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Viscous properties of biaxial nematic liquid crystals:
The method of calculation of the Leslie viscosity coefficients

Marcin Fiałkowski
Jagiellonian University, Institute of Physics, ulica Reymonta 4, 30-059 Krakow, Poland

~Received 7 May 1996; revised manuscript received 28 October 1996!

We present a microscopic approach to the theory of viscosity of biaxial nematic liquid crystals consistent
with the existing 2-director continuum Leslie’s theory and show the method of obtaining microscopic formulas
for viscosity coefficients. The derived formulas are expressed in terms of order parameters, temperature,
number density, and diffusion constants. Obtained viscosity coefficients satisfy the four Onsager-Parodi rela-
tions. Since no assumptions about diffusion constants are applied and a very general form of an interaction
potential is used, presented results are quite general. The approximation concerns shapes of the molecules that
are modeled by ellipsoids with three different principal axes. In the limiting case, when appropriate biaxial
order parameters vanish and the system becomes uniaxial, we obtain the six Leslie viscosities involving, in
general, two diffusion coefficients related to the rotational motion about short and long axes, respectively, and
two ellipsoidal axis ratios. When the molecules possess symmetry axes, the formulas for the Leslie coefficients
recover known results for uniaxial system.@S1063-651X~97!14202-7#

PACS number~s!: 61.30.2v, 66.20.1d, 83.70.Jr
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I. INTRODUCTION

Since the discovery by Yu and Saupe@1# of the biaxial
nematic liquid crystal, several macroscopic theories h
been developed to describe properties of these interes
mesophases. Especially, the hydrodynamics of biaxial
tems has been the subject of much interest. In fact, a num
of continuum theories have been derived for biaxial nema
The first formulation was given by Saupe@2#, the subsequen
by Kini @3#, Govers and Vertogen@4#, and Chaure´ @5#. The
most complete derivation of the continuum theory has
cently been given by Leslieet al. @6#. The two first theories
mentioned@2,3# employ three orthonormal directors to d
scribe the local anisotropy, whereas the two last approac
@5,6# introduce only two directors. However, as shown
Das and Schwarz@7#, both the 3-director and the 2-directo
formulations of continuum theory are fully equivalent. Th
equivalence consists in that each viscosity coefficient in
model is expressible as a linear combination of the visco
coefficients of the other model. In this paper we focus on
2-director formulation and adopt the notation of Ref.@6#.

An efficient microscopic approach to the dynamics o
nematic liquid crystal consisting of biaxial molecules
based on the rotational diffusion model, which assumes
the reorientation of an individual molecule is a stochas
Brownian motion in a certain potential of mean torq
@8–12#. In such a treatment the system is determined by
time-dependent one-particle orientational distribution fu
tion governed by an appropriate kinetic equation. In gene
while asymmetric molecules reorienting in an arbitrary me
potential are considered, the problem of finding the distri
tion function is a rather complex one and no closed anal
cal solution is available. On the other hand, Berggren
Zannoni @13# have recently solved the rotational diffusio
equation for a biaxial system composed by asymmetric m
ecules.

However, whereas both the phenomenological and m
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lecular descriptions seem to be well established, a relat
ship between them is not clear yet; to our knowledge, ther
no appropriate microscopic theory that would allow one
express phenomenological quantities in terms of molec
parameters used on the microscopic level. Unfortunat
some attempts at the derivation of such a theory that h
been made recently@7,14,15# are far from being satisfactory

It should be also noted that analogous theories have b
successfully developed for the uniaxial case. The appropr
phenomenological constitutive equations were proposed
Ericsen and Leslie@16,17#. On the other hand, many micro
scopic approaches@18–26# allow one to derive the constitu
tive equations from a molecular level and to express the
cosity coefficients in terms of the parameters characteriz
the suspension. Note that a complete description of the
croscopic origins of viscosity of nematic liquid crystals w
presented by Kuzuu and Doi@19# and by Osipov and Ter-
entjev @23#. Recently, Osipovet al. @27# developed also a
consistent microscopic theory for describing viscosity of
axial smectics C.

The purpose of this paper is therefore to relate both m
roscopic and microscopic approaches and to presen
method that allows us to express the phenomenological
cosity coefficients in terms of molecular parameters, such
order parameters, temperature, diffusion constants, num
density, and some factors characterizing the molecular sh

The paper is organized as follows. In Sec. II we summ
rize basic equations of the 2-director continuum theory
biaxial nematic liquid crystals. Section III presents a molec
lar approach to biaxial nematics and, as a main result, p
vides a system of three kinetic equations governing the o
particle distribution function. Sections IV and V present
method of obtaining the symmetric and the antisymme
parts of the viscous stress tensor, respectively. Next, in S
VI, having obtained the complete viscous stress tensor,
calculate the sixteen Leslie viscosity coefficients. Finally,
Sec. VII, we discuss the derived formulas for the viscos
coefficients in the limit of uniaxial symmetry. Some com
2902 © 1997 The American Physical Society
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55 2903VISCOUS PROPERTIES OF BIAXIAL NEMATIC . . .
ments on the methods presented are given in Sec. VIII.

II. THE BIAXIAL NEMATIC VISCOUS STRESS TENSOR

In this section we briefly summarize the most compl
formulation of continuum theory for biaxial liquid crysta
given by Leslieet al. in Ref. @6# and by Leslie in Ref.@28#.

An incompressible, homogeneous biaxial nematic liq
crystal is under consideration. To describe the biaxiality
employ two orthogonal unit vectorsn andm. We introduce
also two second-rank tensors,A andV, which correspond to
the symmetric part and the antisymmetric part of the veloc
gradient tensor] iv j , respectively:

Vab52 1
2 ~]avb2]bva!, Aab5 1

2 ~]avb1]bva!.

Accordingly, the viscous stress tensors i j is given by the
following equation:

s i j5a1nknpAkpnin j1a2Nin j1a3N jni1a4Ai j

1a5Aiknkn j1a6A jknkni1b1mkmpAkpmim j

1b2Mim j1b3M jmi1b5Aikmkm j1b6A jkmkmi

1Npmp~m1min j1m2m jni !1nkAkpmp~m3min j

1m4m jni !1m5mkmpAkpnin j , ~2.1!

where

N5ṅ2V–n, M5ṁ2V–m . ~2.2!

The vectorsN andM represent the rate of change of th
directors with respect to the moving fluid. The coefficien
a1, . . . ,a6, b1, . . . ,b6, andm1, . . . ,m5 will be referred to
as the Leslie viscosity coefficients. They are linked by
following four Onsager-Parodi relations@29,6#:

a31a25a62a5 ,

b31b25b62b5 ,
~2.3!

m11m25m42m3 ,

m550.

Therefore, to describe the system completely, one ha
know twelve linearly independent viscosity coefficients.

The equation representing the balance of angular mom
tum can be written@28# in the following form of two vector
equations:

g̃ i
n52~g1Ni1g2Ai j n j1g3N jm jmi1g4n jAjkmkmi !,

~2.4!

g̃ i
m52~l1Mi1l2Ai jm j !, ~2.5!

where the vectorsg̃ i
n and g̃ i

m are defined as follows:

g̃ i
n5gni1kmi , g̃ i

m5tmi1kni , ~2.6!

with g, k, andt being certain constants. The coefficients th
appear in Eqs.~2.4! and ~2.5! are related to the Leslie coe
ficients by
e

d
e

y

e

to

n-

t

g15a32a2 , g25a62a5 , g35m22m1 ,

g45m42m3 , l15b32b2 , l25b62b5 .

For some reasons, however, we will use the balance e
tions of angular momentum Eq.~2.6! rewritten in a fully
equivalent form of a system of the following three sca
equations:

~g1Ni1g2Ai j n j !l i50, ~2.7!

