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Orientational order in dipolar fluids consisting of nonspherical hard particles
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We investigate fluids of dipolar hard particles by a certain variant of density-functional theory. The proper
treatment of the long range of the dipolar interactions yields a contribution to the free energy which favors
ferromagnetic order. This corrects previous theoretical analyses. We determine phase diagrams for dipolar
ellipsoids and spherocylinders as a function of the aspect ratio of the particles and their dipole moment. In the
nonpolar limit the results for the phase boundary between the isotropic and nematic liquid-crystal phase agree
well with simulation data. Adding a longitudinal dipole moment favors the nematic phase. For oblate or
slightly elongated particles we find a ferromagnetic liquid phase, which has also been detected in computer
simulations of fluids consisting of spherical dipolar particles. The detailed structure of the phase diagram and
its evolution upon changing the aspect ratio are discussed in J&4063-651X97)09402-9

PACS numbd(s): 64.70.Md, 61.30.Cz, 77.80e,

I. INTRODUCTION large elongations of the particles which tend to destabilize
the ferromagnetic order. Terentjet al.[30] find theoretical

There are two basic molecular properties that can caus@dications that a ferromagnetic phase might form more
long-ranged orientational order in fluids. First, as has alreadyeadily in dipolar liquid-crystalline polymers.
been shown by Onsagét], particles of sufficientlyaniso- In the present work we examine the models mentioned
tropic Shape e.g., |ong rods or flat diSkS, form a nematic above by a..n alternative density-f.unctional theory Wh|Ch iS.a.
liquid-crystal phase at high densities. This phase transitio§€eneralization of the theory applied to Stockmayer fluids in
can be induced by purely steric interactid@s-4]. This has  Refs.[19-21.
been confirmed by computer simulations of hard ellipsoids
[5], spherocylinder§6-9], and cut sphe_reBlO,lJ], which Il DENSITY-EUNCTIONAL THEORY
have become standard models of liquid crystals. Some of
these systems exhibit further transitions to a smectic or a As motivated in the Introduction, we consider fluids con-
columnar liquid-crystal phase. Second, there is growing evisisting of hard particles which have a symmetry axis and
dence that a ferromagnetically ordered nematic phase can Isarry in their center a pointlike permanent dipole moment
stabilized by dipolar interactions between spherical par- aligned with this axis. The orientation of these uniaxial par-
ticles, i.e., in the absence of anisotropic steric interactiondticles with respect to spatially fixed coordinates is described
This phase has been observed in Monte Carlo simulations dfy two angles §,¢)=w. The interaction pair potential
dipolar soft[12,13 and hard[14—-16 spheres as well as in w(r,,w,o") is the sum of the hard core potential and the
Stockmayer fluid$17]. It has also been analyzed by density- dipolar potentialw=w.+ Wi, . The former is given by
functional theory{18—20. Due to the long range of the di-
polar interactions in this phase the equilibrium configuration ©, rp<o(wpwo)
exhibits a spatially inhomogeneous magnetizaf@H, simi- Whe(l 9, 0,0")=
lar to the domain formation in solid ferromagnets.

Molecules typically possess both a shape anisotropy and a
permanent dipole moment. Therefore it is interesting to anawherer,=r—r"' is the center-to-center distance vector be-
lyze the relative importance of these two properties with retween the two particles at and r’, respectively, and
spect to the formation of orientationally ordered phases and(wi,,w,w’) is the distance of closest approach for given
the crossover from a ferromagnetic to a purely nematiorientationsw, o', andw, of the particle axes and the vec-
phase. To this end in the present work we study the modelsr r,,, respectively. The dipolar potential has the form
of dipolar hard ellipsoids and spherocylinders which cover
the models of dipolar hard spheres as well as of nonpolar m2
elongated or oblate hard particles as limiting cases. These  wy;,(ri,0,0")=— —3{3[M(w) r][M(w’) 1]
models have already been examined by Onsager’s virial ex- Mo
pansion[22], integral equation theorieR3], and different

(1)

0 otherwise,

kinds of density-functional theor{24,25. However, some —M(w)-M(w")]
of these approach¢82,23,29 suffer from an incorrect treat- m2_
ment of the long-ranged dipolar forces and therefore fail to = —=W(wp,0,0"). 2

-

predict a ferromagnetic phase. In simulations of dipolar hard 12

ellipsoids[26] and spherocylinder27,28,14 and the dipo-
lar Gay-Berne mod€]l29], this phase has also not yet beenIn Eq. (2) m(w) is the dipole vector andh is its absolute
found, probably because the simulations were restricted twalue. The hats denote unit vectors.
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A. Reference system of hard particles The functionc, enters only in the integrated form

