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Viscous properties of biaxial nematic liquid crystals:
The method of calculation of the Leslie viscosity coefficients
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We present a microscopic approach to the theory of viscosity of biaxial nematic liquid crystals consistent
with the existing 2-director continuum Leslie’s theory and show the method of obtaining microscopic formulas
for viscosity coefficients. The derived formulas are expressed in terms of order parameters, temperature,
number density, and diffusion constants. Obtained viscosity coefficients satisfy the four Onsager-Parodi rela-
tions. Since no assumptions about diffusion constants are applied and a very general form of an interaction
potential is used, presented results are quite general. The approximation concerns shapes of the molecules that
are modeled by ellipsoids with three different principal axes. In the limiting case, when appropriate biaxial
order parameters vanish and the system becomes uniaxial, we obtain the six Leslie viscosities involving, in
general, two diffusion coefficients related to the rotational motion about short and long axes, respectively, and
two ellipsoidal axis ratios. When the molecules possess symmetry axes, the formulas for the Leslie coefficients
recover known results for uniaxial systef81063-651X%97)14202-7

PACS numbe(s): 61.30—v, 66.20:+d, 83.70.Jr

[. INTRODUCTION lecular descriptions seem to be well established, a relation-
ship between them is not clear yet; to our knowledge, there is
Since the discovery by Yu and Sauffd of the biaxial no appropriate microscopic theory that would allow one to

nematic liquid crystal, several macroscopic theories havé&xpress phenomenological quantities in terms of molecular

been developed to describe properties of these interestifgprameters used on the microscopic level. Unfortunately,

mesophases. Especially, the hydrodynamics of biaxial sysiome attempts at the derivation of such a theory that have
tems has been the subject of much interest. In fact, a numb&een made recentlyr,14,13 are far from being satisfactory.

of continuum theories have been derived for biaxial nematic. 't Should be also noted that analogous theories have been

The first formulation was given by Saufi#], the subsequent successfully de_veloped f(_)r t_he uniaxigl case. The appropriate
by Kini [3], Govers and Vertogepd], and Chaurds). The ~Phenomenological constitutive equations were proposed by
most complete derivation of the continuum theory has reEricsen and Leﬁ:gg'lzﬂq‘ C?In the othter dha_nd, tr;}wany mlt(':tro-
cently been given by Lesliet al. [6]. The two first theories SCOpIC approac —<9 allow one 1o derve the constitu-

mentioned[2.3] employ three orthonormal directors to de- tive equations from a molecular level and to express the vis-
) ploy cosity coefficients in terms of the parameters characterizing

: _ The suspension. Note that a complete description of the mi-
[5,6] introduce only two directors. However, as shown by .,scqnic origins of viscosity of nematic liquid crystals was
Das and_ Schwark?],_ both the 3-director and th_e 2-dwecto_r presented by Kuzuu and DL9] and by Osipov and Ter-
formulations of continuum theory are fully equivalent. This entjev [23]. Recently, Osipowet al. [27] developed also a
equivalence consists in that each viscosity coefficient in onggnsistent microscopic theory for describing viscosity of bi-
model is expressible as a linear combination of the viscosityxial smectics C.
coefficients of the other model. In this paper we focus on the The purpose of this paper is therefore to relate both mac-
2-director formulation and adopt the notation of Re]. roscopic and microscopic approaches and to present a
An efficient microscopic approach to the dynamics of amethod that allows us to express the phenomenological vis-
nematic liquid crystal consisting of biaxial molecules is cosity coefficients in terms of molecular parameters, such as
based on the rotational diffusion model, which assumes thatrder parameters, temperature, diffusion constants, number
the reorientation of an individual molecule is a stochasticdensity, and some factors characterizing the molecular shape.
Brownian motion in a certain potential of mean torque The paper is organized as follows. In Sec. Il we summa-
[8-12. In such a treatment the system is determined by theize basic equations of the 2-director continuum theory of
time-dependent one-particle orientational distribution func-biaxial nematic liquid crystals. Section Il presents a molecu-
tion governed by an appropriate kinetic equation. In generalar approach to biaxial nematics and, as a main result, pro-
while asymmetric molecules reorienting in an arbitrary mearvides a system of three kinetic equations governing the one-
potential are considered, the problem of finding the distribuparticle distribution function. Sections IV and V present a
tion function is a rather complex one and no closed analytimethod of obtaining the symmetric and the antisymmetric
cal solution is available. On the other hand, Berggren angbarts of the viscous stress tensor, respectively. Next, in Sec.
Zannoni[13] have recently solved the rotational diffusion VI, having obtained the complete viscous stress tensor, we
equation for a biaxial system composed by asymmetric molealculate the sixteen Leslie viscosity coefficients. Finally, in
ecules. Sec. VII, we discuss the derived formulas for the viscosity
However, whereas both the phenomenological and moeoefficients in the limit of uniaxial symmetry. Some com-
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ments on the methods presented are given in Sec. VIII. Yi=az—an, YVo=ag—as, V3= pa— i1,

Il. THE BIAXIAL NEMATIC VISCOUS STRESS TENSOR

. . . . =mg— M3, N=B3— B2, Ar=BBs.
In this section we briefly summarize the most complete YaT HaT K3 1=Bs~ B2 2=Be~ s

formulation of continuum theory for biaxial liquid crystals
given by Leslieet al.in Ref.[6] and by Leslie in Ref{28].

An incompressible, homogeneous biaxial nematic quuid,[i0
crystal is under consideration. To describe the biaxiality w
employ two orthogonal unit vectors and m. We introduce
also two second-rank tensos and Q, which correspond to
the symmetric part and the antisymmetric part of the velocity

For some reasons, however, we will use the balance equa-
ns of angular momentum Eq2.6) rewritten in a fully
eequivalent form of a system of the following three scalar
equations:

gradlent tenSOﬁin ) reSpeCtlver: (lei+ 72Aijﬂj)Li:O’ (27)
Qaﬁ:_%(aavﬁ_é’ﬁva)v Aaﬁz%(&avﬁ+&ﬁva)'
Accordingly, the viscous stress tensey; is given by the (MM +N2A; M) =0, (2.8

following equation:

7ij = alMidpAuphin j+ aoNin j+ asN i+ agAj [(y1+yat A)Ni+(y2+ 4= N)Aijn;Im;=0, (2.9
+asAiniN j+ @A NN + B1MMpApmim |
+ BoMim+ BsM jm; + BsAjmim j + BeA jimm; wherel=mxn.
+NpMp(aegMinj+ uoming) + NiAeMp(uzmin
+M4mjﬂi)+lu“5mkmpAkpﬂiﬂj , (21) I1l. KINETIC EQUATIONS FOR A BIAXIAL SYSTEM

We consider a spatially homogeneous system consisting
of biaxial molecules affected by a low velocity gradient field.
N=h-Q-n, M=m-Q-m. (2.2 The orientation of each molecule is described by the rotation
- - - — R, which transforms the set of laboratory coordinates into the
The vectorsN and M represent the rate of change of the Set of coordinates fixed in this molecule. Such rotation can
directors with respect to the moving fluid. The coefficientsbe represented by the collection of the three Euler angles
@i, ... s B1 ... Bs anduy, ... us will be referred to  [30], R=(¢,6,¢). The elements of the first set of coordi-
as the Leslie viscosity coefficients. They are linked by thenates, i.e., three mutually perpendicular verdors, andn,

where

following four Onsager-Parodi relatiofig9,6]: describe the biaxiality of the system and are identical to
those just introduced in the previous section. The second set
aztax=ag— as, of coordinates, containing the versadrsn, andn, is chosen
in accordance with the molecular symmetry, in such a way
B3t B2=Bs— Bs., that the verson coincides with the long axis, versorm
(2.3 with the short axisb, and versor with the short axisa.
Mt po=pa— p3, Moreover, to focus our attention, we assume tath>a,
where wherec, b, anda are the lengths of the appropriate
us=0. principal axes.