~l1Mi1l2Ai jm j !l i50, ~2.8!

@~g11g31l1!Ni1~g21g42l2!Ai j n j #mj50, ~2.9!

wherel5m3n.

III. KINETIC EQUATIONS FOR A BIAXIAL SYSTEM

We consider a spatially homogeneous system consis
of biaxial molecules affected by a low velocity gradient fiel
The orientation of each molecule is described by the rota
R, which transforms the set of laboratory coordinates into
set of coordinates fixed in this molecule. Such rotation c
be represented by the collection of the three Euler ang
@30#, R[(w,u,c). The elements of the first set of coord
nates, i.e., three mutually perpendicular versorsl, m, andn,
describe the biaxiality of the system and are identical
those just introduced in the previous section. The second
of coordinates, containing the versorsl, m, andn, is chosen
in accordance with the molecular symmetry, in such a w
that the versorn coincides with the long axisc, versorm
with the short axisb, and versorl with the short axisa.
Moreover, to focus our attention, we assume thatc.b.a,
where wherec, b, anda are the lengths of the appropria
principal axes.

The probability that at timet the molecule is rotated awa
from the laboratory coordinates through a certain rotat
R is given by the one particle orientational distribution fun
tion F(R,t). In order to obtain the kinetic equation governin
the time evolution ofF(R,t) we assume that the rotationa
motion of a selected molecule may be treated as Brown
motion in a certain external potentialU, which corresponds
to an effective interaction with surrounding molecules. Su
an approach is closely related to the mean-field approxi
tion, which is assumed to be sufficient in the problem
consider. Moreover, we assume that the Brownian motion
each of the three symmetry axes proceeds independe
Therefore we are guaranteed that in the appropriate mol
lar frame of reference the diffusion tensor, which will b
discussed later, is diagonal.

Within the framework of the mean-field approach, the p
tential U is given by the following functional of the prob
ability functionF(R,t):
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U5U@F,R,t#5dE K~R,R8!F~R8,t !dR8, ~3.1!

where we have used an abbreviation:dR[sinududwdc and
d denotes the number density of molecules. The ker
K(R,R8) corresponds to an interaction potential betwee
pair of molecules. In this paper, however, we do not have
know an explicit form ofK(R,R8). It can be a quite genera
function ofR andR8 allowed by the symmetry requirement
It should be also noted that the functionalU@F# given by Eq.
~3.1! is a linear one. We will make use of this fact in furth
calculations.

The appropriate Fokker-Planck type equation determin
the time evolution of the one-particle orientational distrib
tion functionF(R,t) reads

]F

]t
5LiDi j FL jF2

F

kT
L jU@F#G2Li~v iF !, ~3.2!

where T is the absolute temperature,k is the Boltzmann
constant, andU@F# is the above-mentioned mean-field p
tential; Li are components of the angular momentum ope
tor, which satisfy the usual commutation relations

@Li ,L j #5 i e i jkLk ,

wheree i jk is the completely antisymmetric unit tensor.
The last term in Eq.~3.2! is due to the velocity gradient

which rotates each molecule with a certain average ang
velocity v. In order to determine this angular velocity w
model the biaxial molecule as an ellipsoid with three diffe
ent principal axesa, b, c and make use of the Jefferey@31#
solution for the motion of a single ellipsoid in a homog
neous shear flow. For the ellipsoid with a long principal a
c parallel to versorn and with short axesb anda parallel,
respectively, tom andl an appropriate formula for the angu
lar velocity is given by

v52 lFm•S b22c2

b21c2
A2VD •nG1mF l •S c22a2

c21a2
A2VD •nG

1nFm•S a22b2

a21b2
A2VD • lG . ~3.3!

Finally, in the Fokker-Planck equation~3.2! Di j stands for
the rotational diffusion tensor, whose elements are given

Di j5Dll i l j1Dmmimj1Dnninj , ~3.4!

where the constantsDl , Dm , andDn are, respectively, the
rotational diffusion coefficients around thel, m, andn prin-
cipal axes of an ellipsoid in the molecular frame of referen
~in which Di j is diagonal!. As seen, the rotational diffusio
matrix is a symmetric one. Note also that in the case
isotropic diffusion, i.e., whenDl5Dm5Dn5D, tensorDi j
can be written, using the identity

l i l j1mimj1ninj5d i j , ~3.5!

simply asDi j5Dd i j , whered i j denotes the Kronecker sym
bol. Note that a similar form of the kinetic equation was a
used by several authors@8,13,15#.
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The Fokker-Planck equation~3.2! may be written in the
equivalent form of the continuity equation

]F

]t
5LiJi , ~3.6!

where Ji are components of the probability currentJ and
LiJi should be understood as its generalized angular di
gence. The three components of the probability currentJ are
defined as follows:

Ji5Di j L jF1
F

kT
Di j L jU@F#2Fv i . ~3.7!

If we project the vectorJ onto the versorsl, m, andn suc-
cessively~i.e., if we find components ofJ in the molecular
frame of reference!, then make use of Eq.~3.4! defining the
diffusion tensor, as a result we obtain the following syste
of three scalar equations:

l iJi5Dll iLiF2
Dl

kT
Fl iLiU@F#2Fl iv i , ~3.8!

miJi5DmmiLiF2
Dm

kT
FmiLiU@F#2Fmiv i , ~3.9!

niJi5DnniLiF2
Dn

kT
FniLiU@F#2Fniv i . ~3.10!

In further considerations the above three constitutive eq
tions, derived from the definition~3.7!, will be called simply
the probability current~PC! equations.

In general, there is no reason to assume that in a stat
ary state the probability current is a constant vector. Thus
have to consider components ofJ being functions depending
on a collection of Euler angles, i.e.,Ji5Ji(R). However, the
number of allJi functions we should take into account
limited by the symmetry of the biaxial phase, which yiel
the constraint that application of theD2h group operations
should leaveJi unchanged. The second restriction is ob
ously that the conditionLiJi(R)50 holds. Moreover, in
equilibrium, i.e., when the velocity gradient is not prese
all components of the probability current vanish. We sh
that it follows immediately from the fact that both th
Hammerstein-type equation for the one-particle distribut
function, derived in the framework of a functional approac
and the kinetic Fokker-Planck equation must be consis
and obeyed by the same equilibrium distribution functi
F0.

Let F5U int2TSdenote the Helmholtz free energy of th
system we consider. HereU int andS stand for the internal
energy and the entropy of the system, respectively, andT is
the absolute temperature. At the level of the second vi
coefficientF is the following functional depending on th
one particle orientational distribution functionF(R) @32–
34#:
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F@F#5dkTE F~R!ln@F~R!#dR

2
d2

2 E E F~R!F~R8!K~R,R8!dRdR8. ~3.11!

To obtain the condition for equilibrium we require that th
functionalF must be a minimum with respect to an arbitra
variation ofF0, i.e.,dF@F#/dF50 for F5F0. This leads to

ln~F0!2
1

kT
U@F0#5m, ~3.12!

where m denotes a chemical potential andU@F0# is the
mean-field potential defined in Eq.~3.1!. Equation~3.12! is
just the above-mentioned self-consistent Hammerstein e
tion governing the equilibrium solutionF0.

As a result of the action of theDi j L j operator upon Eq.
~3.12! we obtain

Di j FL jF02
F0

kT
L jU@F0#G50.

The left-hand side of the above expression is, according
Eq. ~3.7!, the i th component of the probability current. Thu
in equilibrium the vectorJ(R) vanishes.

