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Density-functional theory of surfacelike elasticity of nematic liquid crystals
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Based on the density-functional theory, we show that the splay-bend surfacelike bulk elastic dépgiant
an artifact of the phenomenological as well as the gradient expansion construction of the curvature elastic free
energy of nematic liquid crystals, while the saddle-splay condtantis real and approximately obeys an
extended Nehring-Saupe relatidty,,= (K 1,—K5,)/2, with K;; and K,, being the splay and twist Frank
constants, respectively. The resilt;=0 automatically resolves the Oldano-Barbero pathology, which inevi-
tably accompanies a nonzek,3, and gives a concrete rationale for the conventional approaches in the
continuum theory disregarding the surfacelike elasticity. The source of an apparently nkpzérgrevious
microscopic theories is discussed in detail and is demonstrated to be a result of an inconsistent use of a
nonlocal-to-local mapping of the elastic free-energy functional at the boundary. The absefggcain be
regarded as a type of Cauchy relation in the nematic continuum theory in the sense that it is not directly rooted
in any of the macroscopic symmetries existing in the nematic phase, but is a general consequence of the
particular algebraic form of the nonlocal free-energy term from whkighderives; its linearity in the distortion
amplitude and the symmetry of the relevant direct correlation function with respect to the permutation of a
molecular pair leads always to the vanishikgs. In this respectK3=0 applies not only to nematic liquid
crystals but also to a more general class of phases such as cholesteric liquid crystals, whose structure can be
viewed as a weak modulation of a translationally invariant phase. We finally consider the elastic description of
nematic liquid crystals in the presence of real interfaces. The present formulation allows a straightforward
decomposition of the elastic excess free energy into the bulk contribution and the interfacial excess in the
Gibbs sense. The bulk part yields the bulk Oseen-Frank elastic free-energy density along Wit tbem
evaluated at the Gibbs dividing surface as an unambiguous local quantity. The interfacial excess, when gradient
expanded, reduces to the surface free-energy density comprised of the anchoring energy, surface-excess Oseen-
Frank elastic energ¥ ,,-like term, and elastic free-energy contributions reflecting the broken symmetry at the
interface. TheK,,-like term is formally similar to the bullK,, term, but is no longer an intrinsic property of
bulk nematic liquid crystal, as it depends also on the nature of the medium with which the nematic liquid
crystal is in contact{S1063-651X%97)02103-X]

PACS numbsg(s): 61.30.Cz, 62.20.Dc, 68.10.Et

I. INTRODUCTION f15=K13V-(nV-n). (4)

Nematic liquid crystals are an anisotropic fluid in which Ordinarily, f,, andf,5in Eq. (1) are neglected since they are
the molecular positions are randomly distributed, while theirconvertible by Gauss’s theorem to a surface integral over the
orientations are ordered along a certain direction specified byoundary and thus do not affect the bulk equilibrium condi-
a unit vectorn, the director, taken along the symmetry axis tion [1]. These terms were first introduced by Osg2hin
[1]. In nematic liquid crystals, the uniform orientation of the his phenomenological theory of curvature elasticity, yet later
director corresponds to the state of lowest free energy in the,; was omitted by FranK3] from his expression for its
absence of orientational external fields and boundary comsecond-order nature. This term was, however, reintroduced

straints. Spatial variations in result in an increase in free by Nehring and Saupg4], who further gave a microscopic
energy, which is known to be well described by the phenomyelation among the elastic constants,
enological Oseen-Frank elastic free enef@)3|

Kas=(K11—Kp)/2. (5

5F=J AR feastd R) The presence of these surfacelike bulk elastic terms has
remained a matter of continued debate on their physical ori-
:J dR[ fp(n,dn)+ f24(n,an) + F14(n,0N,82n)], (1) gins and mathematical consequeni®s43). For example, it
was Oldano and Barbero who pointed out that a naive inclu-
sion of theK 5 term in the minimization of the elastic free

where energy leads to a pathological result for equilibrium director
distributions that involve a divergence ¥f-n at the bound-
fp=3K12(V-n)?+ 3K55(n- VX N)2+ 3K 35(nX V X N)2, ary [10-12. This happens simply because the variational

2 problem is made overly specified by tKe; term having the
normal derivative of the director as an independent boundary
fou=—3(KyptKy)V-(NV-n+nXVXn), (3) variable along with the boundary director its¢lf6,40,44.
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As a consequence, in order to make the variational problem

well posed even in the presence of nonzé&rg, one has J dr dr’G(r,r’):J' dR felasid R)- (7)
either to introduce an auxiliary boundary condition @nn

to reduce the number of degrees of freedom at the boundal
or to allow a higher-order bulk elastic energy to accommo
date the increased number of boundary conditions bKthe
term. Despite several attempts following these two ap

Eronatldclzizestcr)\]; redsi?f!u“ﬁn’iahere r']S ais ylft ?0 eStnabtl)'ISh?: ‘r’lvr?yr f the director and its gradients evaluatedRaeven in the
a g this culty in-a physically reasonable manner., ... qeformation limit.

The Ky, term, in contrast, does not cause such a mathemati- This is in fact a subtle problem always associated with

gzlrl?\l/;ie\/lgst(?f zir;)ebclteoT astlrt]ﬁg SO'SXSZGSsgﬂga:hti;a;gfﬁégdefining a local quantity from an essentially nonlocal prop-
y rty such as energy, entropy, and free energy and is well

director serves as the complete boundary condition for thi?nown in statistical mechanics of ordinary liquitgo]. The

\s/u;fiacr:]e tefrrrr1 ar? V\éﬁrlL 1r—1hi§2r411 tle(rjmf, ?r?]wgv;?r, fr\]uttcm:atltcr;]ally relevance of this difficulty to the surfacelike bulk elasticity
inamsos'st‘S ifono?[ aell rzctsic%"a ir: c())rta?:toexS er?msnetzal so(r:ffl 3 nematic liquid crystals was initially commented on by
’ » P y imp P Yokoyama[16] and later more specifically led Somoza and

figurations. Tarazona[21] to argue thatK;; cannot be a well-defined

b ILl:ndIertt_h_?sehc:jrcumstgnc(;es, tth nature:[tof thfe Surfac?"?hysical parameter, given its apparent dependence on the
ulk elasticity had remained solely a matler ot concepluaiy,yioa of the nonlocal-to-local mapping. Teixeira, Perga-

:Elteresé,/unén ngedral rfcent aﬁtemp;;;vszrge Imadetm rlneasufﬁenshchik, and Sluckif26], nevertheless, rejected their rea-
24 ANAIOTK 13 DY CIFECt EXpENMENtses, o4, I particliar, — gqning for the physical ambiguity ¢4, by pointing out the

the observations of surface-induced three-dimensional mod Aconsistency of Somoza and Tarazona's choice of the free-

:anonsflfn ag ('jmt'a"{ one.-((j:llmenstlr?rlatlﬁly def(?rme(]il nematic energy density for undeformed states. Then, they derived
ayer otiered dramatic evidence that the surlace Iree energ icroscopic formulas foK 3 andK,, in line with those by

dep:ﬁ;gmgt) on the Itjln?entlalhderlvalltllves of Fheb:jlre(ﬁcgr SUCB oniewierski and StecKi9]. Drawing on the existence of
gg 27 5‘5 gg‘;goégwp ayha pl dys'(ia );]percelvathetr I ﬂ: such a microscopic formula as a rationale for the physical
1E eI, € should note, however, that afl these reality of K,3, Pergamenshchii27] and Faett{31] consid-

experiments aimed at measurikg, and/orK; involve real red, in a rather qualitative manner, the origin of the Oldano-

interfaces where the nematic phase is interrupted by distin arbero pathology as resulting from the termination of the

solid or fluid media. Hence, even if these experimental "®tree-energy expansion at a finite order of gradients. These
sults require the presence of surfacelike elastic terms for co

t lanati s b f that th | two authors, however, reach mutually contradicting conclu-
rect explanations, it Is by no means a proof that th€ valu€g;, s ahqyt the microscopic structures that the presence of
assigned there tK,, and/orK 5 should be unique, indepen-

: : - . Kz would bring about in the immediate vicinity of an inter-
I?teerr];t?fr(tehe nature of the interface, as tacitly assumed in th?ace. With this as yet volatile status in mind, we may con-

The densitv-functional th f | and ri clude that even after over 60 years in existence, the surface-
€ aensity-functional theory ofters a general an rlgor'Ii_ke bulk elasticity is still far from being mature, making a
5sharp contrast with the otherwise firmly established context

Yince there is na priori reason to select a particular way of
‘irreversible mappingr,r’)—R out of infinitely many differ-
ent possible choice@etailed the discussion in Sec.)l\Mhe
Tesultantf;,idR) cannot necessarily be unique as a function

eneral basis of the density-functional formalism. On a natu-

| assumption that the director is uniformly oriented in the
undistorted ground state of a bulk nematic liquid crystal, we
show by expanding the free energy about the ground state
Xhat the splay-bend constant satisfies=0. This result au-

Though not emphasized in their paper, their analyses als
addressed the surfacelike elasticity, gividg; and K,, an

explicit microscopic formula. The density-functional route to
the liquid-crystal curvature elasticity has since then been e

ploited by a number of authof44,21,26,46—4p who culti- tomatically resolves the Oldano-Barbero pathology and of-

vated as_'mp'ef way to reach ess_entl_ally t_he same for_mulas %rs a rationale for conventional treatments of the director
those originally derived by Poniewierski and Stecki alongconfiguration problems with the negligence ofs. Our ar-

theAcIustertei(aa33|gn aﬁpﬁﬁ?j' nd S the densit gument rests on the following observation about the peculiar
S postulated by INehring a aupe, the dens Y'asymptotic behavior of 5 in the small and long-wavelength
functional theory yields a nonlocal expression for the elasti

free energydF in the generic form Simit _of direc_tor _distortion, compared with the rest of the_

elastic contributions. Indeed, in terms of the characteristic

amplitudee and wavelengtly of distortion, as shown in Fig.

5F=f dr dr'G(r,r'), (6) 1, it follows from Eqgs.(2)—(4) that the leading term ifi 5 is

of ordere¢ 2 because of its involvement of the second-order
with r andr’ being the molecular positions, as a manifesta-derivatives of the director, wheredg and f,, are of order
tion of the finite range of the intermolecular interaction po-€?¢ 2. Hence, unlesK;;=0, in the weak distortion limit
tential. The elastic free-energy density,s;{R) must be a (e—0), the f,53 contribution tends to dominate. Due to its
local function defined at a single poiRtin such a way as to linear dependence o#) the dominance of ;5 inevitably de-
satisfy stabilizes the uniform ground state, though this effect is lo-
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A, tangential as well as the normal gradients of the director, the
interfacial elastic free-energy density is shown to consist of
the anchoring energy and a contribution formally identical to
f,4 together with other terms connected with the surface-
specific symmetry at the interface having no counterparts in
the bulk phase.