We first analyze the reference system of the correspond- w 1
ing nonpolar hard core fluid. Its free energy as a functional of fo(n)=— f dxxzf dA(1—N)co(X; N 7). 9
the number densitp(r,w) of particles atr with orientation 0 0

 can be written as If the Percus-Yevick direct correlation functidi33] was
F _.—F.+F 3) used forcy one would end up with the Percus-Yevick result
ref™ Tid T T ex: for the free energy in the special case of hard sphies
where the ideal gas part is given Hyere and in the follow- Wwhich obviously e(w)=1/(4m)]. Instead, in accordance
ing we use the notationgd’r=[,d’ and fdw=[sdw,  With Lee [34,39, we choose

whereV denotes the volume of the sample &dthe unit 1 4-3y
spher =_ __ -7

phere fo(n)= 23 1= )2 (10
BFid:f d*rdwp(r,w){In[47p(r,0)A\°]—1}, (4  which follows from the requirement that E(B) yields the
Carnahan-Starling expressif6] for the free energy of hard

\ being the thermal wavelength. The excess part of the fregpheres, which is known to be more accurate at high densi-

energy is related to the direct correlation functionties. Note thatfy(#) does not depend on the shape of the
ot 0,03 [p)): particles which enters Eq(8) only via the distance

o(wqp,w,w") of closest approach.
1 82F o[ ] A In view of the molecular symmetry the orientational dis-
c =c(r,r’,w,0";[p]). (5 tribution a(w) is expected to be axially symmetric so that

 kaT 8p(r,w)3p(r o)

o

Equation(5) can be integrated twice along a linear path in 2ma(w)=a(cosd)= >, aP(cosh); (12)
density space starting from a zero density state yielf&ig I=0

P,(x) are the Legendre polynomials. The excluded volume

BFex= —f d*rdwd’'do’ for fixed orientationsw andw’ is given by
1 ~ ’ L 3 !
><J dA(1—=N)e(r,r',o,0";[\p]) Vexcl @,0) =Vexc(COSY) = 5 | dwy07(w13,0,0")
0
Xp(r,0)p(r', o). (6) =§mWWM, (12

Due to the absence of exact results in order to proceed one

now needs an approximation for the direct correlation funcwhere y denotes the angle between the directiensand

tion. An educated guess, which renders a computationally,’. Insertion of the expansions Eqd.l) and (12) into Eq.

simple approach but nevertheless yields reliable results fo8) leads to

the isotropic-nematic transition of nonpolar hard particles, is

given by the decoupling approximation introduced by Pynn BF ex ) -

[32], which assumes that this anisotropic function can be V; =3p“fol ”)IZZO

obtained from a dimensionless functiog(x; ) by a suit-

able anisotropic rescaling with the distance of closest apAs mentioned above, this expression reduces to the

proach: Carnahan-Starling formula in the case of hard spheres. On

- the other hand, in the limiy—0 one recovers the first two

c(rr',o,0’;[p])~co(rip/o(wiz,w,0");m).  (7)  terms of the virial expansion used by Onsafgr This limit
0 i ) _ ) is especially helpful for very elongated particles for which

Here n=pv™ is the packing fraction of the particles with an he isotropic-nematic transition occurs at very low packing

individual volumev(® and p=(1/47V)fd3rdwp(r,w) is  fractions.

the mean number density. In this work we confine ourselves

to spatially homogeneous phases so tﬁ(art,w)zpa(w) B. Dipolar interaction

\}Vgh (th(;—;O[l'm?sl,l?r?]dliezntigtta\t/\l/céng:) n?)lfgéalglgé?(sarge;ctic The dipolar contribution to the free energy is treated in
watw) = <. plies : the so-called modified mean-field approximat{@&7—39,
or solid phases and that in the case of ferromagnetic order

the sample shape is taken to be needlelike, which suppresses p?
the formation of domaing21]. With these assumptions and Faip=— ﬁf d*rdwd3'do’ a(w)a(w’)
approximations Eq(6) reduces to

IBFeX
v

2
v a|2 . (13

21+1

><®(r12—0(w12,w,w’))fdip(rlz,w,w’), (14)

— 2 ’ ’ 3 ’
=p"Tol 77)] dodo’dopa(e)a(0)oN@1,0,00). i, he Mayer functionf 4;,=exp(~ Bwg,) —1 which is cut
(8) off at contact through the Heaviside functio®(r12



