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Density-functional theory of surfacelike elasticity of nematic liquid crystals

Hiroshi Yokoyama
Molecular Physics Section, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

~Received 30 September 1996!

Based on the density-functional theory, we show that the splay-bend surfacelike bulk elastic constantK13 is
an artifact of the phenomenological as well as the gradient expansion construction of the curvature elastic free
energy of nematic liquid crystals, while the saddle-splay constantK24 is real and approximately obeys an
extended Nehring-Saupe relationK24>(K112K22)/2, with K11 and K22 being the splay and twist Frank
constants, respectively. The resultK1350 automatically resolves the Oldano-Barbero pathology, which inevi-
tably accompanies a nonzeroK13, and gives a concrete rationale for the conventional approaches in the
continuum theory disregarding the surfacelike elasticity. The source of an apparently nonzeroK13 in previous
microscopic theories is discussed in detail and is demonstrated to be a result of an inconsistent use of a
nonlocal-to-local mapping of the elastic free-energy functional at the boundary. The absence ofK13 can be
regarded as a type of Cauchy relation in the nematic continuum theory in the sense that it is not directly rooted
in any of the macroscopic symmetries existing in the nematic phase, but is a general consequence of the
particular algebraic form of the nonlocal free-energy term from whichK13 derives; its linearity in the distortion
amplitude and the symmetry of the relevant direct correlation function with respect to the permutation of a
molecular pair leads always to the vanishingK13. In this respect,K1350 applies not only to nematic liquid
crystals but also to a more general class of phases such as cholesteric liquid crystals, whose structure can be
viewed as a weak modulation of a translationally invariant phase. We finally consider the elastic description of
nematic liquid crystals in the presence of real interfaces. The present formulation allows a straightforward
decomposition of the elastic excess free energy into the bulk contribution and the interfacial excess in the
Gibbs sense. The bulk part yields the bulk Oseen-Frank elastic free-energy density along with theK24 term
evaluated at the Gibbs dividing surface as an unambiguous local quantity. The interfacial excess, when gradient
expanded, reduces to the surface free-energy density comprised of the anchoring energy, surface-excess Oseen-
Frank elastic energy,K24-like term, and elastic free-energy contributions reflecting the broken symmetry at the
interface. TheK24-like term is formally similar to the bulkK24 term, but is no longer an intrinsic property of
bulk nematic liquid crystal, as it depends also on the nature of the medium with which the nematic liquid
crystal is in contact.@S1063-651X~97!02103-X#

PACS number~s!: 61.30.Cz, 62.20.Dc, 68.10.Et
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I. INTRODUCTION

Nematic liquid crystals are an anisotropic fluid in whic
the molecular positions are randomly distributed, while th
orientations are ordered along a certain direction specified
a unit vectorn, the director, taken along the symmetry ax
@1#. In nematic liquid crystals, the uniform orientation of th
director corresponds to the state of lowest free energy in
absence of orientational external fields and boundary c
straints. Spatial variations inn result in an increase in fre
energy, which is known to be well described by the pheno
enological Oseen-Frank elastic free energy@2,3#

dF5E dR f elastic~R!

5E dR@ f b~n,]n!1 f 24~n,]n!1 f 13~n,]n,]
2n!#, ~1!

where

f b5
1
2K11~“•n!21 1

2K22~n•“3n!21 1
2K33~n3“3n!2,

~2!

f 2452 1
2 ~K221K24!“•~n“•n1n3“3n!, ~3!
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f 135K13“•~n“•n!. ~4!

Ordinarily, f 24 and f 13 in Eq. ~1! are neglected since they ar
convertible by Gauss’s theorem to a surface integral over
boundary and thus do not affect the bulk equilibrium con
tion @1#. These terms were first introduced by Oseen@2# in
his phenomenological theory of curvature elasticity, yet la
f 13 was omitted by Frank@3# from his expression for its
second-order nature. This term was, however, reintrodu
by Nehring and Saupe@4#, who further gave a microscopi
relation among the elastic constants,

K245~K112K22!/2. ~5!

The presence of these surfacelike bulk elastic terms
remained a matter of continued debate on their physical
gins and mathematical consequences@5–43#. For example, it
was Oldano and Barbero who pointed out that a naive inc
sion of theK13 term in the minimization of the elastic fre
energy leads to a pathological result for equilibrium direc
distributions that involve a divergence of“•n at the bound-
ary @10–12#. This happens simply because the variation
problem is made overly specified by theK13 term having the
normal derivative of the director as an independent bound
variable along with the boundary director itself@16,40,44#.
2938 © 1997 The American Physical Society



le

da
o

ap
y
er
a
ia
a
th

ca
n-

li
ua
su

d
tic
r
uc

se

tin
re
co
ue
-
th

or
la

ld
n

n
al

to
e

s
ng

ity
sti

ta
o

f

on

ith
p-
well

ty
y
nd

the
a-
a-

ree-
ved

f
ical

no-
he
ese
lu-
e of
r-
n-
ace-
a
ext

ion
by

tu-
he
we
tate

of-
tor

liar
h
e
stic
.

er

ts

lo-

55 2939DENSITY-FUNCTIONAL THEORY OF SURFACELIKE . . .
As a consequence, in order to make the variational prob
well posed even in the presence of nonzeroK13, one has
either to introduce an auxiliary boundary condition on“•n
to reduce the number of degrees of freedom at the boun
or to allow a higher-order bulk elastic energy to accomm
date the increased number of boundary conditions by theK13
term. Despite several attempts following these two
proaches of resolution, there is as yet no established wa
handling this difficulty in a physically reasonable mann
TheK24 term, in contrast, does not cause such a mathem
cally delicate problem since it involves only the tangent
derivatives of director at the boundary so that the bound
director serves as the complete boundary condition for
surface term as well. TheK24 term, however, automatically
vanishes for one-dimensional deformations that are the
in most, if not all, practically important experimental co
figurations.

Under these circumstances, the nature of the surface
bulk elasticity had remained solely a matter of concept
interest, until several recent attempts were made to mea
K24 and/orK13 by direct experiments@22,34#. In particular,
the observations of surface-induced three-dimensional mo
lations in an initially one-dimensionally deformed nema
layer offered dramatic evidence that the surface free ene
depending on the tangential derivatives of the director s
as theK24 term could play a physically perceivable role@23–
25,27–29,33,35,36#. We should note, however, that all the
experiments aimed at measuringK24 and/orK13 involve real
interfaces where the nematic phase is interrupted by dis
solid or fluid media. Hence, even if these experimental
sults require the presence of surfacelike elastic terms for
rect explanations, it is by no means a proof that the val
assigned there toK24 and/orK13 should be unique, indepen
dent of the nature of the interface, as tacitly assumed in
literature.

The density-functional theory offers a general and rig
ous basis for analyzing nonuniform systems, especially e
tic properties of condensed media@45#. Poniewierski and
Stecki @9# pioneered this approach in the liquid-crystal fie
by formulating rigorous statistical-mechanical expressio
for the Oseen-Frank elastic constants of nematic liquids
terms of the Ornstein-Zernike direct correlation functio
Though not emphasized in their paper, their analyses
addressed the surfacelike elasticity, givingK13 andK24 an
explicit microscopic formula. The density-functional route
the liquid-crystal curvature elasticity has since then been
ploited by a number of authors@14,21,26,46–49#, who culti-
vated a simpler way to reach essentially the same formula
those originally derived by Poniewierski and Stecki alo
the cluster expansion approach@9#.

As postulated by Nehring and Saupe, the dens
functional theory yields a nonlocal expression for the ela
free energydF in the generic form

dF5E dr dr 8G~r ,r 8!, ~6!

with r and r 8 being the molecular positions, as a manifes
tion of the finite range of the intermolecular interaction p
tential. The elastic free-energy densityf elastic~R! must be a
local function defined at a single pointR in such a way as to
satisfy
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E dr dr 8G~r ,r 8!5E dR f elastic~R!. ~7!

Since there is noa priori reason to select a particular way o
irreversible mapping~r ,r 8!→R out of infinitely many differ-
ent possible choices~detailed the discussion in Sec. IV!, the
resultantf elastic~R! cannot necessarily be unique as a functi
of the director and its gradients evaluated atR even in the
weak deformation limit.

This is in fact a subtle problem always associated w
defining a local quantity from an essentially nonlocal pro
erty such as energy, entropy, and free energy and is
known in statistical mechanics of ordinary liquids@50#. The
relevance of this difficulty to the surfacelike bulk elastici
of nematic liquid crystals was initially commented on b
Yokoyama@16# and later more specifically led Somoza a
Tarazona@21# to argue thatK13 cannot be a well-defined
physical parameter, given its apparent dependence on
choice of the nonlocal-to-local mapping. Teixeira, Perg
menshchik, and Sluckin@26#, nevertheless, rejected their re
soning for the physical ambiguity ofK13, by pointing out the
inconsistency of Somoza and Tarazona’s choice of the f
energy density for undeformed states. Then, they deri
microscopic formulas forK13 andK24 in line with those by
Poniewierski and Stecki@9#. Drawing on the existence o
such a microscopic formula as a rationale for the phys
reality of K13, Pergamenshchik@27# and Faetti@31# consid-
ered, in a rather qualitative manner, the origin of the Olda
Barbero pathology as resulting from the termination of t
free-energy expansion at a finite order of gradients. Th
two authors, however, reach mutually contradicting conc
sions about the microscopic structures that the presenc
K13 would bring about in the immediate vicinity of an inte
face. With this as yet volatile status in mind, we may co
clude that even after over 60 years in existence, the surf
like bulk elasticity is still far from being mature, making
sharp contrast with the otherwise firmly established cont
of continuum theory of nematic liquid crystals.

The purpose of this paper is to sort out the confus
about the current status of the surfacelike bulk elasticity
analyzing in detail the physical origin ofK13 andK24 on a
general basis of the density-functional formalism. On a na
ral assumption that the director is uniformly oriented in t
undistorted ground state of a bulk nematic liquid crystal,
show by expanding the free energy about the ground s
that the splay-bend constant satisfiesK1350. This result au-
tomatically resolves the Oldano-Barbero pathology and
fers a rationale for conventional treatments of the direc
configuration problems with the negligence ofK13. Our ar-
gument rests on the following observation about the pecu
asymptotic behavior off 13 in the small and long-wavelengt
limit of director distortion, compared with the rest of th
elastic contributions. Indeed, in terms of the characteri
amplitudee and wavelengthj of distortion, as shown in Fig
1, it follows from Eqs.~2!–~4! that the leading term inf 13 is
of orderej22 because of its involvement of the second-ord
derivatives of the director, whereasf b and f 24 are of order
e2j22. Hence, unlessK1350, in the weak distortion limit
~e→0!, the f 13 contribution tends to dominate. Due to i
linear dependence one, the dominance off 13 inevitably de-
stabilizes the uniform ground state, though this effect is
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2940 55HIROSHI YOKOYAMA
calized to a boundary. This is actually an alternative way
pointing out the origin of the Oldano-Barbero pathology a
presents a contradiction to our ansatz of the uniform gro
state. Conversely, therefore, the presumption of the uni
mity of the ground state results in the absence ofK13 as an
elastic constant of the bulk origin. On the other hand,
other surfacelike elastic constantK24, making a contribution
of order e2j22, is shown to be real and to approximate
satisfy an extended Nehring-Saupe relationK24>(K11
2K22)/2 after incorporation of the density corrections in o
entationally distorted states@21#.