The probability that at timé the molecule is rotated away
m the laboratory coordinates through a certain rotation
an is given by the one particle orientational distribution func-
tion F(R,t). In order to obtain the kinetic equation governing
the time evolution ofF(R,t) we assume that the rotational
motion of a selected molecule may be treated as Brownian
M= —(yN;+ Y2A N+ yaN MM+ y,n [ Ajmm), motion in a cer.tain ext_ernallpotentihll, which corresponds
- - T (29 to an effective interaction with surrounding molecules. Such
an approach is closely related to the mean-field approxima-

Therefore, to describe the system completely, one has tﬁ
. : . . . 0
know twelve linearly independent viscosity coefficients.
The equation representing the balance of angular mome
tum can be writter§28] in the following form of two vector
equations:

TIM=— (M2 A;m)), (2.5  tion, which is assumed to be sufficient in the problem we

- consider. Moreover, we assume that the Brownian motion of
where the vectorg " andg " are defined as follows: each of the three symmetry axes proceeds independently.
Therefore we are guaranteed that in the appropriate molecu-

gl=yni+«xm;, gl=m+«n;, (2.6) lar frame of reference the diffusion tensor, which will be

discussed later, is diagonal.
with vy, x, and7 being certain constants. The coefficients that  Within the framework of the mean-field approach, the po-
appear in Egs(2.4) and (2.5 are related to the Leslie coef- tential U is given by the following functional of the prob-
ficients by ability function F(R,t):
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, , , The Fokker-Planck equatiof8.2) may be written in the
U:U[F,R,t]ZdJ K(RRHF(R',t)dR",  (3.1)  equivalent form of the continuity equation

where we have used an abbreviatigiR=singdédedys and JF
d denotes the number density of molecules. The kernel r
K(R,R") corresponds to an interaction potential between a
pair of molecules. In this paper, however, we do not have to
know an explicit form ofK(R,R’). It can be a quite general where J; are components of the probability currehtand
function of R andR’ allowed by the symmetry requirements. L;J; should be understood as its generalized angular diver-
It should be also noted that the functionlF ] given by Eq.  gence. The three components of the probability curjearte
(3.1 is a linear one. We will make use of this fact in further defined as follows:
calculations.

The appropriate Fokker-Planck type equation determining F
the time evolution of the one-particle orientational distribu- Ji=DjjL;F+ ﬁDiijU[F]— Fow;. (3.7
tion functionF(R,t) reads

:Li‘]i y (36)

If we project the vectod onto the versor$, m, andn suc-
cessively(i.e., if we find components of in the molecular
frame of reference then make use of Eq3.4) defining the
where T is the absolute temperaturk, is the Boltzmann diffusion tensor, as a result we obtain the following system
constant, andU[F] is the above-mentioned mean-field po- of three scalar equations:

tential; L; are components of the angular momentum opera-
tor, which satisfy the usual commutation relations

JF F

D,
L L] =i egLe. i3i=DiliLiF— ;ZFIiLIU[F]-Flio;, (38
wheree;;, is the completely antisymmetric unit tensor.

The last term in Eq(3.2) is due to the velocity gradient, mJ=D.-mL.F— %FmL-U[F]— Fm o 3.9
which rotates each molecule with a certain average angular AR 4 e '
velocity w. In order to determine this angular velocity we
model the biaxial molecule as an ellipsoid with three differ- D
ent principal axes, b, c and make use of the Jefferggl] nJ;=D,nL;F— —FnLU[F]-Fnw;. (3.10
solution for the motion of a single ellipsoid in a homoge- kT
neous shear flow. For the ellipsoid with a long principal axis
¢ parallel to versom and with short axe® anda parallel, |n further considerations the above three constitutive equa-
respectively, tan andl an appropriate formula for the angu- tions, derived from the definitio(8.7), will be called simply
lar velocity is given by the probability currentPC) equations.

In general, there is no reason to assume that in a station-
ary state the probability current is a constant vector. Thus we

+m ! ; . .
have to consider components.bbeing functions depending

w=—| ‘n

| C2_"’IZA Q
|t e n

2_02
m'(m‘\‘“

212 on a collection of Euler angles, i.€);,=J;(R). However, the
+n/m- %A— Q) .|}_ (3.3 number of allJ; functions we should take into account is
a“+b limited by the symmetry of the biaxial phase, which yields

. . . the constraint that application of tHe,,, group operations
Finally, in the Fokker-Planck equatio8.2) Dj; stands for  gnqid leaved; unchanged. The second restriction is obvi-
the rotational diffusion tensor, whose elements are given b%usly that the conditiorL,J,(R)=0 holds. Moreover, in
3.4 equilibrium, i.e., when the velocity gradient is not present,

all components of the probability current vanish. We show
that it follows immediately from the fact that both the

Hammerstein-type equation for the one-particle distribution
dunction, derived in the framework of a functional approach,
(in which D;; is diagonal. As seen, the rotational diffusion and the kinetic Fokker-Planck equation must be consistent

matrix is a symmetric one. Note also that in the case of';md obeyed by the same equilibrium distribution function
isotropic diffusion, i.e., whe=D,=D,=D, tensorDj, 0
can be written, using the identity

Dij:D||i|j+Dmmimj+Dnninj,

where the constant®,, D,,, andD,, are, respectively, the
rotational diffusion coefficients around tthem, andn prin-
cipal axes of an ellipsoid in the molecular frame of referenc

Let F=U;,,— TS denote the Helmholtz free energy of the
system we consider. Hend;,; and S stand for the internal
Lilj+mm+nin; = 8; (3.5 energy and the entropy of the system, respectively, Taisd
the absolute temperature. At the level of the second virial
simply asD;; =D &;; , whered;; denotes the Kronecker sym- coefficient 7 is the following functional depending on the
bol. Note that a similar form of the kinetic equation was alsoone particle orientational distribution functioR(R) [32—
used by several authof8,13,15. 34
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phase is not of our interest. The task we are dealing with has
f[F]=dij F(R)In[F(R)]dR in fact nothing in common with nonequilibrium problem.
) Since the angleR is a small quantity being of order of
d , , perturbation, we can apply the Taylor expansion and retain
B EJ f F(RIF(ROK(R,R")dRdR. (31D only terms linear indR. We have
To obtain the condition for equilibrium we require that the OF(R)=—0R-LFo(R). (3.19
functional F must be a minimum with respect to an arbitrary

variation ofF, i.e., SF[F]/SF =0 for F=F,. This leads to In Appendix B we show also that the fact that we confine

ourselves to very small perturbations yields considerable
1 limitations for the family of the current§ we have to take
In(Fo) = 1 FULFol=p, (3.12  into account.

