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Temperature profile for Poiseuille flow

B. D. Todd and Denis J. Evans
Research School of Chemistry, Australian National University, GPO Box 414, Canberra, Australian Capital Territory 2601, Aus

~Received 10 June 1996!

For planar Poiseuille flow of an atomic fluid in the weak-flow regime, we find that the classical Navier-
Stokes prediction of a quartic temperature profile is incorrect. Our results, which confirm a prediction made by
Baranyai, Evans, and Daivis~BED! @Phys. Rev. A46, 7593~1992!#, indicate that near the center of the channel
the temperature profile is quadratic. When the temperature profile is fitted to the theoretical predictions of BED
we obtain estimates of the thermal conductivity that are in excellent agreement with accurate independent
estimates of this transport coefficient. If the presence of the quadratic component of the temperature profile is
ignored, the derived value of the thermal conductivity is in error by some 50%.@S1063-651X~97!07903-8#

PACS number~s!: 03.40.Gc, 02.50.2r, 51.10.1y, 05.70.Ln
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I. INTRODUCTION

In a previous paper Baranyai, Evans, and Daivis~BED!
@1# used molecular-dynamics computer simulation to sh
that in the presence of a spatially varying strain rate, h
flow can occur even in theabsenceof a temperature gradien
¹T. It was observed that such a heat fluxJQ is proportional
to the gradient of the square of the strain rateJQ}¹g2. This
simple observation has profound consequences for our
derstanding of heat transport in systems subject to visc
heating.

Consider heat transport in a system undergoing Poise
flow between two parallel walls that are maintained at a co
mon fixed temperature. An external forceFe ~such as grav-
ity! drives the flow, which in turn generates viscous he
This viscous heat is proportional to the square of the lo
strain rateg(y)2 ~y is the normal coordinate! and in turn
generates local variations in the temperature. Fourier’s
then predicts that these temperature inhomogeneities wil
duce a local heat fluxJQ}¹T(y). However, BED predicted
that even in the absence of local variations in the tempera
¹T50 spatial variations in the strain rate will also generat
heat fluxJQ}¹g2. In the weak flow limit~Fe→0!, these two
contributions to the heat flux~Fourier’s contribution and the
shear gradient contribution, respectively! clearly have the
same dependence on the applied field. Neither contribu
dominates the other in this limit.

In Ref. @1# BED predicted that when both of these cont
butions are accounted for, the normal variation of the te
perature across a Poiseuille channel deviates from the w
flow prediction of the classical Navier-Stokes momentu
and heat equations, namely,T;y4. Instead, when the shea
gradient contributions to the heat flux are included the te
perature profile contains contributions that are quadratic
the normal coordinate. These quadratic contributions
only observable over microscopic distances near the ce
of the channel. This is presumably why the effect has not
our knowledge, been seen experimentally. In Ref.@1# BED
did not simulate Poiseuille flow, but instead carried o
simulations of shear flow driven by a transverse exter
field ~a so-called sinusoidal transverse field!. This technique
permits the simulation of inhomogeneous shear flow with
the added complications of modeling walls.
551063-651X/97/55~3!/2800~8!/$10.00
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The price paid for this simplification was that a fictitiou
~i.e., not occurring in nature! thermostat had to be introduce
into the simulation to remove the viscous heat. This therm
stat enabled the observation of heat flow in an inhomo
neously shearing system where the temperature was con
everywhere. One might argue that the ‘‘excess’’ heat o
served could have been induced by the thermostat
mechanism itself and that for a natural system, where
such fictitious thermostats exist, the usual Fourier heat c
duction law would remain valid.

In the present paper we address this criticism by carry
out molecular-dynamics computer simulations of planar P
seuille flow between parallel isothermal atomic walls. T
equations of motion for the fluid atoms between the walls
simply Newton’s equations for interacting particles subje
to an external gravity field that drives the flow. The syste
we study is an atomic fluid sandwiched between thermos
ted atomic walls. We have recently developed efficient ex
methods for computing the local thermodynamic flux tens
in such systems@2–5#. We will show that the temperatur
profile for this system deviates significantly from that pr
dicted by classical Navier-Stokes theory. We also show t
an estimate of the thermal conductivity obtained from t
quartic fit of the classical Navier-Stokes temperature pro
yields an erroneous value of the estimated thermal cond
tivity.

