of the oscill
tions given above: Consider the point as which the sys
has just jumped from the stuck to the sliding state. The ti
t that it takes for enough mass of materialDMR to drain
through the die that the pressure is lowered sufficiently
the system to return to the stuck state is given by

t5
DMR

rAduDvxu
, ~4.8!

whereDvx is the average difference during the slipping p
of the cycle between the~spatially averaged! velocity in the
die and the average of the flow velocity in the die over
entireperiod,v̄x

0 . A similar equation can be written down fo
the time it takes for mass to build up in the reservoir dur
the stuck part of the cycle, and the periodT of oscillation is
then equal to the sum of the two times. The quantityDvx is
e

ir

ie

-
n.

q.

dy

e
-

m
e

r

t

n

not easy to determine very precisely for either part of
cycle, but from Fig. 2~a! it seems thatDvx' v̄x

0/2 is a rea-
sonable estimate to use for each part of the cycle@45#. Fur-
thermore,DMR5ARLRDr where the change in density o
the fluid isDr5rbDp. The pressure changeDp is deter-
mined from the difference in the wall stressDsxy between
the local minimum and maximum in the flow curve
Dp52DsxyLx /Ly . Combining all this together gives us th
following estimate for the period of the oscillations:

T'
8ARLRLxbDsxy

Adv̄x
0Ly

. ~4.9!

Note that this formula has a very different dependence
various quantities~such as the volume of polymer in th
reservoir! than would be derived by assuming that the per
was the inverse of the natural oscillation frequency in E
~4.7!; it agrees with the experimentally observed factT}LR
@2# for spurt oscillations.

To study the effect of reservoir compressibility nume
cally, we must use values for the various parameters desc
ing the reservoir dimensions and the melt compressibil
However, all these new parameters appear in Eq.~4.7! in one
coefficient and thus there is only one new independent
rameter that enters the equation. Noting thatDsxy
'3.853104 Pa for our flow curve in Fig. 2~a!, using a rea-
sonable materials value for the bulk compressibility
b51.031029 Pa21, and choosing a reasonable value for t
die length ofLx 5 0.1 m, we can then consider the contr
parameter to be the ratio of the volumes of the reservoir
of the die,VR /Vd . Figure 9 shows the observed oscillatio
period as a function of this control parameter forv̄x

0 5 0.30
m/s,tm /t510 and three different values oftm . We see that
in the limit in which the volume of the reservoir is muc
larger than the volume of the die, the period of the oscil
tions in the die is controlled by reservoir compressibility a
is in good agreement with Eq.~4.9!. We find that these os
cillations are in phase at the two walls, with large oscillatio
in the flow rate in the die. In the opposite limit in which th
volume of the reservoir is much smaller than that of the d
the period of the oscillations in the die is controlled by t
elasticity of the fluid, the oscillations are generally out
phase at the wall~and, can show chaotic behavior!, with
almost no oscillation in the flow rate in the die.

The two types of oscillations do not appear to coexist;
the limit where the reservoir compressibility oscillation
dominate, the flow rate in the die switches rapidly from
small value to a large value, spending very little time a
flow rate in the unstable regime of the flow curve~see inset
of Fig. 9!. As a result, there is very little time to excite th
elastic oscillations which thus show up only weakly, as
transient ‘‘ringing’’ effect in the velocity~and, to a much
lesser extent, inc itself! following the transition between
stick and slip. Thus, reservoir compressibility oscillations b
come the controlling phenomenon when they are includ
By contrast, experiments show that sharkskin texturing
occur during part of the cycle in the spurt regime; furthe
more, it also occurs at velocities below that at which the fl
curve for the die appears to be multivalued at all.