In the following section we use the obtained PC equations
where u denotes a chemical potential atd[F,] is the (3-8—(3.10 in order to derive the symmetric part of the
mean-field potential defined in E3.1). Equation(3.12 is  Viscous stress tensor and express it in terms of suspension
just the above-mentioned self-consistent Hammerstein equRarameters. Next, in Sec. V we show the method that allows

tion governing the equilibrium solutioRi,. us to recover the phenomenological balance equations for
As a result of the action of thB;;L; operator upon Eg. angular momentuni2.7)—(2.9) on the basis of the PC equa-
(3.12 we obtain tion set mentioned, and, thereby, obtain the antisymmetric

part of the stress tensor.

Fo
Dij|LiFo jFLiUlFol|=0. IV. THE SYMMETRIC PART OF THE MICROSCOPIC
STRESS TENSOR

The left-hand side of the above expression is, according to . . .
In this section we show a method that allows us to derive

Eq. (3.7), theith component of the probability current. Thus, . ;
in equilibrium the vectod(R) vanishes. the symmetric part of the viscous stress tensor. We adopt the

If the system is subjected to the shear flow, the probabilit)}“ S : ) o
currentJ(R) appears and the equilibrium distribution func- the case of uniaxial nematics and extend it to the biaxial

tion Fy changes to the stationary solutibre=Fqo+ 6F. We case. . . .
. ; . The method we use is based, in general, on analyzing the
can write both the perturbatiofF and the probability cur- .
. : o change in the free energy caused by the shear flow. It should
rent in terms of the Wigner matricd3, ;(R) as

be emphasized that this analysis cannot provide information
concerning the antisymmetric part of the stress at all because
J(R=2 X DL4(R)jI*, (3.13  the system is uniform, no external field is present, and all
Ioab averages are taken over the equilibrium distribution function.
Thus, in this section we come up with information about the
5F(R)=Z E Dlag( R)fle8, (3.14 symr.netric. part of the stre_ss tensor only. The antisymmetric
T ‘aB part is derived separately in Sec. V.

We consider a system consisting of biaxial molecules un-
wherej{*# andf'*# are certain expansion coefficients. Note dergoing the influence of a small velocity gradient field. This
that the summation must be taken over both odd and evefield causes each molecule to move along a periodic Jefferey
I, since the velocity gradient affects the directbrsn, and  orbit with the average angular velocity given by Eq.(3.3.

n. Therefore, in the infinitesimal timét orientation of the in-
It should be emphasized that our goal is not to find eithedividual molecule is changed by a small ang@®:
the stationary solutiofr (R) or J(R); the actual object of our

considerations is the PC equations. We analyze these equa- c? a’
tions only for the purpose of coming up with information 00 =widt=—| — iz limpNg+ 7 -2 milpng
about the viscous stress tensor and properties of a nonequi-
librium solution are not of our interest here. b? b?

In general, there are two separate effects caused by the +aZ+ bZnimplq €qp |~ b2+ cilimpnq
shear: First, it makes the directdrsm, and n rotate away & 5

from their equilibrium positions. Second, it changes values n mln + —
of the scalar order parameters. In this paper, however, we aZ+c2 TP g2 p2 P
take into consideration flow-induced disturbances being pure

rotations of the directors only. The shear flow is treated as wheree,q= dpv 46t can be regarded as a hypothetical small
small perturbation, which removes degeneration of the equideformation tensof.Of course, we can describe the orienta-
librium state. The system is thus rotated about a small angléon of a selected molecule using the Eulerian angles or
6R whereas all scalar order parameters remain unchangeequivalently the director triadl,m,n). However, a natural
Note that the viscosity coefficients are expressed in terms afhoice while dealing with Cartesian tensors is using the lat-
quantities that are averages taken over the equilibrium distriter. Therefore the anglé®, which appears in Ed4.1), is an
bution functionF; the question of how the velocity gradient ordinary three-dimensional Cartesian vedtakccordingly,
affects scalar order parameters characterizing the biaxidhe distribution functiorF(R,t) is changed fronf, to F':

€pq> 4.7
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F'=Fq+ 6F=Fy—L(8OF), (4.2  where

bZ_CZ aZ_CZ aZ_bZ

whereL is the angular momentum operator introduced in the f= _ 4.7
b°+c?’ ™ c’+a?’ " a’+b?’ '

previous section.

The changedF=F F']—F Fy] in the free energy due to
the small variatiorsF of the distribution function, according
to Eq. (3.1, has the form

Before proceeding to further calculations we notice that the
above equation for the viscous stress tensor together with the
kinetic Fokker-Planck equatiof8.2) governing the distribu-
tion functionF(R,t) should be regarded as rheological con-
5f=dkTJ 5F(R)dR+dkTJ OF(R)IN[Fo(R)JdR stitutive equations for the biaxial system we consider.
It is convenient to rewrite the expressi¢h6) in the evi-

dently symmetric form making use of the obvious fact that
—df U[Fy,R]SF(R)dR 4.3 O_Fs){‘m:(a_'s))am_’_ Ua)gm)/zi
Using Eq.(4.2) and applying the rule of integration by parts ~ opq = —dKT[(nyng)(fm+ f) = (mymg) (f,+fp)
we can rewrite the above equation in a more convenient form

d
as (1l ) (Fa= fm) 1+ S Fi{ (Mg +mgng)liLiUo)
— 8F1dkT=(L&O)+(5OLU), (4.9

—fm((Iong+1gnp)miLiUg)
where the averages are taken over the equilibrium distribu-
tion function andU,=U[F,] is the appropriate equilibrium — fr((mplg+mglp)niLiUg)]. (4.9
mean-field potential. _ One can also easily verifisee the Appendix A for details
According to the elasticy theory, the symmetric part of theihat the antisymmetric part of the expressidrb),
viscous stress tensar™Y™=(o+ ¢)/2 is connected with
6F by the following relation:

d
E(O"S){]m_a'a){) = — EquS<|SIiLiU0+ msmiLiUO
SF=ofel,. 4.5
+nsniLiU0>, (49)
It should be emphasized here that the analysis of the free
energy functional we use in this section always produces thi in fact equal to zero.
symmetric part of the stress tensor, provided no external field It should be also noticed that if the system becomes
is present and the system is uniform. uniaxial the formula(4.6) recovers the appropriate expres-
Combining Egs.(4.4) and (4.5) and using Eq(3.3), we sion for the stress tensor from the paper by Kuzuu and Doi
obtain an expression for the microscopic stress tea§gt: ~ [19]. Indeed, assuming thatly=Uo(n-n) and a=b we
straightforwardly obtain

O-;{Jm: _dkT[<nPnQ>(fm+fl)_<mpmq>(fl+fn)

2_1 1
(,.sym:%T1 3dkT< nn— §1> —d(n(nXRUg))|,

df|
(ol (fr—fm) 1+ 7<(mpnq+ mgnp)liLiUo)
where R=nXdldn, p=c/a, and1 is the unit tensor(To
avoid a confusion note that the expression derived by Kuzuu

_§<(mpnq—mqnp)|iLiUo> and Doi contained also additional terms due to a fictitious
magnetic field, which is not necessary in the method we
fm propose.
_T<(Ipnq+|qnp)mi|-iu0> The symmetric parte™™ can be determined exactly

without solving the PC equations. We make use of these

d equations only for the purpose of eliminating from E4.8)
+§<(|p”q_|qnp)mi'-iu0> all terms involving the averages df;U,. We evaluate
((mpng+mgnp)liLiUg),  ((Ipng+Ignp)miLiUo), and
((mplg+mglp)niLiUo) in the following way.