2894 B. GROH AND S. DIETRICH 55

—o(wqy,w,0")). This expression follow$38] from using magnets. It was shown in RQQ;] t.hat if this effect is taken
the low-density approximatiom~exp(—Aw) for the pair into account the free energy is independent of the sample

distribution function. The Mayer function can be expandedshape(see also Ref{40]) and has the same value as for a
as spatially homogeneous liquid in the linit— and thus the

same phase diagram. The other terms in @4), i.e., the

S | —Bm\"_ short-rangedcontributions, can be written in the form
faip(riz, w,0") => T W wp,0,0").
=t 12 (SR 2
15 F
(19 e =§—ﬁf dode’ a(w)a(o)qSR(cosy)  (20)
Due to the slow decay as function iof, the first term in this
series requires particular attention. For this so-caltedy- .
rangedterm, with
* n+1 2\n
F(LR)— fdwdw a(w)a(w )f d3rd®r’ (SR _f (-1 (M)
dip q COSY) dwlZz 3(n 1)n| 0_3n73(w12,w’w/)
X@(rlz—a'(wlzyw,w/))Wdip(rlzyw,w,): (16) ><v~vn(w12,w,w'). (21)

the spatial integrations have to be analyzed carefully by first

considering a fluid confined to a finite voluneand then ~ With the definition

performing the thermodynamic limit for a fixed shape of this

volume. As has been shown in RE20] the result does de- 21+1 1 R SR

pend on the shape of the sample. For an ellipsoidal volum€|:Tf_ld(COSY)PKCOS’}')[q (cosy)+q'="(cosy)]
of aspect ratick it was found that

(LR) PSP 22
Fdlp 87T 2.2 2 . . |,1 3 Bm ( )
v — 9P m“a1(D(k)—1/3) (for spherical particles

7 [D(k=x)=0] one finally has
where D(k) is the demagnetization factgsee Eqs(3.22
and(3.24) in Ref.[20]]. For nonspherical particles the spatial ﬂFmp 1 =
integrations can be separated into contributions with v 2P Z
r,<R. andr;,>=R;, whereR; is a fixed distance larger B
than the maximum of (w42, w,w"). Since the result in Eq.
(17) does not depend on the particle size it can be adopted C. Total free energy and phase coexistence
for the latter contributionr(;»=R.). The remaining integral
(r,=<R.) can easily be evaluated since in this case the ker:
nel is effectively short-ranged as functionmp, yielding

2 2

Since Eq(23) has the same form as E{.3) we can write
"the total free energy as in R4ROI:

FLR g P ln(n®)—1]+ ﬁfl dxa(x)In[2a(x)]
P pPmad(D(K) ~ 13 voptht Bl-1
2 2 S 2

+ 5—BJ dwdo’a(w)a(w’)q R (cosy) (18) tp |ZO U (24)

with with (now density-dependentoefficients

q('-R)(cos'y)=,8m2f dw W (wqp,0 w’)ln—RC 2 \? 1
Y o(w12,0,0") ﬁulz(m {3f0(77)U|+EQ|}- (25)

(LR)

Z Pi(cosy). (19 If the summation ovet is truncated at=L (in practice it

turned out that =4 is sufficient to yield reliable resu)tshe
[As it should beg-R does not depend on the arbitrary pa- Minimization with respect to the orientational distribution
rameterR, due to [dw; W (w12, 0,0’)=0.] As mentioned leads to
above here we consider only the limit of an infinitely long
and thin sample K—«) for which D(k)=0. For other L L
sample shapes the equilibrium configuration of a ferromag- a(X) exp( —pﬁz (ai +1)uiaiPi(x)) (26)
netic fluid, i.e., with «;#0, exhibits an inhomogeneous =1
structure with a spatially varying axis of preferential orien-
tation, analogouus to the domain formation in solid ferro-so that[see Eq.(5.6) in Ref.[20]]
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1 L guished. Nonetheless a numerical code for the calculation of
f de,(x)exp( —p,BZ (2i+1)uiaiPi(x)) this function can easily be implemented. An algorithm for
w :2|+1 -1 =1 the closely related problem of the distance between two
! 2 1 L _ ' spherocylinders with given positions and orientations has
jﬁldxex _p’BiZﬁ (2i+1)uja;Pi(x) been derived explicitly by Alleret al. [4].