To reconcile our model with the experimental observ
tions, it is necessary to include one important feature of
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55 2989THEORY OF MELT FRACTURE INSTABILITIES IN . . .
system which has been neglected until now: the fact that
is not uniform and, in particular, that full solutions of th
fluid flow equations with realistic constitutive laws show th
higher stresses are present near the exit of the die@1,46#. We
expect that the critical stresses at which the polymer con
mation changes will be unaltered but that the flow rate
which such stresses are reached will be lower in the
region of the die. We can implement this most simply
assuming that a portion~‘‘end’’ ! of the die has a smaller slip
length coefficientl , cf. Eq. ~2.14!, and thus the flow curve
for that region is shifted to the left of the primary flow curv
~see Fig. 8!.

For example, we assume that 20% of the die has anl half
that in the remainder of the die~see the dashed curve in Fig
8!. Of course, in the real system,l might be expected to
vary smoothly along the wall. However, the overlappi
flow curves which we choose here should reproduce the m
important aspects of the physics and will allow us to rep
duce all the important features seen in experiments. In
ticular, they allow for the possibility of choosing flow rate
at which the system is in a stable regime with respect to
primary flow curve but an unstable regime of the flow cur

FIG. 9. Observed periodT of the oscillations when the com
pressibility of the polymer in the reservoir is included, as a funct
of the ratio of the reservoir and die volumes,VR /Vd . Parameters
used arev̄x

0 5 0.30 m/s,tm /t510 and three different values o
tm ~top to bottom:tm 5 1022, 1023, and 1025 s!. In the limit
where the reservoir is large, the oscillation period is in good ag
ment with the approximate formula for the period of reservoir co
pressibility oscillations, Eq.~4.9!, shown by the solid line. In the
opposite~less physical! limit, the oscillation period is determined
by the elasticity of the fluid and is given byT'2.37tm ~shown by
dotted lines!. The inset showsv̄x(t) for about one complete oscil
lation for VR /Vd 5 10 andtm 5 1023 s. The flow rate in the die
jumps very rapidly through the unstable regime and the only e
dence of any oscillations at a period on the order oftm is the
‘‘ringing’’ effect following the jump. ~We show here an unusuall
dramatic case; asVR /Vd becomes larger, the time interval ove
which such ringing is observable becomes a much smaller pa
the total cycle.!
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for the end of the die. It also allows for the possibility o
more complicated behavior: at higher flow rates, the sys
is in the unstable regime for the primary flow curve a
should execute reservoir compressibility oscillations whi
during the stuck part of the cycle, will put the flow rate in
the unstable regime of the flow curve for the end of the d
This allows the possibility of elastic oscillations superim
posed on the reservoir compressibility oscillations dur
this part of the cycle.

Figure 10 shows us the expectations discussed above
indeed realized: Forv̄x

0 5 0.15 m/s, shown in 10~a!, we see
that the system does not execute compressibility oscillati
since we are in the stable part of the primary flow curve,
that there are elastic oscillations in the end of the die wh
the system is in the unstable part of the flow curve. This is
agreement with the experimental fact that sharkskin is
served in a regime before spurt flow begins when the fl
curve for the capillary as a whole is not yet multivalue
Furthermore, we find that this is true whether or not t
polymer is pushed into the reservoir at a constant flow rate
a constant pressure~although, of course, which stable branc
of the flow curve the system settles upon at a given pres
depends on the initial conditions!. This is understood as fol
lows: for an incompressible fluid, the average flow rate m
be uniform along the length of the die. Hence, the stable fl
in the majority of the die effectively enforces a constant flo
rate through the end region even when the polymer is pus
into the die at a constant pressure. This behavior is agai
agreement with experiment@2#: sharkskin is insensitive to
whether the experiment is performed at constant pressur
flow rate.