If the system is subjected to the shear flow, the probab
currentJ(R) appears and the equilibrium distribution fun
tion F0 changes to the stationary solutionF5F01dF. We
can write both the perturbationdF and the probability cur-
rent in terms of the Wigner matricesDab

l (R) as

Ji~R!5(
l

(
ab

Dab
l ~R! j i

l ,ab , ~3.13!

dF~R!5(
l

(
ab

Dab
l ~R! f l ,ab, ~3.14!

wherej i
l ,ab and f l ,ab are certain expansion coefficients. No

that the summation must be taken over both odd and e
l , since the velocity gradient affects the directorsl, m, and
n.

It should be emphasized that our goal is not to find eit
the stationary solutionF(R) or J(R); the actual object of our
considerations is the PC equations. We analyze these e
tions only for the purpose of coming up with informatio
about the viscous stress tensor and properties of a none
librium solution are not of our interest here.

In general, there are two separate effects caused by
shear: First, it makes the directorsl, m, andn rotate away
from their equilibrium positions. Second, it changes valu
of the scalar order parameters. In this paper, however,
take into consideration flow-induced disturbances being p
rotations of the directors only. The shear flow is treated a
small perturbation, which removes degeneration of the e
librium state. The system is thus rotated about a small an
dR whereas all scalar order parameters remain unchan
Note that the viscosity coefficients are expressed in term
quantities that are averages taken over the equilibrium di
bution functionF0; the question of how the velocity gradien
affects scalar order parameters characterizing the bia
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phase is not of our interest. The task we are dealing with
in fact nothing in common with nonequilibrium problem.

Since the angledR is a small quantity being of order o
perturbation, we can apply the Taylor expansion and re
only terms linear indR. We have

dF~R!52dR–LF0~R!. ~3.15!

In Appendix B we show also that the fact that we confi
ourselves to very small perturbations yields considera
limitations for the family of the currentsJ we have to take
into account.

In the following section we use the obtained PC equatio
~3.8!–~3.10! in order to derive the symmetric part of th
viscous stress tensor and express it in terms of suspen
parameters. Next, in Sec. V we show the method that allo
us to recover the phenomenological balance equations
angular momentum~2.7!–~2.9! on the basis of the PC equa
tion set mentioned, and, thereby, obtain the antisymme
part of the stress tensor.

IV. THE SYMMETRIC PART OF THE MICROSCOPIC
STRESS TENSOR

In this section we show a method that allows us to der
the symmetric part of the viscous stress tensor. We adop
method introduced by Doi@18# and Kuzuu and Doi@19# in
the case of uniaxial nematics and extend it to the biax
case.

The method we use is based, in general, on analyzing
change in the free energy caused by the shear flow. It sh
be emphasized that this analysis cannot provide informa
concerning the antisymmetric part of the stress at all beca
the system is uniform, no external field is present, and
averages are taken over the equilibrium distribution functi
Thus, in this section we come up with information about t
symmetric part of the stress tensor only. The antisymme
part is derived separately in Sec. V.

We consider a system consisting of biaxial molecules
dergoing the influence of a small velocity gradient field. Th
field causes each molecule to move along a periodic Jeffe
orbit with the average angular velocityv given by Eq.~3.3!.
Therefore, in the infinitesimal timedt orientation of the in-
dividual molecule is changed by a small angledQ:

dQ i5v idt52F2
c2

b21c2
l impnq1

a2

a21c2
mil pnq

1
b2

a21b2
nimpl qGeqp1F2

b2

b21c2
l impnq

1
c2

a21c2
mil pnq1

a2

a21b2
nimpl qGepq , ~4.1!

whereepq5]pvqdt can be regarded as a hypothetical sm
deformation tensor.@Of course, we can describe the orient
tion of a selected molecule using the Eulerian angles
equivalently the director triad (l,m,n). However, a natural
choice while dealing with Cartesian tensors is using the
ter. Therefore the angledQ, which appears in Eq.~4.1!, is an
ordinary three-dimensional Cartesian vector.# Accordingly,
the distribution functionF(R,t) is changed fromF0 to F8:
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F85F01dF5F02L~d QF0!, ~4.2!

whereL is the angular momentum operator introduced in
previous section.

The changedF5F@F8#2F@F0# in the free energy due to
the small variationdF of the distribution function, according
to Eq. ~3.11!, has the form

dF5dkTE dF~R!dR1dkTE dF~R!ln@F0~R!#dR

2dE U@F0 ,R#dF~R!dR. ~4.3!

Using Eq.~4.2! and applying the rule of integration by par
we can rewrite the above equation in a more convenient f
as

2dF/dkT5^Ld Q&1^d QLU0&, ~4.4!

where the averages are taken over the equilibrium distr
tion function andU0[U@F0# is the appropriate equilibrium
mean-field potential.

According to the elasticy theory, the symmetric part of t
viscous stress tensorssym[(s1s†)/2 is connected with
dF by the following relation:

dF5sab
symeab

† . ~4.5!

It should be emphasized here that the analysis of the
energy functional we use in this section always produces
symmetric part of the stress tensor, provided no external fi
is present and the system is uniform.

Combining Eqs.~4.4! and ~4.5! and using Eq.~3.3!, we
obtain an expression for the microscopic stress tensorspq

sym:

spq
sym52dkT@^npnq&~ f m1 f l !2^mpmq&~ f l1 f n!

1^ l pl q&~ f n2 f m!#1
d fl
2

^~mpnq1mqnp!l iL iU0&

2
d

2
^~mpnq2mqnp!l iL iU0&

2
d fm
2

^~ l pnq1 l qnp!miLiU0&

1
d

2
^~ l pnq2 l qnp!miLiU0&

2
d fn
2

^~mpl q1mql p!niLiU0&

1
d

2
^~mpl q2mql p!niLiU0&, ~4.6!
e

m

u-

e
e
ld

where

f l5
b22c2

b21c2
, f m5

a22c2

c21a2
, f n5

a22b2

a21b2
. ~4.7!

Before proceeding to further calculations we notice that
above equation for the viscous stress tensor together with
kinetic Fokker-Planck equation~3.2! governing the distribu-
tion functionF(R,t) should be regarded as rheological co
stitutive equations for the biaxial system we consider.

It is convenient to rewrite the expression~4.6! in the evi-
dently symmetric form making use of the obvious fact th
spq
sym5(spq

sym1sqp
sym)/2,

spq
sym52dkT@^npnq&~ f m1 f l !2^mpmq&~ f l1 f n!

1^ l pl q&~ f n2 f m!#1
d

2
@ f l^~mpnq1mqnp!l iL iU0&

2 f m^~ l pnq1 l qnp!miLiU0&

2 f n^~mpl q1mql p!niLiU0&#. ~4.8!

One can also easily verify~see the Appendix A for details!
that the antisymmetric part of the expression~4.6!,

1

2
~spq

sym2sqp
sym!52

d

2
epqŝ l sl iLiU01msmiLiU0

1nsniLiU0&, ~4.9!

is in fact equal to zero.
It should be also noticed that if the system becom

uniaxial the formula~4.6! recovers the appropriate expre
sion for the stress tensor from the paper by Kuzuu and
@19#. Indeed, assuming thatU05U0(n–n) and a5b we
straightforwardly obtain

ssym5
p221

p211 F3dkTK nn2
1

3
1L 2d^n~n3RU0!&G ,

whereR5n3]/]n, p5c/a, and 1 is the unit tensor.~To
avoid a confusion note that the expression derived by Ku
and Doi contained also additional terms due to a fictitio
magnetic field, which is not necessary in the method
propose.!

The symmetric partssym can be determined exactl
without solving the PC equations. We make use of th
equations only for the purpose of eliminating from Eq.~4.8!
all terms involving the averages ofLiU0. We evaluate
^(mpnq1mqnp) l iL iU0&, ^( l pnq1 l qnp)miLiU0&, and
^(mpl q1mql p)niLiU0& in the following way.