27) For hard ellipsoids with two equal axes of length and
one axis of lengtho Berne and Pechukdg#?2] introduced
The phase diagrams follow from requiring the equality ofthe often used approximatid@1]
the chemical potentials and the pressures at the coexisting

densitiesp; andp,: o(w1p,0,0")
IF JF . 1_Xco§0+ co§9’—22)(cosec099’c03y -1z
— () =— , =0y —
ap py, V() ap 20 1— x%cosy
(31
JF ) ]
F(pl,E“)(x))—pla— py V() wherey, 0, and @’ are the angles between the directians
P andw’, w andw;,, andw’ andw;,, respectively, and
JoF
=F(p> 15(-2)()())_!)2&_ o . (28) Uﬁ—a'f k?—1
p pz,a<2)(x) X= = (32)

a'ﬁ-l— O'f K+l
The functionsa™(x) denote the corresponding equilibrium _ S _ o
orientational distributions obtained from Eq&6) and(27). <=0/, . This approximation is obtained by considering
As discussed above, three kinds of phases are considerdl€ overlap of two ellipsoidal Gauss distributions. From Eq.
isotropic liquid (or gas [a(X)=1/2], nematic liquid (31 one finds

[a(X)=a(—X), i.e., ;=0 for odd ], and ferromagnetic ) "
liquid (o, #0 for alll). (The latter phase could also be called (cosy) = Am  L[1-Xx cos'y
ferromagnetic nematic, but we do not use this phrase in order Vexel COSY)= 737010, 1—x? '
to avoid confusion).

The determination of the phase boundariessiecond or- These formulas enable one to determine the coefficients
der phase transitions is presented in the Appendix. Note thainalytically andg, numerically. We have truncated the sum
due to symmetry reasons there can be no truly second-ord&rt Eq. (21) at n=30 and found no significant changes upon
isotropic-nematic transitiofd1]. including further terms for all considered values of the pa-

We now discuss the calculation of the coefficientsand  rametersgm, oylo,, andD/L.

q, for the two types of particles we are interested in, i.e., hard
spherocylinders and hard ellipsoids. A spherocylinder con-
sists of a cylinder of length. and diameteD with two

hemispherical caps of the same diamdderThe excluded A. Nonpolar ellipsoids
volume is given by(see, e.g., Ref22)])

(33

Ill. DISCUSSION OF THE PHASE DIAGRAMS

Figure 1 displays the phase diagram fownpolar hard
A ellipsoids with aspect ratia= o /o, . The solid lines de-
Vexcl(COSy)=2DL%siny+27D?L+ —D3® (290  note the coexistence densities of the isotropic and the nem-
3 atic fluid as determined from the theory presented in Sec. Il.
They are in fair agreement with the results of Monte Carlo
simulations(squares [5]. The two-phase region is always
- A very narrow, as in real nematic liquid crystals. The triangles
vo==DL?+27D?L+ —-D3, indicate the liquid-solid transition found in the simulations,

which leads to

2 3 which cannot be described by the present theGfpe de-

5 9 scription of the solid phase requires a weighted-density-
Vo= — _WDLZ’ Va=— _WDLz_ 30 functional theo_ry[43].). For aspect ratios neak=1 the

16 128 isotropic-nematic transition is preempted by freezing. Within

) . the approximation in Eq(31) the physical properties are
(Higher-order terms are neglectg@ihe odd coefficients van- jnyariant under the transformation— 1/x. This behavior is

ish due to the presence of the symmetry plane of(tt@-  g4risfied very well by the simulation results, too.
polan particles. In order to determine the coefficiegtoone

needs the functioo (w45, w,w"). It can be inferred from the
observation that the surface of a spherocylinder is the set of
all points with distancé/2 from the line segment connect- In this section we discuss the case that the hard ellipsoids
ing the centers of the caps. Thus when two spherocylindergre endowed with a point dipole of strengthoriented along

are in contact these line segments always have the distantge symmetry axis of lengthr . In the following we use the

D from each other. It is difficult to give a closed formula for dimensionless reduced temperatilife= kgTo2/m? and the
o(w1p,0,0') because several cases have to be distinvolume fractionp=pv‘® wherev® = (7/6)o? o is the mo-

B. Polar ellipsoids
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FIG. 1. Phase diagram of nonpolar hard ellipsoids with two o ] ] )
equal axes of lengtlr, and one axis of lengtley and an aspect FIG. 3. The same as in Fig. 2 but fer=2. Besides the isotropic
ratio k=0 /o, . n=pv® is the volume fraction wherg is the (1) and ner_natlc r@) phase_s a ferromagnetically ordered liquid
number density of the particles ané is their individual volume. ~ (F) occurs in the intermediate temperature range. The dotted and
The lines denote the coexisting volume fractions at the first-ordef0lid lines denote second- and first-order transitions, respectively.
isotropic-nematic transition as obtained from density-functionall N€ density gap of the-N transition atr=0.68 cannot be resolved
theory. The squares and triangles are simulation results foPn the present scale. The continuud transition at low tempera-
isotropic-nematic and liquid-solid coexistence, respectively. For théures intersects the first-order transitions at a critical _end point. The
former there is good agreement with density-functional theory. ThdnS€t shows thatin a narrow temperature range the high-temperature
dotted lines are guides for the eye. The isotropic-nematic transitio§ONtiNUOUsN-F transition is turned into a weakly first-order transi-
is accompanied by only a small density discontinuity which de-tion generating a tricritical point and anN-F triple point. The
creases fork—1. The present density-functional theory is not tWo-phase coexistence regions are shaded. For reasons of clarity
suited to describe the freezing transition. The simulation data sughis shading is omitted for-F coexistence.
port the symmetryc— 1/« discussed in the text.