Multiplying the PC equations bymyn,, Iyng, and
m,l 4, respectively, then substituting E@.3) for the angular
velocity, and carrying out integration ovelR, we obtain,
using the rule of integration by parts,

df,
—7((mplq+mqlp)niLiU0)

d
+§<(mplq—mqlp)niLiU0>, (4.6)

1
((mgng+mgnp)liLiUg) = —D—J (mpng+mgny) 1 Ji(R)dR

+2kT

f, 1
(Npng) —(mpmg) + 2—D|<(mpnq+ MgNp) MNGAs) — 2—D|((mpnq+ MgNp) MNgQy) |,
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((Ipng+Igny)miLiUg)=— J(nl +nglp)MJi(R)dR
f 1
+2KT|(lplg) = (Npng) = 55 (g anp) e+ 55— ((1png + g insi) |,
1
<(mplq+mqlp)niLiU0)=—D—nJ (Ipmg+1gm,)niJi(R)dR

f 1
X 2KT|(mpmg) — {1 ol ) — 2—[;n<(mp| ot Mgl )M Aws) + 55— ((Mplq Mgl )i s24) .

We show in Appendix B that the three integrals involving the probability current, which appear in the above formulas, vanish
provided we use(R) given by Eq.(B1), which is linear in perturbation.

Making use of the constraiii8.5) to eliminate the versdrfrom the above expressions and inserting them into(E®) we
get

sym 2 2

aij m n f§1 f2
2——= —2D—<ninjnknp)Akp— 2D—(m|m] mkmp>Akp—
m n

n

ff
dkT D—m+ D_n )<n m; nkm Akp+n m;nm Akp>

f2 : f f
+ D—m<ninkAjk+ njnkAik>+ D—n<mimkAjk+ mJ mkAik>+ D—m<ninkﬂkj+ njnkai>+ D—n<mikakj+ mjkaki>
m n m n

f
+(____ D—”)(ninkmjmpﬂkp-F minknjmpﬂkp>. (41@
n

Therefore, to obtain the symmetric part of the viscous stress We proceed now to the calculation of the averages
tensor we have to calculate equilibrium averages of fourth{n;n;) and(m;m;). For this purpose we first introduce two
and second-rank tensors being products of two unit vectorgymmetric traceless second-rank tensggs=(n;n;— g;;/3)

i.e.,mandn. To find these averages we will make use of theand B;;=(m;m;—I;I;) describing a degree of order of the
following decoupling approximation: biaxial nematic liquid crystal we are dealing with. The first
tensor is related to the uniaxial alignment, the second one
(aibjarAxphp)=(aib;){aAxpbp), (41D describes the biaxial alignmefdf. Refs.[35,36)). Using the
identity (3.5 we may obviously write tensds;; in terms of
(aibjaldiphp)=(aibj}{alpbp), (412 1 andmonly as(2m;m; +n;n;— &;). It can be easily proved

that the versorsn andn are a common set of eigenvectors of
the tensorss;; andBIJ Furthermore, we have the following
relations, which allow us to relate both tensors to macro-
scopic quantities:

where the symbols; and b; stand for components of the
versorsm andn, i.e.,a;=m;,n; andb;=m; ,n;. The formu-
las (4.11) and (4.12 allow for expressing all averages of
fourth-range tensors, which appear in E4.10), in terms of
(mim;), (nin;), and(n;m;+n;m;) only.

The decoupling procedure we use in this paper is a natural J3
extension to the biaxial case of the approximation of the (nn—1/3)=(F3)(nn—1/3)+ ?<F§O)(2mm+gg— 1),
form (ninjnng)=(n;n;){nyny), which was used by Doi 4.13
[18] and Marrucci[20] in the case of uniaxial nematic. A )
detailed justification of such an approximation is given in
Ref.[18]. In general, such a decoupling procedure is rather v 2 _ 2
rough and may produce errors being of the order of magni- (2mm+nn=1) \/§<F°2>(DD U3)+(F2)
tude. However, importantly, it becomes correct in the limit X(2mm+nn—1), (4.14
of strong ordering. Therefore, the use of this decoupling pro- -
cedure in calculations seems to be reasonable, especially if
we deal with a deep biaxial phase. It also should be notewhere the functions=j;=Fj;(R) are the appropriate scalar
here that the Miesowicz viscosities obtained by Marrucci ininvariants generating the solution spdceof the D, sym-
the framework of the discussed decoupling approximatiormetry group[34,37 and are described in detail in Appendix
were in agreement with the experimental data. Moreover, h€. The above results follow immediately from the definition
predicted, in principle, a correct dependence of the Lesli®f the averaging we useca;b;)=fa;(R)b;(R)Fo(R)dR.
viscosity coefficients on the nematic order parameter. WédNote also that both averages calculat&j, and B;;, are
can thus expect that applying Ed¢.11) and (4.12 in the  linear combinations of two order matrices;; — &;;/3) and
case of biaxial nematic is reasonable too. (2mim; +n;n;— &;;) only.
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From Egs.(4.13 and(4.14) we obtain

(nny=Snn+B;mm+3(1-S+B,)1, (4.15

(mm)=S;nn+Bmm+31(1-S,—B-By)1, (4.16
where

S=(F3)+V3(F2/3, (4.17a

B= \3(F2)/3+(F2), (4.17H

2 2 2

f f f f
209" dkT=-2 (—82+—82> n(nn:A)— 2(—8 +—"Bz)mm(mm:A)+
n

D> "D,
2 2
m
B, +
D, ot D,
2 2

(1 S+Bl)+

J’_

3D

Finally, employing the identityD1) from Appendix D to
proportional to the sum
nn(mm:A)+mm(nn:A), we are able to determine this part

eliminate a term

of the Leslie coefficients, which contribute to the symmetric
part of the viscous stress tensor given by the phenomenologi-

cal formula(2.1) (within the common factodkT)

2 2
ay=- 5~ —5-Si,

D,
fa fa
:__BZ__BZ,
Bl Dm 1 Dn
fm fn
0.’2+0[3—D_mS+D_nSl,
f2 f2 f2 f2
a5+a6—D S+D—Sl+2 ssl+2—le
m
. (4.19
2a,= 3D ~——(2—2S+2B,—6SB))
2
—2S,-6BS),
fm fn
'82+’83_D_mBl+D_nB'
f2 f2 f2 f2
Bs+Bg=="Bi+ =-B+2-"SB,+2-"BS,
5P p. "1 D, D, D, v

M1t pu2=0,

f2
—nB)(mm-A+A-mm)—2<D—mSBl+ D—“le)[nn(mm:A)erm(nn:A)]

(1 B—B,—S,) |A+
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28,=— V3(F) +(F5) — V3(F5/3—(Fp,  (4.170
B, =(F2,)+ 3(F2y)/3. (4.179

Applying the decoupling procedure given by E¢4.11)
and (4.12 to the formula(4.10, then making use of Egs.
(4.195 and (4.16 we arrive at the following expression for
the symmetric part of the viscous stress tensor:

2
m

f
D—mS+ D—n51>(nn-A+A-nn)

2

—”‘S+f—”s (NN+Nn) + f—mB +EB (mM+Mm)
D~ D, %)= =~ \Dp ' D, |+ =

m

(4.18

2 2

—_o_M _o_N
/‘L3+/'L4_ 2DmSB_|. 2DnBS_l!

ms=0.