Multiplying the PC equations bympnq , l pnq , and
mpl q , respectively, then substituting Eq.~3.3! for the angular
velocity, and carrying out integration overdR, we obtain,
using the rule of integration by parts,
^~mpnq1mqnp!l iL iU0&52
1

Dl
E ~mpnq1mqnp!l iJi~R!dR

12kTF ^npnq&2^mpmq&1
f l
2Dl

^~mpnq1mqnp!mtnsAts&2
1

2Dl
^~mpnq1mqnp!mtnsV ts&G ,



vanish
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^~ l pnq1 l qnp!miLiU0&52
1

Dm
E ~npl q1nql p!miJi~R!dR

12kTF ^ l pl q&2^npnq&2
f m
2Dm

^~ l pnq1 l qnp!l tnsAts&1
1

2Dm
^~ l pnq1 l qnp!l tnsV ts&G ,

^~mpl q1mql p!niLiU0&52
1

Dn
E ~ l pmq1 l qmp!niJi~R!dR

32kTF ^mpmq&2^ l pl q&2
f n
2Dn

^~mpl q1mql p!mtl sAts&1
1

2Dn
^~mpl q1mql p!mtl sV ts&G .

We show in Appendix B that the three integrals involving the probability current, which appear in the above formulas,
provided we useJ(R) given by Eq.~B1!, which is linear in perturbation.

Making use of the constraint~3.5! to eliminate the versorl from the above expressions and inserting them into Eq.~4.8! we
get

2
s i j
sym

dkT
522

f m
2

Dm
^ninjnknp&Akp22

f n
2

Dn
^mimjmkmp&Akp2S f m2Dm

1
f n
2

Dn
2

f l
2

Dl
D ^nimjnkmpAkp1njminkmpAkp&

1
f m
2

Dm
^ninkAjk1njnkAik&1

f n
2

Dn
^mimkAjk1mjmkAik&1

f m
Dm

^ninkVk j1njnkVki&1
f n
Dn

^mimkVk j1mjmkVki&

1S f lDl
2

f m
Dm

2
f n
Dn

D ^ninkmjmpVkp1minknjmpVkp&. ~4.10!
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Therefore, to obtain the symmetric part of the viscous str
tensor we have to calculate equilibrium averages of fou
and second-rank tensors being products of two unit vect
i.e.,m andn. To find these averages we will make use of t
following decoupling approximation:

^aibjakAkpbp&>^aibj&^akAkpbp&, ~4.11!

^aibjakVkpbp&>^aibj&^akVkpbp&, ~4.12!

where the symbolsai and bi stand for components of th
versorsm andn, i.e.,ai5mi ,ni andbi5mi ,ni . The formu-
las ~4.11! and ~4.12! allow for expressing all averages o
fourth-range tensors, which appear in Eq.~4.10!, in terms of
^mimj&, ^ninj&, and^nimj1njmi& only.

The decoupling procedure we use in this paper is a nat
extension to the biaxial case of the approximation of
form ^ninjnknp&>^ninj&^nknp&, which was used by Do
@18# and Marrucci@20# in the case of uniaxial nematic. A
detailed justification of such an approximation is given
Ref. @18#. In general, such a decoupling procedure is rat
rough and may produce errors being of the order of mag
tude. However, importantly, it becomes correct in the lim
of strong ordering. Therefore, the use of this decoupling p
cedure in calculations seems to be reasonable, especia
we deal with a deep biaxial phase. It also should be no
here that the Miesowicz viscosities obtained by Marrucc
the framework of the discussed decoupling approximat
were in agreement with the experimental data. Moreover
predicted, in principle, a correct dependence of the Le
viscosity coefficients on the nematic order parameter.
can thus expect that applying Eqs.~4.11! and ~4.12! in the
case of biaxial nematic is reasonable too.
ss
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We proceed now to the calculation of the averag
^ninj& and ^mimj&. For this purpose we first introduce tw
symmetric traceless second-rank tensorsSi j5^ninj2d i j /3&
and Bi j5^mimj2 l i l j& describing a degree of order of th
biaxial nematic liquid crystal we are dealing with. The fir
tensor is related to the uniaxial alignment, the second
describes the biaxial alignment~cf. Refs.@35,36#!. Using the
identity ~3.5! we may obviously write tensorBi j in terms of
n andm only as^2mimj1ninj2d i j &. It can be easily proved
that the versorsm andn are a common set of eigenvectors
the tensorsSi j andBi j . Furthermore, we have the followin
relations, which allow us to relate both tensors to mac
scopic quantities:

^nn21/3&5^F00
2 &~nn21/3!1

A3
3

^F20
2 &~2mm1nn21!,

~4.13!

^2mm1nn21&52A3^F02
2 &~nn21/3!1^F22

2 &

3~2mm1nn21!, ~4.14!

where the functionsFi j
l 5Fi j

l (R) are the appropriate scala
invariants generating the solution spaceG of theD2h sym-
metry group@34,37# and are described in detail in Append
C. The above results follow immediately from the definitio
of the averaging we use:̂aibj&5*ai(R)bj (R)F0(R)dR.
Note also that both averages calculated,Si j and Bi j , are
linear combinations of two order matrices (ninj2d i j /3) and
(2mimj1ninj2d i j ) only.
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From Eqs.~4.13! and ~4.14! we obtain

^nn&5Snn1B1mm1 1
3 ~12S1B1!1, ~4.15!

^mm&5S1nn1Bmm1 1
3 ~12S12B2B1!1, ~4.16!

where

S5^F00
2 &1A3^F20

2 &/3, ~4.17a!

B5A3^F20
2 &/31^F22

2 &, ~4.17b!
m
rt
ric
lo
2S152A3^F02
2 &1^F22

2 &2A3^F20
2 &/32^F00

2 &, ~4.17c!

B15^F22
2 &1A3^F20

2 &/3. ~4.17d!

Applying the decoupling procedure given by Eqs.~4.11!
and ~4.12! to the formula~4.10!, then making use of Eqs
~4.15! and ~4.16! we arrive at the following expression fo
the symmetric part of the viscous stress tensor:
2ssym/dkT522S f m2Dm
S21

f n
2

Dn
S1
2Dnn~nn:A!22S f m2Dm

B1
21

f n
2

Dn
B2Dmm~mm:A!1S f m2Dm

S1
f n
2

Dn
S1D ~nn–A1A–nn!

1S f m2Dm
B11

f n
2

Dn
BD ~mm–A1A–mm!22S f m2Dm

SB11
f n
2

Dn
BS1D @nn~mm:A!1mm~nn:A!#

1F 2 f m23Dm
~12S1B1!1

2 f n
2

3Dn
~12B2B12S1!GA1S f mDm

S1
f n
Dn

S1D ~nN1Nn!1S f mDm
B11

f n
Dn

BD ~mM1Mm! .

~4.18!
e
rod-
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o be

the
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-
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tric
will
Finally, employing the identity~D1! from Appendix D to
eliminate a term proportional to the su
nn(mm:A)1mm(nn:A), we are able to determine this pa
of the Leslie coefficients, which contribute to the symmet
part of the viscous stress tensor given by the phenomeno
cal formula~2.1! ~within the common factordkT!

a152
f m
2

Dm
S22

f n
2

Dn
S1
2 ,

b152
f m
2

Dm
B1
22

f n
2

Dn
B2,

a21a35
f m
Dm

S1
f n
Dn

S1 ,

a51a65
f m
2

Dm
S1

f n
2

Dn
S112

f m
2

Dm
SB112

f n
2

Dn
BS1 ,

~4.19!

2a45
f m
2

3Dm
~222S12B126SB1!