1. FUNDAMENTALS OF DENSITY-FUNCTIONAL
THEORY

According to the density-functional theop$5], the equi-
librium density profile of a nonuniform anisotropic liquid
can be determined as the one that minimizes the grand ther-
modynamic potential) regarded as a functional of the

FIG. 1. Schematic illustration of an orientational deformation in Single-particle density functiop(r,w) at the pointr and the
nematic liquid crystals. The director is initially uniformly aligned in Oriéntatione. For the sake of brevity of presentation, we
a homogeneous magnetic f|é+d) a|0ng thez axis. By app|y|ng an restrict our attention here to an aX|a”y Symmet”cal r|g|d
orthogonal fieldH, , a weak director distortion with the character- molecule whose orientation can be specified by a single unit
istic amplitudee and wavelengtts is induced. The long-wavelength Vector w.
limit is understood to be taken with the magnetic fields becoming The grand thermodynamic potential functional has the
infinitely small, i.e.,H, ~Hy~0O(£7?). general form

calized to a boundary. This is actually an alternative way of
pointing out the origin of the Oldano-Barbero pathology and
presents a contradiction to our ansatz of the uniform ground
state. Conversely, therefore, the presumption of the unifor- +f dr de p(r,@)Ve(r, o) 9)
mity of the ground state results in the absenc&gf as an T eET T

elastic constant of the bulk origin. On the other hand, the

other surfacelike elastic constais,, making a contribution WhereVe.(r.w) is the single-particle external potential like
of order €¢°2, is shown to be real and to approximately the one that acts on a liquid-crystal molecule from a solid

satisfy an extended Nehring-Saupe relatitfy,= (K, subs_trate anﬁid[p] is 'the Helmholtz free energy of an ideal
—K,,)/2 after incorporation of the density corrections in ori- (Noninteracting gas given by
entationally distorted stat¢21].

The seeming discrepancy of the present rdsyt=0 with Filpl= kBTf dr dew p(r,@){IN[\°p(r,@)]—1}, (10
the previous microscopic theories giving an apparently non-

zeroK,5[9,14,29 is then analyzed by making a more gen- . . . .
eral gradient expansion of the intrinsic free energy in such é(v'th A belntg tfh?hth?rmal Wavele}ngtl?[: F"}a”g.)’[.p] 'i the th
way as to potentially allow an appearance of a term linear jfXcess part of the iree-energy functional ansing from the

e. TheK 5 term comes formally from the ground-state part of Nterparticle interactions. The aforementioned minimum
the free-energy functional rather than from the elastic exce rge/(zr:i)gt(i);;gtlai?]reanuilti?ermodynamlc potential follows from
free energy. We show that the aforementioned freedom iIII q y

choosing the integration variable makes it impossible to Q <0 11
uniquely defineK,3, even as a coefficient of the gradient [pegl=0p], (D

expansion of the intri_nsic_free energy. This is in fact a maniyhich is valid under a fixed temperature and chemical po-
festation of the physical irrelevance Bf;. We show here  yonig) with p,, being the equilibrium density function. The
that K;5=0 should result even in the gradient expansion Ofequality holds if and only ifo(r,@) =peqr ).

the ground-state free energy. Our argument rests on the gen- Once®[p] is given, the equilibrium density is found from
eral algebraic property of the part of the nonlocal free-energyq variational equation

functional G4(r,r'") responsible for thé&,; term,

Q[p]=Fid[p]—<1>[p]—,uJ dr dow p(r,w)

6Q)

Gua(r,r')==Gyqr',r) + O(e?¢7?). tS) o

0, (12)
So the double integral 06,4(r,r’) is internally canceled to ) N

vanish to the order oD (&%) within the range of intermo- Which, on account of Eq¢9) and(10), specifically leads to
lecular interaction, thereby leaving,5=0. It is further 1

shown that the emergence of an apparently nonzero yet am- |, A3o(r = Tu—V.u(r fclor 13
biguousK ;5 in previous theories is an artifact of the gradient (A p(r @) kgT [u=Vedr )]+ clpir ), (13
expansion resulting from the inconsistent treatment of the

nonlocal-to-local mapping at a boundary. where

On the basis of the present formalism, we shall finally
derive a microscopic expression for the interfacial elastic cpir w):i P[] (14)
free energy for an obliquely aligning interface. Including the Y kgT Sp(r,w)
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denotes the first member of the hierarchy of direct correlawhere the reference fluid has also been regarded as being
tion functions. We introduce here a parametrized densityniform.
function, depending on a single paramedevia

Ill. ABSENCE OF K;3IN THE CURVATURE ELASTICITY
Pa(l,@)=predl, @)+ a[p(r,®) —pelr,o)], (15 OF NEMATIC LIQUID CRYSTALS

where p((r,w) stands for the density function in an arbi- A. Symmetry in undistorted nematic liquid crystals
trarily  chosen  reference  fluid. By  definition,
po(r @) =pe(r,@) and p;(r,w)=p(r,w). Then, by integrating
Eq. (14) from «=0 to 1, we readily obtain

The point group of an undistorted nematic phasB is,,
characterized by the presence of an axis of indefinite rotation
about the directon and a twofold axis and a mirror plane

D[p]—P[prel perpendicular ta. This is an expression of the uniaxial and
nonpolar nature of the nematic phase. Hence any ensemble-
19®[p,] averaged functions of the molecular positiomnd orienta-
= fo Ja da tion w pertaining to the undistorted nematic phase should

remain invariant under the following transformations:

1 (r,w)—(T[r],T[w]), whereT[ ] denotes the rotation operator
:kBTJo daJ dr do[p(r,m) = predr, )] about the directoftaken along thez direction by an arbi-
trary angle; (,ry,r)—=(y,—ry,—r); (o400,
XC(py:r,m) (16 —(wy,—0y,—o,); and(r,w)—(—r,—w). Being liquidlike

in the molecular positions, furthermore, the undistorted nem-

atic liquid crystal must also be invariant under arbitrary
:kBTf dr dafp(r,®) — prer, @)] translations.
. Any single-point function that is compatible with these
. _ _ symmetry transformations must be a function @f w)?
X : S :
Clprerifs) kBTfo (a=1)da alone. In particular, therefore, the equilibrium density func-
tion must be of the form
der dw dr’dw’[p(r,w)—p,ef(r,w)] Hl’,w)=po(n'w), (22)
X[p(r', @) —prer’,o')] with po(g)=po(—0q), which should also satisfy the equilib-

rium condition Eq.(13),
XC(pgy ol o). (17)
IN[\3po(N- @)]= w/kgT+c(p:r,m). (23
The third line follows by integrating the second by parts with [\ 1=ufle P
respect toa with the use of the definition of the Ornstein- Similarly, the Ornstein-Zernike direct correlation function

Zernike direct correlation function should depend only on the relative separation vector
5 u=r'—r due to the translational symmetry and satisfy the
1 o°P[p] inversion relations

clpir,or o) (18

" kgT 3p(r,@)dp(r @) _ _
c(pir o, 0)=c(p;r',—or,—o')
=c(p;r', @' 1,m). (19 =c(pir,—w' ', — ). (24)

Successive application of integration by parts yields a formal |, 54dition to the real-space symmetries as above, the

series expansion of the free-energy functional in powers ofematic phase has also a rotational symmetry in the isotopic
p=p(l @)~ preq(T , ). space spanned by the direcfsd]. This symmetry is known
Rearranging Eq(16), we get as the Nambu-Glodstone degeneracy, which states that the
1 free energy of a uniform nematic liquid crystal is invariant
CD[P]:kBTf daf dr de{[p(r,®)— prdr, ®)] under any degree of homogeneous rotation of the director.
0 By differentiating Eq.(23) by n, we obtain an expression of
XC(py 1)+ prof(l @) C(aprrl @)}, (20 the rotational degeneracy as
This formula, in combination with Eq$9) and (10), shows
that, for a uniform fluid with the densitp(w), the free-
energy density can be unambiguously defined by

fdr dw Cy(p;r,,r @ )pH(n-w)w|-dn=0(|n|?),
(29

which is valid for arbitraryn. Here p(t) =dpg(t)/dt and

1
fulp)=kaT | de [ des pleo)(InD\%p( )]~ 1 pikoT) ey
) Copiror )= o) —c(p;ror', o).
ko [ dac [ doflp()~ paf ) ol ir.) (20
We arrive at an alternative expression of the degeneracy by
+ pref( @) C(@presiT, @)}, (21)  differentiating Eq.(21) after substitutingo(w)=py(n- w):
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1 , pp— o, with respect to director rotation. According to the Oseen-
f a daf dride do'[c(p, ;I o o) Frank free energy, indeed, the curvature elastic stiffness for a
0 . . iy
distortion mode of wavelength scales ag™ <, so that for a
—c(pair, @ 1, 0)][po(N- @) —pref @ )]py givene, we can assume, by virtue of the asymptotic softness,
° e 0 that the external field also vanishes Eg~H, ~O(£ %)
X (n- @) - n=0(|on[?). (27)  while satisfying Eq.(29). Consequently, the corresponding

) S o o external potential proportional #d2 behaves asymptotically
This becomes a trivial identity i€(p,:r o' ') satisfies  5¢

the inversion relation Eq24) all along the path of the inte-

gral with respect tav. Vy(r,m)~0(&72). (30)
B. Density-functional expression With this condition imposed on the external potential, only
of the elastic excess free energy the distortion mode associated with the director that becomes

infinitely susceptible ag— can contribute a free-energy
density of the correct order @f 2. The rest of the modes of
- . . . density deviations, having a finite susceptibility even in the
liquid crystal undergoes an o_rlentatlonal deformation f'@m uniform state, can only yield a free-energy contribution of
to n(r)=np+an(r). The elastic excess free energf[n]is o order ofi, which indicates that the role of these modes

then stored in the medium as an equivalent of the reversiblg o iigible in the long-wavelength limit. In this asymptotic
work done by the external potential, as it has been turned Ogense,aF[n] becomes a unique functional of the director
from Ve, (r,w)=0 t0 Ve r,w)=Vy(r,m). In terms of the g 4

density functionpy(r,w) that is in equilibrium under the ac- Under the assumption of small and long-wavelength de-
tion of V4(r,w), the elastic excess free energy is thus givenformations we expand Eq28) in powers of

When the uniform nematic liquid crystal is subjected to
an inhomogeneous external potentig|(r,w), the nematic

by
Sp(r,®)=py(r,)—p(w) (31)
SF[n]=Q —Q_—Jdr dw py(r,w)Vy(r,w _
[n] Lpal L] Pl @)Ve(r, @) by substitutingp,«{(r,®)=p(w) in Eq. (17). After truncating
=Fulpal—Fulp]—®[pgl+®[p] the expansion at the order @f with the assumption of
I |

Sp(r,w)=0(e), we obtain

— [ o dofpy(r,0)—p()], 29 _

5F[n]=%kBTf dr de dr'de’C,(p;r,o,r, ')
wherep(w) denotes the density function in the uniform nem-
atic liquid crystal.

