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Pattern formation and spatiotemporal chaos in the presence of boundaries

Stefan Rudroff and Ingo Rehberg
Otto-von-Guericke-Universita¨t, Institut für Experimentelle Physik, Postfach 4120, D-39016 Magdeburg, Germany

~Received 6 August 1996!

Experimentally obtained time averages of disordered spatiotemporal chaotic patterns of electroconvection in
a nematic liquid crystal reveal an ordered structure due to the boundaries of the pattern-forming system. The
instantaneous snapshots and the time averages are characterized in terms of amplitude, wave number, and
correlations in space and time. The averages have a significantly larger correlation length than that of the
snapshots. Time averages reveal a wave number that differs from that of the underlying snapshots. Quantiza-
tion effects within the regime of spatiotemporal chaos are found for the correlation length and for the estimated
angle of coherent zigzag structures.@S1063-651X~97!02003-5#

PACS number~s!: 47.52.1j
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I. INTRODUCTION

Pattern formation is a subdivision of nonlinear dynami
where spatial and temporal uniform systems lose stab
under an external stress and patterns with periodic or cha
behavior in space and time arise. While the mechanism
pattern formation is reasonably well understood within
framework of linear and weakly nonlinear theories, the s
tiotemporal chaos~STC! arising sufficiently far above
threshold is the subject of current investigations.

We define STC with reference to@1,2# as a dynamic sys
tem with an extensive number of degrees of freedom
with a remaining characteristic wave number. This definit
separates STC from a periodic state on the one hand, a
turbulent state on the other hand. Surely, the transition fr
STC to turbulence is continuous, but the tools that are g
for analyzing fully developed turbulence neglect the ex
ence of a characteristic wavelength@3# and are thus not suit
able for STC.

The purpose of this paper is to describe a special prop
of spatiotemporal chaos in the presence of boundaries.
cording to recent works@4–6#, time averages of spatially
confined STC reveal a higher degree of order than insta
neous snapshots. While these experiments deal with isotr
systems, we investigate spatially confined STC in an an
tropic system, namely, electroconvection~EC! in a nematic
liquid crystal @7,8# ~see Fig. 1!. Then the patterns that aris
haveD2 symmetry. To quantify the amount of order, w
describe the patterns in terms of amplitude, wave num
and correlations in space and time. The spatial correla
length is then regarded as a measure of the degree of ord
the patterns. Because we perform EC in a rectangular c
vection cell, there are, with respect to theD2 symmetry, two
kinds of boundary conditions that either support@9,10# or
suppress@11# pattern formation. Their influence on the ons
and stability of convection is studied as well.

II. EXPERIMENTAL SETUP AND PROCEDURE

A. Experimental setup

Electroconvection is an electrically driven instabili
in a thin layer of a nematic liquid crystal leading to mor
or-less ordered patterns. We use the standard mat
551063-651X/97/55~3!/2742~8!/$10.00
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4-methoxygenzlidene-48-n-butylaniline and visualize thes
patterns with a microscope and a charge-coupled-de
camera using the standard experimental setup@7,12#.

In our case, EC takes place between two crossed stripe
InO, which form a square capacitor with a volume
5503550324 mm3. The stripes are created from an InO
coated glass by a corrosive technique. The spac
d524 mm between the plates determines the wavelength
the EC pattern. All lengths presented below are scaled w
this number. A mechanical treatment of the surface fixes
orientation~director! of the anisotropic nematic liquid crysta
in a defined direction parallel to the surface of the gla
~planar orientation! and defines thex axis. The stationary
periodic pattern is then perpendicular to this direction.

The image of the 5503550 mm2 convection cell is digi-
tized by 3523512 pixels with 256 gray steps. These data a
reduced to a 2563256 array of bytes by software and re
caled with a previously measured unstructured ground s
I 0,

K~row,col!5128
I ~row,col!

I 0~row,col!
,

to compensate for inhomogeneous illumination and resc

FIG. 1. Average~bottom left! and snapshot~top right! of spa-
tiotemporal chaotic patterns taken from electroconvection in a fi
cell. The average consists of 1024 snapshots at 8 V and 10 Hz. This
corresponds to a control parameter ofe50.66.
2742 © 1997 The American Physical Society
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55 2743PATTERN FORMATION AND SPATIOTEMPORAL CHAOS . . .
intensity. Then,K is rounded to an integer and stored aga
in an array of 2563256 bytes for reasons of computation
efficiency.

B. Numerical data handling

One quantity used to characterize STC is the degree
translational invariance~correlation length! of a row or a
column of a digitized image of the pattern. This image c
either be a snapshot of the pattern~Fig. 2! or represent the
temporal development of one horizontal line aty511.5d,
which we call spatiotemporal~ST! image ~see Fig. 3!. Fi-
nally, the image can be an arithmetical mean~average! of
many snapshots~Fig. 4!.