The comparisons that we make of the Navier-Stokes p
dictions of the temperature profile in Poiseuille flow take d
account of the effects of the local variations in the transp
coefficients that result from viscous heating. In the wea
flow limit these variations can be ignored. Our simulatio
are carried out close to the weak-field limit so that the
variations can be treated as small~;1%! perturbations to the
weak-flow Navier-Stokes solution. For the external fiel
studied in our simulations the spatial variations in the visc
ity ~h! and thermal conductivity~l! cannot explain the tem
perature profile observed in our simulations. In particul
allowance for spatial variations in the viscosity and therm
conductivity cannot explain the quadratic variation of te
perature that we observe. Finally, we discuss the impli
tions of shear-induced heat flow within the context of a d
ferent definition of a nonequilibrium thermodynam
temperature and find that the heat flux may be w
2800 © 1997 The American Physical Society
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55 2801TEMPERATURE PROFILE FOR POISEUILLE FLOW
ten in terms of the gradient of this nonequilibrium tempe
ture.

II. THEORY

A. Classical formulation

Consider steady shear flow in thex direction with a ve-
locity gradient]ux/]y[g in they direction. The hydrostatic
pressurep, which is a function of temperatureT and number
density,n, must satisfy the equation

d

dy
p~y!50. ~1!

In writing this equation we assume that we are sufficien
close to equilibrium for local thermodynamic equilibrium
hold. If the flow is driven by an external forceFe ~such as
gravity! that acts on individual atoms in the fluid, the stead
state momentum conservation equation implies@2#

d

dy
Pxy~y![2

d

dy Fh~y!
dux~y!

dy G5n~y!Fe , ~2!

wherePxy is thexy element of the pressure tensor,h is the
shear viscosity, andn is the number density. The steady-sta
Navier-Stokes energy equation is

dJQy~y!

dy
1Pxy~y!g~y!52

d

dy Fl~y!
dT~y!

dy G2h~y!g~y!2

50, ~3!

whereT is the temperature,JQy is the y component of the
heat flux vector, andl is the thermal conductivity.

In the weak-flow limit, the local variation of thermody
namic properties and transport coefficients~caused by vis-
cous heating! may be ignored and Eq.~3! reduces to
ld2T(y)/dy21hg(y)250. In the case of planar Poiseuill
flow where the fluid flows in thex direction between two
stationary parallel plates separated in they direction by a
distancel y , we can solve Eqs.~2! and ~3! in the weak-flow
limit, giving a velocity profile

ux~y!52
nFe
2h S y22 l y

2

4 D[u01u2y
2 ~4!

and a temperature profile

T~y!5T01T4y
4, ~5!

whereT452(nFe)
2/12lh andT0 is the temperature at th

channel midplaney50.
In writing this equation we assume that the transport

efficients are constant over the channel width and that
heat flux is linearly proportional to the temperature gradi
~i.e., Fourier’s lawJq52l“T!. Clearly, the first of these
assumptions will break down in very narrow channels wh
the effects of molecular packing manifest themselves in
oscillatory variation of almost all properties, including th
number density@2–5#. In the present work we are intereste
in only relatively wide channels where molecular packi
-

y

-

-
e
t

e
n

effects are unimportant and where continuum mechanic
expected to give an accurate description of the system.

The first corrections to the continuum weak-field so
tions for Poiseuille flow might be expected to arise from t
variations induced in the transport coefficients by the te
perature and density variations that are brought on by
cous heating in the flow itself. For our geometry, all therm
dynamic quantities are functions ofy alone. The pressure i
a function of bothr andT, but Eq.~1! implies

dp

dy
5

]p

]r

dr

dy
1

]p

]T

dT

dy
50. ~6!