Here, however, it must be noted that since the directo
embodies only contracted information of the full density
function, the correspondence from a give) to the equi-
librium density functionpy(r,w), or equivalently toVy(r,w),
is not unique. As a result, the elastic excess free energy as C- Density function in a deformed nematic liquid crystal
given above cannot be regarded in general as a unique func- For evaluation of the elastic excess free energy for a given
tional of the director fleld, but must be understood to depenqjirector field, we need to know the equ”ibrium densiw func-
on the choice of the external potential as well. Itis only if wetion for the distorted nematic liquid crystal under the influ-
restrict our attention to the asymptotic behavior of the nemence of the asymptotically weakening external potential. A
atic liquid crystal in the limit of small and long-wavelength conventional approach is to extend the density function for

deformations that a Unique definition of the fUnCtiOﬁEl[n] the undistorted nematic Eq22) into a Weak|y deformed
follows generally from the Nambu-Goldstone degeneracystate via

To be specific, let us imagine that the nematic director is at
first uniformly aligned in a homogeneous magnetic fikllgl pd(r,®)=po(N(r)- w) (33
applied along the axis (see Fig. 1 and then a small per-
turbing magnetic fieldH , (r) is turned on perpendicular té, by postulating that the local structure of a distorted nematic
so as to induce a weak distortion in the director field. If weliquid crystal is indistinguishable from that of the undistorted
denote as shown in Fig. 1, the characteristic amplitude angtate with the same director, as long as the deformation is of
wavelength of the distortion by<1 andé, respectively, we a sufficiently long wavelength. This quasihomogeneous ap-
have for sufficiently large proximation has indeed been employed by all the previous
authors except Somoza and Taraz¢®a| to work out the
H, /Ho~0O(e) and henceVH, /Ho~O(e&1). (29 microscopic expressions of curvature elastic constants.
One should note, however, that the above approximate
An immediate consequence of the Nambu-Goldstone deform automatically inherits the symmetry property of the
generacy is that in a uniform systef@i—~), the transverse yniform nematic liquid crystal for inversion of molecular
susceptibility of the director, defined byr{/dH, ) —o, di-  orientation, i.e.,o——e, though it is no longer a general
verges to infinity like 11, asH,—0[51]. This means that as requisite in deformed states. In reality, E§3) must be re-
¢—oo, the nematic liquid crystal becomes indefinitely soft garded as the leading term in the expansion of the true den-

X Sp(r,w)dp(r',w'). (32

El'he term linear indp automatically cancels out because of
the equilibrium condition fop(r,w), Eq. (13).
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sity function in terms of the spatial gradient of director. Toyields three independent contributions coming from each
the required order of 1, therefore, we must in general retain term of the identity. The first two contributions reflect pri-
the contribution that is first order in the gradient of the di- marily the breakdown of the Nambu-Goldstone degeneracy
rector. This correction in density function beyond the quasi-and of the inversion symmetry, respectively. Hence, on ac-
homogeneous approximation must be determined by the resount of Egs.(24) and (25), these two contributions are
quirement that the external potential conjugatepfr,w) shown to vanish in the bulk nematic liquid crystal. For ex-
should behave ag 2 in the long-wavelength limit for the ample, the second contributiaiF ,[n] can be transformed to
given director fieldn(r). As shown in Appendii< A, in terms

of the de'nsny-densny c_orrglatlon functio@, (p;u,w,w’) . SF,[n]= —%kBTf dr de dr’de’ Spg(r,®) Spo(r’,@')

for the uniform nematic liquid crystal, the density correction

can be rigorously written as

X[c(p;r o, 0)—c(p;r,—o',r',—w)] (37)

with the use ofdpy(r,m)=dpy(r,— ). Using the inversion
relation Eq.(24), we obtainsF,[n]=0.

_ , Consequently, we are finally left with only the third con-
XCa(p;u, 0", @")po(Ng- @) o' -[u-Vn(r)], tribution, apparently related to the density gradients. Then,
(34)  substituting Eq(36), we obtain

Ap(r,w)Z—J' du du'dw'dw”Cgl(Eu',w,w")

which is antisymmetrical forw— — . This formula clearly 5F[n]=%kBTJ dr dew dr’ de'c(p;r,o,r, ')
indicates the importance of short-range orientational correla-

tions for the emergence of density correction. Moreover, the Xo-[n(r')—on(r)]e’ -[dn(r’)—sn(r)].
antisymmetry demands that, in order fop(r,w) to survive,

the molecule must be asymmetrical along at least one of its (38)

principal axes. This is the case for most real molecules, but igjging on(r’)—on(r)=u-Vn+0O(e& ), we can derive the

not so in most of the model molecules such as simple rodgjastic free-energy density, due originally to Poniewierski
and disks. and Steck{9], as

D. Microscopic expressions for Oseen-Frank elastic constants SF[n]= f dR feasid R) (39)

We shall first ignore the density correction and prove the
absence oK ;. This result remains valid even after the in- with
clusion of the density correction since its effect is solely to
negatively renormalize the bulk elastic constakts, Koo, ol R) = 1 M.. (ﬂ) (ﬂ) (40)
K3, and K,, as shown in Appendix A. For a systematic elast 2 TR\ 0R; )

evaluation of the elastic excess free energy, we make an . . - .
extensive use of the identity where the elastic constant tenddris specifically given by

op(r,w)dp(r',m") Mijk|=%kBTf du dew de'c(p;u,w,®") pH(Ny- @)
=3[ p(r,w)Sp(r,w' )+ Sp(r',w)dp(r',@')]

Xpé(no' w,)Uinwkw( . (41)
+3[8p(r, ) p(r', @)= 8p(r,0') 5p(r',®)]

Here c(p;u,m,@’)=c(p;0,0,r'—r,w’) and the summation
+ 2[8p(r,w)— Sp(r',@)][Sp(r', @ )— Sp(r,w')]. convention over repeated indices has been employed. Note
(35) that f o 6idR) IS positive. an(_j is also robust to changes in the
nonlocal-to-local mapping in the sense that

Each of the three terms on the right-hand side has a unique foiasid R) = felasid R') + O(€2£73), (42)
physical significance associated with the symmetry of the ) ] )
system and hence this formula allows a clear identification o¥vhich validates the meaning 6f,sic(R) as the elastic free-
bulk and interfacial contributions, as will be exploited in a €nergy density. o
later section. In fact, we show here that the first two terms It is evident from Eq(40) that the tensoM has a trivial
vanish for symmetry reasons in the quasihomogeneous agymmetry for permutation of its indices ad;=Mjiy ;
proximation, so they could make contributions only at a reafmoreover, the specific form dfl given in Eq.(41) yields a
physical boundary where the bulk symmetry may be brokenore stringent Cauchy relatids2], which reads
The last term is a volume contribution from which the _ _ —
Oseen-Frank elastic free energy comes. Mijia =Miita = Mijic =M 43
Substitution of the above identity into E¢32) together  This relation originates from the particular microscopic
with structure we have adopted here for the nematic liquid crystal
and goes beyond the requirements on tensor components set
Sp(r,®) = Spp(r,m)=po(N- @) — po(Ng- @) by the macroscopic symmetry of the nematic phase. Indeed,
, ) it is readily shown that the uniaxial symmetry abogtalone
=po(No- @) @- 6n+O(€%) (36) leaves us four independent tensor componehts,,,,
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Myxyys Max0 @nd M,y (with the z axis taken along), L _
which could make nonzero contributions to the curvature fc(R):—szTJ du dw do'Cy(p;u,@,0')
elastic free energy and satisfy
XAp(R,w)Ap(R,w"), (50
M 0= Myyyyv (449 )
where use has been made of the relation
M yy™= My (44  Ap(Rw)=Ap(R'w) +_O(e§‘2), which implies the robustness
of f.(R) to changes in the nonlocal-to-local mapping. Since
M 220=M2yy, (449  the density correction is linear to the first derivative of the
director, it may be evident that no contribution of the type of
Mgy Myys= Moo Mxyy- (449  Kistermis generated in the above equation. It is also notable

that the correction in the elastic free energy is always nega-
With the use of these relations in E40), the free-energy tive, reflecting the favorable structural relaxations brought

density is rewritten into the Oseen-Frank form as about by the density correction.
Substitution of the specific expression of the density cor-
fetastid R) = 3 Myxxd V- )7+ 3 My (- V X N)? rection Eq.(34) into Eq. (50) yields
+3M ., (NX V X N)2 1 ang\ [ an,
fc(R)__EAMijkl R R )" (51

—3(Myyyyt Myyyd V- (NV-n+nX V X1).
(45) where

No K5 term appears here as a direct consequence of the fact
that second-order derivatives of the director are unable t&*M
make a contribution of the order &f2in Eq. (38). Compar- o o
ing the above expression with the original Oseen-Frank free- XCy (pu", " w")c(piu, 0", w)
energy density, we can make a tentative identification of the
elastic constants as

ijkl :kBTf du du’du"dew dw' de’dw”

Xc(pru',@",0')py(No @) ph(Ny: @' ) Ui wya] .
(52)
K11= M yxxxs (463 o ) o
The indices in the above definition exactly correspond to
K22= My, (46b) those of the elastic constant tensor. With the addition of
these corrections, the previous results are modified to

K3z=M 2% (460

K 11= Mixxx™ AMiyxxo (46d)

K24=Myyyx: (460 K22= M yy— AM 5y, (46b)

Ky3=0. (460 Kas=M 30 AM e (46¢)

By applying the Cauchy relation to E®@4d, we get an K 24=Myyysx— AM, gy, (46d)
additional relation

2M = M My, @7 1m0 e

_ ) As already mentioned, we still hau€,5=0. This result
which further reduces the number of independent compogytomatically resolves the Oldano-Barbero pathology and of-
nents to 3. Furthermore, according to E¢63—(46d), this  fers a rationale for the tacit assumption made in almost all

equation is translated to continuum theoretic treatments of director configuratidds
This is also consistent with recent experimental estimates of
K24=(K11—K2)/2, (48) Kk, ,[41].