We notice that, in view of Eq$4.10 and(2.1), only the two
terms(nm(mn:Q)) and (mn(nm:€)) contribute to the co-
efficients u, and w,. Employing the decoupling procedure
causes both these averages to factorize. The resulting prod-
ucts involve the terms likémn) and{nm). It is obvious that

the above averages, taken over the equilibrium distribution
function, are equal to zero. Therefore, we have

(4.20

As seen, the use of the decoupling procedure appears to be
too crude an approximation to grasp the coefficiemtsand
Mo . However, both these quantities, associated with the
mixed terms, are expected to be really small compared with
other Leslie coefficients. For this reason, the prediction
(4.20 seems not to be a significant simplification.

To end, let us note also that, regardless of the fact that the
decoupling approximation is applied, the last Onsager-Parodi
relation, which states thats=0, is satisfied automatically.

H1= p2=0.

V. THE MICROSCOPIC BALANCE EQUATION

In this section we show the method that allows for deriv-
ing the phenomenological balance equati¢isis. (5.5—
(5.7)] introduced in Sec. Il in terms of microscopic param-
eters. Our main task is, however, to find the missing part of
the Leslie viscosity coefficients related to the antisymmetric
part of the viscous stress tensor. For this purpose we will
analyze a system of the PC equatidB8)—(3.10 determin-
ing the steady-state distribution functién We will investi-
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gate properties of these equations close to equilibrium, i.edR. Next, we double contract the obtained system of three
in the limit of a small velocity gradient. In doing this we will tensor equations witmm-+mn, nl+In and Im+ml, re-

use a perturbation method regarding both the probability curspectively. As a result we obtain again a system of three
rentJ and the deviationSF as the first-order perturbations scalar equations, which have a rather complicated forms.
caused by the shear flow. The unperturbed valueS ahd  Fortunately, as shown in Appendix E, the obtained equations
J are, of courseF=F, andJ=0, whereF, is the equilib- get considerably simpler after employing the expansions
rium solution. It also should be noted that the method 0f(3.15 and (3.13 for SF and J, respectively. Finally, we
derivation of the antisymmetric part of the stress tensor outarrive at the following set of equations:

lined in this section is, in a way, a generalization of some

methods[19,26 used in the case of uniaxial symmetry. 0=(npMg+ngMp){(NpMg+ngmp)liw), (5.9
By substitutingF = F,+ 6F into the PC equations we ob-

tain, dropping all second-order terms in perturbation, two 0=(lymg+1gmp){(I;mg+Igmy)n;w;), (5.6)

systems of PC-type equations, denoted for the sake of brev-

ity as PG0) and PG1), corresponding to the zeroth- and 0=(Ipng+1gnp){(Ipng+1gny) Miw;), (5.7

first-order terms, respectiveljBoth systems, P@) and .

PQ(1), consist clearly of three equatiohIhe first system of Where( ) denotes the equilibrium average.

equations mentioned governs the equilibrium solutfn We first concentrate on Eq&.6) and(5.7) to recover two

and is fully equivalent to the Hammerstein equatiBn2), phenomenological equations of balance of angular momen-

which has already been throughly discussed in the precedidy™ Ed-(2.8) and(2.9). _

section. Therefore properties of the @Cequations are not _ Substituting the formuld3.3) for the angular velocity

of our interest here. For our purposes we will only make usdt@ Eas.(5.6) and (5.7), then making use of the identity

of the second set of equations, ®E assuming that the equi- (3.5) to eliminate the _versolrfrom _the expressmn_determm-

librium distribution functionF is known. ing the ang.ular \(elocnyo, en_1p|oy|ng t_he decou.plmg proce-
We show a straightforward transformation of the (BC dure described in the.prewous section anq finally carrying

system mentioned, which leads immediately to a system oput the averaging, with the help of relatiort4.15 and

three constitutive equations corresponding to the phenomi#-16, we obtain

enological equations of balance of angular momentum. Fi-

nally, by comparison of the appropriate pairs of equations, (f_m(2+5+ 2B;)n-A+SN|-1=0 (5.8
we obtain the desired microscopic expressions for the coef- 3 - -
ficients related to the antisymmetric part of the viscous stress ;
tensor. n
. . —(2+B—-25,—-2B;)m-A+BM|:1=0, 5.9
One may easily check that the above-mentioned, set of ( 3 1 )m - 5.9

PQ(1) equations that corresponds to the first-order perturba-
tion has the following form: where the parameterS, B, S;, and B; are given by the
formulas (4.179—(4.179. It is not difficult to see that the
D, above equations correspond to the appropriate balance equa-
1iJi=D\liL;6F — k_-r[5F|iLiU0+FOIiLiU[5F]]_Foliwi ' tions (2.7) and (2.8), respectively. However, we cannot es-
(5.1) tablish yet a unique relationship between those two pairs of
equations, since both E¢5.8) and Eq.(5.9 are undeter-

D, mined within certain scaling factors. Let us denote tempo-
m;J;=DpmiL;oF — ﬁ[a':mil-iuoﬁL FomiLiU[SF]] rarily these factors bg,, andc,, respectively. Comparison
of Eq. (5.8 with Eq. (2.7) and Eq.(5.9) with Eq. (2.8) yields
—Fomjw;, (5.2 then immediately the coefficientg;, N1, y,, and\,:
D Y1=CpmS, (5.10
niJi:DnniLiﬁF_k__F[(SFniLiUO+FOniLiU[5F]] ! "
Yo=Cmfm(2+S+2B,)/3, (5.11
—Fonjw;, (5.3
: . o N1=CyB, (5.12
where the functiondl[ 6F], according to Eq(3.1), is given
by the following formula: N,=C,f(2+B—2S,—2B,)/3. (5.13
_ / N Therefore, our task now is to establish uniquely both factors
U[6F,R]=d | K(R,R")SF(R")dR'. 5.4 . .
[ I f ( JOF(R) 64 ¢y andc, which appear in the above formulas. We can de-

termine them making use of the fact that the coefficients

Let us now proceed to the derivation of the constitutive bal-y1 and y, should satisfy the following Onsager-Parodi rela-
ance equations. For this purpose we shall start from thgg,-

above-system of three PO equations. The method we use

is the following. Yo=agtay, A\y=B3+fBs. (5.14
First, we multiply both sides of Eg$5.1), (5.2), and(5.3
by the symmetrized diadsm+ mn, nl+In, andlm+ml, re-  Indeed, one may easily check that the relations quoted above

spectively, and integrate them over the angular variableare fulfilled if and only if
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CdkT[ 1y s 61
=% 15,55, 275728, O
and
c =dkT(f—mB +EB) (5.16
" f, \Dn, * D, )2+B-2B;—2S;"

Finally, substituting the obtained expressions dgrandc,
into Egs.(5.10—(5.13 we arrive at the following formulas
for the coefficientsy;, A1, ¥, and\y:
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mined quantities, i.e., the coefficient and the multiplier
mentioned, which have to be established. Concluding, if we
had obtained the last balance equation it would provide only
one equation, i.e., an equation for the determination of the
coefficienty,.