ferromagnetic liquid appears in the medium-temperature
lecular volume. The nonpolar ca&ee Sec. IllA and Fig.)L ~ range. This phase turns into a purely nematic phase along the
corresponds to the limif* —oo. For k=3 (Fig. 2) the first-  dotted lines of c_rltlcal points. Whether the dlsappearence of
order isotropic-nematic transition is shifted to lower densitieshe ferromagnetic order at low temperatures is an artefact of
upon lowering the temperature. Beldlif ~0.2 the density the approximations or not needs to be checked by alternative
gap increases dramatically and evolves into a broad coexiste_Chn'ques- The behaylor of the o.rder para}memralong
ence region between an isotropic gas and a nematic liquidlifferent thermodynamic paths is displayed in Figs. 4 and 5.
Thus in this fluid gas-liquid coexistence is not terminated byFigure 4 illustrates their density dependence along two iso-
a critical point. Fory=0.265 lowering the temperature leads therms. ForT*=1.3 the ferromagnetic order parametey
to two phase transitionésotropic fluid—nematic fluid and vanishes at the critical density with a square root singularity
nematic fluid—gas-liquig whereas fory<0.265 there is N accordance with the presently used mean-field theory
only the gas-liquid transition. As shown in Fig. 3 fer=2 a  While the nematic order parametes exhibits a small break

of slope not visible on the scale of the figure. At a lower

0.8
K=2 ___A_"_,._:_—::::';’-:"
2 ’"/.’"’“_..—:——'— -
0.6 e
o -
oz 15 4 , e
> Y S——
% 04 3 e
- 11— o, T=13
- a, T*=13
0.2 05 1 &, T=06
— 0, T*=06
0 0.1 0.2 0.3 0.4 0.5 0
1 0.6 0.65 0.7 0.75 0.8

n
FIG. 2. Phase diagram of dipolar hard ellipsoids with aspect
ratio k=3 in the temperature-density plane. The weakly first-order FIG. 4. The first two orientational order parametejq see Eq.
isotropic-nematic transition at high temperatures broadens into ga$11)] along two isotherms in Fig. 3 fote=2. The gaps between the
nematic coexistence at low temperatures. Here and in the followinglack dots indicate two-phase regions. The dotted vertical lines in-
figures two-phase coexistence regions are shaded. dicate discontinuities.
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FIG. 5. Temperature dependence of the first four orientational
order parameterg,; along a thermodynamic path of fixed density in line styles have the same meaning as in Fig. 3. In the high-

Fig. 3 for k=2. The order parameters with odd indideganish in temperature region the gap between the two coexisting densities
the low- and high-temperature nematic phases but are nonzero be- P 9 gap g

" e o cannot be resolved on the scale of the figure so that only a single
t\N?etnT:EhE 1Ios\)lier critical p(;)_lnfl'il—fO.ZZG andt_the gpper grltlcal solid line is visible. Between two tricritical points the isotropic-
point T¢p=1.o4 cofresponding fo ferromagnetic ordah. and a, ferromagnetic transition is continuous. The two-phase coexistence
are nonzero for all temperatures and decrease for increasing te

Pegion at low temperatures is shaded.
perature. AT}, andT%, they exhibit a break of slope. 9 P