. . _ As shown in detail in Appendix A, there appears another
which may be most appropriately referred to as the Nehringggychy's relation connecting between the correction tensor
Saupe-Cauchy relation for its microscopic origin. components as

As mentioned at the beginning of this section, the result
K13=0 is not affected even if the density correction is taken AMyyyy=AM
into account. According to EqA13) in Appendix A, the
decreasén the elastic free energy brought about by the denwhich indicates that the corrections kg, andK,, are iden-
sity correction can be written in the local-density form tical. Due to the distinctness of this relation with the previous
one in Eq.(43), the Nehring-Saupe-Cauchy relation must
ive up its general validity in the presence of density correc-
AFC[n]:J’ dR fe(R), (49) gons. Fl)Jndegr a plausibleyapproxi?nation ignoring th{z short-
range intermolecular orientational correlation within a plane
with normal to the director, we can show that

nyX! (53)
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AMyyyy=AM

XXYy Xyyx 0. (54)

+%f dw dm’mij(R,w,w’)
Hence, in this situation, the correction applies onlykig

andK 5 [21]. In view of the negative sign of the corrections, ,
this result leads to the extended Nehring-Saupe relation Xdip(R,0)dp(R,e")+ - |, (57)

K242 (K11—Kgo)/2. (55 where the coefficients of expansian, b;;, andm;; are func-
) _ ) tions of the local density. The first term in the large square
The absence df 3 is formally an immediate consequence brackets fdw ¢(p(R,w)) has the meaning of the intrinsic

of the uniformity of the nematic ground state: This Cpnditio_”free-energy density in a hypothetical homogeneous fluid with
demands that the excess free energy associated with a dirggs density everywhere equal fdR,w) for a fixedR.

tor distortion should always be quadratic in the distortion |, o qer to systematically carry out the expansion about

amplitude for stability reasons. However, since Kigterm  yp0 |9cal density, we introduce a new parametric density
is linear in the amplitude as already emphasized, there is R, ~tion defined by

way for theK 5 term to appear from such a quadratic free-

energy expression. In this sense, the uniformity of the nem- p .. ..(r', @ )=p,(r,@ )+ a'[p.(r' o) —p.r,e’)]
atic ground state is a sufficient condition for the absence of

K3, but it may not be a necessary condition for it since the =por,@)+ta'alp(r’,0)—p(r )]
uniformity rules out not onlyK 3, but also any other spon- (58)
taneously modulated structures such as the cholesteric twist.

We shall look into this point in more detail in the next sec- Taking similar steps as from Eq&l6) and(17) with respect

tion. to o', we obtain
IV. ORIGIN OF K3 IN PREVIOUS THEORIES C(Pail, @) =Clpar ;T @)
. . . 1
The present result |nd|ca'§|ngl3=O |s_apparently in sharp - aJ' darf dr'deo’
contradiction with the previous density-functional theories 0

due to Poniewierski and Stecf®], Lipkin, Rice, and Mo-

hanty[14], and Teixeira, Pergamenshchik, and Sludifl, X[p(r' ") =p(r,0)]c(parahor’ o) (59
all of which predict an apparently nonzeko,;. It should,
therefore, be in order here to expound in detail the origin of :af dr'de’[p(r',@")—p(r,®)]c(p,f,or, o)
this discrepancy and how it can be resolved.

Their common approach is to perform the functional Tay-
lor expansion of the intrinsic free energy about some refer- + %azf dr'de’dr"dw”
ence density function, which is assumed homogeneous yet is
not the equilibrium density function in the undistorted XC(pgyr;hor @ 1" o) p(r' o) —p(r )]
ground state as we adopted in the preceding section. Po-
niewierski and Stecki took the vacuum as the reference, and ~ X[p(r",@")—p(r,@")]+0(£73). (60)

Lipkin, Rice, and Mohanty and Teixeira, Pergamenshchik,H denot h density function that
and Sluckin employed the isotropic liquid phase. A unified. (at;ekg?];ré\zryviﬁgrgsegua?%??%e%ﬁsa f;r;‘;' ry Sul;]l;:slt?tz a
treatment of these two approaches is possible by starting = Eq.(60) into Eq.(56), with the use of Eq(20), yields,

with Eq. (20), up to the order ofd(& ),

1
Dpl=koT | de [ or defp(r. )~ @) Tc(p.ir.) op1keT [t e dofopt, et .09
0

TP @)C(aperil )}, (56) + pref @)C(@press T, @) ]

in which the position dependence of the reference density 1
function has been dropped for the assumption of its homo- +kBTf a daf dr de dr'de’ Sp(r,w)
geneity. 0

Our goal is to expand the intrinsic free-energy functional
in powers of the density gradients in the Poniewierski-Stecki
form

X[p(r',@)—p(r,o)]c(py,;ror  w)
1 1

+ > kBTf a’zdaf dr dow dr'de’'dr"dw”

o 0

alp1- | dR[ | do dlo(R.o)

XC(pr i1 @ ,1",0") Sp(r, @) p(r,e')
+f de a,(R.w)d,p(R. @) —p(r.@)][p(r" ") —p(r,a")], (61)

where 8p(r,@)=p(r,m) — pef®). It may be worth emphasiz-
ing at this stage that the above expression is more general

+f de gi[b;j (R, 0)d;p(R, )] than the quadratic expansion of the free energy derived in
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Sec. I, Eq.(32), in that no assumption has been made herélarazona’s choice, though criticized by Teixeira, Perga-
regarding the nature of the ground state and there is no ranenshchik, and Sluckin, wag=0 [21], which led them to
striction on the distortion amplitude except that the wave-argue thatk,; is not a well-defined parameter. Since ao
length be sufficiently large. Put differently, the functional priori, if not aesthetic, reason exists to adopt a particular
Eq. (61) is applicable even for determining the ground-statevalue for v, it necessarily leads to a fundamental criterion
structure, be it homogeneous or inhomogeneous, while Edhat any physically meaningful local parameters such as elas-
(32) is not. Note that the formulas by Poniewierski andtic constants must be invariant under notional changes in
Stecki[9] and those by Lipkin, Rice, and Mohanit¥4] and  $(u?).

Teixeira, Pergamenshchik, and Sluck2®] follow by adopt- Taylor expansion of the density function abdwitup to

ing in the above the quasihomogeneous density functiothe order of¢ 2 gives

p(r,@)=po(n(r)-w), along with pw)=0 or pglw) (the

density function in the isotropic phaseespectively. p(r,w)=p(R,@)+(y—2)(u-V)p(R,w)
The gradient expansion is formally obtained by perform-
ing the Taylor expansion of the density function in E6) +3(y=3)%(u-V)*p(R,0) (66)

around a reference poiRk. The first term is essentially local

and thus we can unambiguously identify the integrand withand a similar equation fqu(r’,w), which is found by replac-

#(p(R,w)) in Eq. (57) by substitutingR for r. Here the ing y by y+1 in Eq.(66). We note here the relation
Nambu-Goldstone degeneracy demands that, within the

guasihomogeneous regim@m ¢(p(R,w)) should be a con-

stant independent dR, which is equal to the intrinsic free- f du du’[c(pyriu U, w0 ")
energy density in the undistorted nematic liquid crystal.
Therefore, as long as we can assuptew)=py(n-w), as +C(pariul’ @0, o) ]uul

done by Poniewierski and SteckB] and other authors
[14,2€ this term gives only a constant bias independent of
the director field and hence can be safely neglected. Beyond
the quasihomogeneous approximation, however, this is no
longer true. Thus the density correction discussed in Sec. Il —ClpariUl, @ 0" @) Juiuj,
is to make an excess contribution to the free-energy density,

which the curvature elasticity should correctly take into ac-where

count. We shall discuss this subject in Appendix B since the

density correction does not have any effect on kkheg sur-
facelike elasticity.

The second integral is of central importance for the
present purpose since it is this term from which khg term
derives. The integral reflects the nonlocal pair interaction
betweerr andr’; as already stressed, the way to relasnd (
r' to the reference poirR always involves a certain degree
of arbitrariness. To illustrate the influence of this arbitrari- - L
ness on the gradient expansion, we restrict our attention to g)[p]zf de d“’¢(p(R'w))+kBTJ deo a do
subclass of nonlocal-to-local mapping schertres )—(R,u)
that satisfy the set of plausible conditions

:f du du’'[2¢c(py.r;UU", @0, w")

C(pa;R;U,U’,(u,w',w”)EC(pa;R;O,w,u,w’,u’,(u"),
with u=r'—r andu’=r"-r.

Then, substituting the above Taylor expansion into Eq.
61), we find

Xf dudw dw'c(p,r;U,w ")

acr,r’)
= =1, (62) 1
d(R,u) Xép(R,w)u-Vp(R,w’)+kBTJ de a da
0
R(r,r)=r, (63
’ 2 . ’
R(r+ar’ +a)=R(rr')+a, (64) deu do de'V-[y(U9)C(pyr;U o 0")
where the first condition is the requirement of nondilatation- X op(R,w)u(u-V)p(R,w")]
ality and the last demands the translational covariand@ of
for an arbitrary vectoa. The most general form dR that —%kBTf dRJ du do de'c(pr;u,0,")
meets these conditions is readily verified to be
r+r’ 1 o
R=— 5 v 65) XU-Vp(R,m)u-Vp(R,w )+ZkBTf deOa da
whereu=r'—r andy(u?) is an arbitrary regular function that xf du du'dew de'dw’[c(p,r;UU" 00" o")
solely takes care of the nonuniqueness of the nonlocal-to- ’

local mapping in the present context. Poniewierski and
Stecki; Teixeira, Pergamenshchik, and Sluckin; and Lipkin,
Rice, and Mohanty tacitly adopteg=3, while Somoza and X 6p(R,m)u-Vp(R,w")u’-Vp(R,w"). (67)

—C(pyriUU @,0" 0')]
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The second and third terms come from the second integral in K24= Myyysx— AMyyyst By (73
Eq. (61), which is linear in the spatial difference in the den- i )
sity function. The third integral is a pure surface contribu-Hence, unless,,,=0, the Nehring-Saupe-Cauchy relation
tion, from which theK ,5 term apparently derives, as will be €an no longer hold even in the quasihomogeneous regime.
detailed below. A striking feature of this formula is that all This result also agrees perfectly with the Poniewierski-Stecki
the terms, except this surface contribution, is free frann formula;hh(r)]\_/l\iever, thle i)_(pr_essmn derllveld tl’(y T‘?'Xer;'fa' per-
particular, if we employ the quasihomogeneous density func’?haerpeet?;inccén,s iégt]gnﬁyulcez;r\]/ihsga}[ﬁgal\rlzwri);]gefgzingel?ctafcﬁ;rrrné-
gﬁg’tg ItzeITrT/Z?sI?(;[?\Zycrlr?ri:a:ryagmeﬂ!aest)énrfsﬁirr?wla?ésgggzaerﬁ-aﬂon intact. We shall leave it to Appendix B to show that