1
f n
2

3Dn
~222B22B122S126BS1!,

b21b35
f m
Dm

B11
f n
Dn

B,

b51b65
f m
2

Dm
B11

f n
2

Dn
B12

f m
2

Dm
SB112

f n
2

Dn
BS1 ,

m11m250,
gi-

m31m4522
f m
2

Dm
SB122

f n
2

Dn
BS1 ,

m550.

We notice that, in view of Eqs.~4.10! and~2.1!, only the two
terms^nm(mn:V)& and ^mn(nm:V)& contribute to the co-
efficientsm1 andm2. Employing the decoupling procedur
causes both these averages to factorize. The resulting p
ucts involve the terms likêmn& and^nm&. It is obvious that
the above averages, taken over the equilibrium distribut
function, are equal to zero. Therefore, we have

m15m250. ~4.20!

As seen, the use of the decoupling procedure appears t
too crude an approximation to grasp the coefficientsm1 and
m2 . However, both these quantities, associated with
mixed terms, are expected to be really small compared w
other Leslie coefficients. For this reason, the predict
~4.20! seems not to be a significant simplification.

To end, let us note also that, regardless of the fact that
decoupling approximation is applied, the last Onsager-Pa
relation, which states thatm550, is satisfied automatically.

V. THE MICROSCOPIC BALANCE EQUATION

In this section we show the method that allows for der
ing the phenomenological balance equations@Eqs. ~5.5!–
~5.7!# introduced in Sec. II in terms of microscopic param
eters. Our main task is, however, to find the missing par
the Leslie viscosity coefficients related to the antisymme
part of the viscous stress tensor. For this purpose we
analyze a system of the PC equations~3.8!–~3.10! determin-
ing the steady-state distribution functionF. We will investi-



i.e
ll
u
s

o
u
m

-
w
re
d

di
t
s
-

om
F
ns
oe
e

t
b

a
th
e

le

ree

ree
ms.
ons
ns

en-

-
-
ing

qua-
s-
of

o-

ors
e-
nts
a-

ove

55 2909VISCOUS PROPERTIES OF BIAXIAL NEMATIC . . .
gate properties of these equations close to equilibrium,
in the limit of a small velocity gradient. In doing this we wi
use a perturbation method regarding both the probability c
rent J and the deviationdF as the first-order perturbation
caused by the shear flow. The unperturbed values ofF and
J are, of course,F5F0 andJ50, whereF0 is the equilib-
rium solution. It also should be noted that the method
derivation of the antisymmetric part of the stress tensor o
lined in this section is, in a way, a generalization of so
methods@19,26# used in the case of uniaxial symmetry.

By substitutingF5F01dF into the PC equations we ob
tain, dropping all second-order terms in perturbation, t
systems of PC-type equations, denoted for the sake of b
ity as PC~0! and PC~1!, corresponding to the zeroth- an
first-order terms, respectively.@Both systems, PC~0! and
PC~1!, consist clearly of three equations.# The first system of
equations mentioned governs the equilibrium solutionF0
and is fully equivalent to the Hammerstein equation~3.12!,
which has already been throughly discussed in the prece
section. Therefore properties of the PC~0! equations are no
of our interest here. For our purposes we will only make u
of the second set of equations, PC~1!, assuming that the equi
librium distribution functionF0 is known.

We show a straightforward transformation of the PC~1!
system mentioned, which leads immediately to a system
three constitutive equations corresponding to the phen
enological equations of balance of angular momentum.
nally, by comparison of the appropriate pairs of equatio
we obtain the desired microscopic expressions for the c
ficients related to the antisymmetric part of the viscous str
tensor.

One may easily check that the above-mentioned, se
PC~1! equations that corresponds to the first-order pertur
tion has the following form:

l iJi5Dll iLidF2
Dl

kT
†dFl iLiU01F0l iL iU@dF#‡2F0l iv i ,

~5.1!

miJi5DmmiLidF2
Dm

kT
†dFmiLiU01F0miLiU@dF#‡

2F0miv i , ~5.2!

niJi5DnniLidF2
Dn

kT
†dFniLiU01F0niLiU@dF#‡

2F0niv i , ~5.3!

where the functionalU@dF#, according to Eq.~3.1!, is given
by the following formula:

U@dF,R#5dE K~R,R8!dF~R8!dR8. ~5.4!

Let us now proceed to the derivation of the constitutive b
ance equations. For this purpose we shall start from
above-system of three PC~1! equations. The method we us
is the following.

First, we multiply both sides of Eqs.~5.1!, ~5.2!, and~5.3!
by the symmetrized diadsnm1mn, nl1 ln, and lm1ml, re-
spectively, and integrate them over the angular variab
.,

r-

f
t-
e
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ng
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dR. Next, we double contract the obtained system of th
tensor equations withnm1mn, n l1 l n and l m1ml, re-
spectively. As a result we obtain again a system of th
scalar equations, which have a rather complicated for
Fortunately, as shown in Appendix E, the obtained equati
get considerably simpler after employing the expansio
~3.15! and ~3.13! for dF and J, respectively. Finally, we
arrive at the following set of equations:

05~npmq1nqmp!^~npmq1nqmp!l iv i&, ~5.5!

05~ l pmq1 l qmp!^~ l pmq1 l qmp!niv i&, ~5.6!

05~ l pnq1 l qnp!^~ l pnq1 l qnp!miv i&, ~5.7!

where^ & denotes the equilibrium average.
We first concentrate on Eqs.~5.6! and~5.7! to recover two

phenomenological equations of balance of angular mom
tum, Eq.~2.8! and ~2.9!.

Substituting the formula~3.3! for the angular velocityv
into Eqs. ~5.6! and ~5.7!, then making use of the identity
~3.5! to eliminate the versorl from the expression determin
ing the angular velocityv, employing the decoupling proce
dure described in the previous section and finally carry
out the averaging, with the help of relations~4.15! and
~4.16!, we obtain

S f m3 ~21S12B1!n–A1SND –l50 ~5.8!

S f n3 ~21B22S122B1!m–A1BMD –l50, ~5.9!

where the parametersS, B, S1, and B1 are given by the
formulas ~4.17a!–~4.17d!. It is not difficult to see that the
above equations correspond to the appropriate balance e
tions ~2.7! and ~2.8!, respectively. However, we cannot e
tablish yet a unique relationship between those two pairs
equations, since both Eq.~5.8! and Eq.~5.9! are undeter-
mined within certain scaling factors. Let us denote temp
rarily these factors bycm andcn , respectively. Comparison
of Eq. ~5.8! with Eq. ~2.7! and Eq.~5.9! with Eq. ~2.8! yields
then immediately the coefficientsg1, l1, g2, andl2:

g15cmS, ~5.10!

g25cmfm~21S12B1!/3, ~5.11!

l15cnB, ~5.12!

l25cnf n~21B22S122B1!/3. ~5.13!

Therefore, our task now is to establish uniquely both fact
cm andcn which appear in the above formulas. We can d
termine them making use of the fact that the coefficie
g1 andg2 should satisfy the following Onsager-Parodi rel
tions:

g25a31a2 , l25b31b2 . ~5.14!

Indeed, one may easily check that the relations quoted ab
are fulfilled if and only if
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cm5
dkT

fm
S f mDm

S1
f n
Dn

S1D 3

21S12B1
~5.15!

and

cn5
dkT

f n
S f mDm

B11
f n
Dn

BD 3

21B22B122S1
. ~5.16!

Finally, substituting the obtained expressions forcm andcn
into Eqs.~5.10!–~5.13! we arrive at the following formulas
for the coefficientsg1, l1, g2, andl2:

g15
dkT

fm
S f mDm

S1
f n
Dn

S1D 3S

21S12B1
, ~5.17!

g25dkTS f mDm
S1

f n
Dn

S1D , ~5.18!

l15
dkT

f n
S f mDm

B11
f n
Dn

BD 3B

21B22B122S1
, ~5.19!

l25dkTS f mDm
B11

f n
Dn

BD . ~5.20!