All three kinds of images show similar structures, whi
can be analyzed by the same algorithm. This algorithm
culates a structure function

S~m!5
1

128 (
n50

127

@K~n!2K~n1m!#2 with m50, . . . ,127

from a row ~or a column! of the rescaled digitized image
The structure function contains the same information as
autocorrelation, but can be calculated much faster by usin
lookup-table technique. By averaging all columns~or rows!
we get the following structure functions:

FIG. 2. Snapshot of a STC pattern ate50.66. The picture
shows the entire convection cell@5503550 mm2 (23d323d)#.

FIG. 3. Space-time plot~ST image! of a STC pattern at
e50.66.
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Orientation Snapshot ST-image Averag
^S(Dcol)& row ^S(Dx)&y ^S(Dx)& t ^S(Dx)&y
^S(Drow)&col ^S(Dy)&x ^S(Dt)&x ^S(Dy)&x

where^ & denotes the average.
Based on these structure functions, the characteristic

rameters amplitude, wave number, correlation time, and c
relation length are determined by a fit@13#. The fit functions
are

S~Dx!5Soff2@Acos~kDx!1Bsin~2kDx!#e2~Dx/j!2,

S~Dt !5Soff2Ce2~Dt/t!2.

The Gaussian-shaped decay is phenomenologically m
vated. It fits the data better than a pure exponential decay
takes care of the reflection symmetry of the structure fu
tion with respect to the origin. In particular, we extract t
amplitudeA, the wave numberk, and the correlation length
j from ^S(Dx)&y and the correlation timet from
^S(Dt)&x . The offsetSoff is needed as an additional fit pa

FIG. 4. The average of 1024 snapshots of a STC pattern
e50.66.

FIG. 5. Fit to the structure functionS(Dx) of the pattern shown
in Fig. 2. The lower plot displays the significance with which t
data are considered by the fit.
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2744 55STEFAN RUDROFF AND INGO REHBERG
rameter. It provides a measure for uncorrelated noise of
experimental setup and thus does not contain any rele
information.

Examples of the fitted structure functions in the regime
STC are shown in Figs. 5 and 6. Technical features of th
are that it neglects the first data pointS(0) with regard to the
uncorrelated noise of the experimental setup and there i
individual significances(m), with which the data are con
sidered by the fitting procedure. Data points close to
origin are given a high significance compared to those d
points that are beyond the correlation lengthj and the cor-
relation timet. We adapt the significances(m) of the values
S(m) within an iterative process to the previously fitte
values ofj and t: s(m)5e2(m/4j)2 or s2(m/4t)2. Although
we use empirical functions that do not fit the structure fu
tion for large lag data perfectly, this concept of an iterative
with an adaptive significance gives reproducible values
the fit parameters in question.

III. EXPERIMENTAL RESULTS

A. Onset of convection in a finite cell

To measure the critical voltageVc for the onset of con-
vection, we fix the frequency and approach the thresh
from subcritical values of the voltage by increasing the vo
age in certain steps. We start with a voltage of 5 V and a step
width of 1 V. After each step, we let the system relax 30
and then a snapshot of the central 80% of the pattern in
convection cell is taken and analyzed. When the amplit
A passes a fixed value corresponding to a supercritical c
trol parametere5(V22Vc

2)/Vc
2 of about 0.5%, we decreas

the voltage one step and bisect the step width. The proce
stopped when a desired precision of 0.01 V for the thresh
is achieved. This is repeated five times for each frequen
Figure 7 shows the thresholdVc and the critical wave num
ber kc as function of the frequency.

As shown in@14,15# in infinite cells,Vc andkc are con-
tinuously increasing functions of the frequency. In our ca

FIG. 6. Fit to the structure functionS(Dt) of the pattern shown
in Fig. 3. The lower plot again displays the significance with wh
the data are considered by the fit.
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the box quantization leads to discontinuous jumps of
critical wave number, which are accompanied by discon
nuities of the threshold voltage.

The plateaus, where the wave number is almost cons
have a local tendency towards smaller wave numbers
increasing frequency. This is not in contradiction to t
wave-number quantization because the measurement o
wave number is restricted to the central 80% of the conv
tion cell. It means that the pattern in the center is stretch
while the local wave number near the boundaries follows
global tendency to become larger for increasing frequen
Imperfect bifurcation within our system may be regarded
the likely relevant explanation for this effect. At control p
rameter values near threshold, the boundaries force a hi
amplitude of convection in their vicinity compared to th
amplitude of convection in the center of the cell. The wa
number of this higher amplitude convection is closer to
critical wave number of the infinite system@16#, which in-
creases with increasing frequency for EC. With respect to
box quantization effects in our finite cell, an increase of t
wave number near the boundaries will force a decrease o
wave number in the center of the convection cell, where
data of Fig. 7 are acquired. In addition, it seems worth m
tioning that measurements of average patterns of capil
ripples show the same wave-number–frequency depend
in the regime of STC@4#, although the underlying physic
will be completely different.