: The present results fa¢, 5 are unaffected even when the den-
erates exactly the same expressionsKey, K,,, K33, and

. . sity correction is taken into account.
Kq derived in Sec. lll, Eqs41) and(469—(460), before the ¥I‘he above derivation clearly demonstrates tKat as
density correction had been invoked. Furthermore, it can alsQ

be revealed that the only effect of density correction is toWeII as K4 has a twofold ambiguity in a general gradient

renormalizek .- Koo Kaa. andK..in the same manner as in expansion: First, they are linearly dependent on the arbitrary
Eas (46d)—(igd)'22'[’he3élétailed2‘aerivations are left 1o Ap- parameter(u?), so they can be assigned whatever value one
gs. | - ; . P wishes; second, the choice of the reference density also af-
pendix B for the ultimate irrelevance of this effect to tig, fectsK3 andK,,. The first is in effect a restatement of the
ISS#Sarrive at the expression fét, ; formulated in the pre conjecture by Yokoyampl6] and by Somoza and Tarazona
13 - i TNt
vious theories[9,14.26, we only need to substitute the [21] thatK ;5 does not posses a unique definition because of

guasihomogeneous density in the third integral of the abovthe ambiguity in the nonlocal-to-local mapping. The ambigu-

radient expansion. The resultant elastic excess free enerﬁ is a clear indication that the surfacelike bulk elastic con-
9 P - ants cannot be a well-defined material parameter, unless an
8y, {n] can be written as

independent condition is given wherelpis uniquely fixed.
an, This is, in fact, what Teixeira, Pergamenshchik, and Sluckin
iik &?) [26] claimed, in an objection to Somoza and Tarazona’s ar-
] ument; they argued that the only one natural choicey of
(6y ~ 9ument they argued th y o
should bes, corresponding tdR=r, for reasons of consis-
where tency in the choice of undistorted local reference state. In
what follows, however, we shall demonstrate that the emer-
1 S — ) gence of a surface term itself is an artifact of the gradient
Bijk:_2kBTf0 a daf du dw do’ y(u%)c(p, U, o ") expansion that appears when a gradient expansion is for-
mally applied to an essentially null functional. This elimi-
X[ po(No- @) — pref @) 1p4(Ng- " )UjU; .. (69  nates the discrepancy in question in favor of our results de-
rived in Sec. lll; for a more detailed examination of the
By the uniaxial symmetry about, (taken along the axis argument of Teixeira, Pergamenshchik, and Sluckin see Ap-
and the symmetry about the permutation of the first two inpendix C.

1 P
6ﬂsun{n]=defsm(R)=§deﬁ(B

dices, we have To look more closely into the nature of the surfacelike
bulk elastic term, we introduce the symmetrical and the an-
Bzxx= Bzyy=Bxzx=Byzy. tisymmetrical components of the direct correlation function
by
Bzxy: Bzyx: szy: Byzx: 0. (70

cS(pir, o, @ )=3clp;r,or ,w)+c(p;r,o r' o],
With the aid of this relation, Eq:68) is reduced to
cAp;r,or,w)=3clp;r,or ,m)—clp;r,o rw]l.

= . .n)—12% . -n+nXVX . . .
fsu( R)=ByzxV - (NV-N) =3B,V - (NV-n+nXV n()7,1) Using these definitions in Eq467), we can rewrite the sec-

ond and third integrals in a more comprehensible form as
which allows an identification

1
d[p]=---+k Tj dRJ a da
K13= Byzx- (72 ® 0

With y(u?) =1 andp,.(@)=0, Eq.(69) offers an integral rep-
resentation of K;3, completely equivalent to the
Poniewierski-Stecki formuldEg. (3.3 in Ref. [9]]. On the 1
other hand, the formulas due to Lipkin, Rice, and Mohanty XU'VP(R,w')+kBTj dRJ a da
[Eq. (4.10 in Ref.[14]] and Teixeira, Pergamenshchik, and 0
Sluckin[Eg. (26b) in Ref.[26]] can be reproduced by setting

XJ’ du dw dw'c?(p,r;U,o,0")5p(R,w)

Yu?)=3 and prefw)=pis, and replacingc(p, ;u,o,e’') by xf du de dew' V- [1(UA)c(p,r;U @ ')
c(prer;U,@,@"); the result is approximate and is slightly dif- '
ferent from Poniewierski and Stecki’s result due to the neg- X 5p(R,@)u(u-V)p(R, e )]+ -+ . (74)

ligence of higher-order direct correlation functions. The ad-
ditional K, ,-like term, along with theK,3, is to renormalize  This equation clearly reveals the distinct symmetry origins of
the K,, in Eq. (46d) to give these two terms, though both come from a single linear term
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in the original nonlocal expression. For the quasihomoge- u r
neous density function, the former integral involving the an- kz z .,./Rz
tisymmetrical component is readily confirmed to yield a con-
tribution linear ton-(VXn), thereby indicating its role in
spontaneous twisting in a cholesteric phase containing chiral
molecules. The intimate connection between the absence of
the antisymmetric component and the Nambu-Goldstone de-
generacy may be evident in E@7).

The latter integral, on the other hand, is the sourck @af
which could also have an effect to induce a spontaneous
modulation due to its linear nature as emphasized in the pre-
vious sections. Here, returning to the original free-energy
expression Eq(61), we define a free-energy kernel function

by

" — ' ooy ' FIG. 2. Change in the range of integration associated with the
G(r.r )_f de deo’ Sp(r, @) p(r", ") = p(r,e)] application of a nonlocal-to-local mapping,r’)—(R,u) for a
semi-infinite nematic liquid crystal with a sharp boundaryg&0.

The true integration region is the lightly shaded area occupying
. . . . . r,,r.>0 and the hatched regioms andB are brought about by a
which, on gradient expansion, yields tha, tgrm. Making . mapzping to the new integration variablgsu). TheR, axis is fixed
use Qf the permutaﬂon symmetry of the direct correlat|onby the conditionr,=r}, whereas the inclination of the, axis is
function appearing in the a_tbove, we can prove the approXigependent on the mapping paramegeronly when y=0, the re-
mate antisymmetrical relation gionsA andB become exactly symmetrical about tRe axis and
N , N2 the contributions from these regions cancel each other to make the
G(r,r")==G(r",r)+0(p(r)=p(r")[%). (76)  integral agree with the original one. In this sense, the choice=df

. . may well be said to be the correct mapping for this particular case.
The second term on the right-hand side represents a term
quadratic in the density difference, from which no surfaceOf the approximate antisymmetry 6(r.r') about the plane
terms(involving y) can be generated. Consequently, substi- PP y Y ’ P

S : . g
tuting this relation into Eq(61), we reach our central result r2=1z, _the double m_tegral over the entire §§m|-f|n|te nem-
atic liquid crystal vanishes to the order©f e£ ™ ©) as shown

above. However, when the mapping frdmr’) to (R,u) is
f dr dr’G(r,r’)zf dr dr'dew de' dp(r,w)[p(r',w") naively implemented for a natural range of integratity»0
and —e<u,<+o0, the integration ok andu should also be

XCHpgril o o), (75)

—p(r,®)]c%(py; it 0 o) performed on an additional regig/ andB in Fig. 2) out-
B side the integration range of the original double integral.
=0(e?¢ ?) (7)) Since this region is not i i
Since this region is not in general symmetrical aboutrthe

=r, plane, except for the case ¢f0, the additional inte-

gral does not necessarily disappear, thereby leading to a fic-
K..=0 (79) titious surfacelike contribution given by E¢68). It is easy

13=0. ; ; P

to confirm that if the real surface contribution is treated by
It must be clearly noted that, in the above derivation ofconsistently using the same mapping, the ambiguity associ-
K,5=0, we have not assumed the permutation symmetry ofted Withy is rigorously canceled ou#3].
the direct correlation function. Rather, we showed g}
comes only from the permutation symmetrical part of the
direct correlation function, and when it is combined with the
linearity of the term in the density difference, the free-energy The surfacelike elasticity embodied By ; andK,, refers,
contribution with the relevant order td,5 vanishes due to in principle, to a fictitious boundary taken in a bulk nematic
the semilocal cancellation of the interaction free energy. Irliquid crystal. In an attempt to measure these constants, how-
this respect, we can conclude th&i,=0 is a very general ever, it is inevitable to bring in a real physical boundary in
result, which applies not only to nematic liquid crystals butthe hope of mimicking this hypothetical surface. Neverthe-
also cholesteric liquid crystals and a much wider class ofess, these constants may be modified at the real interface,
mesophases. and even additional phenomenological constants may appeatr,

The emergence of the apparent surfacelike bulk term Ecqdepending on the nature of the interface in question. It must

(69) is actually an artifact of an improper application of gra- therefore be of interest to see how the present density-
dient expansion at a boundary. The ambiguity associateflinctional approach can be extended to the system with a
with the parametety is a clear manifestation of this fact. To real interface.
illustrate this point, let us consider a semi-infinite sample of We consider a planar interface between a semi-infinite
a nematic liquid crystal having a sharp boundarg-ad. As  nematic liquid crystal and a rigid structureless substrate; we
schematically depicted in Fig. 2, the double integral oftake thez axis along the interface normal. Then, the effect of
G(r,r’) onr andr’ runs over the regiom,,r;>0. Because the substrate may be represented by a fixed single-particle

and hence

V. INTERFACIAL ELASTIC FREE ENERGY
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external potentiaV(z,w), which goes to infinity ag— —o° Finally, by applying this potential to the real nematic liquid
and approaches zero sufficiently rapidlyzas~. In the ab-  crystal-substrate system, we find the variation in the density
sence of deformation, therefore, the density function gradufunction pertaining to the real boundary as

ally varies from its bulk formpy(w) to zero as one goes

across the interface from the nematic quL_Jid grystal__to _the 5p(r,w)=f dr’dw’dr”dw”Cz’l(pg;r,w,r’,w’)
substrate. Let us denote the density function in equilibrium

under the substrate potential in the absence of bulk distor- — 0 oo P
tions by py(z,w). Then, it satisfies lim..py(z,0)=p(w) Calpir', @' ,r",@") Spy(r", @") (80)
and lim,_, _..p4(2,)=0. Now, the deformation free energy Supstituting this equation into E¢82'), we obtain

is defined as the free-energy increase associated with the
deviation of the density function from the bulk-undistorted
state described y(z, w). The quadratic expansion of the
free-energy functional Eq32) is valid even in the presence ., .,
of an interface, provided the ground-state density function XK(r o, @")dpy(r,m)dpy(r' @), (81

p(w) is replaced byg(z, w), complying with the presence of \;here the kernel function is defined by
the substrate, and the density deviation by that measured

from p,(z,w), _
pg( ) K(I’,(u,r’,w’)=J’ drlrdwﬁdr!!rdwﬂlcz l(pg;r!!7wll,r!//1w!//)

5F[n]:%kBTJ dr dew dr’de’dr"de’dr"de”

SF[n]= %kBTJ dr dw dr'de’Cy(pg:r,o,r', ") X Cy(p;t", "1, 0)Cy(p;r"”, 0" 1" o).
(82

Clearly, the kernel inherits the invariance for permutation of

Note that this free energy increase is positive definite, séholecules and also satisfies
there is no way for a pathological behavior such as that due
to Oldano and Barberfl0Q] to emerge.