The seeming discrepancy of the present resultK1350 with
the previous microscopic theories giving an apparently n
zeroK13 @9,14,26# is then analyzed by making a more ge
eral gradient expansion of the intrinsic free energy in suc
way as to potentially allow an appearance of a term linea
e. TheK13 term comes formally from the ground-state part
the free-energy functional rather than from the elastic exc
free energy. We show that the aforementioned freedom
choosing the integration variable makes it impossible
uniquely defineK13, even as a coefficient of the gradie
expansion of the intrinsic free energy. This is in fact a ma
festation of the physical irrelevance ofK13. We show here
that K1350 should result even in the gradient expansion
the ground-state free energy. Our argument rests on the
eral algebraic property of the part of the nonlocal free-ene
functionalG13~r ,r 8! responsible for theK13 term,

G13~r ,r 8!52G13~r 8,r !1O~e2j22!. ~8!

So the double integral onG13~r ,r 8! is internally canceled to
vanish to the order ofO(ej22) within the range of intermo-
lecular interaction, thereby leavingK1350. It is further
shown that the emergence of an apparently nonzero yet
biguousK13 in previous theories is an artifact of the gradie
expansion resulting from the inconsistent treatment of
nonlocal-to-local mapping at a boundary.

On the basis of the present formalism, we shall fina
derive a microscopic expression for the interfacial elas
free energy for an obliquely aligning interface. Including t

FIG. 1. Schematic illustration of an orientational deformation
nematic liquid crystals. The director is initially uniformly aligned
a homogeneous magnetic fieldH0 along thez axis. By applying an
orthogonal fieldH' , a weak director distortion with the characte
istic amplitudee and wavelengthj is induced. The long-wavelengt
limit is understood to be taken with the magnetic fields becom
infinitely small, i.e.,H';H0;O~j22!.
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tangential as well as the normal gradients of the director,
interfacial elastic free-energy density is shown to consist
the anchoring energy and a contribution formally identical
f 24 together with other terms connected with the surfa
specific symmetry at the interface having no counterpart
the bulk phase.

II. FUNDAMENTALS OF DENSITY-FUNCTIONAL
THEORY

According to the density-functional theory@45#, the equi-
librium density profile of a nonuniform anisotropic liqui
can be determined as the one that minimizes the grand t
modynamic potentialV regarded as a functional of th
single-particle density functionr~r ,v! at the pointr and the
orientationv. For the sake of brevity of presentation, w
restrict our attention here to an axially symmetrical rig
molecule whose orientation can be specified by a single
vectorv.

The grand thermodynamic potential functional has
general form

V@r#5F id@r#2F@r#2mE dr dv r~r ,v!

1E dr dv r~r ,v!Vext~r ,v!, ~9!

whereVext~r ,v! is the single-particle external potential lik
the one that acts on a liquid-crystal molecule from a so
substrate andF id@r# is the Helmholtz free energy of an idea
~noninteracting! gas given by

F id@r#5kBTE dr dv r~r ,v!$ ln@l3r~r ,v!#21%, ~10!

with l being the thermal wavelength. Finally,F@r# is the
excess part of the free-energy functional arising from
interparticle interactions. The aforementioned minimu
property of the grand thermodynamic potential follows fro
the variational inequality

V@req#<V@r#, ~11!

which is valid under a fixed temperature and chemical
tential, with req being the equilibrium density function. Th
equality holds if and only ifr~r ,v!5req~r ,v!.

OnceF@r# is given, the equilibrium density is found from
the variational equation

dV

dr
50, ~12!

which, on account of Eqs.~9! and ~10!, specifically leads to

ln@l3r~r ,v!#5
1

kBT
@m2Vext~r ,v!#1c~r;r ,v!, ~13!

where

c~r;r ,v!5
1

kBT

dF@r#

dr~r ,v!
~14!

g
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55 2941DENSITY-FUNCTIONAL THEORY OF SURFACELIKE . . .
denotes the first member of the hierarchy of direct corre
tion functions. We introduce here a parametrized den
function, depending on a single parametera via

ra~r ,v!5r ref~r ,v!1a@r~r ,v!2r ref~r ,v!#, ~15!

where rref~r ,v! stands for the density function in an arb
trarily chosen reference fluid. By definition
r0~r ,v!5rref~r ,v! andr1~r ,v!5r~r ,v!. Then, by integrating
Eq. ~14! from a50 to 1, we readily obtain

F@r#2F@r ref#

5E
0

1 ]F@ra#

]a
da

5kBTE
0

1

daE dr dv@r~r ,v!2r ref~r ,v!#

3c~ra ;r ,v! ~16!

5kBTE dr dv@r~r ,v!2r ref~r ,v!#

3c~r ref ;r ,v!2kBTE
0

1

~a21!da

3E dr dv dr 8dv8@r~r ,v!2r ref~r ,v!#

3@r~r 8,v8!2r ref~r 8,v8!#

3c~ra ;r ,v,r 8,v8!. ~17!

The third line follows by integrating the second by parts w
respect toa with the use of the definition of the Ornstein
Zernike direct correlation function

c~r;r ,v,r 8,v8!5
1

kBT

d2F@r#

dr~r ,v!dr~r 8,v8!
~18!

5c~r;r 8,v8,r ,v!. ~19!

Successive application of integration by parts yields a form
series expansion of the free-energy functional in powers
dr[r~r ,v!2rref~r ,v!.

Rearranging Eq.~16!, we get

F@r#5kBTE
0

1

daE dr dv$@r~r ,v!2r ref~r ,v!#

3c~ra ;r ,v!1r ref~r ,v!c~ar ref ;r ,v!%. ~20!

This formula, in combination with Eqs.~9! and ~10!, shows
that, for a uniform fluid with the densityr~v!, the free-
energy density can be unambiguously defined by

f u@r#5kBTE
0

1

daE dv r~v!$ ln@l3r~v!#212m/kBT%

2kBTE
0

1

daE dv$@r~v!2r ref~v!#c~ra ;r ,v!

1r ref~v!c~ar ref ;r ,v!%, ~21!
-
ty

l
of

where the reference fluid has also been regarded as b
uniform.

III. ABSENCE OF K13 IN THE CURVATURE ELASTICITY
OF NEMATIC LIQUID CRYSTALS

A. Symmetry in undistorted nematic liquid crystals

The point group of an undistorted nematic phase isD`h ,
characterized by the presence of an axis of indefinite rota
about the directorn and a twofold axis and a mirror plan
perpendicular ton. This is an expression of the uniaxial an
nonpolar nature of the nematic phase. Hence any ensem
averaged functions of the molecular positionr and orienta-
tion v pertaining to the undistorted nematic phase sho
remain invariant under the following transformation
~r ,v!→~T@r #,T@v#!, whereT@ # denotes the rotation operato
about the director~taken along thez direction! by an arbi-
trary angle; (r x ,r y ,r z)→(r x ,2r y ,2r z); (vx ,vy ,vz)
→(vx ,2vy ,2vz); and ~r ,v!→~2r ,2v!. Being liquidlike
in the molecular positions, furthermore, the undistorted ne
atic liquid crystal must also be invariant under arbitra
translations.

Any single-point function that is compatible with thes
symmetry transformations must be a function of~n•v!2

alone. In particular, therefore, the equilibrium density fun
tion must be of the form

r̄~r ,v!5r0~n•v!, ~22!

with r0(q)5r0(2q), which should also satisfy the equilib
rium condition Eq.~13!,

ln@l3r0~n•v!#5m/kBT1c~ r̄;r ,v!. ~23!

Similarly, the Ornstein-Zernike direct correlation functio
should depend only on the relative separation vec
u5r 82r due to the translational symmetry and satisfy t
inversion relations

c~ r̄;r ,v,r 8,v8!5c~ r̄;r 8,2v,r ,2v8!

5c~ r̄;r ,2v8,r 8,2v!. ~24!

In addition to the real-space symmetries as above,
nematic phase has also a rotational symmetry in the isot
space spanned by the director@51#. This symmetry is known
as the Nambu-Glodstone degeneracy, which states tha
free energy of a uniform nematic liquid crystal is invaria
under any degree of homogeneous rotation of the direc
By differentiating Eq.~23! by n, we obtain an expression o
the rotational degeneracy as

F E dr dv C2~ r̄;r ,v,r 8,v8!r08~n•v!vG•dn5O~ udnu2!,

~25!

which is valid for arbitraryn. Herer08(t)5dr0(t)/dt and

C2~ r̄;r ,v,r 8,v8![
d~r2r 8!d~v2v8!

r0~n•v!
2c~ r̄;r ,v,r 8,v8!.

~26!

We arrive at an alternative expression of the degeneracy
differentiating Eq.~21! after substitutingr~v!5r0~n•v!:
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E
0

1

a daE dr 8dv dv8@c~ r̄a ;r ,v,r 8,v8!

2c~ r̄a ;r ,v8,r 8,v!#@r0~n•v8!2r ref~v8!#r08

3~n•v!v•dn5O~ udnu2!. ~27!

This becomes a trivial identity ifc~r̄a ;r ,v,r 8,v8! satisfies
the inversion relation Eq.~24! all along the path of the inte
gral with respect toa.

B. Density-functional expression
of the elastic excess free energy

When the uniform nematic liquid crystal is subjected
an inhomogeneous external potentialVd~r ,v!, the nematic
liquid crystal undergoes an orientational deformation fromn0
to n~r !5n01dn~r !. The elastic excess free energydF@n# is
then stored in the medium as an equivalent of the revers
work done by the external potential, as it has been turned
from Vext~r ,v!50 to Vext~r ,v!5Vd~r ,v!. In terms of the
density functionrd~r ,v! that is in equilibrium under the ac
tion of Vd~r ,v!, the elastic excess free energy is thus giv
by

dF@n#5V@rd#2V@r̄#2E dr dv rd~r ,v!Vd~r ,v!

5F id@rd#2F id@ r̄#2F@rd#1F@r̄#

2mE dr dv@rd~r ,v!2 r̄~v!#, ~28!

wherer̄~v! denotes the density function in the uniform nem
atic liquid crystal.

Here, however, it must be noted that since the direc
embodies only contracted information of the full dens
function, the correspondence from a givenn~r ! to the equi-
librium density functionrd~r ,v!, or equivalently toVd~r ,v!,
is not unique. As a result, the elastic excess free energ
given above cannot be regarded in general as a unique f
tional of the director field, but must be understood to depe
on the choice of the external potential as well. It is only if w
restrict our attention to the asymptotic behavior of the ne
atic liquid crystal in the limit of small and long-waveleng
deformations that a unique definition of the functionaldF@n#
follows generally from the Nambu-Goldstone degenera
To be specific, let us imagine that the nematic director is
first uniformly aligned in a homogeneous magnetic fieldH0
applied along thez axis ~see Fig. 1! and then a small per
turbing magnetic fieldH'~r ! is turned on perpendicular toH0
so as to induce a weak distortion in the director field. If w
denote as shown in Fig. 1, the characteristic amplitude
wavelength of the distortion bye!1 andj, respectively, we
have for sufficiently largej

H' /H0;O~e! and hence“H' /H0;O~ej21!. ~29!