FIG. 6. Phase diagram of dipolar hard ellipsoids#ar 1.5. The

and 6 and between Figs. 9 and 2 shows that the formation of
density a, vanishes discontinuously at the first-order the ferromagnetic phase is favored by oblate particles as
nematic-isotropic transition. For the lower temperaturecompared with elongated ones. This is confirmed in Fig. 10,
* =0.6 the ferromagnetic phase transforms directly into theyhich displays the phase diagram in the, ) plane for a
isotropic phase. Figure 5 shows the order parameters as funfixed value of the squared dipole moment g normal-
tion of T* at the fixed densityp=0.75 demonstrating the jzed to the particle volumesm?/v(®)=6/z. The isotropic-
loss of the ferromagnetic order at low temperatures. In thg@erromagnetic critical density increases with increasing elon-
intermediate ferromagnetic region the orientational distribugations. An intuitive explanation for this observation is
tion a(cosy) typically exhibits two maxima a¥¥=0 and  provided by an examination of the lowest energy configura-
6= m with the higher one determining the sign of the spon-tion of two dipolar particles. The interaction energy at con-
taneous magnetization. Their heights become equal at thect of a nose-to-tail arrangement is2m?/(«xo, )3 while
nematic-ferromagnetic transition. In contrast to Baus anghat of an antiparallel side-by-side arrangement is?/ ¢
Colot[24], who use a different density-functional theory, we opyiously the former configuration becomes more favorable
do not observe a phase transition between phases with oRg compared with the latter onexfis decreased implying a
and two maxima in the orientational distribution. stronger tendency for long-ranged ferromagnetic order. For
Upon further lowering the aspect rati&ig. 6) another |arge elongations the orientationally ordered phase becomes
qualitative change of the phase diagram occurs: for intermenematic, while this does not happen for very oblate particles,

diate densities the isotropic-ferromagnetic transition befor which instead a gas-ferromagnetic coexistence occurs at
comes continuous. Two tricritical points arise where the

character of this transition changes from first to second order.
We remark that for high temperatures the ordered phases k=1
occur only at such high densities that they will certainly be 8
preempted by a solid phase, which is not captured by the )
present form of the density functional. o 07 isotropic ferromagnetic

Finally, in Fig. 7 we present the phase diagram for dipolar £
hard spheresobtained from the present density-functional °©
theory. There is no gas-liquid transition between isotropic &
fluids, but a coexistence of an isotropic gas with a ferromag-
netic liquid which at a tricritical point T;,7)
=(0.600,0.198) changes into a continuous transition. As for
the Stockmayer fluid20] the stability of the ferromagnetic 0.4 : ,
phase is considerably overestimated as compared with simu- 0 0.1 0.2 0.3 0.4 0.5
lations[14,15, in which the isotropic-ferromagnetic transi- 1
tion has been detected &t =0.16 andn~0.4.

For oblate particles{<1) we obtain a similar series of  FiG. 7. Phase diagram of dipolar hard spheres. Within the
phase diagraméFigs. 8 and 9 as for x>1 but without the  present approximation only one isotropic fluid and a ferromagnetic
loss of ferromagnetic order and the reentrance of the nematiguid are stable at any temperature. Bel¢above the tricritical
phase at low temperatures. The comparison between Figs.pgdint the phase transition is discontinuggsntinuous.

™ =
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FIG. 8. Phase diagram of oblate dipolar ellipsoids with FIG. 10. Phase diagram of hard ellipsoids for a fixed reduced
«=2/3. The meaning of the solid and dotted lines is the same as iH'po!? moment in units OkB.T and the particle voll_Jme_a ) Thg
Fig. 3. In contrast to Fig. 6, there is no reentrant nematic phase aﬁtablllty of the ferromagnetic phase decreases with increasing as-
low temperatures pect ratiox until it finally turns into a nematic phase at high den-

' sities and into an isotropic fluid at low densities. Coexistence of an

) isotropic gas and the ferromagnetic liquid occurs for oblate par-
the temperature considered. Thus the>1/x symmetry of ticles. There is noc—1/k symmetry as in Fig. 1 due to the pres-

Fig. 1 is lost in Fig. 10 as a result of the additional dipolarence of the dipolar interactions.
forces.

atic, and ferromagnetic phases in accordance with our re-
sults, followed by a transition to a second ferromagnetic

For dipolarspherocylindersone finds the same series of Phase(see the end of the first paragraph in Sec. )llBow-
phase diagrams as function of the aspect ratid as for ~ €Vver, they claim that an increase of the aspect ratio shifts the
elongated ellipsoids. An example is given in Fig. cbm-  ferromagnetic phase to lower densities and higher tempera-
pare Fig. 3. As for the nonpolar ellipsoids the location of the tUres in contrast to our findings and to the qualitative argu-
isotropic-nematic transition fom=0 agrees very well with Ment presented at the end of Sec. IlIB.