VI. THE LESLIE VISCOSITY COEFFICIENTS

By combining the expressiorng.19, related to the sym-
metric part of the viscous stress, and the expressiois)—
(5.20, (5.22, and(5.21) we obtain finally the following for-
mulas for the Leslie viscosity coefficients:

dKT/ fy f fo g 3S 61

"5 \D.°"D. )27 5128, (5.1
=dkT fms f“s 5.1

Yo= D, +D—n 1) (5.18

N _dkT(me +an 3B 5.19
¢, \Dy ' D, J2+B-2B;—2S;,’
=dkT]| me f”B 5.2

Ao= D_m 1+D_n . (5.20

Lastly we proceed to the determination of the two remaining
coefficientsy;= u,— uq and y,= wz— wa.
From Eq.(4.20 we obtain immediately

(5.21

Furthermore, the last coefficient, can be straightforwardly
established if we make use of the third Onsager-Parodi rela-
tion, which imposes that

’)’3:0.

Ya= M1t Mo-
Hence, according to Eq4.19, we have

(5.22

The obtained coefficientg;, v, ¥3, ¥4, A1, and\, allow us
to determine the antisymmetric part of the viscous stress ten-
sor (2.1).

Employing the decoupling procedures results in vanishing
of the average on the left side of E&.7). For this reason we
cannot recover the third balance equati@r®). Fortunately,
we do not have to make use of this equation because two
preceding relations derive¢h.6) and(5.7), together with the
three Onsager-Parodi relations, have already enabled us to
establish the antisymmetric part of the viscous stress tensor
uniquely.

One remark concerning E¢G.5) is in order: It should be
expected that if the decoupling approximation had not been
used the appropriate averages would not vanish and, thereby,
we would recover the last balance equation. For the same
reasons the coefficients would not be equal to zero.

It is easy to see that the balance equation discussed, when
it exists, provides, apart from an equation fgg, also an
equation that involvesy,, \,, and y,. However, the latter
one does not follow an additional constraint for the Leslie
coefficients. This is due to the fact that E§.5) is undeter-
mined within a certain multiplier; there are two undeter-

¥4=0.

2
kT M2, g2
a;=—dk Dms+Dns},

dkT[ fy  fn 1 3S
dp=—— | S+ S| 1

2 |D,~ D, fm 2+S+2B, |’
dkT fmS fns 1 3s
=5 15,.° D, | T 2rsr2B, )

dkT
a4:7 (2—25+281—6SBl)

281—6881)},

d”[( oo+ 5o

f2 f
+2—ssl+2—ssl}

_dkTl( fh Inls o[ fn, flg
Dm D, D,

2
2—581+2—le}
f2
=—dk —’“BZ+—”BZ},
B D, 1" D,
dkT me an L1 3B
2 D, D, 2|17, 2rB_2B, 25,/
_dkT me+an . 3B
Ps=> |p Bitp. T 21B_2B,-25,’

_dkT f2 f2 fn)B
D___ b, b,

f2 f
D— Bﬁ—Z—BSl}
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dkT[[ f2  fn, 2 f, short molecular axid (tumbling is negligible compared
,3627 D_+D_ Bi+ D_+D_ B with the constanD,, describing rotation around the long axis
moom noon ¢ (spinning. The appropriate ratios are straightforwardly
2 f2 found to be
+2D_SBl+2D_BSl )
m n U — 1 3S
1= =0, T, 2+S+28B’
f2 2 Urz 3B
M3:M4=—dkT{D—SBﬁD—BSl}, 72T f 2¥S-B’
m n
2 _ 2
11s=0. Lirm 3 f,S%(2+S—B)+f,B%2+S+2B)

fofn (S—B)(2+S—-B)(2+S+2B)

It should be noted that both order parametéfs,) and

<F§0>' which are involved by the above formu'aS, are ex_AS seen, the above formulas do not involve the diffusion
pected to be small compared Wi(ﬁg()) and(F%z). This is  constantD,, andD,,, which are a measurable input to the

due to the fact that the first two averages describe rathdf'€0rY- It seems to be a serious advantage, especially consid-
residual ordering and vanish completely in the case of idegf"iNd that, as yet, the existing experimental material concern-
biaxial alignment. Therefore they usually may be neglectediNd dynamical properties of biaxial systems is very poor.
especially when one deals with a deep biaxial phase. Notice

also that the form factof,,,, according to Eq(4.7), is nega- VII. THE UNIAXIAL CASE

tive. Having obtained the viscosity coefficients, one can de- The appropriate Leslie viscosity coefficients for the
termine some important quantities that characterize the ﬂovl\ﬁniaxial system are obtained by setting the biaxial order pa-

:lr']??irglznt configurations in the presence of a velocity gradl'rametersB andB; equal to zero. Moreover, since the aver-

Carlssonet al. [38] and Leslie[28] showed that only six age(F%O) Is negligiblelcompared Withé& in_the uniaxial
equilibrium flow configurations are available and occur in phase, one may put simp§~ —5/2, whereSis an usually

pairs with one of the directors perpendicular to the plane OMaII:eorr- ?hae;J ggkzrg?::g?i:ar?f |tse rr.easonable to differentiate two
shear and other two in the plane of shear. Each of these Y,

configurations is characterized by an appropriate flow align-caSeS when the system becomes uniaxial. The first one is

ment angle. Let us denote these angles, corresponding to theore general, allows for the lack O.f the symmetry axes of
flows with the directorsn, m, and | perpendicular to the molecules, and occurs when the uniaxial phase is formed by

plane of shear, by, xm, andy;, respectively. Accord- biaxial molecules(i.e., molecules represented by ellipsoids

ingly, the flow alignment angles are determined b with three different principal ax¢sThe second case corre-
Y y sponds to the uniaxial phase, which consists of molecules

1 with the symmetry axes modeled by ellipsoids of revolution.

—COS2( =11 =—, In both these cases, of course, only the six Leslie viscosity
Y2 coefficientse; have nonzero values. This is due to the global
N D.., symmetry of the uniaxial system.
—cos2y =1/t -t If we deal with the first of both mentioned cases, the six
n 2 ’ . . .. .
A2 viscosity coefficients take the following forms:
Y1t ¥zt 2 f2 )
R i s v “ dkT[Der D, S
provided that the inequalities dkT S[ 3S f, 5[
ar2=— | fn— 5= dkT=—+|1- — 5—=|,
I7>1, |m>1, |m>1 2 Dp 2| ™ 2+S D,4|" fy,2+S
are fulfilled. Note also that the first ratia;, coincides with _AKTS|, | 8S | r S L S
the parametek, which is used in the uniaxial case. YD, 2| ™ 2+s D, 4 fm2+S|’
To complete this section we make use of the obtained

formulas for the Leslie coefficients to express the ratigs dkT[2/( 2 2\ 1/ f2 f2
79, and 73 by molecular parameters. However, we do it only OZAIT{g(D— D_) _§<2D__ D_) S|,
in the simple case of the highly ordered biaxial phase com- mo-n mo-n
posed of very deformed molecules, for which we assume f(fo—1) fo(fi—1)
c>b. In this event, according to our remark, which has al- as—dkT[ ng -= 4”D } ,
ready been done§ becomes an ordinary Maier-Saupe order m n

parameter, B=(F2,), and, obviously, B;~B, S;~(B I
—S)/2. Moreover, one expects that the rotational diffusion aGIdI(T[ m(fm )_ n(fnt1)
constanD,, associated with the rotational motion around the 2Dy, 4D,