Since]p/]r and ]p/]T are constant coefficients, the varia
tions in density and temperature are proportionalDr}DT. In
the linear regime the leading order variation in the tempe
ture is quartic, so the density variations must also be qua
Dr}DT}y4. Knowing the functional variation of density
and temperature allows us to determine the form of the va
tion of h(y) andl(y) in an analogous manner. Thus we c
write, to a first approximation,

n~y!5n01n4y
4,

h~y!5h01h4y
4, ~7!

l~y!5l01l4y
4,

wheren0 ,n4 ,h0,h4,l0,l4 are constants.
If we substitute these spatially varying transport coe

cients into Eqs.~2! and~3! and solve forux(y),T(y) we will
arrive at a temperature profile that now takes into account
variations in space ofh andl. Ideally we should iterate this
process until convergence; however, we shall see later
for the flow rates studied in this work we can stop the p
cess after the first iteration. Solving Eq.~3! with the values
of h(y) andl(y) in Eq. ~7! gives us

T~y!5T01T4y
41T8y

81O~y12!, ~8!

T452
u2
2h0

3l0
, T852

u2
2~3l0h427l4h0!

42l0
2 , ~9!

where againT0 is the midchannel temperature~at y50!.
Equation ~8! currently has five unknowns

~h0,h4,l0,l4,T0!, but this can be reduced to three by notin
that the viscosityh(y) can be calculated explicitly. In Ref
@2# we showed that for planar Poiseuille flow the shear str
Pxy could be calculated in a molecular-dynamics simulat
directly by integrating Eq.~2!,

Pxy~y!5FeE
0

y

dy8n~y8!, ~10!

wheren(y) is the spatially dependent number density. Usi
Eq. ~7! we can writePxy as

Pxy~y!5Fe~n0y1 1
5n4y

5!, ~11!

where the constant of integration is zero@2#. In the local
equilibrium regime we find
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2802 55B. D. TODD AND DENIS J. EVANS
h~y!52
Fe

2u2
S n01 1

5
n4y

4D . ~12!

In deriving Eq.~12! we are assuming that the length sca
characteristic of variations in the strain rate is much grea
than the range of the intermolecular potential. This assu
tion justifies the use of a local constitutive relation for t
shear viscosity h(y). Thus h052Fen0/2u2 and h45
2Fen4/10u2 . The coefficientsn0 and n4 can be obtained
directly from computer simulation, as can the temperat
coefficients, and so Eq.~8! has only three unknowns. Thu
we can fit Eq.~8! to the temperature profile to determine t
best estimates ofl0, l4, andT0.

B. Strain rate coupling

The heat flux constitutive relation postulated by BED@1#
was

JQ52l“T2j“@“u:~“u!T#, ~13!

where j is a phenomenological strain rate coupling coe
cient,l is the thermal conductivity coefficient, andu is the
streaming velocity of the fluid. It is possible that other term
with the same symmetry as our strain rate coupling te
could also make contributions to the heat flux. Howev
from the work of BED @1# we know that these additiona
couplings do not involve higher-order derivatives of the te
perature field. This is because BED demonstrated the e
ence of a heat flux in the absence ofany temperature varia-
tions. Also one may consider couplings to the stress ten
rather than to the strain rate tensor as in Eq.~13!. However,
writing Eq. ~13! in terms of stress couplings simply amoun
to a redefinition ofj since in the weak-field limit, stress i
simply proportional to strain rate. The couplings cannot
volve couplings to the hydrostatic pressure since in
weak-field limit mechanical stability demands that the hyd
static pressure must be constant.

In the case of planar shear flow of a simple fluid, Eq.~13!
can be written as

JQy~y!52l~y!¹yT~y!2j~y!¹yg~y!2. ~14!

For our Poiseuille flow geometry we have@1,4# instead of
Eq. ~3!

d

dy Fl~y!
dT~y!

dy G1
d

dy Fj~y!
dg~y!2

dy G1h~y!g~y!250.

~15!
r
p-

e

-

s

,

-
st-

or

-
e
-

Equation~15! is a fourth-order differential equation that re
quires four independent boundary conditions for its soluti
This is an example of a notorious problem in hydrodynam
beyond the Navier-Stokes order. We avoid this difficulty
applying a perturbation expansion. The fourth order terms
Eq. ~15! act on only lower-order solutions that are know
already. At each order, the equation for the unknown fu
tion remains of second order.