Lastly we proceed to the determination of the two remain
coefficientsg35m22m1 andg45m32m4.

From Eq.~4.20! we obtain immediately

g350. ~5.21!

Furthermore, the last coefficientg4 can be straightforwardly
established if we make use of the third Onsager-Parodi r
tion, which imposes that

g45m11m2 .

Hence, according to Eq.~4.19!, we have

g450. ~5.22!

The obtained coefficientsg1, g2, g3, g4, l1, andl2 allow us
to determine the antisymmetric part of the viscous stress
sor ~2.1!.

Employing the decoupling procedures results in vanish
of the average on the left side of Eq.~5.7!. For this reason we
cannot recover the third balance equation~2.9!. Fortunately,
we do not have to make use of this equation because
preceding relations derived,~5.6! and~5.7!, together with the
three Onsager-Parodi relations, have already enabled u
establish the antisymmetric part of the viscous stress te
uniquely.

One remark concerning Eq.~5.5! is in order: It should be
expected that if the decoupling approximation had not b
used the appropriate averages would not vanish and, the
we would recover the last balance equation. For the sa
reasons the coefficientg3 would not be equal to zero.

It is easy to see that the balance equation discussed, w
it exists, provides, apart from an equation forg3, also an
equation that involvesg2, l2, andg4. However, the latter
one does not follow an additional constraint for the Les
coefficients. This is due to the fact that Eq.~5.5! is undeter-
mined within a certain multiplier; there are two undete
g

a-

n-

g

o

to
or

n
by,
e

en

mined quantities, i.e., the coefficientg3 and the multiplier
mentioned, which have to be established. Concluding, if
had obtained the last balance equation it would provide o
one equation, i.e., an equation for the determination of
coefficientg3.

VI. THE LESLIE VISCOSITY COEFFICIENTS

By combining the expressions~4.19!, related to the sym-
metric part of the viscous stress, and the expressions~5.17!–
~5.20!, ~5.22!, and~5.21! we obtain finally the following for-
mulas for the Leslie viscosity coefficients:

a152dkTF f m2Dm
S21

f n
2

Dn
S1
2G ,

a25
dkT

2 F f mDm
S1

f n
Dn

S1GF12
1

f m

3S

21S12B1
G ,

a35
dkT

2 F f mDm
S1

f n
Dn

S1GF11
1

f m

3S

21S12B1
G ,

a45
dkT

2 F f m
2

3Dm
~222S12B126SB1!

1
f n
2

3Dn
~222B22B122S126BS1!G ,

a55
dkT

2 F S f m2Dm
2
f m
Dm

DS1S f n2Dn
2
f n
Dn

DS1
12

f m
2

Dm
SB112

f n
2

Dn
BS1G ,

a65
dkT

2 F S f m2Dm
1
f m
Dm

DS1S f n2Dn
1
f n
Dn

DS1
12

f m
2

Dm
SB112

f n
2

Dn
BS1G ,

b152dkTF f m2Dm
B1
21

f n
2

Dn
B2G ,

b25
dkT

2 F f mDm
B11

f n
Dn

BGF12
1

f n

3B

21B22B122S1
G ,

b35
dkT

2 F f mDm
B11

f n
Dn

BGF11
1

f n

3B

21B22B122S1
G ,

b55
dkT

2 F S f m2Dm
2
f m
Dm

DB11S f n2Dn
2
f n
Dn

DB
12

f m
2

Dm
SB112

f n
2

Dn
BS1G ,
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b65
dkT

2 F S f m2Dm
1
f m
Dm

DB11S f n2Dn
1
f n
Dn

DB
12

f m
2

Dm
SB112

f n
2

Dn
BS1G ,

m15m250,

m35m452dkTF f m2Dm
SB11

f n
2

Dn
BS1G ,

m550.

It should be noted that both order parameters^F02
2 & and

^F20
2 &, which are involved by the above formulas, are e

pected to be small compared with^F00
2 & and ^F22

2 &. This is
due to the fact that the first two averages describe ra
residual ordering and vanish completely in the case of id
biaxial alignment. Therefore they usually may be neglect
especially when one deals with a deep biaxial phase. No
also that the form factorf m , according to Eq.~4.7!, is nega-
tive. Having obtained the viscosity coefficients, one can
termine some important quantities that characterize the fl
alignment configurations in the presence of a velocity gra
ent field.

Carlssonet al. @38# and Leslie@28# showed that only six
equilibrium flow configurations are available and occur
pairs with one of the directors perpendicular to the plane
shear and other two in the plane of shear. Each of th
configurations is characterized by an appropriate flow ali
ment angle. Let us denote these angles, corresponding t
flows with the directorsn, m, and l perpendicular to the
plane of shear, byxn , xm , and x l , respectively. Accord-
ingly, the flow alignment angles are determined by

2cos2xm[1/t15
g1

g2
,

2cos2xn[1/t25
l1

l2
,

2cos2x l[1/t35
g11g31l1

g21g42l2
,

provided that the inequalities

ut1u.1, ut2u.1, ut3u.1

are fulfilled. Note also that the first ratio,t1, coincides with
the parameterl, which is used in the uniaxial case.

To complete this section we make use of the obtain
formulas for the Leslie coefficients to express the ratiost1,
t2, andt3 by molecular parameters. However, we do it on
in the simple case of the highly ordered biaxial phase co
posed of very deformed molecules, for which we assu
c@b. In this event, according to our remark, which has
ready been done,S becomes an ordinary Maier-Saupe ord
parameter, B5^F22

2 &, and, obviously, B1'B, S1'(B
2S)/2. Moreover, one expects that the rotational diffusi
constantDm associated with the rotational motion around t
-

er
al
,
ce

-
w
i-

f
se
-
the

d

-
e
-
r

short molecular axisb ~tumbling! is negligible compared
with the constantDn describing rotation around the long ax
c ~spinning!. The appropriate ratios are straightforward
found to be

1/t15
1

f m

3S

21S12B
,

1/t25
1

f n

3B

21S2B
,

1/t35
3

f mf n

f nS
2~21S2B!1 f mB

2~21S12B!

~S2B!~21S2B!~21S12B!
.

As seen, the above formulas do not involve the diffusi
constantsDm andDn , which are a measurable input to th
theory. It seems to be a serious advantage, especially co
ering that, as yet, the existing experimental material conce
ing dynamical properties of biaxial systems is very poor.

VII. THE UNIAXIAL CASE

The appropriate Leslie viscosity coefficients for th
uniaxial system are obtained by setting the biaxial order
rametersB andB1 equal to zero. Moreover, since the ave
age^F20

2 & is negligible compared witĥF00
2 & in the uniaxial

phase, one may put simplyS1'2S/2, whereS is an usually
Maier-Saupe order parameter.

For the sake of clarity, it is reasonable to differentiate tw
cases when the system becomes uniaxial. The first on
more general, allows for the lack of the symmetry axes
molecules, and occurs when the uniaxial phase is formed
biaxial molecules~i.e., molecules represented by ellipsoi
with three different principal axes!. The second case corre
sponds to the uniaxial phase, which consists of molecu
with the symmetry axes modeled by ellipsoids of revolutio
In both these cases, of course, only the six Leslie visco
coefficientsa i have nonzero values. This is due to the glob
D`h symmetry of the uniaxial system.