2012 MARCIN FIALKOWSKI 55

Apart from terms proportional to My, the above formulas we investigate the change in the Helmholtz free energy func-
contain additional terms proportional toDl{. The presence tional F[F] caused by the shear flow. Next, like several
of the latter is not surprising and results from the fact that theauthors in the case of uniaxial system, we analyze an appro-
molecules are in fact three-dimensional objects and have algsriate kinetic equation of the Fokker-Planck type in order to
rotational degree of freedom around their long molecularderive the antisymmetric part of the viscous stress. However,
axes, which causes additional movement resistance. Accortlve use the kinetic equation written in a form equivalent to
ing to the Einstein formulas the resulting friction is inversely the continuity equation, which involves the probability cur-
proportional to the appropriate rotational diffusion coeffi- rentJ. Such a manner, i.e., making use of the system of the
cientD,. Moreover, it is intuitively understood that all re- three PC equations, proves to be a crucial one in the problem
sidual effects related to rotational motion around the longof the derivation of the viscosity coefficients in the case of
axis depend on the level of molecular anisotropy, whosebiaxial nematic liquid crystals. The same quantities seemed
measure is a value of the form factby. We expect that out of reach using the scalar form of the Fokker-Planck equa-
regardless of the value db, the effects mentioned are tion. What is more, the presented method consisting in em-
greater the more deformed the molecules composing thploying a system of PC equations can be also useful with
nematic phase are. In particular, when the molecules haveealing with other problems related to properties of biaxial
symmetry axes the existence of the rotational degree of freesystems.

dom mentioned does not influence the Leslie coefficients. No assumption concerning the rotational diffusion coeffi-
(More precisely, this influence manifests only through thecientsD,, D,,, and D,, has been made. Also, we do not
diffusion constantsD, involved by the six Leslie coeffi- restrict ourselves to a certain type of the pair-interaction po-
cients) tential. Therefore presented results are quite general. The ap-

For a typical nematic molecule the value of the rotationalplicability of the derived formulas for the viscosity coeffi-
diffusion coefficientD ., characterizing the movement around cients is not narrowed in spite of the fact that the Jefferey
the axis perpendicular to the long molecular axis is considformula (3.3), valid for ellipsoids only, is used during the
erably smaller than th®,, coefficient. (For example, the calculations. The assumption is, of course, that the molecules
NMR study of MBBA (4-methoxybenzylidene’dutyla- may be approximated by ellipsoids. Thus, all information
niline) shows[39] that in the nematic phad®,, is about two  concerning the shape is reduced to the three geometrical pa-
orders of magnitude smaller thdh,.) Therefore all terms rameterd,, f,,, andf,, which describe the anisotropy of an
proportional to 1D, may be neglected. However, they ellipsoid. Although such an approximation seems to be a
should be taken into account when the considered nematiather crude one, a similar treatment in the case of the
liquid crystal consists of molecules that are not excessivelyniaxial nematics proved to be quite satisfactory.
elongated and both coefficienis, andD,, are of the same The presented formulas may be easily applied to the spe-
order of magnitude. cial case where the uniaxial system is composed of mol-

Note also that, in view of the above formulas for the ecules with symmetry axes by setting all order parameters,
Leslie viscosities, the ratib,/D,, is a quantity that provides (F3y), (F3,), and(F3,), and the form factof,, equal to zero.
information that justifies an approximation consisting in ne-Thus obtained Leslie coefficients are similar to those pro-
glecting the rotational degree of freedom around the longosed by Marrucci in Refl20]. The difference is that the
molecular axis. Indeed, D,,,/D,<1 we are guaranteed that latter do not contain the form factdr, which makes our
such an approximation is really reasonable. results more realistic. In particular, we predict the coefficient

When the nematic phase is formed by the molecules havag has a nonzero value. In the limiting case, whienl, this
ing the symmetry axes the problem gets simpler. Puttinglifference vanishes.
a=b we obtain the following relation between the form fac-  Another important result consists in the fact that anisot-
tors: f,=f,=—f and f,=0, where f=(p?—1)/(p?+1) ropy of molecular shape typical for biaxial molecules, mea-
and p=c/a is the axis ratio of an ellipsoid of revolution. sured by a value of the form factdy,, influences all Leslie
Thus, all terms proportional tb, vanish. If we additionally coefficients even when the system possesses the uniaxial
put f =1 (thin rods, the Leslie coefficients become identical symmetryD.,y, .
to those obtained by Marrucf20]. Note that the Miesowicz The main mathematical simplification applied during cal-
viscosities calculated based on the formulas proposed bgulations concerns the decoupling procedure. It consist in
Marrucci are in agreement with the experimental evidence irexpressing the averages of fourth-rank tensors in terms of the
spite of all simplifying procedures he applied. appropriate averages of second-rank tensors. As a conse-
quence the obtained viscosity coefficients are expressed in
terms of four order parameters being averages of the second-
rank invariantsFizj A similar approximation, originally pro-

In this paper we present a method of calculation of vis-posed by Do[18], was also used in the paper by Marrucci in
cosity coefficients of biaxial nematic liquid crystals based oncalculations of the Leslie coefficients in the case of a uniaxial
the microscopic approach. The method we propose is consisystem. In spite of the mentioned decoupling approximations
tent with the two-director continuum theory by Ericsen andthe viscosity coefficients derived by Marrucci are in agree-
Leslie. The obtained viscosity coefficients are expressed iment with the experimental data to a satisfactory extent.
terms of the suspension parameters such as order parametérberefore it may be expected that the formulas proposed in
number density, temperature, and diffusion constants anthis paper are suitable for predicting viscous properties of
satisfy the four Onsager-Parodi relations. biaxial systems.

To obtain the symmetric part of the viscous stress tensor In conclusion, note that the methods developed here are

VIlIl. SUMMARY
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not intended to be complete and final; we hope that the preily of all J; functions we should take into account: Firstly, we
sented method of obtaining of the Leslie viscosity coeffi-require the probability current to obey the condition
cients will be the starting point for further investigations of L;J;=0. Secondly, the projectionis];, m;J;, andn;J; must

viscous properties of the biaxial phase.

APPENDIX A

As a result of action of the angular momentum operator

on three versors m, andn we obtain

Lili=eule, Linj=€in,  Limj= €.

In order to obtain the final result we make also use of the

following properties of the operatar:

miLilj:nj, miLinj:_lj, miLimJ-:O, (Ala)
niLilj:_mj, niLinJ-:O, niLiijIJ-, (Alb)
IiLiIJ’ZO, IiLianmj, IiLiij—nj. (AlC)

The equilibrium mean-field potenti&dlo(R) may be written
in terms of directorsl( m, n) and (, m, n). In generalJ, is
a sum consisting of terms of the following form:

3

IT (&g,

ij=1

where V=], #)=m, &=n and Y=I, P=m,
{¥=n. Since the potentidl, is an even function under the
operations&) — — &) and ) — — ¢V for eachi, the expo-
nentse;; must obey the condition that both sulse;; and
Sja;; are even numbers farj=1,2,3.