An immediate consequence of the Nambu-Goldstone
generacy is that in a uniform system~j→`!, the transverse
susceptibility of the director, defined by (]n/]H')H'50, di-
verges to infinity like 1/H0 asH0→0 @51#. This means that as
j→`, the nematic liquid crystal becomes indefinitely so
le
n

n

r

as
c-
d

-

.
t

d

e-

t

with respect to director rotation. According to the Osee
Frank free energy, indeed, the curvature elastic stiffness f
distortion mode of wavelengthj scales asj22, so that for a
givene, we can assume, by virtue of the asymptotic softne
that the external field also vanishes asH0;H';O(j21)
while satisfying Eq.~29!. Consequently, the correspondin
external potential proportional toH2 behaves asymptotically
as

Vd~r ,v!;O~j22!. ~30!

With this condition imposed on the external potential, on
the distortion mode associated with the director that beco
infinitely susceptible asj→` can contribute a free-energ
density of the correct order ofj22. The rest of the modes o
density deviations, having a finite susceptibility even in t
uniform state, can only yield a free-energy contribution
the order ofj24, which indicates that the role of these mod
is negligible in the long-wavelength limit. In this asymptot
sense,dF@n# becomes a unique functional of the direct
field.

Under the assumption of small and long-wavelength
formations, we expand Eq.~28! in powers of

dr~r ,v!5rd~r ,v!2 r̄~v! ~31!

by substitutingrref~r ,v!5r̄~v! in Eq. ~17!. After truncating
the expansion at the order ofe2 with the assumption of
dr~r ,v!5O~e!, we obtain

dF@n#5 1
2kBTE dr dv dr 8dv8C2~ r̄;r ,v,r 8,v8!

3dr~r ,v!dr~r 8,v8!. ~32!

The term linear indr automatically cancels out because
the equilibrium condition forr̄~r ,v!, Eq. ~13!.

C. Density function in a deformed nematic liquid crystal

For evaluation of the elastic excess free energy for a gi
director field, we need to know the equilibrium density fun
tion for the distorted nematic liquid crystal under the infl
ence of the asymptotically weakening external potential
conventional approach is to extend the density function
the undistorted nematic Eq.~22! into a weakly deformed
state via

rd~r ,v!5r0„n~r !•v… ~33!

by postulating that the local structure of a distorted nema
liquid crystal is indistinguishable from that of the undistort
state with the same director, as long as the deformation i
a sufficiently long wavelength. This quasihomogeneous
proximation has indeed been employed by all the previ
authors except Somoza and Tarazona@21# to work out the
microscopic expressions of curvature elastic constants.

One should note, however, that the above approxim
form automatically inherits the symmetry property of th
uniform nematic liquid crystal for inversion of molecula
orientation, i.e.,v→2v, though it is no longer a genera
requisite in deformed states. In reality, Eq.~33! must be re-
garded as the leading term in the expansion of the true d
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55 2943DENSITY-FUNCTIONAL THEORY OF SURFACELIKE . . .
sity function in terms of the spatial gradient of director. T
the required order ofj21, therefore, we must in general reta
the contribution that is first order in the gradient of the
rector. This correction in density function beyond the qua
homogeneous approximation must be determined by the
quirement that the external potential conjugate tord~r ,v!
should behave asj22 in the long-wavelength limit for the
given director fieldn~r !. As shown in Appendix A, in terms
of the density-density correlation functionC2

21~r̄;u,v,v8!
for the uniform nematic liquid crystal, the density correcti
can be rigorously written as

Dr~r ,v!52E du du8dv8dv9C2
21~ r̄;u8,v,v9!

3C2~ r̄;u,v9,v8!r08~n0•v8!v8•@u•“n~r !#,

~34!

which is antisymmetrical forv→2v. This formula clearly
indicates the importance of short-range orientational corr
tions for the emergence of density correction. Moreover,
antisymmetry demands that, in order forDr~r ,v! to survive,
the molecule must be asymmetrical along at least one o
principal axes. This is the case for most real molecules, bu
not so in most of the model molecules such as simple r
and disks.

D. Microscopic expressions for Oseen-Frank elastic constants

We shall first ignore the density correction and prove
absence ofK13. This result remains valid even after the i
clusion of the density correction since its effect is solely
negatively renormalize the bulk elastic constantsK11, K22,
K33, and K24 as shown in Appendix A. For a systemat
evaluation of the elastic excess free energy, we make
extensive use of the identity

dr~r ,v!dr~r 8,v8!

5 1
2 @dr~r ,v!dr~r ,v8!1dr~r 8,v!dr~r 8,v8!#

1 1
2 @dr~r ,v!dr~r 8,v8!2dr~r ,v8!dr~r 8,v!#

1 1
2 @dr~r ,v!2dr~r 8,v!#@dr~r 8,v8!2dr~r ,v8!#.

~35!

Each of the three terms on the right-hand side has a un
physical significance associated with the symmetry of
system and hence this formula allows a clear identification
bulk and interfacial contributions, as will be exploited in
later section. In fact, we show here that the first two ter
vanish for symmetry reasons in the quasihomogeneous
proximation, so they could make contributions only at a r
physical boundary where the bulk symmetry may be brok
The last term is a volume contribution from which th
Oseen-Frank elastic free energy comes.

Substitution of the above identity into Eq.~32! together
with

dr~r ,v!5dr0~r ,v!5r0~n•v!2r0~n0•v!

5r08~n0•v!v•dn1O~e2! ~36!
i-
e-
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yields three independent contributions coming from ea
term of the identity. The first two contributions reflect pr
marily the breakdown of the Nambu-Goldstone degener
and of the inversion symmetry, respectively. Hence, on
count of Eqs.~24! and ~25!, these two contributions are
shown to vanish in the bulk nematic liquid crystal. For e
ample, the second contributiondF2@n# can be transformed to

dF2@n#52 1
4kBTE dr dv dr 8dv8dr0~r ,v!dr0~r 8,v8!

3@c~ r̄;r ,v,r 8,v8!2c~ r̄;r ,2v8,r 8,2v!# ~37!

with the use ofdr0~r ,v!5dr0~r ,2v!. Using the inversion
relation Eq.~24!, we obtaindF2@n#50.

Consequently, we are finally left with only the third con
tribution, apparently related to the density gradients. Th
substituting Eq.~36!, we obtain

dF@n#5 1
4kBTE dr dv dr 8 dv8c~ r̄;r ,v,r 8,v8!

3v•@dn~r 8!2dn~r !#v8•@dn~r 8!2dn~r !#.

~38!

Using dn~r 8!2dn~r !5u•“n1O~ej22!, we can derive the
elastic free-energy density, due originally to Poniewier
and Stecki@9#, as

dF@n#5E dR f elastic~R!, ~39!

with

f elastic~R!5
1

2
Mi jkl S ]nk

]Ri
D S ]nl

]Rj
D , ~40!

where the elastic constant tensorM is specifically given by

Mi jkl5
1
2kBTE du dv dv8c~ r̄;u,v,v8!r08~n0•v!

3r08~n0•v8!uiujvkv l8 . ~41!

Here c~r̄;u,v,v8![c~r̄;0,v,r 82r ,v8! and the summation
convention over repeated indices has been employed. N
that f elastic~R! is positive and is also robust to changes in t
nonlocal-to-local mapping in the sense that

f elastic~R!5 f elastic~R8!1O~e2j23!, ~42!

which validates the meaning off elastic~R! as the elastic free-
energy density.

It is evident from Eq.~40! that the tensorM has a trivial
symmetry for permutation of its indices asMi jkl5M jilk ;
moreover, the specific form ofM given in Eq.~41! yields a
more stringent Cauchy relation@52#, which reads

Mi jkl5M jikl5Mi jlk5M jilk . ~43!

This relation originates from the particular microscop
structure we have adopted here for the nematic liquid cry
and goes beyond the requirements on tensor component
by the macroscopic symmetry of the nematic phase. Inde
it is readily shown that the uniaxial symmetry aboutn0 alone
leaves us four independent tensor componentsMxxxx,
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2944 55HIROSHI YOKOYAMA
Mxxyy, Mzzxx, andMxyxy ~with the z axis taken alongn0!,
which could make nonzero contributions to the curvat
elastic free energy and satisfy

Mxxxx5Myyyy, ~44a!

Mxxyy5Myyxx, ~44b!

Mzzxx5Mzzyy, ~44c!

Mxyxy1Mxyyx5Mxxxx2Mxxyy. ~44d!

With the use of these relations in Eq.~40!, the free-energy
density is rewritten into the Oseen-Frank form as

f elastic~R!5 1
2Mxxxx~“•n!21 1

2Mxxyy~n•“3n!2

1 1
2Mzzxx~n3“3n!2

2 1
2 ~Mxxyy1Mxyyx!“•~n“•n1n3“3n!.

~45!

No K13 term appears here as a direct consequence of the
that second-order derivatives of the director are unable
make a contribution of the order ofj22 in Eq. ~38!. Compar-
ing the above expression with the original Oseen-Frank fr
energy density, we can make a tentative identification of
elastic constants as

K115Mxxxx, ~46a!

K225Mxxyy, ~46b!

K335Mzzxx, ~46c!

K245Mxyyx, ~46d!

K1350. ~46e!

By applying the Cauchy relation to Eq.~44d!, we get an
additional relation

2Mxyyx5Mxxxx2Mxxyy, ~47!

which further reduces the number of independent com
nents to 3. Furthermore, according to Eqs.~46a!–~46d!, this
equation is translated to

K245~K112K22!/2, ~48!

which may be most appropriately referred to as the Nehri
Saupe-Cauchy relation for its microscopic origin.

As mentioned at the beginning of this section, the res
K1350 is not affected even if the density correction is tak
into account. According to Eq.~A13! in Appendix A, the
decreasein the elastic free energy brought about by the d
sity correction can be written in the local-density form

DFc@n#5E dR f c~R!, ~49!

with
e

ct
to

e-
e

o-

-

lt

-

f c~R!52 1
2kBTE du dv dv8C2~ r̄;u,v,v8!

3Dr~R,v!Dr~R,v8!, ~50!

where use has been made of the relat
Dr~R,v!5Dr~R8,v!1O~ej22!, which implies the robustnes
of f c~R! to changes in the nonlocal-to-local mapping. Sin
the density correction is linear to the first derivative of t
director, it may be evident that no contribution of the type
K13 term is generated in the above equation. It is also nota
that the correction in the elastic free energy is always ne
tive, reflecting the favorable structural relaxations broug
about by the density correction.

Substitution of the specific expression of the density c
rection Eq.~34! into Eq. ~50! yields

f c~R!52
1

2
DMi jkl S ]nk

]Ri
D S ]nl

]Rj
D , ~51!

where

DMi jkl5kBTE du du8du9dv dv8dv9dv-

3C2
21~ r̄;u9,v9,v-!c~ r̄;u,v9,v!

3c~ r̄;u8,v-,v8!r08~n0•v!r08~n0•v8!uiuj8vkv l8 .

~52!

The indices in the above definition exactly correspond
those of the elastic constant tensor. With the addition
these corrections, the previous results are modified to

K115Mxxxx2DMxxxx, ~46a8!

K225Mxxyy2DMxxyy, ~46b8!

K335Mzzxx2DMzzxx, ~46c8!

K245Mxyyx2DMxyyx, ~46d8!

K1350. ~46e8!

As already mentioned, we still haveK1350. This result
automatically resolves the Oldano-Barbero pathology and
fers a rationale for the tacit assumption made in almost
continuum theoretic treatments of director configurations@1#.
This is also consistent with recent experimental estimate
K13 @41#.