If we deal with the first of both mentioned cases, the
viscosity coefficients take the following forms:

a152dkTF f m2Dm
1

f n
2

4Dn
GS2,

a25
dkT

Dm

S

2 F f m2
3S

21SG2dkT
f n
Dn

S

4 F12
1

f m

S

21SG ,
a35

dkT

Dm

S

2 F f m1
3S

21SG2dkT
f n
Dn

S

4 F11
1

f m

S

21SG ,
a45

dkT

2 F23 S f m2Dm
1

f n
2

Dn
D 2

1

3 S 2 f m2Dm
2

f n
2

Dn
DSG ,

a55dkTF f m~ f m21!

2Dm
2
f n~ f n21!

4Dn
GS,

a65dkTF f m~ f m11!

2Dm
2
f n~ f n11!

4Dn
GS.
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Apart from terms proportional to 1/Dm the above formulas
contain additional terms proportional to 1/Dn . The presence
of the latter is not surprising and results from the fact that
molecules are in fact three-dimensional objects and have
rotational degree of freedom around their long molecu
axes, which causes additional movement resistance. Acc
ing to the Einstein formulas the resulting friction is inverse
proportional to the appropriate rotational diffusion coef
cientDn . Moreover, it is intuitively understood that all re
sidual effects related to rotational motion around the lo
axis depend on the level of molecular anisotropy, who
measure is a value of the form factorf n . We expect that
regardless of the value ofDn the effects mentioned ar
greater the more deformed the molecules composing
nematic phase are. In particular, when the molecules h
symmetry axes the existence of the rotational degree of f
dom mentioned does not influence the Leslie coefficie
~More precisely, this influence manifests only through t
diffusion constantsDm involved by the six Leslie coeffi-
cients.!

For a typical nematic molecule the value of the rotatio
diffusion coefficientDm characterizing the movement aroun
the axis perpendicular to the long molecular axis is cons
erably smaller than theDn coefficient. ~For example, the
NMR study of MBBA ~4-methoxybenzylidene-48-butyla-
niline! shows@39# that in the nematic phaseDm is about two
orders of magnitude smaller thanDn .) Therefore all terms
proportional to 1/Dn may be neglected. However, the
should be taken into account when the considered nem
liquid crystal consists of molecules that are not excessiv
elongated and both coefficientsDn andDm are of the same
order of magnitude.

Note also that, in view of the above formulas for th
Leslie viscosities, the ratioDm /Dn is a quantity that provides
information that justifies an approximation consisting in n
glecting the rotational degree of freedom around the lo
molecular axis. Indeed, ifDm /Dn!1 we are guaranteed tha
such an approximation is really reasonable.

When the nematic phase is formed by the molecules h
ing the symmetry axes the problem gets simpler. Putt
a5b we obtain the following relation between the form fa
tors: f l5 f m52 f and f n50, where f5(p221)/(p211)
and p5c/a is the axis ratio of an ellipsoid of revolution
Thus, all terms proportional tof n vanish. If we additionally
put f51 ~thin rods!, the Leslie coefficients become identic
to those obtained by Marrucci@20#. Note that the Miesowicz
viscosities calculated based on the formulas proposed
Marrucci are in agreement with the experimental evidenc
spite of all simplifying procedures he applied.

VIII. SUMMARY

In this paper we present a method of calculation of v
cosity coefficients of biaxial nematic liquid crystals based
the microscopic approach. The method we propose is con
tent with the two-director continuum theory by Ericsen a
Leslie. The obtained viscosity coefficients are expresse
terms of the suspension parameters such as order param
number density, temperature, and diffusion constants
satisfy the four Onsager-Parodi relations.

To obtain the symmetric part of the viscous stress ten
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we investigate the change in the Helmholtz free energy fu
tional F@F# caused by the shear flow. Next, like seve
authors in the case of uniaxial system, we analyze an ap
priate kinetic equation of the Fokker-Planck type in order
derive the antisymmetric part of the viscous stress. Howe
we use the kinetic equation written in a form equivalent
the continuity equation, which involves the probability cu
rent J. Such a manner, i.e., making use of the system of
three PC equations, proves to be a crucial one in the prob
of the derivation of the viscosity coefficients in the case
biaxial nematic liquid crystals. The same quantities seem
out of reach using the scalar form of the Fokker-Planck eq
tion. What is more, the presented method consisting in e
ploying a system of PC equations can be also useful w
dealing with other problems related to properties of biax
systems.

No assumption concerning the rotational diffusion coe
cientsDl , Dm , andDn has been made. Also, we do n
restrict ourselves to a certain type of the pair-interaction
tential. Therefore presented results are quite general. The
plicability of the derived formulas for the viscosity coeffi
cients is not narrowed in spite of the fact that the Jeffe
formula ~3.3!, valid for ellipsoids only, is used during th
calculations. The assumption is, of course, that the molec
may be approximated by ellipsoids. Thus, all informati
concerning the shape is reduced to the three geometrica
rametersf l , f m , andf n , which describe the anisotropy of a
ellipsoid. Although such an approximation seems to be
rather crude one, a similar treatment in the case of
uniaxial nematics proved to be quite satisfactory.

The presented formulas may be easily applied to the s
cial case where the uniaxial system is composed of m
ecules with symmetry axes by setting all order paramet
^F20

2 &, ^F02
2 &, and^F22

2 &, and the form factorf n equal to zero.
Thus obtained Leslie coefficients are similar to those p
posed by Marrucci in Ref.@20#. The difference is that the
latter do not contain the form factorf , which makes our
results more realistic. In particular, we predict the coefficie
a6 has a nonzero value. In the limiting case, whenf51, this
difference vanishes.

Another important result consists in the fact that anis
ropy of molecular shape typical for biaxial molecules, me
sured by a value of the form factorf n , influences all Leslie
coefficients even when the system possesses the uni
symmetryD`h .

The main mathematical simplification applied during c
culations concerns the decoupling procedure. It consis
expressing the averages of fourth-rank tensors in terms o
appropriate averages of second-rank tensors. As a co
quence the obtained viscosity coefficients are expresse
terms of four order parameters being averages of the sec
rank invariantsFi j

2 A similar approximation, originally pro-
posed by Doi@18#, was also used in the paper by Marrucci
calculations of the Leslie coefficients in the case of a uniax
system. In spite of the mentioned decoupling approximati
the viscosity coefficients derived by Marrucci are in agre
ment with the experimental data to a satisfactory exte
Therefore it may be expected that the formulas propose
this paper are suitable for predicting viscous properties
biaxial systems.

In conclusion, note that the methods developed here
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55 2913VISCOUS PROPERTIES OF BIAXIAL NEMATIC . . .
not intended to be complete and final; we hope that the
sented method of obtaining of the Leslie viscosity coe
cients will be the starting point for further investigations
viscous properties of the biaxial phase.

APPENDIX A

As a result of action of the angular momentum opera
on three versorsl, m, andn we obtain

Li l j5e i jk l k , Linj5e i jknk , Limj5e i jkmk .

In order to obtain the final result we make also use of
following properties of the operatorL:

miLi l j5nj , miLinj52 l j , miLimj50, ~A1a!

niLi l j52mj , niLinj50, niLimj5 l j , ~A1b!

l iL i l j50, l iL inj5mj , l iL imj52nj . ~A1c!

The equilibrium mean-field potentialU0(R) may be written
in terms of directors (l, m, n) and (l, m, n). In generalU0 is
a sum consisting of terms of the following form:

)
i , j51

3

~j~ i !
–z~ j !!a i j , ~A2!

where j(1)5 l, j(2)5m, j(3)5n and z(1)5 l, z(2)5m,
z(3)5n. Since the potentialU0 is an even function under th
operationsj( i )→2j( i ) andz( i )→2z( i ) for eachi , the expo-
nentsa i j must obey the condition that both sums( ja i j and
( ia i j are even numbers fori , j51,2,3.

In order to calculate the average^ l sl jL jU0& we first in-
quire into the action of the differential operatorl iL i on the
selected term~A2! of the expansion ofU0.