X 8p(r,@)dp(r',e'). (32)

lim K(r,e,r’,0)=Cypir,ar o),

The purpose of the curvature elastic description of a nem- ar e
atic interface is to formulate an expression of the interfacial lim K(r,or' o' )=0. (83
elastic free energy as a functional of a given director field. 27 ——c

Unlike the bulk elasticity, however, the director field could
and is likely to lose its realistic meaning in the vicinity of the
substrate, where the structure and properties of the nema
liquid should be drastically modified from the bulk state.
Therefore, in order to define the director field even in the

Separating the bulk density deviation into the quasihomo-
fleneous and correction parts, i.e5p,(r,®)=3py(n- w)
+Ap(r,w), we can rewrite Eq(81) as

interfacial region, we need to employ a proper extrapolation SoF[n]= %kBTJ dr dew dr'de’K(r,e,r',o’)
schemd 16]. A normal way of extrapolation, which we shall

also adopt here, is to first consider an infinite nematic me- X[ Spo(nN(r)- w)dpo(n(r')- ")

dium with its undistorted orientation being identical to the

easy directiom, brought about by the substrate. Next, an —Ap(r,w)Ap(r',w")]. (84)

arbitrary infinitesimal director distortion fieléh(r) is intro-
duced by means of a distorting external poteniglr ,w) as
we have exploited in defining the bulk distortion. Finally, the
medium is switched back to the nematic liquid crystal—t
substrate system in question in the presence of this externgq
potential. If we denote the free-energy increase in the Ias.6
situation from its field-free ground state BY, it becomes a d
unique functional ofV(r,w). Since the correspondence be-
tween d(r) and V4(r,w) can be made unique in the weak L - o
deformation limit via the density deviatiofip(r,w) as de- 5Fh[”]:5kBTf dr de dr'de’K(r,o,r', ')
scribed earlier, we can now defid& as a unique functional

Here we have used EGA13), following the same procedure
taken in Appendix A.

With the help of the algebraic identity E¢36) used for

e evaluation of bulk elastic constants, the above expression
lows us an unambiguous identification of interfacial contri-
utions. The quasihomogeneous part in Bl is now re-
uced to

of én(r) as implied in Eq(32). X 8po(r,®) Spo(r, @)
Let Spp(r,w)=pi(ng- w)w-n(r)+Ap(r,w) be the
density deviation in the extrapolated bulk nematic liquid +4lkBTf dr dow dr'de’'[K(r,eo,r',e')
crystal corresponding to the given fictitious director field.
From the condition of equilibrium Edq12) applied toSF[n] —K(r,—o',r",— @)]8po(r,w) Spo(r', ")

in Eq. (32) with dp(r,w)= dpy(r,w), we find the hypothetical

external potential conjugate #p,(r,w) as +4lkBTf dr deo dr’de’K(r, .1, ')

Vy(r,w)= —kBTf dr'de’ Cy(p;r,@,r ) dpy(r',m'). X[ dpo(r, )= dpo(r',m)]
(79 X[Spo(r',@") = dpo(r,@’)]. (85
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As already pointed out, the first two integrals disappear in Wi;=Wji, Hijx=—Hy;. (89)
the bulk due to the Nambu-Goldstone degeneracy and the
inversion symmetry, respectively. So these contributions are
essentially interfacial. The last integral, on the other handy inkI andAM ijl refer to their corresponding values in the
contains the bulk Oseen-Frank elastic contribution, Wthfbu“( phase and(z) denotes the step function, which satisfies
must be subtracted in obtaining the interfacial elastic frees(z)=1 for z>0 ands(z) =0 for z<O0.
energy by the introduction of the Gibbs dividing surface  The last term in Eq(86) is first of all an expression of the
[16,53. The remaining part in Eq(84) coming from the  fact that the Oseen-Frank elastic constants become position
density correction is also made up of the bulk Oseen-Frangependent near the substrate. As the definition of the kernel
plus interfacial contributions, as readily appreciable from thefunction implies, the width of this interfacial transition re-
Iinea_r dependence of the density correction on the directogions is not necessarily limited by the range of direct sub-
gradient. strate potential, but it is dependent on the correlation range
To cope with the bulk contributions, we take arbitrarily of the particular fluctuation mode other than that described
the Gibbs dividing surface a;. Then, substituting the spe- by the director. In a macroscopic sense, the interfacial modi-
cific functional form for the quasihomogeneous density func<ication of the elastic constants can be renormalized into the
tion and retaining all the contributions up to the ordegof, macroscopic anchoring energy coefficigB4]. Moreover,
we obtain the interfacial elastic free energy as due to the broken symmetry at the interfadd;;, and
AMjj no longer have their symmetry characteristics in the
bulk such as the rotational invariance about the director.
Hence there may appear surface-specific components con-
nected, for example, with the biaxiality and polarity. We
shall not go into this point in further detail here, but limit
ourselves to commenting on how the saddle-splay term will
be modified. It follows from Eq(86) that

5nk+%j dR[ M (R)

+lf dR H (ﬂ
2 ijk é’Ri
0 0 &nk

—AMiji (R) = s(Rz=zg) (Mjji —AMjj))] R
1

1 d
" FLN =5 [ R o (Kl R) KR
an 2 dR
x| o), (86) :
]
1
xez-(nV-n+n><V><n)—§(K22+Kg4)

where
><ez-(nV-n+n><V><n)|Zd, (90

Wi;(R)= kBTf dudw do'K(R,w,R+u,w")
wheree, is a unit vector along the axis and the translational
X po(Ng- @) po(No- @) wjw] (87)  invariance in thex-y plane has been taken into account. The
first term is theK,,-like elastic contribution pertaining to a
real physical interface; the second term coming from the
bulk will be canceled out on summation with the bulk elastic
Hijk(R):%kBTJ du de dw'[K(R—3U,@,R+3U,0) free energy and is taken over by the first, which has quanti-
tatively nothing to do with the bulk saddle-splay constant. In

—K(R—3iu,— ' ,R+3uU,— )] this term, the contribution is not localized at the interface,
but distributed over the entire interfacial transition region,
X po(Ng- @) po(Ng- @) Ujwjwy, (88)  wherein the gradient of the relevant elastic constants is act-

ing as a local orientational field conjugate to the saddle-splay

mode. The conventional phenomenological expression is re-
andM;;; andAMj;,, can be found by properly replacing the covered in the limit of an infinitely thin transition region,
bulk correlation functions in Eq$41) and(52) by the kernel although the effective saddle-splay constant is no longer an
function K. In deriving this formula, the choice of nonlocal- intrinsic property of the nematic liquid alone.
to-local mapping is immaterial since surface integrals can be The first term in Eq(86), SF $[n], represents the micro-
safely ignored in this continuous system with the boundaryscopic anchoring energy, which results from the breaking of
taken at infinity; in the evaluation dfl, for example, the Nambu-Goldstone degeneracy occurring over a finite inter-
mapping,r—R—u/2 is automatically selected in the final facial transition region. The symmetry &¥; for i< | en-
expression, whatever mapping scheme has been adopted isiires the existence of a local intrinsic anchoring energy func-
tially. The tensor coefficient®V, H, M, and AM are all  tionw,y(n,R), satisfyingWij=(92wa/o7ni<9nj at each point. An
position dependent and become a function of the separatiogasy connection with the macroscopic anchoring energy
from the substrate. Corresponding to the permutation symfunction W,(n) can be made by Taylor expanding the direc-
metry of the kernel, we have the relations, tor field at the Gibbs dividing surface:
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9 In view of the above symmetry relation, the correspond-
on(R)=oNng(Re,Ry) +(R;=2g) - Nyt -+, ing free energy is written as

4

where the subscriptl indicates that the quantity must be 5F§[n]=1 f dR(Hyy,+Hyxp) € (NV-n+nxVxn)
evaluated at the dividing surface. Using this expansion, 4

SF 3[n] reduces to

iz f dR(H,y,~H ALl
1 2 ( yyz XXZ)nZ élRy (‘7RX
5F§[n]:— de W”(R) 5ndi5ndj
? +1 deH on, e _ g, I 94
&nd 2 7z nX (?RZ nZ &RZ . ( )
+“ dR(R,—zg)W;(R) |ngj =+ -
IR, If the interface is conically degenerate so that we have

(92) Hyy-=Hyxx,, the contribution from the tangential gradients of
director reduces simply to a term &f,, form. In the more
up to the first order in the director gradients. From this ex-general case considered here, however, an additional contri-
pression, we may identify the anchoring energy function asbution exists, reflecting the in-plane anisotropy. As men-
tioned above, the broken up-down symmetry at the interface
is essential for the appearance of these contributions.
Regarding the normal gradient contributions, we must
first realize that they are variationally well behaved for the
Note thatW,(n,) is solely a function ofy without a direct  same reason as for the similar termdR 3[n]. This property
dependence on the location of the dividing surface. This is ais independent of the width of the transition region, so we
indication of the originally interfacial nature of this contri- can freely take the complete localization limit without jeop-
bution. As already mentioned, this is not the only source ofardizing the mathematical tractability. We may thus con-
the macroscopic anchoring energy; other terms such as thgude that even at a real physical interface kha-like elas-
surface-excess Oseen-Frank elastic energy can make a sifl excesdree energy existg56.
nificant contribution, which is dependent on the choice of the
dividing surface[16,54,53. Finally, a comment may be in VI. CONCLUDING REMARKS
order about the second term &f $[n], which looks similar
to theK 5 term for its linear dependence on the normal de- We have developed a microscopic formalism for the sur-
rivative of the director. In contrast to the trg term, how-  facelike elasticity of nematic liquid crystals on the basis of
ever, this contribution is variationally well behaved since thisthe density-functional theory. Although still formal, it could
is a product of the gradient and the director deviation androvide a few qualitatively significant results concerning the
hence is in second order in the distortion amplitude. Eurtherhature of the surfacelike bulk elastic constants. It has in par-
more, it should also be worth noting that this term can beicular been shown that the splay-bend elastic consaat
eliminated at all for a given director field by a choice of the must be zero. This result immediately resolves the math-
dividing surface at an appropriate point inside the transitiorematical difficulty associated with a nonzekgs, the so-
region. called Oldano-Barbero paradox, and also offers a rationale
From the viewpoint of surface elasticity, a particularly for overwhelming majority of continuum theoretic studies
important feature of the formula for the interfacial elasticignoring the surfacelike elasticity. The absence&ef paral-
free energy Eq(86) is the presence of the second term,|e|S the famous Cauchy relation established in the ordinary
which is linear in the director gradient. This linear term, €lasticity theory of solids, in the sense that it is not directly
involving the normal as well as tangential gradients of thefooted in any of the macroscopic symmetries existing in
director, yields a term formally similar to th€,, as well as  nematic liquid crystals; but is a general consequence of the
K 15 surfacelike bulk contributions. This term arises from thetype of microscopic structure responsible for this particular
broken inversion symmetry, and as pointed out by Faetti anéerm. In this respectk,;=0 applies to a wider range of
Riccardi [39] in their remarkable paper, should disappearPhases including cholesteric liquid crystals. It has also been
when the inversion symmetry still prevails at the interface shown that the saddle-splay constant satisfies, under an ap-
To consider more specifically the nature of this contribution,Proximate yet plausible condition, the extended Nehring-
let us assume a situation relevant to a pretilted homogeneoupe relatiork ;.= (K1,—Ky)/2, taking into account the
alignment toward the direction. Further assuming the pres- correction of the density function beyond the quasihomoge-
ence of a mirror plane perpendicular yoaxis, we are left Neous approximation.