In the weak-flow limit where the spatial variation of th
transport coefficients may be ignored we have instead of
~5!

T~y!5T01T2y
21T4y

4, ~16!

where the coefficients are given asT252(nFe)
2j/lh2 and

T452(nFe)
2/12lh @4#. As was pointed out by BED, the

quadratic term dominates over the quartic term whenevey
!A12j/h. Both terms in Eq.~16! have the same functiona
dependence on the external field, thus even in the zero-
limit, nonclassical behavior resulting from the effects
strain rate coupling will be observed. In this limit the cha
acteristic length that controls the crossover from classica
nonclassical behavior is independent of the magnitude of
external field driving the flow.

Following similar arguments to those given in Sec. II
above, to a first approximation the number density varies
n(y)5n01n2y

21n4y
4. Hence the spatial variation of th

transport coefficients may be represented as

h~y!5h01h2y
21h4y

4,

l~y!5l01l2y
21l4y

4, ~17!

j~y!5j01j2y
21j4y

4.

Allowing a quadratic variation in the streaming velocity

ux~y!5u01u2y
21O~y4! ~18!

and substituting Eqs.~17! into ~15! gives

T~y!5T01T2y
21T4y

41T6y
61O~y8!, ~19!

where the coefficients are given as
T2524
u2
2j0
l0

,

T452
u2
2~l0h016l0j226l2j0!

3l0
2 , ~20!

T652
2u2

2~30l0
2j413l0

2h2130l2
2j0230l0l4j025l2l0h0230l2l0j2!

45l0
3 .
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55 2803TEMPERATURE PROFILE FOR POISEUILLE FLOW
In the above derivation we have allowed for only a quadra
variation in the velocity because it is easy to show that
ratio u4/u2 is proportional toF e

2. For the field strength use
in this work this ratio is only 2.531025. This means that the
higher-order terms are negligible compared to the statist
noise. From Eqs.~19! and ~20! we can identify which com-
ponents arise from cross coupling of the heat flux with
strain rate gradient and which components arise from
spatial variations induced by viscous heating inh,l,j. We
see that the quadratic term derives solely from the strain
coupling. The quartic term contains the classical weak-fi
Navier-Stokes contribution, but also contains contributio
from the second-order variation ofj with distance as well as
a component from zeroth-order strain rate coupling a
second-order variations of the thermal conductivity with d
tance~l2!. Similarly, the sixth-order term contains contrib
tions fromh, l, andj. For notational convenience we wi
refer to the classical weak-field Navier-Stokes solutio
given in Eqs.~4! and ~5! as NS, to the stronger-field solu
tions where the spatial variation of transport coefficients
allowed for Eqs.~8! and~9! as YNS, to the weak-field solu
tion including strain rate coupling~16! as XNS, and to the
stronger-field strain rate coupling expressions~19! and ~20!
as XYNS.

III. SIMULATION DETAILS

We have previously described in detail the NEMD tec
niques used to simulate planar Poiseuille flow@2,3# and here
we only briefly outline the way in which the simulation
were carried out. The geometry of the system is shown
Fig. 1. Both the fluid and wall particles interact via th
Weeks-Chandler-Andersen~WCA! interatomic potential

FIG. 1. Simulation geometry for planar Poiseuille flow. Thez
axis is normal to the page.
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function @6# f(r )54(r2122r26)11 for r,21/6 and
f(r )50 for r.21/6 ~we have defined the WCA potential con
stantss and« to be unity for simplicity; we also define th
fluid and wall particle masses to be unity!.

The system was surrounded by periodic images of itsel
each of the three Cartesian dimensions. We note here tha
simulation geometry is such that the external field is in thx
direction and heat will flow in they direction only. Our
system consisted of 1278 fluid atoms bounded by 54 w
atoms that were three atomic layers thick~18 atoms per
layer!. The walls were separated in they direction by a
length l y569 and were fixed in a fcc lattice structure by
combination of restoring forces and a constraint mechan
that fixed the center of mass of each layer of wall partic
while allowing individual wall atoms the freedom to vibra
about their lattice sites@2,7#. There was only one three-atom
thick wall per simulation cell. The second wall was simp
the periodic image of the first. This periodicity also ensur
that the total density of the system remained constant.
details of the governing equations of motion and the integ
ing scheme used to solve them, the reader is referred to R
@2, 3#.