As shown in detail in Appendix A, there appears anoth
Cauchy’s relation connecting between the correction ten
components as

DMxxyy5DMxyyx, ~53!

which indicates that the corrections toK22 andK24 are iden-
tical. Due to the distinctness of this relation with the previo
one in Eq. ~43!, the Nehring-Saupe-Cauchy relation mu
give up its general validity in the presence of density corr
tions. Under a plausible approximation ignoring the sho
range intermolecular orientational correlation within a pla
normal to the director, we can show that
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DMxxyy5DMxyyx50. ~54!

Hence, in this situation, the correction applies only toK11
andK33 @21#. In view of the negative sign of the correction
this result leads to the extended Nehring-Saupe relation

K24>~K112K22!/2. ~55!

The absence ofK13 is formally an immediate consequenc
of the uniformity of the nematic ground state. This conditi
demands that the excess free energy associated with a d
tor distortion should always be quadratic in the distorti
amplitude for stability reasons. However, since theK13 term
is linear in the amplitude as already emphasized, there is
way for theK13 term to appear from such a quadratic fre
energy expression. In this sense, the uniformity of the ne
atic ground state is a sufficient condition for the absence
K13, but it may not be a necessary condition for it since
uniformity rules out not onlyK13, but also any other spon
taneously modulated structures such as the cholesteric t
We shall look into this point in more detail in the next se
tion.

IV. ORIGIN OF K13 IN PREVIOUS THEORIES

The present result indicatingK1350 is apparently in sharp
contradiction with the previous density-functional theor
due to Poniewierski and Stecki@9#, Lipkin, Rice, and Mo-
hanty@14#, and Teixeira, Pergamenshchik, and Sluckin@26#,
all of which predict an apparently nonzeroK13. It should,
therefore, be in order here to expound in detail the origin
this discrepancy and how it can be resolved.

Their common approach is to perform the functional Ta
lor expansion of the intrinsic free energy about some re
ence density function, which is assumed homogeneous y
not the equilibrium density function in the undistorte
ground state as we adopted in the preceding section.
niewierski and Stecki took the vacuum as the reference,
Lipkin, Rice, and Mohanty and Teixeira, Pergamenshch
and Sluckin employed the isotropic liquid phase. A unifi
treatment of these two approaches is possible by star
with Eq. ~20!,

F@r#5kBTE
0

1

daE dr dv$@r~r ,v!2r ref~v!#c~ra ;r ,v!

1r ref~v!c~ar ref ;r ,v!%, ~56!

in which the position dependence of the reference den
function has been dropped for the assumption of its hom
geneity.

Our goal is to expand the intrinsic free-energy function
in powers of the density gradients in the Poniewierski-Ste
form

F@r#5E dRF E dv f̄„r~R,v!…

1E dv ai~R,v!] ir~R,v!

1E dv ] i@bi j ~R,v!] jr~R,v!#
ec-

no
-
-
f
e

ist.

f

-
r-
is
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,

g
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1 1
2 E dv dv8mi j ~R,v,v8!

3] ir~R,v!] jr~R,v8!1••• G , ~57!

where the coefficients of expansionai , bi j , andmi j are func-
tions of the local density. The first term in the large squa
brackets*dv f̄„r~R,v!… has the meaning of the intrinsi
free-energy density in a hypothetical homogeneous fluid w
its density everywhere equal tor~R,v! for a fixedR.

In order to systematically carry out the expansion ab
the local density, we introduce a new parametric dens
function defined by

ra;r ;a8~r 8,v8![ra~r ,v8!1a8@ra~r 8,v8!2ra~r ,v8!#

5ra~r ,v8!1a8a@r~r 8,v8!2r~r ,v8!#.

~58!

Taking similar steps as from Eqs.~16! and~17! with respect
to a8, we obtain

c~ra ;r ,v!2c~ra;r ;r ,v!

5aE
0

1

da8E dr 8dv8

3@r~r 8,v8!2r~r ,v8!#c~ra;r ;a8 ;r ,v,r 8,v8! ~59!

5aE dr 8dv8@r~r 8,v8!2r~r ,v8!#c~ra;r ;r ,v,r 8,v8!

1 1
2a2E dr 8dv8dr 9dv9

3c~ra;r ;r ,v,r 8,v8,r 9,v9!@r~r 8,v8!2r~r ,v8!#

3@r~r 9,v9!2r~r ,v9!#1O~j23!. ~60!

Here ra;r(v) denotes a homogeneous density function t
is taken everywhere equal tora~r ,v! for a fixedr . Substitu-
tion of Eq.~60! into Eq.~56!, with the use of Eq.~20!, yields,
up to the order ofO~j22!,

F@r#5kBTE
0

1

daE dr dv@dr~r ,v!c~ra;r ;r ,v!

1r ref~v!c~ar ref ;r ,v!#

1kBTE
0

1

a daE dr dv dr 8dv8dr~r ,v!

3@r~r 8,v8!2r~r ,v8!#c~ra;r ;r ,v,r 8,v8!

1
1

2
kBTE

0

1

a2daE dr dv dr 8dv8dr 9dv9

3c~ra;r ;r ,v,r 8,v8,r 9,v9!dr~r ,v!@r~r 8,v8!

2r~r ,v8!#@r~r 9,v9!2r~r ,v9!#, ~61!

wheredr~r ,v!5r~r ,v!2rref~v!. It may be worth emphasiz
ing at this stage that the above expression is more gen
than the quadratic expansion of the free energy derived
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Sec. III, Eq.~32!, in that no assumption has been made h
regarding the nature of the ground state and there is no
striction on the distortion amplitude except that the wa
length be sufficiently large. Put differently, the function
Eq. ~61! is applicable even for determining the ground-st
structure, be it homogeneous or inhomogeneous, while
~32! is not. Note that the formulas by Poniewierski a
Stecki@9# and those by Lipkin, Rice, and Mohanty@14# and
Teixeira, Pergamenshchik, and Sluckin@26# follow by adopt-
ing in the above the quasihomogeneous density func
r~r ,v!5r0„n~r !•v…, along with rref~v!50 or riso~v! ~the
density function in the isotropic phase!, respectively.

The gradient expansion is formally obtained by perfor
ing the Taylor expansion of the density function in Eq.~61!
around a reference pointR. The first term is essentially loca
and thus we can unambiguously identify the integrand w
f̄„r~R,v!… in Eq. ~57! by substitutingR for r . Here the
Nambu-Goldstone degeneracy demands that, within
quasihomogeneous regime,*dv f̄„r~R,v!… should be a con-
stant independent ofR, which is equal to the intrinsic free
energy density in the undistorted nematic liquid cryst
Therefore, as long as we can assumer~r ,v!5r0~n•v!, as
done by Poniewierski and Stecki@9# and other authors
@14,26# this term gives only a constant bias independent
the director field and hence can be safely neglected. Bey
the quasihomogeneous approximation, however, this is
longer true. Thus the density correction discussed in Sec
is to make an excess contribution to the free-energy den
which the curvature elasticity should correctly take into a
count. We shall discuss this subject in Appendix B since
density correction does not have any effect on theK13 sur-
facelike elasticity.

The second integral is of central importance for t
present purpose since it is this term from which theK13 term
derives. The integral reflects the nonlocal pair interact
betweenr andr 8; as already stressed, the way to relater and
r 8 to the reference pointR always involves a certain degre
of arbitrariness. To illustrate the influence of this arbitra
ness on the gradient expansion, we restrict our attention
subclass of nonlocal-to-local mapping schemes~r ,r 8!→~R,u!
that satisfy the set of plausible conditions

]~r ,r 8!

]~R,u!
51, ~62!

R~r ,r !5r , ~63!

R~r1a,r 81a!5R~r ,r 8!1a, ~64!

where the first condition is the requirement of nondilatatio
ality and the last demands the translational covariance oR
for an arbitrary vectora. The most general form ofR that
meets these conditions is readily verified to be

R5
r1r 8
2

2g~u2!u, ~65!

whereu5r 82r andg~u2! is an arbitrary regular function tha
solely takes care of the nonuniqueness of the nonloca
local mapping in the present context. Poniewierski a
Stecki; Teixeira, Pergamenshchik, and Sluckin; and Lipk
Rice, and Mohanty tacitly adoptedg51

2, while Somoza and
e
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Tarazona’s choice, though criticized by Teixeira, Perg
menshchik, and Sluckin, wasg50 @21#, which led them to
argue thatK13 is not a well-defined parameter. Since noa
priori , if not aesthetic, reason exists to adopt a particu
value for g, it necessarily leads to a fundamental criteri
that any physically meaningful local parameters such as e
tic constants must be invariant under notional changes
g~u2!.

Taylor expansion of the density function aboutR up to
the order ofj22 gives

r~r ,v!5r~R,v!1~g2 1
2 !~u•“ !r~R,v!

1 1
2 ~g2 1

2 !2~u•“ !2r~R,v! ~66!

and a similar equation forr~r 8,v!, which is found by replac-
ing g by g11 in Eq. ~66!. We note here the relation

E du du8@c~ra;R ;u,u8,v,v8,v9!

1c~ra;R ;u,u8,v,v9,v8!#uiuj8

5E du du8@2c~ra;R ;u,u8,v,v8,v9!

2c~ra;R ;u,u8,v8,v9,v!#uiuj ,

where

c~ra;R ;u,u8,v,v8,v9![c~ra;R ;0,v,u,v8,u8,v9!,

with u5r 82r andu85r 92r .
Then, substituting the above Taylor expansion into E

~61!, we find

F@r#5E dRE dvf̄„r~R,v!…1kBTE dRE
0

1

a da

3E du dv dv8c~ra;R ;u,v,v8!

3dr~R,v!u•“r~R,v8!1kBTE dRE
0

1

a da

3E du dv dv8“•@g~u2!c~ra;R ;u,v,v8!

3dr~R,v!u~u•“ !r~R,v8!#

2 1
4kBTE dRE du dv dv8c~rR ;u,v,v8!

3u•“r~R,v!u•“r~R,v8!1 1
4kBTE dRE

0

1

a2da

3E du du8dv dv8dv9@c~ra;R ;u,u8,v,v8,v9!

2c~ra;R ;u,u8,v,v9,v8!#

3dr~R,v!u•“r~R,v8!u8•“r~R,v9!. ~67!
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The second and third terms come from the second integr
Eq. ~61!, which is linear in the spatial difference in the de
sity function. The third integral is a pure surface contrib
tion, from which theK13 term apparently derives, as will b
detailed below. A striking feature of this formula is that a
the terms, except this surface contribution, is free fromg. In
particular, if we employ the quasihomogeneous density fu
tion, it is immediately clear that the last integral disappe
due to the inversion symmetry and the penultimate one g
erates exactly the same expressions forK11, K22, K33, and
K24 derived in Sec. III, Eqs.~41! and~46a!–~46d!, before the
density correction had been invoked. Furthermore, it can
be revealed that the only effect of density correction is
renormalizeK11, K22, K33, andK24 in the same manner as i
Eqs. ~46a8!–~46d8!; the detailed derivations are left to Ap
pendix B for the ultimate irrelevance of this effect to theK13
issue.

To arrive at the expression forK13 formulated in the pre-
vious theories@9,14,26#, we only need to substitute th
quasihomogeneous density in the third integral of the ab
gradient expansion. The resultant elastic excess free en
dVsurf@n# can be written as

dVsurf@n#5E dR f surf~R!5
1

2 E dR
]

]Ri
SBi jk

]nk
]Rj

D ,
~68!

where

Bi jk522kBTE
0

1

a daE du dv dv8g~u2!c~ r̄a ;u,v,v8!