W,(ng) =73 NgiNg; - (92

JdRZW”-(R)

with the four nonzero tensor components We have also formulated a curvature elastic expression
for the interfacial elastic free energy in the presence of a real

Hyxy=—Hyyx, Hyzy=—Hyys, substrate. The formula consists of the anchoring energy,

K,slike term, surface-excess Oseen-Frank elastic energy,

Hyz= —Hyyzr  Hyzm —Hyuo (93) and additional contributions connected with the surface-

specific symmetries at the interface that have no counterparts
Note that if the system has an up-down symmemmjrror  in the bulk phase. The interfacial elastic free energy retains
plane perpendicular to theaxis), all the first three compo- the equivalence oh and —n as in the bulk elastic energy,
nents associated with the tangential gradients also disappeaegardless of the actual symmetry at the interface; indeed,
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even if the interface does not have an inversion symmetrythe director field, is not in general satisfied. The role of the
the interfacial free energy as a functionalolfias then<—n density correction is to get rid of this discrepancy so as to
invariance. This paradoxical situation is a natural conseachieve

guence of the way in which the bulk nematic liquid crystal is

extrapolated to the interfacial region in Gibbs sense. In de-
fining the elastic free energy as a functional of the director
field, we consistently employed a hypothetical external one-
body potential, which is infinitesimally weak on the order of
&2, with ¢ being the distortion wavelength, i.e., the same

_order of _magmtuc_je as the Oseen-Frank elastic f_ree ENe%on that the density correction should not change the given
itself. This potential is able to couple, on the required orderdirector field

OT €7 0|_1Iy with a cqntinuously degenerate_variable, thg We must note that due to the Nambu-Goldstone degen-
director, in the nematic phase, thereby making the elas“%racy, if Ap(t’.w') satisfies the above equation, then

free energy a unique functlonal of the director field md?pen'Ap(r’,w’)eré(no o')e'-a(r') also satisfies the same
dent of the external potential used. We extended this aP;uation reardless of the vector fiedt ") normal ton
proach to the interfacial elastic problem and obtained th d g 0

interfacial free energy with=—n symmetry. In view of the (?-|ence, to obtain the density correction with the desired prop-

; ) . .erty, we can regard(r') as a Lagrange multiplier, then solve
current interest in the curvature elastic treatment of nemati . o : , :
) . ; . or the density correction involving, and finally determine
interfaces involving only deformations weak from the mo-

. X to meet the above requirement. As confirngedosteriori
lecular standpoint, this approach seems to be general enou . N :
1 A L e choice ofa(r')=—6n(r) gives us a correct answer. Based
to cover all these realistic cases. Although it is in principle

straightforward to employ a stronger external potential at thé) n this choice, we can rewrite E(A2) as

interface that is to radically modify the microscopic liquid o
structure, the interface can no longer allow a description only f dr'de’ Cy(p;r,o,r", @ ){ps(ny: @)’ -[u-Vn(r)]
in terms of the director.

Finally, we would like to comment on the experimental +Ap(r', )} =0(£72?), (A3)
measurement of the bukK,,. As mentioned above, in con-
trast to the illusiveK 5, the reality ofK,, as an intrinsic Whereu=r'—r. This equation can be readily solved for the
material parameter of the nematic liquid crystal is now indis-density correction to give
putable. However, a separate determinatiorkef will al-
ways entail a real physical boundary, W_hich carries its own Ap(r,e)= _f du du’dew’ de’C; Lo, e,
interfacial K,,-like or more general elastic free-energy con-
tributions depending linearly on the director gradients. Since
these contributions always come together and there is no way
of separation within the realm of the linear curvature elastic- (A4)
ity, an independent measurement of budk, will not be _ -
experimentally feasible. Nevertheless, it may well be poswhere C;'(p;u,®,0')=C;'(pir @' ') is the inverse of
sible if we become able to enter the strong distortion regimé2(p;r,@,r’,@’) or, equivalently, the density-density correla-
beyond the director functional description. Ecgi functjon/[)4§] connected to the total correlation function

pir,or' o) by

fdr’dw’Cz(Er,w,r’,w’)[p{)(no~w’)w’~§n(r’)
+Ap(r', @' )]=0(£72). (A2)

This equation must be solved fdip(r,w) under the condi-

X Ca(p;u,@", 0" )py(Ny @)@’ -[u-Vn(r)],
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(A5)

By applying the inversion to all the integration variables in
Eqg. (A4), we find that the density correction is antisymmetri-

APPENDIX A: DERIVATION OF THE DENSITY cal for inversion of the molecular orientation

CORRECTION Ap(ri— @)= — Ap(r.a), (A6)
On the basis of Eq32), the external potential conjugate
to a given density deviation is given by which ensures the orthogonality of the density correction to
the quasihomogeneous density function and, equivalently,
the invariance of the initial director field.
Vd(r!w):_kBTf dr'de’Co(p;r, o1, )dp(r',@'). The above derivation of the density correction is essen-
tially equivalent to the results by Somoza and TaraZ@ia
(A1) However, they took an alternative route to expand the den-
sity correction into an infinite series on an appropriate com-
If only a quasihomogeneous density function is used foiplete set of orthonormal basis functions such as the spherical
8p(r',e') in this equation, the conditiovy(r,w)=0(¢£ ), as  harmonics and then to directly minimize the free-energy
required by the uniqueness 6F[n] as a functional of only functional with respect to the expansion coefficients, from
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which the terms affecting the director field have been omit-0=8§AF ./5Ap(r,w). The negligence of the distorting external
ted in prior. Due to the difficulty in summation of the result- potential is justified by the fact that the coupling between
ant series expansion, they did not reach the general compaittis external potential and the density correction is on the
formula Eq.(A4), except for the case of the ideal gas ap-order of & 3. For the equilibrium density correction, substi-
proximation[neglecting the total correlation function in Eq. tution of Eq.(A3) into Eq. (A12) yields
(A5) to allow an easy summatign
In order to get more detailed information about the den-
sity correction, let us take the axis alongny and define a AF [n]= —%kBTJ dr de dr'de’ C,(p;r,@,r", ')
matrix J(w) by
XAp(r,m)Ap(r', ). (A13)
Jij(w)= —f du du’dw’dw"Cgl(Eu’,w,w”)
This formula demonstrates that
X Ca(p;u,@",@")po(No- @' Ujw; . (AT)
=
If we take thex axis along the projection of on thex-y AFdn]=0. (Al4)

plane, we have a symmetry relation ) ) . )
which manifests the nature of the density correction as a

Jxy=Jdyx=37,=0. (A8) structural relaxation agent. Using the matdibgiven above,

' the correction to the elastic constant tensor &@) can be
Hence we see that there are only three independent comp@pritten as

nents Ji(w,) =J/2, Jy(w,)=J,,/2, and J3(w,)=J,y,

which make nonvanishing contributions to the density cor-

rection. For a general choice of tkeaxis making an angle AMjj= kBTJ du dw de’ C,y(p;u,m,@" ) Jj(®)J;(e').
with the projection ofw, the tensor components can be writ-

ten in terms of these constants (A15)
I @) =1 0,) + I f w,)cOS2p, Using Eq.(A9) in Eg. (A15), we obtain
ny(w):JYX(w): ~Jidw,)sin2g, (A9) AIlexxx:AMyyyy: 2<‘]I2( wz)JIZ(aé»
Jyy(@) =7 0,) —I1 w,)cOS2p, + (I 0,) I ) cosh), (A16a)
where J{5(w,)=J1(w)+3x(w,) and Jiy(w,)=Ji(w,)
—J,(w,). If we can ignore the short-range correlation be- AMyyy= AMyys= AMyyy =AMy iy
tween the molecular orientations within the plane perpen- - _ .,
dicular to the director, we hava,, =0 andJ,,=J,, so that = {Jp@;) i w;)cosy), (A16b)
the density correction assumes a particularly simple form,
reminiscent of the flexoelectric contributions, as AMyyuy=AM yyyn= 2(3w)I i wl))
Ap(r,@)=Agw-(NV-n)+Agw- (NXVXn), (AL0) — (I 0,) I w)coSA), (A160)

whereAg andAg are functions ofn-w)>2
We now calculate the correction to the elastic free energy AM, =AM, =2(J3(w,)I5(w;)),  (Al6d)
AF[n] resulting from the density correction. Substituting

' whereqa is the angle between they plane projections oé»
op(r,@)dp(r’, @) and w’ and the operatof ) is defined by

= 6po(r, @) Spo(r',®") + Spo(r, w)Ap(r',@")

+Ap(F,e)dpo(r’, e )+ Ap(r,@)Ap(t’ ) <H(wz,wz’,a)>EarkBTJ do,dwda
(A11)
into Eq. (32), we find the free-energy correction as X f du Co(pit,ez,0; @)
XH(w,,0),a). (A17)

AfC[n]zékBTJ dr dw dr'dew’C,(p;r, 0,1, w')

/ / / Since there are only three independent parameters for at least
7 [20po(No- @) oN(r')Ap(r, @) four elastic consta);lts, there a?ppears 2 Cauchy relation as
+Ap(r,w)Ap(r',@)]. (A12) given by Egs.(A16b) and (53). Equations(A16a)—(A16d)
also show that if the flexoelectric form EGA10) holds or,
Note that Eq(A3) is identical to the stationary condition of equivalently,J ;,(w,) =0, the effect of density correction ap-
AF[n] with respect to the density correction, i.e., plies only toK;; andKgzs.
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APPENDIX B: DENSITY CORRECTION