Using the rules quoted in Eqs.~A1a!–~A1c! we obtain

l sLs )
p,q51

3

~j~p!
–z~q!!apq

5 )
p,q51

3

~j~p!
–z~q!!apq(

i
@a i3~j~ i !

–n!21j~ i !
–m

2a i2~j~ i !
–m!21j„i…–n#. ~A3!

It is obvious that after multiplying the above expression
l s we obtain a function belonging to the spaceG' , which is
orthogonal toG. Hence, the averagêl sl jL jU0& taken over
the equilibrium distribution functionF0, which is an element
of theG space, vanishes.

Applying similar arguments one can show that also
two remaining averageŝnsnjL jU0& and ^msmjL jU0& van-
ish.

APPENDIX B

Before we proceed to calculate the appropriate integ
involving Ji , we investigate some general properties of
probability current that is assumed to be linear in pertur
tion represented byA andV.

There are two restrictions that considerably limit the fa
e-
-

r

e

e

ls
e
-

-

ily of all Ji functions we should take into account: Firstly, w
require the probability current to obey the conditio
LiJi50. Secondly, the projectionsl iJi , miJi , andniJi must
be elements of theG space. One can check that the mo
general form of the currentJi that satisfies the condition
quoted above is the following:

Ji~R!5 l i j lF l~R!1mi j mFm~R!1ni j nFn~R!

1 l i~m–V–n!Y l~R!1mi~n–V–l!Ym~R!

1ni~ l–V–m!Yn~R!1 l i~ l–A–l!C l~R!

1mi~m–A–m!Cm~R!1ni~n–A–n!Cn~R!, ~B1!

where j l , j m, and j n are constants composed by the inva
ants ofA andV; the functionsF l(R), Fm(R), andFn(R),
and the products (m–V–n)Y l(R), . . . , (n–A–n)Cn(R) be-
long to theG space.

Let us consider the following integral:

Ipq5E ~mpnq1mqnp!l iJi~R!dR. ~B2!

Substituting for the currentJi in Eq. ~B1! we obtain

Ipq5E ~mpnq1mqnp!@ j lF l~R!1m–V–nY l~R!

1 l–A–lC l~R!#dR. ~B3!

One may straightforwardly check that the integrand is
even function with respect to the operationl→2 l and an odd
function with respect to the operationsm→2m and
n→2n. Thus, the integralIpq vanishes.

In an analogous way we obtain also

E ~ l pmq1 l qmp!niJi~R!dR50,

E ~npl q1nql p!miJi~R!dR50.

APPENDIX C

The basic functionsFi j
l generating theG solution space

for the one-particle distribution function of the biaxial sy
tem are given by the following formula:

Fi j
l 5~A2!222d i02d0 j (

srP$1,21%
~21! l ~r2s!/2Dr i ,s j

~ l ! ~R!,

~C1!

where l , i , j are integer numbers andR is the rotation pa-
rametrized by three Euler angles.Di j

l are the standard rota
tion matrix elements@30#.

The functionsFi j
l obey the following orthonormality rela

tions:

E dRFi j
l ~R!Fmn

k ~R!5d lkd imd jn

8p2

2l11
.

Thus, according to Eq.~C1!, F00
2 is given by
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F00
2 5

3

2
~cos2u21/3!.

Three other functions,F20
2 , F02

2 , andF22
2 which appear in

the definition of the order parameters, expressed in term
Euler angles have the following forms:

F20
2 5

A3
2
sin2ucos2w,

F02
2 5

A3
2
sin2ucos2c,

F22
2 5

1

2
~11cos2u!cos2wcos2c2cosusin2wsin2c.

As seen from the definition, the average^F00
2 & is the com-

monly used in the uniaxial case Maier-Saupe order par
eter.

Averages ofF02
2 andF22

2 take nonzero values only if th
system possesses theD2h ~or lower! symmetry and vanish in
the case of theD`h symmetry possessed by the uniax
system. Thê F20

2 & may take nonzero values even when t
system possesses the uniaxial symmetry. However, it is
ally very small compared with a value of the parameterS.
Note also that both averages^F20

2 & and ^F02
2 & vanish in the

case of the ideal biaxial alignment.

APPENDIX D

To eliminate a term proportional to
(ninjmkmpAkp1mimjnknpAkp) from Eq. ~4.18! we use the
following identity @4,6#:

~ninjmkmpAkp1mimjnknpAkp!

5Ai j1~nimj1minj !mknpAkp2~mimkAjk1mjmkAik!

2~ninkAjk1njnkAik!1~nknpAkp1mkmpAkp!d i j .

~D1!

APPENDIX E

Let us consider the first equation,~5.1!, of the PC~1! sys-
tem. Multiplying it by nm1mn and integrating over the an
gular variablesdR we obtain the following equation:

kTE ~mpnq1mqnp!l iJi~R!dR

52DlE ~mpnq1mqnp!dFl iLiU0dR

2DlE ~mpnq1mqnp!F0l iL iU@dF#dR

1kTDlE ~mpnq1mqnp!l iL idFdR

2kTE ~mpnq1mqnp!F0l iv idR. ~E1!
of

-

l

u-

First of all, we see that, according to the results from App
dix B, the integral involvingJ vanishes.

In order to calculate the first integral form the right side
Eq. ~E1! we investigate properties of the following produc

~mpnq1mqnp!l iL iU0 . ~E2!

According to Eq.~A3!, in the expansion of the above expre
sion only terms of the following form appear:

)
p,q51

3

~j~p!
–z~q!!apq~j~k!

–n!21j~k!
–m~mpnq1mqnp!

and

)
p,q51

3

~j~p!
–z~q!!apq~j~k!

–m!21j~k!
–n~mpnq1mqnp!,

wherea, b, andg are even numbers. Hence, the product E
~E2! is clearly invariant with respect to the operatio
l→2 l, m→2m, andn→2n.

Next, we analyze symmetry properties of the perturbat
dF. According to Eq.~3.15! we have

dF52dRiLiF0 . ~E3!

Making use of the fact thatdRi may be written down as

dRi5 l idRl1midRm1nidRn , ~E4!

wheredRl , dRm , anddRn are certain constants, we have

dRiLiF05~dRll iLi1dRmmiLi1dRnniLi !F0 . ~E5!

Since the equilibrium distribution functionF0 is an element
of the G space, it may be easily verified thatdRiLiF0 con-
sists of terms being odd functions with respect to one of
versorsl, m, n and even functions with respect to the tw
remaining versors. Therefore, considering the symmetry
the product ofdF and the expression~E2! with regard to the
versorsl, m, andn we see that the first integral is equal
zero.

Let us now proceed to calculate the second integral.
see that, according to the definition~3.1! of the functional
U, the expression

U@dF,R#5dE K~R,R8!dF~R8!R8,

has the same symmetry properties with regard to the ver
l, m, and n like the perturbationdF. Therefore, one can
easily check that an action of the differential operatorl iL i on
U@dF# leads to an expression that is an even function ol,
m, andn. Analyzing the appropriate symmetry properties
the product (mpnq1mqnp) l iL iU@dF#F0, we find out that
the second integral must vanish.

Finally, we proceed to the third integral.l iL idF is an even
function with respect to the versorsm, and n and an odd
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function with respect to the versorl. Thus, due to symmetry
properties of the product (mpnq1m) l iL idF the third integral
is also equal to zero. The only nonzero term is the last in
gral. Therefore, contracting Eq.~E1! with the tensor
ch
-

mn1nm we derive the Eq.~5.5!. In an analogous way one
can easily verify also that the procedure described in Sec
transforms Eqs.~5.2! and ~5.3! into Eqs. ~5.6! and ~5.7!,
respectively.
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