3@r0~n0•v!2r ref~v!#r08~n0•v8!uiujvk8 . ~69!

By the uniaxial symmetry aboutn0 ~taken along thez axis!
and the symmetry about the permutation of the first two
dices, we have

Bzxx5Bzyy5Bxzx5Byzy,

Bzxy5Bzyx5Bxzy5Byzx50. ~70!

With the aid of this relation, Eq.~68! is reduced to

f surf~R!5Bxzx“•~n“•n!2 1
2Bxzx“•~n“•n1n3“3n!,

~71!

which allows an identification

K135Bxzx. ~72!

With g~u2!51
2 andrref~v!50, Eq.~69! offers an integral rep-

resentation of K13, completely equivalent to the
Poniewierski-Stecki formula@Eq. ~3.3! in Ref. @9##. On the
other hand, the formulas due to Lipkin, Rice, and Moha
@Eq. ~4.10! in Ref. @14## and Teixeira, Pergamenshchik, an
Sluckin @Eq. ~26b! in Ref. @26## can be reproduced by settin
g~u2!51

2 and rref~v!5riso and replacingc~r̄a ;u,v,v8! by
c~rref ;u,v,v8!; the result is approximate and is slightly di
ferent from Poniewierski and Stecki’s result due to the n
ligence of higher-order direct correlation functions. The a
ditional K24-like term, along with theK13, is to renormalize
theK24 in Eq. ~46d8! to give
in

-
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n-

o
o

e
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-

y

-
-

K245Mxyyx2DMxyyx1Bxzx. ~73!

Hence, unlessBxzx50, the Nehring-Saupe-Cauchy relatio
can no longer hold even in the quasihomogeneous reg
This result also agrees perfectly with the Poniewierski-Ste
formula; however, the expression derived by Teixeira, P
gamenshchik, and Sluckin is apparently lacking in this te
thereby inconsistently leaving the Nehring-Saupe-Cauchy
lation intact. We shall leave it to Appendix B to show th
the present results forK13 are unaffected even when the de
sity correction is taken into account.

The above derivation clearly demonstrates thatK13 as
well asK24 has a twofold ambiguity in a general gradie
expansion: First, they are linearly dependent on the arbitr
parameterg~u2!, so they can be assigned whatever value o
wishes; second, the choice of the reference density also
fectsK13 andK24. The first is in effect a restatement of th
conjecture by Yokoyama@16# and by Somoza and Tarazon
@21# thatK13 does not posses a unique definition because
the ambiguity in the nonlocal-to-local mapping. The ambig
ity is a clear indication that the surfacelike bulk elastic co
stants cannot be a well-defined material parameter, unles
independent condition is given wherebyg is uniquely fixed.
This is, in fact, what Teixeira, Pergamenshchik, and Sluc
@26# claimed, in an objection to Somoza and Tarazona’s
gument; they argued that the only one natural choice og
should be1

2, corresponding toR5r , for reasons of consis
tency in the choice of undistorted local reference state
what follows, however, we shall demonstrate that the em
gence of a surface term itself is an artifact of the gradi
expansion that appears when a gradient expansion is
mally applied to an essentially null functional. This elim
nates the discrepancy in question in favor of our results
rived in Sec. III; for a more detailed examination of th
argument of Teixeira, Pergamenshchik, and Sluckin see
pendix C.

To look more closely into the nature of the surfaceli
bulk elastic term, we introduce the symmetrical and the
tisymmetrical components of the direct correlation functi
by

cs~r;r ,v,r 8,v8!5 1
2 @c~r;r ,v,r 8,v8!1c~r;r ,v8,r 8,v!#,

ca~r;r ,v,r 8,v8!5 1
2 @c~r;r ,v,r 8,v8!2c~r;r ,v8,r 8,v!#.

Using these definitions in Eq.~67!, we can rewrite the sec
ond and third integrals in a more comprehensible form a

F@r#5•••1kBTE dRE
0

1

a da

3E du dv dv8ca~ra;R ;u,v,v8!dr~R,v!

3u•“r~R,v8!1kBTE dRE
0

1

a da

3E du dv dv8“•@g~u2!cs~ra;R ;u,v,v8!

3dr~R,v!u~u•“ !r~R,v8!#1••• . ~74!

This equation clearly reveals the distinct symmetry origins
these two terms, though both come from a single linear te
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in the original nonlocal expression. For the quasihomo
neous density function, the former integral involving the a
tisymmetrical component is readily confirmed to yield a co
tribution linear ton•~“3n!, thereby indicating its role in
spontaneous twisting in a cholesteric phase containing ch
molecules. The intimate connection between the absenc
the antisymmetric component and the Nambu-Goldstone
generacy may be evident in Eq.~27!.

The latter integral, on the other hand, is the source ofK13,
which could also have an effect to induce a spontane
modulation due to its linear nature as emphasized in the
vious sections. Here, returning to the original free-ene
expression Eq.~61!, we define a free-energy kernel functio
by

G~r ,r 8![E dv dv8dr~r ,v!@r~r 8,v8!2r~r ,v8!#

3cs~ra;r ;r ,v,r 8,v8!, ~75!

which, on gradient expansion, yields theK13 term. Making
use of the permutation symmetry of the direct correlat
function appearing in the above, we can prove the appr
mate antisymmetrical relation

G~r ,r 8!52G~r 8,r !1O„ur~r !2r~r 8!u2…. ~76!

The second term on the right-hand side represents a
quadratic in the density difference, from which no surfa
terms~involving g! can be generated. Consequently, sub
tuting this relation into Eq.~61!, we reach our central resu

E dr dr 8G~r ,r 8!5E dr dr 8dv dv8dr~r ,v!@r~r 8,v8!

2r~r ,v8!#cs~ra;r ;r ,v,r 8,v8!

5O~e2j22! ~77!

and hence

K1350. ~78!

It must be clearly noted that, in the above derivation
K1350, we have not assumed the permutation symmetry
the direct correlation function. Rather, we showed thatK13
comes only from the permutation symmetrical part of t
direct correlation function, and when it is combined with t
linearity of the term in the density difference, the free-ene
contribution with the relevant order toK13 vanishes due to
the semilocal cancellation of the interaction free energy
this respect, we can conclude thatK1350 is a very genera
result, which applies not only to nematic liquid crystals b
also cholesteric liquid crystals and a much wider class
mesophases.

The emergence of the apparent surfacelike bulk term
~68! is actually an artifact of an improper application of gr
dient expansion at a boundary. The ambiguity associa
with the parameterg is a clear manifestation of this fact. T
illustrate this point, let us consider a semi-infinite sample
a nematic liquid crystal having a sharp boundary atz50. As
schematically depicted in Fig. 2, the double integral
G~r ,r 8! on r and r 8 runs over the regionr z ,r z8.0. Because
-
-
-
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of the approximate antisymmetry ofG~r ,r 8! about the plane
r z5r z8 , the double integral over the entire semi-finite ne
atic liquid crystal vanishes to the order ofO(ej22) as shown
above. However, when the mapping from~r ,r 8! to ~R,u! is
naively implemented for a natural range of integrationRz.0
and2`,uz,1`, the integration onR andu should also be
performed on an additional region~A andB in Fig. 2! out-
side the integration range of the original double integr
Since this region is not in general symmetrical about ther z
5r z8 plane, except for the case ofg50, the additional inte-
gral does not necessarily disappear, thereby leading to a
titious surfacelike contribution given by Eq.~68!. It is easy
to confirm that if the real surface contribution is treated
consistently using the same mapping, the ambiguity ass
ated withg is rigorously canceled out@43#.

V. INTERFACIAL ELASTIC FREE ENERGY

The surfacelike elasticity embodied byK13 andK24 refers,
in principle, to a fictitious boundary taken in a bulk nema
liquid crystal. In an attempt to measure these constants, h
ever, it is inevitable to bring in a real physical boundary
the hope of mimicking this hypothetical surface. Neverth
less, these constants may be modified at the real interf
and even additional phenomenological constants may app
depending on the nature of the interface in question. It m
therefore be of interest to see how the present dens
functional approach can be extended to the system wit
real interface.

We consider a planar interface between a semi-infin
nematic liquid crystal and a rigid structureless substrate;
take thez axis along the interface normal. Then, the effect
the substrate may be represented by a fixed single-par

FIG. 2. Change in the range of integration associated with
application of a nonlocal-to-local mapping~r ,r 8!→~R,u! for a
semi-infinite nematic liquid crystal with a sharp boundary atz50.
The true integration region is the lightly shaded area occupy
r z ,r z8.0 and the hatched regionsA andB are brought about by a
mapping to the new integration variables~R,u!. TheRz axis is fixed
by the conditionr z5r z8 , whereas the inclination of theuz axis is
dependent on the mapping parameterg. Only wheng50, the re-
gionsA andB become exactly symmetrical about theRz axis and
the contributions from these regions cancel each other to make
integral agree with the original one. In this sense, the choice ofg50
may well be said to be the correct mapping for this particular ca
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55 2949DENSITY-FUNCTIONAL THEORY OF SURFACELIKE . . .
external potentialVs~z,v!, which goes to infinity asz→2`
and approaches zero sufficiently rapidly asz→`. In the ab-
sence of deformation, therefore, the density function gra
ally varies from its bulk formr0~v! to zero as one goe
across the interface from the nematic liquid crystal to
substrate. Let us denote the density function in equilibri
under the substrate potential in the absence of bulk dis
tions by rg~z,v!. Then, it satisfies limz→`rg~z,v!5r̄~v!
and limz→2`rg~z,v!50. Now, the deformation free energ
is defined as the free-energy increase associated with
deviation of the density function from the bulk-undistort
state described byrg~z, v!. The quadratic expansion of th
free-energy functional Eq.~32! is valid even in the presenc
of an interface, provided the ground-state density funct
r̄~v! is replaced byrg~z, v!, complying with the presence o
the substrate, and the density deviation by that meas
from rg~z,v!,

dF@n#5 1
2kBTE dr dv dr 8dv8C2~rg ;r ,v,r 8,v8!

3dr~r ,v!dr~r 8,v8!. ~328!

Note that this free energy increase is positive definite,
there is no way for a pathological behavior such as that
to Oldano and Barbero@10# to emerge.

The purpose of the curvature elastic description of a ne
atic interface is to formulate an expression of the interfac
elastic free energy as a functional of a given director fie
Unlike the bulk elasticity, however, the director field cou
and is likely to lose its realistic meaning in the vicinity of th
substrate, where the structure and properties of the nem
liquid should be drastically modified from the bulk stat
Therefore, in order to define the director field even in t
interfacial region, we need to employ a proper extrapolat
scheme@16#. A normal way of extrapolation, which we sha
also adopt here, is to first consider an infinite nematic m
dium with its undistorted orientation being identical to t
easy directionn0 brought about by the substrate. Next,
arbitrary infinitesimal director distortion fielddn(r ) is intro-
duced by means of a distorting external potentialVd~r ,v! as
we have exploited in defining the bulk distortion. Finally, t
medium is switched back to the nematic liquid crysta
substrate system in question in the presence of this exte
potential. If we denote the free-energy increase in the
situation from its field-free ground state bydF, it becomes a
unique functional ofVd~r ,v!. Since the correspondence b
tweendn~r ! andVd~r ,v! can be made unique in the wea
deformation limit via the density deviationdr~r ,v! as de-
scribed earlier, we can now definedF as a unique functiona
of dn~r ! as implied in Eq.~328!.