C. Dipolar spherocylinders

corresponding simulation resulf§,8], which are available The familiar second-order virial expansion of Ons&gér
only for L/D=S5. has been applied to dipolar spherocylinders by Vanakaras
and Photinog22]. It is well known that this approximation
D.C . . . deteriorates for decreasing aspect rafi®4], which is the
. Comparison with previous results

reason that fol./D=5 and m=0 these authors find the
In the following we compare our results with other theo- jsotropic-nematic transition at densities above the density of
retical investigations and numerical simulations of dipolarclosest packing. In addition, they do not treat the long-ranged
hard core particles. Baus and Col@4] have studied this dipolar interactions correctly which leads them to the wrong
problem with a different density-functional ansatz which uti- conclusion that a ferromagnetic phase cannot be stable for
lizes the analytically known correlation function of dipolar any dipole moment or aspect ratio. They agree with our re-

hard spheres in the mean-spherical approximation. At higlults in that an increase of or a decrease of lowers the
temperatures they also find the sequence of isotropic, nem-
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FIG. 11. The phase diagram for polar spherocylinders with an
FIG. 9. Phase diagram for oblate dipolar ellipsoids with aspect ratioD/L=1 exhibits a similar behavior as that for polar
x=1/3. See also the caption to Fig. 3. ellipsoids withk=2 (see Fig. 3.
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isotropic-nematic coexistence densities for point dipoles loand liquid does occur. This chain formation is not captured
cated in the center of the hard particles. However, as thegorrectly by the present theory, which predicts gas-
point out, this trend is reversed if the point dipoles are lo-ferromagnetic or gas-nematic coexistence for all values of
cated off center near the ends of the particles. L/D.

The correlation functions obtained from the hypernetted-
chain integral equation theory have been used by Perera and IV. SUMMARY

Patey[23] for the investigation of dipolar hard ellipsoids. ) ) ) .
For k=3 they find transition densities which are about 20% _ BY applying density-functional theory for the description

lower than the ones presented here and the same behavior @forientational order in dipolar fluids consisting of hard non-
these densities upon increasing the dipolar strength. HowsPherical particles we have obtained the following main re-
ever, fork=1/3 these authors were able to obtain a solutiorPults- . _ . . "

of the integral equation only for rather small dipole mo- (1) The location of the isotropic-nematic transition of
ments. They, too, did not take into account the correct long'@NPolar hard particles as a function of the aspect ratio has
ranged contribution to the free energy and did not detect Q_een o.btamed n QOOd agreement with other theories and
ferromagnetic phase for the aspect ratios under considerimulation resultsFig. 1).

ation. However, in a subsequent publicatid8] they state (2) The addition of a longitudinal point dipole at the cen-
that this conclusion remains unaltered if this fault is cor-t€rs of the particles induces a decrease of the coexisting den-

rected. sities of the isotropic-nematic transition and it leads to gas-

Vega and Lag$25] have used a density-functional theory nematic coexistence for large values of the dipole moment or
similar to the present one, but they incorporate a more sc@t I0W temperaturegrig. 2).

phisticated equation of state for the nonpolar isotropic fluid. (3 There is also a ferromagnetic liquid phase provided

and treat the dipolar interactions within perturbation theoryN€ particles are not too elongated and the dipole moment is
fficiently strong. This phase is reached from the nematic or

The same remark as above concerning the treatment of the! ! _ : )
long-ranged interaction applies also to their work. Their re-Isotropic states by continuous or weakly first-order transi-

sults for the isotropic-nematic coexistence densities of dipolions: depending on the temperature and the particle aspect

lar hard spherocylinders with aspect ratitD=5 are in fair ~ 'at0-

agreement with our findings fg8m? D3 between 0 and 4. (4) In accordance with the mean-field character of
However, they were unable to find a solution for the orien_density-functional theory, at the continuous phase transitions

tational distribution function foBm?/D3=6, which is close (Curie point3 the magnetization vanishes according to a
to the parameter range where within our approximation th quare root power law and the nematic order parameter ex-

isotropic-nematic transition broadens into a gas-nematic ¢ nibits a .S”?a” break of slopgFigs. 4 and % . .
existence. (5) Within the present theory the phase diagram of dipolar

Weis, Levesque, and Zarragoicoeche¥,28,14 have har_d sp_here_éFig. 7) comprises an isofropic anql_a ferromag-
performed Monte Carlo simulations of dipolar Spherocylin_netlc fluid with first-(second} order phase transitions at tem-

ders withL/D=5 for centered and off-centered dipole mo- perzétugagl btelov(/a?olve a trri.ctr)i_iical POi.Tt' h behavi
ments forming different angles with the cylinder axis. These (6) ate particles exnibit a simiiar pnase behavior as

authors were mainly interested in the structure of the smectiﬁlonfgated onesél butha strc;nger E[endtetnc%/hfor the f(I)rmatlontﬁf
phase and did not determine the isotropic-nematic transitiof{!€ '€TOMagnetc pnase. in contrast to th€ nonpolar case the

point. For (3m2/D%Y2=2.449 and a longitudinal centered phase diagrams are not approximately symmetric with re-

dipole moment they repof@7] the occurrence of aisotro- spect to the transformation< 1/kx, where k is the aspect

pic state atp=0.356 and anematicstate atp=0.441, which ratio of the_uniaxial ellipsoidal pgrticle(ﬂ;:ig. _10).
is in accordance with the coexistence densitigs- 0.356 (7) For dipolar hard spherocylinders we find an analogous

and 7= 0.375 obtained from the present theory. These au_series of phase diagrams as for elongated ellipsoids.