B. Hysteresis of box quantized wave numbers

Figure 8 shows the wave numberk of the pattern and its
corresponding order parameterQ as a function of the driving
voltage and a frequency of 10 Hz.Q is calculated according
to @12#

Q50.61
2p

kd
AA.

This value is proportional to the director distortion for suf
ciently small values of the order parameter and is usu

FIG. 7. Phase diagram: the threshold and the wave numberk at
the onset of convection within a finite cell.
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55 2745PATTERN FORMATION AND SPATIOTEMPORAL CHAOS . . .
regarded as the natural order parameter of the EC system
our working regime the proportionality betweenA andQ2 is
no longer valid, but we can at least expect a monotonic
lation between our order parameter and the director dis
tion.

In Fig. 8 there is a subcritical pattern due to an imperf
bifurcation induced by the lateral boundaries that supp
pattern formation@9,10#. Nevertheless, we determine th
threshold by assuming a perfect bifurcation and extrapola
the expected quadratic growth of the amplitude near
threshold. A discontinuous jump of the wave number and
existence of a hysteresis for stationary periodic pattern
clearly demonstrated. The subcritical patterns show a c
tinuous change of wave number. We believe that this
caused by the influence of the imperfect bifurcation, wh
provides a finite amplitude at the lateral boundaries an
strong spatial modulation of amplitude and wave numb
especially in the subcritical regime. When increasing
control parameter to the threshold the amplitude will beco
more homogeneous througout the convection cell, and
will lead to a more homogeneous wave number that ha
match the box size. In the case of Figs. 8 and 9, this adj
ment process corresponds to a decrease in the wave nu
in the bulk.

For illustration, we embed the experimental data in anad
hoc stability diagram~Fig. 9!, which is based on numerica

FIG. 8. Order parameterQ and wave numberk for increasing
and decreasing control parameters in the regime of stationary
odic patterns.

FIG. 9. Data of Fig. 8 in anad hoc stability diagram for an
infinite EC system.
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stability diagrams for an infinite EC system@17#. We inter-
pret the discontinuous jump ate50.07 as being a result o
the Eckhaus instability@11,17–20# in our finite system. The
jump ate50.25 is a result of a secondary instability of th
normal rolls. We have not made any attempt to identify t
instability. When comparing with Ref.@17#, the zigzag insta-
bility seems to be the most natural interpretation. We no
however, that our instability occurs at a value of the cont
parameter that is about a factor of 10 larger than the theo
ical estimate, but is in agreement with other experimen
investigations@15,18#. It seems reasonable to assume th
our lateral boundaries suppress the zigzag instability. A t
oretical calculation of secondary instabilities for a low
aspect-ratio rectangular cell is not available at the mome

C. Route to spatiotemporal chaos

In Fig. 10 we show the wave numberk, correlation length
j, and correlation timet as a function of the driving ac
voltage at a frequency of 10 Hz. The voltage range from 6
to 9 V ~theshold 6.2 V! is scanned up and down ten times b
steps of 0.01 V. After each step, the system is allowed
relax 300 s and one ST image, one snapshot, and one ave
are taken and stored. The ST image covers a time interva
32 s and the average consists of 64 snapshots taken
apart. In total we measured 150 h. This gives 3600 sto
images. During this time, the temperature is held constan
15.0 °C60.1°C.

ri-

FIG. 10. Wave numberk, correlation lengthj, and correlation
time t of the snapshots as a function of increasing control para
eter.
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2746 55STEFAN RUDROFF AND INGO REHBERG
To analyze the data set, the structure functions of the
images corresponding to the same voltage and scannin
rection are averaged. Then the relevant parameters are c
lated by the fit to the autocorrelation. The results for incre
ing control parameter are shown in Fig. 10.

If there is no detectable motion in the system, the fit to
temporal autocorrelation will lead to meaningless values
the correlation timet. In this case, our algorithm would fo
cus on correlation times given by the camera noise and o
fluctuations in the experimental setup, which must be c
sidered as artifacts of the measurement and are thus om
in Fig. 10.