Let drb(r ,v)5r08(n0•v)v•dn(r )1Dr(r ,v) be the
density deviation in the extrapolated bulk nematic liqu
crystal corresponding to the given fictitious director fie
From the condition of equilibrium Eq.~12! applied todF[n#
in Eq. ~32! with dr~r ,v!5drb~r ,v!, we find the hypothetica
external potential conjugate todrb~r ,v! as

Vd~r ,v!52kBTE dr 8dv8C2~ r̄;r ,v,r 8,v8!drb~r 8,v8!.

~79!
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Finally, by applying this potential to the real nematic liqu
crystal–substrate system, we find the variation in the den
function pertaining to the real boundary as

dr~r ,v!5E dr 8dv8dr 9dv9C2
21~rg ;r ,v,r 8,v8!

3C2~ r̄;r 8,v8,r 9,v9!drb~r 9,v9!. ~80!

Substituting this equation into Eq.~328!, we obtain

dF@n#5 1
2kBTE dr dv dr 8dv8dr 9dv9dr-dv-

3K~r ,v,r 8,v8!drb~r ,v!drb~r 8,v8!, ~81!

where the kernel function is defined by

K~r ,v,r 8,v8!5E dr 9dv9dr-dv-C2
21~rg ;r 9,v9,r-,v-!

3C2~ r̄;r 9,v9,r ,v!C2~ r̄;r-,v-,r 8,v8!.

~82!

Clearly, the kernel inherits the invariance for permutation
molecules and also satisfies

lim
z,z8→`

K~r ,v,r 8,v8!5C2~ r̄;r ,v,r 8,v8!,

lim
z,z8→2`

K~r ,v,r 8,v8!50. ~83!

Separating the bulk density deviation into the quasihom
geneous and correction parts, i.e.,drb~r ,v!5dr0~n•v!
1Dr~r ,v!, we can rewrite Eq.~81! as

dF@n#5 1
2kBTE dr dv dr 8dv8K~r ,v,r 8,v8!

3@dr0„n~r !•v…dr0„n~r 8!•v8…

2Dr~r ,v!Dr~r 8,v8!#. ~84!

Here we have used Eq.~A13!, following the same procedure
taken in Appendix A.

With the help of the algebraic identity Eq.~36! used for
the evaluation of bulk elastic constants, the above expres
allows us an unambiguous identification of interfacial con
butions. The quasihomogeneous part in Eq.~84! is now re-
duced to

dFh@n#5 1
2kBTE dr dv dr 8dv8K~r ,v,r 8,v8!

3dr0~r ,v!dr0~r ,v8!

1 1
4kBTE dr dv dr 8dv8@K~r ,v,r 8,v8!

2K~r ,2v8,r 8,2v!#dr0~r ,v!dr0~r 8,v8!

1 1
4kBTE dr dv dr 8dv8K~r ,v,r 8,v8!

3@dr0~r ,v!2dr0~r 8,v!#

3@dr0~r 8,v8!2dr0~r ,v8!#. ~85!
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2950 55HIROSHI YOKOYAMA
As already pointed out, the first two integrals disappear
the bulk due to the Nambu-Goldstone degeneracy and
inversion symmetry, respectively. So these contributions
essentially interfacial. The last integral, on the other ha
contains the bulk Oseen-Frank elastic contribution, wh
must be subtracted in obtaining the interfacial elastic f
energy by the introduction of the Gibbs dividing surfa
@16,53#. The remaining part in Eq.~84! coming from the
density correction is also made up of the bulk Oseen-Fr
plus interfacial contributions, as readily appreciable from
linear dependence of the density correction on the dire
gradient.

To cope with the bulk contributions, we take arbitrari
the Gibbs dividing surface atzd . Then, substituting the spe
cific functional form for the quasihomogeneous density fu
tion and retaining all the contributions up to the order ofj22,
we obtain the interfacial elastic free energy as

dFs@n#5 1
2 E dR Wijdni~R!dnj~R!

1 1
2 E dR Hi jk S ]nj

]Ri
D dnk1

1
2 E dR@Mi jkl ~R!

2DMi jkl ~R!2s~Rz2zd!~Mi jkl
0 2DMi jkl

0 !#S ]nk
]Ri

D
3S ]nl

]Rj
D , ~86!

where

Wij ~R!5kBTE du dv dv8K~R,v,R1u,v8!

3r08~n0•v!r08~n0•v8!v iv j8 , ~87!

Hi jk~R!5 1
2kBTE du dv dv8@K~R2 1

2u,v,R1 1
2u,v8!

2K~R2 1
2u,2v8,R1 1

2u,2v!#

3r08~n0•v!r08~n0•v8!uiv jvk8 , ~88!

andMi jkl andDMi jkl can be found by properly replacing th
bulk correlation functions in Eqs.~41! and~52! by the kernel
functionK. In deriving this formula, the choice of nonloca
to-local mapping is immaterial since surface integrals can
safely ignored in this continuous system with the bound
taken at infinity; in the evaluation ofH, for example, the
mapping, r→R2u/2 is automatically selected in the fina
expression, whatever mapping scheme has been adopte
tially. The tensor coefficientsW, H, M , and DM are all
position dependent and become a function of the separa
from the substrate. Corresponding to the permutation s
metry of the kernel, we have the relations,
n
he
re
,
h
e

k
e
or

-

e
y

ini-

on
-

Wij5Wji , Hi jk52Hik j . ~89!

M i jkl
0 andDM i jkl

0 refer to their corresponding values in th
bulk phase ands(z) denotes the step function, which satisfi
s(z)51 for z.0 ands(z)50 for z,0.

The last term in Eq.~86! is first of all an expression of the
fact that the Oseen-Frank elastic constants become pos
dependent near the substrate. As the definition of the ke
function implies, the width of this interfacial transition re
gions is not necessarily limited by the range of direct su
strate potential, but it is dependent on the correlation ra
of the particular fluctuation mode other than that describ
by the director. In a macroscopic sense, the interfacial mo
fication of the elastic constants can be renormalized into
macroscopic anchoring energy coefficient@54#. Moreover,
due to the broken symmetry at the interface,Mi jkl and
DMi jkl no longer have their symmetry characteristics in t
bulk such as the rotational invariance about the direc
Hence there may appear surface-specific components
nected, for example, with the biaxiality and polarity. W
shall not go into this point in further detail here, but lim
ourselves to commenting on how the saddle-splay term
be modified. It follows from Eq.~86! that

dF24
s @n#5

1

2 E dR
d

dRz
@K22~R!1K24~R!#

3ez•~n“•n1n3“3n!2
1

2
~K22

0 1K24
0 !

3ez•~n“•n1n3“3n!uzd, ~90!

whereez is a unit vector along thez axis and the translationa
invariance in thex-y plane has been taken into account. T
first term is theK24-like elastic contribution pertaining to a
real physical interface; the second term coming from
bulk will be canceled out on summation with the bulk elas
free energy and is taken over by the first, which has qua
tatively nothing to do with the bulk saddle-splay constant.
this term, the contribution is not localized at the interfac
but distributed over the entire interfacial transition regio
wherein the gradient of the relevant elastic constants is
ing as a local orientational field conjugate to the saddle-sp
mode. The conventional phenomenological expression is
covered in the limit of an infinitely thin transition region
although the effective saddle-splay constant is no longer
intrinsic property of the nematic liquid alone.

The first term in Eq.~86!, dF 1
s@n#, represents the micro

scopic anchoring energy, which results from the breaking
Nambu-Goldstone degeneracy occurring over a finite in
facial transition region. The symmetry ofWij for i↔ j en-
sures the existence of a local intrinsic anchoring energy fu
tionwa~n,R!, satisfyingWij5]2wa/]ni]nj at each point. An
easy connection with the macroscopic anchoring ene
functionWa(n! can be made by Taylor expanding the dire
tor field at the Gibbs dividing surface:
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55 2951DENSITY-FUNCTIONAL THEORY OF SURFACELIKE . . .
dn~R!5dnd~Rx ,Ry!1~Rz2zd!
]

]Rz
nd1••• ,

where the subscriptd indicates that the quantity must b
evaluated at the dividing surface. Using this expansi
dF 1

s@n# reduces to

dF1
s@n#5

1

2 F E dR Wij ~R!Gdndidnd j
1F E dR~Rz2zd!Wij ~R!Gdndi ]nd j

]Rz
1•••

~91!

up to the first order in the director gradients. From this e
pression, we may identify the anchoring energy function

Wa~nd!5 1
2 F E dRzWi j ~R!Gndind j . ~92!

Note thatWa~nd! is solely a function ofnd without a direct
dependence on the location of the dividing surface. This is
indication of the originally interfacial nature of this contr
bution. As already mentioned, this is not the only source
the macroscopic anchoring energy; other terms such as
surface-excess Oseen-Frank elastic energy can make a
nificant contribution, which is dependent on the choice of
dividing surface@16,54,55#. Finally, a comment may be in
order about the second term indF 1

s@n#, which looks similar
to theK13 term for its linear dependence on the normal d
rivative of the director. In contrast to the trueK13 term, how-
ever, this contribution is variationally well behaved since t
is a product of the gradient and the director deviation a
hence is in second order in the distortion amplitude. Furth
more, it should also be worth noting that this term can
eliminated at all for a given director field by a choice of t
dividing surface at an appropriate point inside the transit
region.

From the viewpoint of surface elasticity, a particular
important feature of the formula for the interfacial elas
free energy Eq.~86! is the presence of the second ter
which is linear in the director gradient. This linear term
involving the normal as well as tangential gradients of
director, yields a term formally similar to theK24 as well as
K13 surfacelike bulk contributions. This term arises from t
broken inversion symmetry, and as pointed out by Faetti
Riccardi @39# in their remarkable paper, should disappe
when the inversion symmetry still prevails at the interfa
To consider more specifically the nature of this contributio
let us assume a situation relevant to a pretilted homogen
alignment toward thex direction. Further assuming the pre
ence of a mirror plane perpendicular toy axis, we are left
with the four nonzero tensor components

Hyxy52Hyyx , Hyzy52Hyyz,

Hxzx52Hxxz, Hzzx52Hzxz. ~93!

Note that if the system has an up-down symmetry~mirror
plane perpendicular to thez axis!, all the first three compo-
nents associated with the tangential gradients also disap
,
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In view of the above symmetry relation, the correspon
ing free energy is written as

dF2
s@n#5

1

4 E dR~Hyyz1Hxxz!ez•~n“•n1n3“3n!

1
1

2 E dR~Hyyz2Hxxz!nzS ]ny
]Ry

2
]nx
]Rx

D
1
1

2 E dR HzzxS dnx
]nz
]Rz

2dnz
]nx
]Rz

D . ~94!

If the interface is conically degenerate so that we ha
Hyyz5Hxxz, the contribution from the tangential gradients
director reduces simply to a term ofK24 form. In the more
general case considered here, however, an additional co
bution exists, reflecting the in-plane anisotropy. As me
tioned above, the broken up-down symmetry at the interf
is essential for the appearance of these contributions.

Regarding the normal gradient contributions, we m
first realize that they are variationally well behaved for t
same reason as for the similar term indF 1

s@n#. This property
is independent of the width of the transition region, so
can freely take the complete localization limit without jeo
ardizing the mathematical tractability. We may thus co
clude that even at a real physical interface, noK13-like elas-
tic excessfree energy exists@56#.