The average number density of the system wasn̄50.839.
The unit cell dimensionsLx , Ly , and Lz , were 4.6840,
71.9444, and 4.6840 respectively. It is important to note t
Ly includes the fluid and wall particles~see Fig. 1!.

The walls were kept at a constant temperature of 0.7
and density of 0.8442. The wall temperature was held c
stant by application of a Gaussian thermostat, which ensu
that the average temperature of all the wall atoms was c
stant. We stress again that even though a thermostat is
plied to the wall atoms enabling the removal of viscous h
from the system, the fluid atoms themselves arenot subject
to any thermostat. Their equations of motion are sim
Newton’s equations for a group of interacting particles su
ject to an external ‘‘gravitational’’ fieldFe that drives the
flow between the plates. The external field was we
Fe50.005, ensuring that the system remained close to
weak-flow limit. The system was first allowed to atta
steady state before a simulation of 1.183107 time steps~Dt
50.001! was carried out to accumulate data.

Both the temperature and velocity profiles of the flu
were calculated in bins of finite volumeVbin
5LxDyLz56.1432, whereDy50.28,and at planes with sepa
ration Dy @5#. In what follows we show only the result
calculated in bins because of their superior statistics,
both methods produced identical results within statistical
rors.

In Refs.@2, 3# it was shown that a second-order symm
ric polynomial provided a good representation of the strea
ing velocity of the fluid in the zero-flow-rate limit and w
show this profile in Fig. 2. However, in this work we con
sider not only this case, but also higher-order symme
terms up toO(y6).

The temperature in each bin was calculated as

^T~ybin!&5

K (
iPbin

Nbin

mi@vi2u~y,t !#@vi2u~y,t !#L
^3Nbin2d~Nbin /N!&

, ~21!

wherevi is the laboratory velocity of particlei , u(y,t) is the
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2804 55B. D. TODD AND DENIS J. EVANS
instantaneous streaming velocity aty, Nbin is the number of
particles in any particular bin,N is the total number of fluid
particles,d is the number of degrees of freedom lost to t
system by fitting the streaming velocity profile, and Bolt
mann’s constant is equal to 1. The streaming velocity is c
culated at each time step by a least-squares fit to the ins
taneous velocity profile@2#. Since d5k/211 degrees of
freedom are lost in fitting the coefficients of the stream
velocity to a symmetric polynomial of orderk, a factor of
dNbin/N degrees of freedom are lost in each bin. This num
is very small in comparison to 3Nbin and could even be ig
nored for a simulation of this size. We note here that
angular brackets denote time averages.

As mentioned above, the temperature profile was ca
lated assuming streaming velocity profiles that wereO(y2),
O(y4), andO(y6). However, the three corresponding tem
perature profiles were found to agree within statistical unc
tainties, confirming that any deviations to the classically
pected temperature profile arenot a result of inaccurate
fitting of the streaming velocity data.

IV. RESULTS AND DISCUSSION

A. Temperature and thermal conductivity

In Fig. 3~a! we show the temperature profile across t
entire channel. The data have been symmetrized
smoothed over four bins~i.e., a width of 1.12!. Also shown
are the fits to this data given by NS and XNS, i.e., assum
constant values ofh, l, and possiblyj. In Fig. 3~b! we show
only the central region of the channel between225<y<25.
On this scale it is easy to see that the classical Navier-Sto
solution of a quartic temperature profile does not fit the d
well. Including the strain rate coupling term into the tem
perature equation, as in Eq.~16!, generates an additiona
quadratic term, which fits the data well in the central regi

In Table I we show the values of the coefficients for bo
the velocity and temperature profiles, as well as the value
the calculated transport coefficients. The viscosityh0 was
calculated directly from the coefficient of the velocity pr
file, i.e.,h052nFe/2u2 , and this value is then used in Eq

FIG. 2. Streaming velocity profile, showing anO(y2) symmet-
ric polynomial fit.
l-
n-

r

e

u-

r-
-

nd

g

es
ta

.

of

~5! and ~16! to find values ofl0 and j0. Also shown is the
value of the residualR for both temperature fits, which
clearly shows that the inclusion of strain rate coupling giv
a much better fit to the data.