For v̄x
0 5 0.30 m/s, shown in Fig. 10~b!, compressibility

oscillations occur as expected. Furthermore, during the s
part of the cycle, the flow rate spends a large amount of t

e-
-

i-

of

FIG. 10. Grayscale plots showing the magnitude ofc(x,t) at
one of the two capillary walls, as a function of the positionx along
the wall and the timet, for the case wherel 5 0.004 m in 80% of
the capillary andl 5 0.002 m in the last 20%. Here,tm /t510,
tm51025 s, andVR /Vd51. The values ofv̄x

0 are~a! 0.15 m/s and
~b! 0.30 m/s. Note that only the last 40% of the capillary is show
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2990 55SHORE, RONIS, PICHE´ , AND GRANT
in the unstable regime of the flow curve for the end of the
and, as a result, elastic oscillations are set up in the en
the die. Indeed, experimentally, sharkskin is frequently
served on this part of the extrudate in the spurt flow regi
@2#.

In order to gain insight into how robust the behavior d
scribed above is, we have also considered several alter
choices for the variation in the value ofl along the die. For
example, we have considered the case where the final
of the die hasl 5 0.006 m, producing the flow curve show
by the dotted line in Fig. 8. In this case, the behavior
qualitatively the same except that in the spurt regime we
longer see sharkskin superimposed. This is because, du
the spurt oscillations,v̄x never drops low enough to enter th
unstable regime of the flow curve for the end of the die,
can be predicted by referring to Fig. 8.

A more realistic case would havel varying continuously
along the wall near the die exit from its value in the rest
the die to some smaller value; this continuous variation
expected to make the sharkskin behavior more robust s
there will be a continuous distribution of local flow curves
the end region, with some overlapping the flow curve for
main part of the die such that simultaneous spurt and sh
skin are produced. As an example, we have investigate
system in whichl 5 0.04 m in 80% of the die and the
decreases linearly tol 5 0.02 m in 10% before increasin
linearly back tol 5 0.04 m in the final 10%. As we would
expect, forv̄x

0 5 0.30 m/s there are reservoir compressibil
oscillations with viscoelastic oscillations at a given point
the last part of the die occurring when the flow rate is su
that it is in the unstable regime for a flow curve withl at the
given value. Finally, in real systems, we expect that the w
will be quite inhomogeneous. To account for this, we ha
investigated a case wherel is chosen to have a random
value between 0.02 and 0.04 m at each of the discret
points along the wall. For a given flow ratevx

0 there are
viscoelastic oscillations at those points along the die
which this flow rate falls in the unstable region of the loc
flow curve. Our general conclusions from all of these inv
tigations are that the oscillatory behavior is quite robust a
that the behavior at any point along the die can easily
understood in terms of simple arguments based on the na
of the local flow curve.
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V. CONCLUSIONS

In summary, we have presented a model for the melt fr
ture instabilities seen in the extrusion of polymer melts.
includes a first-order transition between stick and slip beh
ior of the polymer at the walls as a function of the she
stress. The incorporation of the viscoelasticity of the flu
leads to oscillations. The system can in fact display v
complicated spatiotemporal behavior which we suggest
explain sharkskin texturing. The additional incorporation
the extrinsic effect of the compressibility of the fluid in th
reservoir allows us to obtain a unified description of both
sharkskin and spurt flow regimes seen in experiments.

The mechanism for the oscillations in our model is ve
simple—when the stress at the walls becomes too large,
polymers at the walls orient themselves so that slip occ
This, in turn, results in a decrease in the stress at the w
which eventually causes the polymers to reorient themse
back to the stick condition. Provided that the fluid in the bu
responds to the change in boundary conditions in a su
ciently elastic manner, this scenario leads to oscillations
the fluid.

Finally, we should point out that we have not attempt
here to model how the oscillations in the flow in the d
translate into texturing on the surface of the extrudate. Ho
ever, it seems clear that such oscillations should in gen
lead to features on the extrudate, particularly once the eff
of variations in the normal stress@9# are considered. In future
work, we hope to explicitly consider the behavior of the flu
once it exits the die. Such a study might be particularly u
ful in order to understand the gross melt fracture regi
where the extrudate becomes most severely distorted.
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