VI. CONCLUDING REMARKS

We have developed a microscopic formalism for the s
facelike elasticity of nematic liquid crystals on the basis
the density-functional theory. Although still formal, it coul
provide a few qualitatively significant results concerning t
nature of the surfacelike bulk elastic constants. It has in p
ticular been shown that the splay-bend elastic constantK13
must be zero. This result immediately resolves the ma
ematical difficulty associated with a nonzeroK13, the so-
called Oldano-Barbero paradox, and also offers a ration
for overwhelming majority of continuum theoretic studie
ignoring the surfacelike elasticity. The absence ofK13 paral-
lels the famous Cauchy relation established in the ordin
elasticity theory of solids, in the sense that it is not direc
rooted in any of the macroscopic symmetries existing
nematic liquid crystals; but is a general consequence of
type of microscopic structure responsible for this particu
term. In this respect,K1350 applies to a wider range o
phases including cholesteric liquid crystals. It has also b
shown that the saddle-splay constant satisfies, under an
proximate yet plausible condition, the extended Nehrin
Saupe relationK24>(K112K22)/2, taking into account the
correction of the density function beyond the quasihomo
neous approximation.

We have also formulated a curvature elastic express
for the interfacial elastic free energy in the presence of a
substrate. The formula consists of the anchoring ene
K24-like term, surface-excess Oseen-Frank elastic ene
and additional contributions connected with the surfa
specific symmetries at the interface that have no counterp
in the bulk phase. The interfacial elastic free energy reta
the equivalence ofn and2n as in the bulk elastic energy
regardless of the actual symmetry at the interface; inde
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2952 55HIROSHI YOKOYAMA
even if the interface does not have an inversion symme
the interfacial free energy as a functional ofn has then↔2n
invariance. This paradoxical situation is a natural con
quence of the way in which the bulk nematic liquid crystal
extrapolated to the interfacial region in Gibbs sense. In
fining the elastic free energy as a functional of the direc
field, we consistently employed a hypothetical external o
body potential, which is infinitesimally weak on the order
j22, with j being the distortion wavelength, i.e., the sam
order of magnitude as the Oseen-Frank elastic free en
itself. This potential is able to couple, on the required or
of j22, only with a continuously degenerate variable, t
director, in the nematic phase, thereby making the ela
free energy a unique functional of the director field indep
dent of the external potential used. We extended this
proach to the interfacial elastic problem and obtained
interfacial free energy withn52n symmetry. In view of the
current interest in the curvature elastic treatment of nem
interfaces involving only deformations weak from the m
lecular standpoint, this approach seems to be general en
to cover all these realistic cases. Although it is in princip
straightforward to employ a stronger external potential at
interface that is to radically modify the microscopic liqu
structure, the interface can no longer allow a description o
in terms of the director.

Finally, we would like to comment on the experiment
measurement of the bulkK24. As mentioned above, in con
trast to the illusiveK13, the reality ofK24 as an intrinsic
material parameter of the nematic liquid crystal is now ind
putable. However, a separate determination ofK24 will al-
ways entail a real physical boundary, which carries its o
interfacialK24-like or more general elastic free-energy co
tributions depending linearly on the director gradients. Sin
these contributions always come together and there is no
of separation within the realm of the linear curvature elas
ity, an independent measurement of bulkK24 will not be
experimentally feasible. Nevertheless, it may well be p
sible if we become able to enter the strong distortion reg
beyond the director functional description.
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APPENDIX A: DERIVATION OF THE DENSITY
CORRECTION

On the basis of Eq.~32!, the external potential conjugat
to a given density deviation is given by

Vd~r ,v!52kBTE dr 8dv8C2~ r̄;r ,v,r 8,v8!dr~r 8,v8!.

~A1!

If only a quasihomogeneous density function is used
dr~r 8,v8! in this equation, the conditionVd~r ,v!5O~j22!, as
required by the uniqueness ofdF@n# as a functional of only
y,
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the director field, is not in general satisfied. The role of t
density correction is to get rid of this discrepancy so as
achieve

E dr 8dv8C2~ r̄;r ,v,r 8,v8!@r08~n0•v8!v8•dn~r 8!

1Dr~r 8,v8!#5O~j22!. ~A2!

This equation must be solved forDr~r ,v! under the condi-
tion that the density correction should not change the gi
director field.

We must note that due to the Nambu-Goldstone deg
eracy, if Dr~r 8,v8! satisfies the above equation, the
Dr(r 8,v8)1r08(n0•v8)v8•a(r 8) also satisfies the sam
equation regardless of the vector fielda~r 8! normal ton0.
Hence, to obtain the density correction with the desired pr
erty, we can regarda~r 8! as a Lagrange multiplier, then solv
for the density correction involvinga, and finally determine
a to meet the above requirement. As confirmeda posteriori,
the choice ofa~r 8!52dn~r ! gives us a correct answer. Base
on this choice, we can rewrite Eq.~A2! as

E dr 8dv8C2~ r̄;r ,v,r 8,v8!$r08~n0•v8!v8•@u•“n~r !#

1Dr~r 8,v8!%5O~j22!, ~A3!

whereu5r 82r . This equation can be readily solved for th
density correction to give

Dr~r ,v!52E du du8dv8dv9C2
21~ r̄;u8,v,v9!

3C2~ r̄;u,v9,v8!r08~n0•v8!v8•@u•“n~r !#,

~A4!

whereC2
21~r̄;u,v,v8![C2

21~r̄;r ,v,r 8,v8! is the inverse of
C2~r̄;r ,v,r 8,v8! or, equivalently, the density-density correl
tion function@45# connected to the total correlation functio
h~r̄;r ,v,r 8,v8! by

C2
21~ r̄;r ,v,r 8,v8!5r0~n0•v!r0~n0•v8!h~ r̄;r ,v,r 8,v8!

1r0~n0•v8!d~r2r 8!d~v2v8!.

~A5!

By applying the inversion to all the integration variables
Eq. ~A4!, we find that the density correction is antisymmet
cal for inversion of the molecular orientation

Dr~r ,2v!52Dr~r ,v!, ~A6!

which ensures the orthogonality of the density correction
the quasihomogeneous density function and, equivalen
the invariance of the initial director field.

The above derivation of the density correction is ess
tially equivalent to the results by Somoza and Tarazona@21#.
However, they took an alternative route to expand the d
sity correction into an infinite series on an appropriate co
plete set of orthonormal basis functions such as the sphe
harmonics and then to directly minimize the free-ener
functional with respect to the expansion coefficients, fro
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which the terms affecting the director field have been om
ted in prior. Due to the difficulty in summation of the resu
ant series expansion, they did not reach the general com
formula Eq. ~A4!, except for the case of the ideal gas a
proximation@neglecting the total correlation function in Eq
~A5! to allow an easy summation#.

In order to get more detailed information about the de
sity correction, let us take thez axis alongn0 and define a
matrix J~v! by

Ji j ~v!52E du du8dv8dv9C2
21~ r̄;u8,v,v9!

3C2~ r̄;u,v9,v8!r08~n0•v8!uiv j8 . ~A7!

If we take thex axis along the projection ofv on thex-y
plane, we have a symmetry relation

Jxy5Jyx5Jzy50. ~A8!

Hence we see that there are only three independent com
nents J1(vz)5Jxx/2, J2(vz)5Jyy/2, and J3(vz)5Jzx ,
which make nonvanishing contributions to the density c
rection. For a general choice of thex axis making an anglef
with the projection ofv, the tensor components can be wr
ten in terms of these constants

Jxx~v!5J12
1 ~vz!1J12

2 ~vz!cos2f,

Jxy~v!5Jyx~v!52J12
2 ~vz!sin2f, ~A9!

Jyy~v!5J12
1 ~vz!2J12

2 ~vz!cos2f,

where J 12
1 (vz)5J1(vz)1J2(vz) and J 12

2 (vz)5J1(vz)
2J2(vz). If we can ignore the short-range correlation b
tween the molecular orientations within the plane perp
dicular to the director, we haveJxy50 andJxx5Jyy so that
the density correction assumes a particularly simple fo
reminiscent of the flexoelectric contributions, as

Dr~r ,v!5ASv•~n“•n!1ABv•~n3“3n!, ~A10!

whereAS andAB are functions of~n•v!2.
We now calculate the correction to the elastic free ene

DFc@n# resulting from the density correction. Substituting

dr~r ,v!dr~r 8,v8!

5dr0~r ,v!dr0~r 8,v8!1dr0~r ,v!Dr~r 8,v8!

1Dr~r ,v!dr0~r 8,v8!1Dr~r ,v!Dr~r 8,v8!

~A11!

into Eq. ~32!, we find the free-energy correction as

D f c@n#5 1
2kBTE dr dv dr 8dv8C2~ r̄;r ,v,r 8,v8!

3@2dr08~n0•v8!dn~r 8!Dr~r ,v!

1Dr~r ,v!Dr~r 8,v8!#. ~A12!

Note that Eq.~A3! is identical to the stationary condition o
DFc@n# with respect to the density correction, i.e
-

act
-

-

o-

-

-
-

,

y

05dDFc/dDr~r ,v!. The negligence of the distorting extern
potential is justified by the fact that the coupling betwe
this external potential and the density correction is on
order of j23. For the equilibrium density correction, subs
tution of Eq.~A3! into Eq. ~A12! yields

DFc@n#52 1
2kBTE dr dv dr 8dv8C2~ r̄;r ,v,r 8,v8!

3Dr~r ,v!Dr~r 8,v8!. ~A13!

This formula demonstrates that

DFc@n#<0, ~A14!

which manifests the nature of the density correction a
structural relaxation agent. Using the matrixJ given above,
the correction to the elastic constant tensor Eq.~52! can be
written as

DMi jkl5kBTE du dv dv8C2~ r̄;u,v,v8!Jik~v!Jjl ~v8!.

~A15!

Using Eq.~A9! in Eq. ~A15!, we obtain

DMxxxx5DMyyyy52^J12
1 ~vz!J12

1 ~vz8!&

1^J12
2 ~vz!J12

2 ~vz8!cos2a&, ~A16a!

DMxxyy5DMyyxx5DMxyyx5DMyxxy

5^J12
2 ~vz!J12

2 ~vz8!cos2a&, ~A16b!

DMxyxy5DMyxyx52^J12
1 ~vz!J12

1 ~vz8!&

2^J12
2 ~vz!J12

2 ~vz8!cos2a&, ~A16c!

DMzzxx5DMzzyy52^J3~vz!J3~vz8!&, ~A16d!

wherea is the angle between thex-y plane projections ofv
andv8 and the operator̂ & is defined by

^H~vz ,vz8 ,a!&[pkBTE dvzdvz8da

3F E du C2~ r̄;u,vz ,vz8 ,a!G
3H~vz ,vz8 ,a!. ~A17!

Since there are only three independent parameters for at
four elastic constants, there appears a Cauchy relation
given by Eqs.~A16b! and ~53!. Equations~A16a!–~A16d!
also show that if the flexoelectric form Eq.~A10! holds or,
equivalently,J 12

2 (vz)50, the effect of density correction ap
plies only toK11 andK33.
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APPENDIX B: DENSITY CORRECTION
IN THE GRADIENT EXPANSION

Here we show that the inclusion of the density correct
does not affect our conclusion ofK1350. In order to get the
correction to the intrinsic free energy up to the order ofj22

in the presence ofDr~r ,v!, we need to take account of no
only the second integral but also the first in Eq.~61!, since
the free-energy density for a local homogeneous state is
longer a constant throughout the nematic liquid crystal,
contains a contribution to the elastic excess free energy
to the density correction.