C(Pa;r ;r,w)=c(ﬁ;r o)
IN THE GRADIENT EXPANSION

, . . ) + dr'de’ Ap(r, )c(py, il or o
Here we show that the inclusion of the density correction aJ @ Ap(1, @) Cper i 1, )

does not affect our conclusion &f;;=0. In order to get the 2

correction to the intrinsic free energy up to the ordegof + a f dr'de’dr"de’Ap(r, ')

in the presence alp(r,w), we need to take account of not 2

only the second integral but also the first in E§1), since X Ap(F,@)C(pr i of 6 1" e+ .
the free-energy density for a local homogeneous state is no ’ T T (B1)
longer a constant throughout the nematic liquid crystal, b”Using this formula in the first integral of Eq61) for the

contains a contribution to the elastic excess free energy dyg.g homogeneous state, we obtain the desired expansion in

to the density correction. _ powers of Ap(r,w); after some manipulations involving the
We begin with the expansion of the first member of thegychange of integration variables such(age)—(r’,@’) to

direct correlation function about the quasihomogeneous dermake a local-to-nonlocal conversion, the expansion is re-
sity p(r,e)=p(n(r),w), duced to

_ 1
q)l[pd]zq)l[po]—FkBTf dr dew Ap(r,w)c(p, ;r,w)—kBTj @ daf dr dew dr'de’ 8po(r,w)
0
1
X[Ap(r',@' )= Ap(r,@)]1c(py: ;r,w,r',w’)-i-kBTf a daf dr do dr'de’ Ap(r,w)
0
_ 1
><[po(r’,w')—po(r,w’)]c(pa;r;r,w,r’,w')-f—kBTj a’da
0

xfdr do dr'de’dr'de’c(py f o o 1",o")dpy(r' o)

><[Po(f',w")—po(r,w")]Ap(f,wH%kBTJ dr de dr'de’c(p,;r,@,r', 0 )Ap(r,®)Ap(r', o)

1
+%kBTJ azdaf dr de dr'de’dr"dw’c(p,.;r,o,r", o' ,r", ") dpo(r,0" ) Ap(r,®)Ap(r,o")
0
— 8po(r,w)Ap(r, )Ap(r,®")]. (B2
|
The second term in EqB2) disappears due tAp(r,—w)= (Poril, o @ 1" ") Spo(r,w)[po(r’ @)
—Ap(r,w). Also owing to Ap(r’,w)=Ap(r,w)+0O(¢ ?), the '
last integral turns out to be of the order f°, so it can be —po(r,@")]JAp(r,@"). (B3)
omitted. - h . .
Similarly, the second integral in E¢61) can be expanded COmbining these expansions, we obtain
to give D4 pg]+ Py pgl
— B[ pol+®
ol pe] = @1 pol ilpol+ ®alpol
1 ’ ’
+kBTf o daf dr des dr’de’ Spo(r, @) +kBTf dr de dr'de’Ap(r,e)
0

X[Ap(r',w,)—Ap(l’,w')]C(E;r;I’,w,l",w,) X[po(r',@") = po(r,®")]c(p; ;1 or o)

1 + 2k derd dr'de’c(p,;r,m,r o
+kBTf adaf dr deo dr'de’ Ap(r,w) 278 @ dridec(p oo’
0
o XAp(r,m)Ap(r',m"). (B4)
X[po(r’,w’)—po(r,w’)]c(pa;,;r,w,r’,w’)
This result is in perfect agreement with E4.12), the master

+kBTj1a2da'j dr deo dr'de’ dr"des’c equation for determining the density correction for a given
0 quasihomogeneous density distribution. It follows immedi-
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ately from this result that the density correction does noties, if any, should be isomorphic by a one-to-one correspon-

generate a surfacelike elastic term. dence requiring the retrievability af(r). This is, however,
too strong a condition, going far beyond the ordinary re-
APPENDIX C: AMBIGUITY quirements in constructing a local thermodynamic function
IN THE NONLOCAL-TO-LOCAL MAPPING [50]. Quite the contrary, indeed, the heart of the nonlocal-to-

N ) local mapping issue lies essentially in the loss of a one-to-

In a critique against Somoza and Tarazona's argumengne correspondence between equally acceptable free-energy
Teixeira, Pergamenshchik, and Slucki] ruled out, on a  gensities as pedagogically described by Rowlinson and Wi-
rather general ground, the existence of ambiguity in thejom in their monograpti50]. Then, only those properties
nonlocal-to-local mapping that ruins the uniqueness of thehat are immune to this mapping issue can be regarded as
Surfacelike bulk elaStiC constant as discussed in Sec. IVphyS|Ca||y well defined. Requiring the ava”abmty of a one-
Their claim is that the particular mapping with=3 in our  to_one correspondence leads to an automatic prohibition of
notation is the only physically acceptable mapping schememapping ambiguity, tautologically resulting in the unique-
so that theK ;5 resulting from this mapping must be regarded ness of the density function.
as a well-defined material parameter. For a Gay-Berne model Teixeira, Pergamenshchik, and Sluckin's objection to ap-
nematic |IQUId CryStal, they carried out a micrOSCOpiC calcu- |y|ng a genera' mapp|ng Scheme' as we have used in Sec.
lation of K3 and found a nonzero value on the same order Ofy, to Eq. (C5) stems from the seeming shift of the reference
magnitude as the ordinary Frank elastic constants. Since thigate from an “undistorted” to a “distorted” one. As is clear
result presents a fundamental contradiction with our result Ofrom Eq(C4)’ however’g(r) comes from the second integra'
K13=0, it must be worthwhile to clarify where this discrep- in Eq. (C4), which is just the remainder of total free energy
ancy came from and how it can be corrected. after the local homogeneous contributitthe first integral

After Somoza and Tarazona, Teixeira, Pergamenshhas been subtracted. Consequently, there is inherently no
chik, and Sluckin adopted a mean-field approach usinguch concept as the pointwise reference state in the second
f (r'=r,n(r),n(r")) as the angle-averaged interaction poten-integral, provided the first integral takes correct care of the
tial between molecules atandr’. The free energf of a  homogeneous locaéferencestate. In fact, the recipe of gra-
volume of a nematic liquid crystal is thus given by a doublegient expansion only demands that the total free energy be

integral decomposed in such a way that
F=f dr dr’f(r’—=r,n(r),n(r")). (Cy F:f drR gu(n(R))+f dR g(n(R)), (C6)
If we imagine an undistorted nematic liquid crystal orientedwheregu(n(R)) is the homogeneous free-energy densitRat
alongn, the free energy reduces to evaluated for the local director at this point ap@n(R)) is
the gradient-dependent part that should be zero when the
Fu:f dr dr’f(r'—r,n,n). (%) gradignts locally vanish. This cqndition. is f_quiIIed by using a
mappingR=r andu=r'—r only in the first integral; further

imposing this mapping to the second integral is another
source of flaw in Teixeira, Pergamenshchik, and Sluckin’'s
argument. The second integral can be subjected to any map-
ping as long as the resultant elastic free-energy density re-
gu(n):f du f(u,n,n) (C3 mains finite.

Although the discrepancy between Teixeira, Pergamensh-
chik and Sluckin and Somoza and Tarazona can be traced
l1)ack to the erroneous handling of gradient expansion by the
former authors, it should be of interest to see how the result

Sincen is not a function of position here, it is perfectly
legitimate to regard

as a free-energy density in the undistorted state. Locally su
tracting this contribution, we can rewrite EqC1) as

K13=0 generally follows in the present mean-field context
F=J dr dr’f(r’—r,n(r),n(r))+J dr dr'[f(r’ beyond Somoza and Tarazona® hocargument. Due to the
inversion symmetry in the real and the director isotopic
—r,n(r),n(r"))—f@’ —r,n(r),n(r))]. (C4  spaces, the interaction potential has a symmetry
When the nematic liquid crystal is undistorted, the second f(r'=r,nn)=f(r'=r,n",n)=f(r—r’,n",n). (C7)
integral automatically disappears. This is an expression cor- _ )
responding to the density-functional formula EG1). It follows from this relation that
On the basis of this equation, Teixeira, Pergamenshchik,
and Sluckin considered the function (ﬂ) :(a_f) ] (C8)
ani n=n’ ﬁni’ n=n’

g(r)=f dr’'[f(r'=r,n(r),n(r"))—f("—r,n(r),n(r))]
(CH

We define a function

G(r,r)=f(r"=r,n(r),n(r"))—f('—r,n(r),n(r)). (C9
as theunique physically legitimate elastic free-energy den-
sity, to which all other permissible elastic free-energy densi-Then, we find from the above symmetry relation that
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G(r,r")==G(r',r)+0(|én|?), (C10

which is the counterpart of Eq76). Using this equation in
Eq. (C4), we obtain

f dr dr'[f(r'=r,n(r),n(r")—=f(’"—r,n(r),n(r))]
(C1)

This shows that the term linear igh, from which K5

=0(|an[?).

HIROSHI YOKOYAMA 55

and (C12 clearly reveals the surface origin &f;3, which
arises in fact as an artifact of the gradient expansion when it
is applied formally to a system with a boundary as discussed
in detail in Sec. IV.

We consider briefly the effect of applying an arbitrary
mapping to the first integral in EqC4). As noted by Teix-
eira, Pergamenshchik, and Sluckin, this is an invalid proce-
dure since the general mapping leads to the loss of a one-to-
one correspondence between the local director and the free-
energy density. It is interesting to note that, due to the

emerges, is deemed to disappear on integration for symmetfyambu-Goldstone degeneraay,(n) is in fact a constant
reasons even before the gradient expansion is applied, so vedependent of the direction of. Hence, regardless of the

must haveK ;=0 also in this mean-field context.

mapping used, the volume contribution to the first integral is

As in the rigorous density-functional theory, a formal gra-a constant, as a signature of its physical well definability.
dient expansion of EqC5) using a general mapping scheme However, there also arises an apparent surfacelike contribu-

Eq. (65) yields a surface integral as
5F_2J' dR d fd 5 df(u,n,n) ang
= IR u y(u®) “one | Ul aR,|’
n(R)
(C12

which is the mean-field version of E¢68) and gives rise to
a formal expression foK;3. A combination of Eqs(C11)

tion of theK 5 form, which depends on the mapping param-
eter. Just as shown above, this is also an artifact resulting
from an inconsistent change of the integration volume at the
boundary. Although there is, as noted by Teixeira, Perga-
menshchik, and Sluckin, a coincident condition whereby this
K5 term cancels the similar term coming from the higher-
order contribution, one should clearly realize that this is ab-
solutely not the reason whi 5 should generally disappear.
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