In order to calculate the averaggl;L;Uy) we first in-
quire into the action of the differential operatiot,; on the
selected terntA2) of the expansion ol

Using the rules quoted in EgéAla)—(Alc) we obtain

(A2)

3
lsLs H (g(p).é(m)apq
p.g=1

3

:pEL (ép>-4<q>>%q2 [aiz(£D-n)"1ED.m

—ap(€"-m) 10 n]. (A3)

be elements of thd" space. One can check that the most
general form of the currenl; that satisfies the conditions
quoted above is the following:

Ji(R)=1ij;®(R)+M;j n® m(R) + nij @ n(R)
+1;(Mm-Q-n)Y | (R)+m;(n-Q-1)Y (R)
+n;(1-Q-m)Y (R) +1;(1-A-)P|(R)
+m(m-A-mV¥ (R)+n;(n-A-n)¥.(R), (Bl

wherej,, jm, andj, are constants composed by the invari-
ants ofA and Q; the functions®,(R), ®,(R), and®(R),
and the productsng-Q-n)Y (R), ..., (n-A-n)¥,(R) be-
long to thel” space.

Let us consider the following integral:

Ipq=f (myng+mgnp)liJi(R)dR. (B2)

Substituting for the current; in Eqg. (B1) we obtain

Toa= | (Mgt Mg 1R+ m-Q-, (R)

+1-A-17,(R)]dR. (B3)

One may straightforwardly check that the integrand is an
even function with respect to the operatien — I and an odd
function with respect to the operationsm——m and
n— —n. Thus, the integral,, vanishes.

In an analogous way we obtain also

J(IpqurIqmp)niJi(R)dR:O,
f(anqunqlp)miJi(R)dR:O.
APPENDIX C

The basic function§!j generating thd™ solution space
for the one-particle distribution function of the biaxial sys-

It is obvious that after multiplying the above expression bytem are given by the following formula:

Is we obtain a function belonging to the spdce, which is
orthogonal tol". Hence, the averagfdl;L;U,) taken over
the equilibrium distribution functiof 5, which is an element
of theI" space, vanishes.

Applying similar arguments one can show that also the

two remaining average@n;L;Uo) and (msm;L;Ug) van-
ish.

APPENDIX B

Before we proceed to calculate the appropriate integrals
involving J;, we investigate some general properties of the
probability current that is assumed to be linear in perturba-

tion represented by and Q.

There are two restrictions that considerably limit the fam-

>

ope{l,—1}

Flj=(y2) 727 %0 (=D 2DL (R,

(CY
wherel, i, j are integer numbers arid is the rotation pa-
rametrized by three Euler angldB!j are the standard rota-
tion matrix element$30].

The functionsF!j obey the following orthonormality rela-
tions:

7T2

fdRF!j<R>F$n<R>=cﬂkaimajnm.

Thus, according to EqC1), F2, is given by
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, 3 First of all, we see that, according to the results from Appen-
Foozi(00§9—1/3)- dix B, the integral involving) vanishes.
In order to calculate the first integral form the right side of

Three other functionsl,:éo, ng. and ng which appear in Eqg. (E1 we investigate properties of the following product:

the definition of the order parameters, expressed in terms of

Euler angles have the following forms: (Mpng+mgny)liLiUg. (E2
) ) According to Eq(A3), in the expansion of the above expres-
0—75'”2900324” sion only terms of the following form appear:
3
2 ‘/§ ; H é(p) é(Q) @ g_(k) *lg.(k)
F02=75|n200052z//, L (&P -V)%a(£-n) -m(myng+mgn,)
and

F3,= 2(1+cos’-9)cos2qoc052¢ COSASIN2¢Sin2iy. ,

P). fDyapg £K) .y~ 1£K).
As seen from the definition, the averages,) is the com- p,lqll (£ £ %oa(g10-m) 24 n(mpng + mgny ),
monly used in the uniaxial case Maier-Saupe order param-
eter. wherea, 8, andy are even numbers. Hence, the product Eq.
Averages oﬂ: and F22 take nonzero values only if the (E2) is clearly invariant with respect to the operations
system possesses tBe,, (or lowen symmetry and vanish in |——|, m— —m, andn— —n.
the case of theD.,, symmetry possessed by the uniaxial Next, we analyze symmetry properties of the perturbation
system. ThgF3,) may take nonzero values even when theSF. According to Eq.(3.15 we have
system possesses the uniaxial symmetry. However, it is usu-

ally very small compared with a value of the parame$er SF=—6R,LiF,. (E3
Note also that both averagég3, and(F3,) vanish in the
case of the ideal biaxial alignment. Making use of the fact thasR; may be written down as
APPENDIX D 5Ri:|i5R|+mi 5Rm+ niéRn , (E4)
To eliminate a term proportional to

(ninjmympA,+ mm;nnyA,,) from Eqg. (4.18 we use the wheredR,, 6R,,, and R, are certain constants, we have
following identity [4,6]:
6RiLiFO:(5RI|iLi+5Rmmi|—i+ 5RnniLi)Fo. (E5)
(ninymmpAy+ miminnpAy )
Since the equilibrium distribution functioR, is an element
of theI" space, it may be easily verified théR;L;F, con-
— (NN Ajic+ NN Ai) + (NNpA G+ MMALL) 6 - sists of terms being odd functions with respect to one of the
(D1) versorsl, m, n and even functions with respect to the two
remaining versors. Therefore, considering the symmetry of
the product of6F and the expressiofE2) with regard to the
APPENDIX E versorsl, m, andn we see that the first integral is equal to

Let us consider the first equatiofs.1), of the PQ1) sys-  Z€f0: .
tem. Multiplying it by nm+mn and integrating over the an- Let us now proceed to calculate the second integral. We

gular variablesiR we obtain the following equation: see that, according to the definiti¢B.1) of the functional
U, the expression

:Aij + (nimj + minj)mknpAkp_ (mimkAjk+ mjmkAik)

ka (myng+mgny)liJi(R)dR
U[5F,R]=df K(R,R")6F(R")R

D|J’ (mpng+mgn,) 6FIiL;UqdR _ _
has the same symmetry properties with regard to the versors
I, m, and n like the perturbationsF. Therefore, one can
DJ (mpNng+mgny)FoliLiU[SF]dR easily check that an action of the differential operafbr on
U[ 6F] leads to an expression that is an even functiom, of
m, andn. Analyzing the appropriate symmetry properties of
+kTD|j (mpng+mgny)liL;oFdR the product yng+myn,)liL;U[SF]F,, we find out that
the second integral must vanish.
Finally, we proceed to the third integralL; 6F is an even

_kTJ (MpNg+mgNp) Foljw;dR ED " function with respect to the versoms, andn and an odd
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function with respect to the versbarThus, due to symmetry mn-+nm we derive the Eq(5.5. In an analogous way one
properties of the productfyn,+m)l;L;SF the third integral  can easily verify also that the procedure described in Sec. V
is also equal to zero. The only nonzero term is the last intetransforms Eqs(5.2) and (5.3 into Egs. (5.6) and (5.7),

gral. Therefore, contracting Eq(E1l) with the tensor respectively.
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