The value ofl computed from Eqs.~5! and ~16! can be
compared to the known value ofl calculated by the Evans
NEMD thermal conductivity algorithm@8# for a fluid at a
state point equal to the temperature and density of the mid
of the channel. The state point used was thus (n,T)5~0.836,
0.955! and the simulations were performed for a system
500 WCA fluid atoms. The thermal conductivitylNEMD was
determined by running a series of simulations at various fi
strengths and then extrapolating the value oflNEMD to the
zero-field limit. This gave us a value oflNEMD56.8960.05.
From Table I we see that the weak-flow Navier-Stokes e
mate islNS55.07, whereas the strain rate coupling Navie
Stokes estimate~i.e., including the strain rate coupling term!
gives lXNS57.90. The former underestimates the true th

FIG. 3. ~a! Temperature data across the entire channel, includ
the Navier-Stokes~NS! and strain rate coupled Navier-Stoke
~XNS! fits to the data. No allowance is made for the effects
viscous heating on the transport coefficients.~b! Temperature data
for the region225<y<25, including the NS and XNS fits to the
data.
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TABLE I. Properties of interest for the case of constant transport coefficients~the NS and XNS systems!.

System n u2 T2 T4 h0 l0 j0 T0 R

NS 0.839 29.2631024 21.280331027 2.26 5.07 0.947 0.995 93
XNS 0.839 29.2631024 25.518531025 28.215531028 2.26 7.90 126 0.957 0.999 92
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mal conductivity by 26.4%, whereas the latter overestima
it by 14.6%. Also we note that the NS solution underes
matesT0 by about 1%, a value outside the range of the er
bars of the data, whereas the XNS solution predictsT0 with
very good accuracy.

We now consider the case where the transport coeffici
are allowed to vary with position~i.e., y!. This gives two
data sets: first YNS, which usesy-dependent transport coe
ficients in the Navier-Stokes equations, and second XY
which employs strain rate coupling of the heat flux a
y-dependent transport coefficients. The various transport
efficients are given in Table II, along withT0 andR, while
the corresponding fits to the temperature data are plotte
Figs. 4~a! and 4~b!. Once again we see from the shape of t
profiles that the XYNS fit gives a better fit to the data th
the YNS fit. The transport coefficient we are most concern
with is l0, which we find to be l0YNS53.89 and
l0XYNS56.93. Thus we see that including the spatial var
tion of the transport coefficients improves the fit of the te
perature profile, but does this at the expense of a significa
poorer estimate of the thermal conductivity. The YNS es
mated thermal conductivity is only 56% of the known valu
This error is much greater than the estimated statistical
certainties in the data. However, including the spatial va
tions and strain rate coupling in the heat equation@i.e., Eqs.
~19! and ~20!# gives us a value that is within 1% of th
known thermal conductivity.

The correct thermal conductivityl0, as the correct shap
of the temperature profile, and the correct value of the m
channel temperatureT0 are predicted using the full XYNS
solution. Merely accounting for the spatial variation inh and
l alone isnot sufficient to explain the shape of the tempe
ture profile or the discrepancies in the values ofl0 or T0.

In Sec. II it was noted that the process of determining
functional form ofh(y), l(y), andj(y) should be iterative.
Further iterations are unnecessary given the statistical un
tainties in the base data. In Table II we show entries de
nated as u4XYNS, which were obtained using a second
eration. We do not give the equations corresponding to E
~18!–~20! as the expressions for the coefficients are qu
complex. The second iteration allows a fourth-order var
tion in the streaming velocity, the coefficients for which a
given in Table II. From that table we can see that the go
ness of fit to the velocity profile does improve somewh
However, the goodness of fit to the temperature profile d
not improve at all. The differences between thej0 values for
XYNS and u4XYNS gives an estimate for the statistical u
certainties inj0. We therefore estimatej0 as 80620.