thors have also studied ellipsoids wikh=3 [26] and found
no isotropic-nematic transition for values g8/ o°)*? in APPENDIX: CRITICAL DENSITIES
the range between 0 and 3, in contrast to our results Shown in \ye rewrite these contributions to the free energy in Eq.
Fig. 2. Form=0 this finding is also at variance with Frenkel (54 \yhich depend on the orientational distribution (Agre
and Mulder's results5], who did observe an isotropic- anq in the following all integrals ovex and x’ are to be
nematic transition withy, =0.507 andny=0.517. We con-  5kan over the intervdl— 1,1])
clude that further simulations of the isotropic-nematic or
possibly the isotropic-ferromagnetic transition for different AF p o o
aspect ratios would certainly be helpful. —= —f dxa(X)IN[2a(x)]

Recently, McGrother and Jacksp#4] have published an vV B
extensive Monte Carlo study of the liquid-vapor coexistence 1 o
in a dipolar hard spherocylinder fluid. In agreement with +§pf dxdX a(x)a(x’)K(x,x") (A1)
previous work{45,17] they find that there is no liquid-vapor
coexistence in the spherical limitD—0 as well as for very
elongated particles/D>1 due to the formation of chains of
nose-to-tail(small L/D) or side-by-sidegllarge L/D) aggre- L (o )
gated particlegsee also Ref46]). Only in an intermediate K(x,x')=> (2+1) U P, (X)P(x"). (A2)
range around./D=0.25 phase separation into isotropic gas ’ =1 2

with
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Following van Roijet al. [47] we use a kind of bifurcation

analysis in order to determine the critical density of the
nematic-ferromagnetic or isotropic-ferromagnetic phase tran-

sition for a given temperature. The minimization of E41)
yields

|n[2a_(X)]+,3pj dx"a(x")K(x,x") =, (A3)
where the Lagrange multiplier is determined by the nor-
malization fdxa(x)=1. One considers a small ferromag-
netic perturbatione4(x) of a solutionay(x) with nematic

symmetry, i.e., ag(X)=ao(—X). If the expansions
a(X)=ag(X)+ea(xX)+--- and v=vyt+ev,+--- are in-
serted into Eq(A3) the term linear ine gives
E(X) +B f dx ay(x")K(x,x")=» (A4)
aO(X) P 1 ’ 1-

Integrating Eq. (A4) over x and using the relation
JdxK(x,x")=0 vyields

1Jd
E X

Since both ag(x) and a(x) must be of the form
exd 21 ,%Pi(¥)] [see Eq.(26)], with the nematic solution
ag(x) containing only even indicds we make the following
ansatz for the small perturbation:

ay(X)

ag(X)

, aa(X')
ao(X")

+ﬁpf dx a(x")K(x,x")=0.
(AS5)

L/2
ay(x)=ao(x) 2, Y2n-1P2n-1(), (A6)
where terms of the ordey,,_;v,m_1 and higher due to the
exponential form(see abovehave been neglected. Due to
Eq. (A5) the coefficientsy, with odd| satisfy the equation

L/2

y+ 2 Ay =0,
=

(A7)

B. GROH AND S. DIETRICH

with

(21+1)2
——  Bpu

=

fdxa_O(X)PI(X)PI’(X)- (A8)

Both the nematic solutionry(x) and theL/2X L/2 matrix

A depend on the density. The critical density is reached if
one of the eigenvalues @ equals—1 giving rise to a non-
trivial solution of Eq.(A7). For L= 2 this condition reduces
to

%Bpulf dXag(X)x*=—1. (A9)
For L=4 one obtains after some algebra
1+ A11+ A33+ A11A33_ A13A3]_: O (AlO)

From these equations together with the numerical solution of
Eq. (27) the nematic-ferromagnetic critical density can be
determined.

For the isotropic-ferromagnetic transition the unperturbed
solution isag(x) = 1/2 so that Eq(A9) reduces to the known
result[see Eq(7.10 in Ref.[20]]

3 Bpup=—1. (A11)
In this case the matrixA is diagonal for general:
Ay =(21+1)/28pu, 6, ;,. Thus the above bifurcation condi-
tion yields

21+1

T,Bpl,hz -1. (A].Z)

The actual values of the coefficients are such that the
lowest density for which EqA12) is satisfied always corre-
sponds td =1, so that Eq(A11) is valid for all L.
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