We begin with the expansion of the first member of t
direct correlation function about the quasihomogeneous d
sity r̄~r ,v!5r0„n~r !,v…,
n

no
t
ue

n-

c~ra;r ;r ,v!5c~ r̄a;r ;r ,v!

1aE dr 8dv8Dr~r ,v8!c~ r̄a;r ;r ,v,r 8,v8!

1
a2

2 E dr 8dv8dr 9dv9Dr~r ,v8!

3Dr~r ,v9!c~ r̄a;r ;r ,v,r 8,v8,r 9,v9!1••• .
~B1!

Using this formula in the first integral of Eq.~61! for the
local homogeneous state, we obtain the desired expansio
powers ofDr~r ,v!; after some manipulations involving th
exchange of integration variables such as~r ,v!↔~r 8,v8! to
make a local-to-nonlocal conversion, the expansion is
duced to
F1@rd#5F1@r0#1kBTE dr dv Dr~r ,v!c~ r̄ r ;r ,v!2kBTE
0

1

a daE dr dv dr 8dv8dr0~r ,v!

3@Dr~r 8,v8!2Dr~r ,v8!#c~ r̄a;r ;r ,v,r 8,v8!1kBTE
0

1

a daE dr dv dr 8dv8Dr~r ,v!

3@r0~r 8,v8!2r0~r ,v8!#c~ r̄a;r ;r ,v,r 8,v8!1kBTE
0

1

a2da

3E dr dv dr 8dv8dr 9dv9c~ r̄a;r ;r ,v,r 8,v8,r 9,v9!dr0~r 8,v8!

3@r0~r 8,v9!2r0~r ,v9!#Dr~r ,v!1 1
2kBTE dr dv dr 8dv8c~ r̄ r ;r ,v,r 8,v8!Dr~r ,v!Dr~r 8,v8!

1 1
2kBTE

0

1

a2daE dr dv dr 8dv8dr 9dv9c~ra;r ;r ,v,r 8,v8,r 9,v9!@dr0~r ,v9!Dr~r ,v!Dr~r ,v8!

2dr0~r ,v!Dr~r ,v8!Dr~r ,v9!#. ~B2!
en
di-
The second term in Eq.~B2! disappears due toDr~r ,2v!5
2Dr~r ,v!. Also owing toDr~r 8,v!5Dr~r ,v!1O~j22!, the
last integral turns out to be of the order ofj23, so it can be
omitted.

Similarly, the second integral in Eq.~61! can be expanded
to give

F2@rd#5F2@r0#

1kBTE
0

1

a daE dr dv dr 8dv8dr0~r ,v!

3@Dr~r 8,v8!2Dr~r ,v8!#c~ r̄a;r ;r ,v,r 8,v8!

1kBTE
0

1

a daE dr dv dr 8dv8Dr~r ,v!

3@r0~r 8,v8!2r0~r ,v8!#c~ r̄a;r ;r ,v,r 8,v8!

1kBTE
0

1

a2daE dr dv dr 8dv8dr 9dv9c
~ r̄a;r ;r ,v,r 8,v8,r 9,v9!dr0~r ,v!@r0~r 8,v8!

2r0~r ,v8!#Dr~r ,v9!. ~B3!

Combining these expansions, we obtain

F1@rd#1F2@rd#

5F1@r0#1F2@r0#

1kBTE dr dv dr 8dv8Dr~r ,v!

3@r0~r 8,v8!2r0~r ,v8!#c~ r̄ r ;r ,v,r 8,v8!

1 1
2kBTE dr dv dr 8dv8c~ r̄ r ;r ,v,r 8,v8!

3Dr~r ,v!Dr~r 8,v8!. ~B4!

This result is in perfect agreement with Eq.~A12!, the master
equation for determining the density correction for a giv
quasihomogeneous density distribution. It follows imme
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ately from this result that the density correction does
generate a surfacelike elastic term.

APPENDIX C: AMBIGUITY
IN THE NONLOCAL-TO-LOCAL MAPPING

In a critique against Somoza and Tarazona’s argum
Teixeira, Pergamenshchik, and Sluckin@26# ruled out, on a
rather general ground, the existence of ambiguity in
nonlocal-to-local mapping that ruins the uniqueness of
surfacelike bulk elastic constant as discussed in Sec.
Their claim is that the particular mapping withg51

2 in our
notation is the only physically acceptable mapping sche
so that theK13 resulting from this mapping must be regard
as a well-defined material parameter. For a Gay-Berne m
nematic liquid crystal, they carried out a microscopic calc
lation ofK13 and found a nonzero value on the same orde
magnitude as the ordinary Frank elastic constants. Since
result presents a fundamental contradiction with our resu
K1350, it must be worthwhile to clarify where this discrep
ancy came from and how it can be corrected.

After Somoza and Tarazona, Teixeira, Pergamen
chik, and Sluckin adopted a mean-field approach us
f „r 82r ,n~r !,n~r 8!… as the angle-averaged interaction pote
tial between molecules atr and r 8. The free energyF of a
volume of a nematic liquid crystal is thus given by a doub
integral

F5E dr dr 8 f „r 82r ,n~r !,n~r 8!…. ~C1!

If we imagine an undistorted nematic liquid crystal orient
alongn, the free energy reduces to

Fu5E dr dr 8 f ~r 82r ,n,n!. ~C2!

Since n is not a function of position here, it is perfectl
legitimate to regard

gu~n!5E du f ~u,n,n! ~C3!

as a free-energy density in the undistorted state. Locally s
tracting this contribution, we can rewrite Eq.~C1! as

F5E dr dr 8 f „r 82r ,n~r !,n~r !…1E dr dr 8@ f „r 8

2r ,n~r !,n~r 8!…2 f „r 82r ,n~r !,n~r !…#. ~C4!

When the nematic liquid crystal is undistorted, the seco
integral automatically disappears. This is an expression
responding to the density-functional formula Eq.~61!.

On the basis of this equation, Teixeira, Pergamenshc
and Sluckin considered the function

g~r !5E dr 8@ f „r 82r ,n~r !,n~r 8!…2 f „r 82r ,n~r !,n~r !…#

~C5!

as theuniquephysically legitimate elastic free-energy de
sity, to which all other permissible elastic free-energy den
t

t,

e
e
.

e,

el
-
f
is
f

h-
g
-

b-

d
r-

k,

i-

ties, if any, should be isomorphic by a one-to-one corresp
dence requiring the retrievability ofg~r !. This is, however,
too strong a condition, going far beyond the ordinary
quirements in constructing a local thermodynamic funct
@50#. Quite the contrary, indeed, the heart of the nonlocal-
local mapping issue lies essentially in the loss of a one
one correspondence between equally acceptable free-en
densities as pedagogically described by Rowlinson and
dom in their monograph@50#. Then, only those propertie
that are immune to this mapping issue can be regarde
physically well defined. Requiring the availability of a on
to-one correspondence leads to an automatic prohibition
mapping ambiguity, tautologically resulting in the uniqu
ness of the density function.

Teixeira, Pergamenshchik, and Sluckin’s objection to
plying a general mapping scheme, as we have used in
IV, to Eq. ~C5! stems from the seeming shift of the referen
state from an ‘‘undistorted’’ to a ‘‘distorted’’ one. As is clea
from Eq.~C4!, however,g~r ! comes from the second integra
in Eq. ~C4!, which is just the remainder of total free energ
after the local homogeneous contribution~the first integral!
has been subtracted. Consequently, there is inherently
such concept as the pointwise reference state in the se
integral, provided the first integral takes correct care of
homogeneous localreferencestate. In fact, the recipe of gra
dient expansion only demands that the total free energy
decomposed in such a way that

F5E dR gu„n~R!…1E dR g„]n~R!…, ~C6!

wheregu„n~R!… is the homogeneous free-energy density aR
evaluated for the local director at this point andg„]n~R!… is
the gradient-dependent part that should be zero when
gradients locally vanish. This condition is fulfilled by using
mappingR5r andu5r 82r only in the first integral; further
imposing this mapping to the second integral is anot
source of flaw in Teixeira, Pergamenshchik, and Slucki
argument. The second integral can be subjected to any m
ping as long as the resultant elastic free-energy density
mains finite.

Although the discrepancy between Teixeira, Pergamen
chik and Sluckin and Somoza and Tarazona can be tra
back to the erroneous handling of gradient expansion by
former authors, it should be of interest to see how the re
K1350 generally follows in the present mean-field conte
beyond Somoza and Tarazona’sad hocargument. Due to the
inversion symmetry in the real and the director isotop
spaces, the interaction potential has a symmetry

f ~r 82r ,n,n8!5 f ~r 82r ,n8,n!5 f ~r2r 8,n8,n!. ~C7!

It follows from this relation that

S ] f

]ni
D
n5n8

5S ] f

]ni8
D
n5n8

. ~C8!

We define a function

G~r ,r 8!5 f „r 82r ,n~r !,n~r 8!…2 f „r 82r ,n~r !,n~r !…. ~C9!

Then, we find from the above symmetry relation that



e
o

a
e

n it
sed

ry

ce-
-to-
free-
the

e
l is
ity.
ibu-
-

lting
the
ga-
his
r-
b-
r.

2956 55HIROSHI YOKOYAMA
G~r ,r 8!52G~r 8,r !1O~ udnu2!, ~C10!

which is the counterpart of Eq.~76!. Using this equation in
Eq. ~C4!, we obtain

E dr dr 8@ f „r 82r ,n~r !,n~r 8!…2 f „r 82r ,n~r !,n~r !…#

5O~ udnu2!. ~C11!

This shows that the term linear indn, from which K13
emerges, is deemed to disappear on integration for symm
reasons even before the gradient expansion is applied, s
must haveK1350 also in this mean-field context.

As in the rigorous density-functional theory, a formal gr
dient expansion of Eq.~C5! using a general mapping schem
Eq. ~65! yields a surface integral as

dF52E dR
]

]Ri
F E du g~u2!S ] f ~u,n,n!

]nk D
n~R!

uiuj
]nk
]Rj

G ,
~C12!

which is the mean-field version of Eq.~68! and gives rise to
a formal expression forK13. A combination of Eqs.~C11!
.

y

ev

l.
try
we

-

and ~C12! clearly reveals the surface origin ofK13, which
arises in fact as an artifact of the gradient expansion whe
is applied formally to a system with a boundary as discus
in detail in Sec. IV.

We consider briefly the effect of applying an arbitra
mapping to the first integral in Eq.~C4!. As noted by Teix-
eira, Pergamenshchik, and Sluckin, this is an invalid pro
dure since the general mapping leads to the loss of a one
one correspondence between the local director and the
energy density. It is interesting to note that, due to
Nambu-Goldstone degeneracy,gu~n! is in fact a constant
independent of the direction ofn. Hence, regardless of th
mapping used, the volume contribution to the first integra
a constant, as a signature of its physical well definabil
However, there also arises an apparent surfacelike contr
tion of theK13 form, which depends on the mapping param
eter. Just as shown above, this is also an artifact resu
from an inconsistent change of the integration volume at
boundary. Although there is, as noted by Teixeira, Per
menshchik, and Sluckin, a coincident condition whereby t
K13 term cancels the similar term coming from the highe
order contribution, one should clearly realize that this is a
solutely not the reason whyK13 should generally disappea
.
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