We also note here that the truncation of the series exp
sion in Eqs.~19! and ~20! was tested by considering th
residuals of the fit to the temperature data. The eighth-o
term in Eq.~19! was explicitly evaluated and the residual f
the temperature fit determined. It was found that this resid
decreased slightly, suggesting the series converges ra
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and is adequately truncated at sixth order. We also point
that the sixth-order term must be included in the expans
to enable a complete determination of all the transport co
ficients.

B. Heat flux and nonequilibrium temperature

In a previous paper@4# we demonstrated that for a flui
undergoing planar Poiseuille flow, the heat flux remains
changed from its classical cubic profile by the inclusion
the cross coupling term in the linear constitutive equation
the heat flux. We will now show that this result is in fa
general for fluids undergoing planar flow. For simplicity w
assume thath andl are constant.

Consider an arbitrary weak flow planar strain rate pro
g(y). Because the flow is weak we may ignore the effe
that viscous heating has on the transport coefficients. F
the energy equation~15! for such a flow we see that in th
steady state

dT~y!

dy
52

h

l E
0

y

g2~y8!dy82
j

l

dg2

dy
, ~22!

where we have used the symmetry about the center of
flow ~y50! to eliminate the integration constant. This equ
tion may be integrated one more time to give the tempera
profile T(y). This profile will clearly be dependent on th
value of the strain rate coupling coefficientj. We can also
calculate the heat flux vector assuming the generalized c
stitutive relation~13! and ~14!. This gives,

JQ~y!52hE
0

y

g2~y8!dy8. ~23!

This is clearly the same expression we would have deri
had we not known about the phenomenon of strain rate c
pling. Thus we see that strain rate coupling affects the te
perature profile, but not the heat flux vector.

As far as measurable thermodynamic quantities are c
cerned, we could have derived exactly the same tempera
and heat flux profiles by defining a new nonequilibrium te
peratureTne

Tne5Teq1
j

l
g2 ~24!

andnot invoking a generalized constitutive relation for he
flow. Indeed, this has recently been noticed by Cas
Vasquez and Jou@9# and Bidar, Casas-Vasquez, and J
@10#.

V. CONCLUSION

We have provided convincing numerical evidence that
classical fourth-order temperature profile generated by
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cous heating within Poiseuille flow is incorrect. We ha
confirmed the prediction of Baranyai, Evans, and Daivis@1#
that in the weak-flow regime there is a quadratic as well a
quartic component to the temperature profile. One expla
tion for this is that for weak flows there is a contribution
the heat flux that is proportional to the gradient of the squ
of the strain rate. Certainly such an effect was seen in co
puter simulations of sinusoidal shear flow by BED@1# and
also in recent more accurate studies by Todd, Evans,
Daivis @11#. An alternative, but equivalent, explanation
the origin of the quadratic component to the temperat
profile is that the nonequilibrium temperature of a syst
contains a contribution that is quadratic in the local value
the shear rate~24!.

In a previous paper@4# we showed that for planar Poi
seuille flow, an analysis of the heat flux vector alone can
confirm the existence of this strain rate coupling effect. W
have now extended this proof to the case of any simple fl

FIG. 4. ~a! Temperature data across the entire channel, allow
for y-dependent transport coefficients~YNS! and strain rate cou-
pling ~XYNS! fits to the data.y-dependent transport coefficien
result from the effects at finite flow rates of viscous heating.~b!
Temperature data for the region225<y<25, including the YNS
and XYNS fits to the data.
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undergoingany planar flow ~where the streaming velocity
and hence strain rate, may be expressed as a function o
Cartesian coordinate!.

Nothing is known about the variation of the strain ra
coupling coefficientj with temperature and density. Ver
little is known about the variation of this coefficient wit
respect to the thermodynamic force]g2/]y. We note that the
work described in the present paper gives values of the s
rate coupling coefficientj that were obtained for values o
]g2/]y that are two to three orders of magnitude smaller th
the smallest values studied by BED@1#. We hope that the
present paper stimulates interest towards increasing
ne

in

n

ur

understanding of this coefficient and also its possible re
tionship to generalized irreversible thermodynamics.
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