The first striking point is a discontinuity of the wave num
ber ate'0.3 accompanied by a finite correlation timet of
about 4 s, which indicates a time-dependent pattern. T
time dependence is, however, only a transient due to an
sufficient relaxation time after the voltage has been
creased. The transition from one box quantized wave num
to another is mediated by the creation and annihilation
defects occurring on time scales beyond the relaxation t
of 300 s.

The second point is the abrupt onset of irregular motion
e'0.4, indicated by a finite correlation timet'6 s. The
decrease of correlation time is accompanied by a decrea
correlation length. It is an interesting feature that the cor
lation lengthj clearly falls below the system sizeL523d
when STC arises in the system.

Third, we note that, in contrast to Fig. 7, local and glob
tendencies of the wavelength measured in the center of
cell are now identical. The wave number increases with
creasing voltage. It turns out that the corresponding incre
of wavelength at the boundaries leads to an unstable pa
and defects are created mainly at the lateral boundaries
indicated in Fig. 11.

In Fig. 10 the onset of spatiotemporal chaos ate'0.4 is
indicated by a discontinuous jump to a finite correlation tim
t'6 s. To answer the ensuing question about a hysteres
the onset of STC, we measure the correlation times for
creasing and decreasing voltage. The results are show
Fig. 12. There is no hysteresis within the experimental re
lution. For capillary ripples, a similar discontinuous jum
without hysteresis was already reported in Ref.@6#, while a
continuous transition to STC was found in Ref.@21#. In an-

FIG. 11. Snapshot at (e50.4) with a defect structure at the le
lateral boundary.
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other EC experiment, the transition to STC seems to sho
hysteresis@22#.

The typical correlation time of the chaotic system see
to follow a power lawt(e);(e2ed)

20.5, with ed'20.16.
This empirical finding is similar to results of Ref.@21#,
where a characteristic frequency of pattern fluctuations w
measured, yielding an exponent of 0.5.

We can only speculate about the meaning ofed . It might
indicate the lower boundary of the range of existence of
STC attractor. The rangeed,e,0.4 would be the range o
coexistence of two different attractors, namely, STC and
dered patterns for 0,e,0.4, and STC and the unstructure
ground state fored,e,0. While coexistence of STC with
an ordered state is known from spiral defect chaos@23#, the
coexistence of a STC state with the unstructured ground s
would seem more unusual.

D. Time averages

In recent experiments, time averages of STC patterns w
a high degree of order compared to instantaneous snaps
were found@4–6#. In contrast, we deal with an anisotrop
fluid. Thus the averages do not keep the symmetry of
container, but rather show the reducedD2 symmetry, which
in our case is produced by the anisotropic fluid. Figure
displays an example of a time average of 1024 snapsh
taken from our experiment ate50.66 andf510 Hz. This
average was created in 1400 s, which corresponds to
correlation timest for the chosen control parameter. So t
snapshots creating the average are uncorrelated.

1. Correlations and amplitudes

In Fig. 13 we show the order parameterQ and the corre-
lation lengthj of snapshots and averages, determined fr
the entire pattern~100% of the cell!. This means that the dat
include the local parameter values of the boundary laye
well as those of the central regime of the convection cell.
can be seen in Fig. 13, there is a difference between s
shots and averages fore.0.4. In this range of the contro
parameter, STC takes place. Here the averages have a l
contrast and a higher degree of order compared to the i
vidual snapshots. In terms of our fit parameters, the cont
is represented by the order parameterQ and the amount of
order is described by the correlation lengthj. For a moderate
value of the control parameter within the regime of ST
(e'1), the correlation length of the average is twice t
correlation length of the snapshots.

FIG. 12. Correlation timet of ST images for increasing
~squares! and decreasing~circles! control parameters.
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The ratiojav/jsn seems to show several plateaus wh
we believe to be caused by the box quantization and are
to the fact that we determine the correlation length across
whole convection cell along thex axis. It vanishes when we
extract the correlation length from the central regime~96
396 pixel! of the image~2563256 pixel!. The result is
shown in Fig. 14.

2. Convergence of averages

In this section we examine how averages arise from sn
shots. At a frequency of 10 Hz and a control parameter
e50.66 we take a data set of 1024 snapshots with a samp
period of 5 s. Because the correlation time is approxima
1.5 s for the chosen control parameter~see Fig. 9!, this wait-

FIG. 13. Order parameterQ and correlation lengthj of aver-
ages and snapshots, taken from the entire digitized image. The
erages consists of 64 snapshots, taken 1.3 s apart.

FIG. 14. Ratio of correletion lengthsj between averages an
snapshots, taken from the central regime of the digitized image
ue
e

p-
f
ng
ly

ing time ensures that the correlation between two subseq
snapshots is almost zero when considering the assu
Gaussian decay of the temporal autocorrelation. In Fig.
we present the amplitudeQn and the correlation lengthjn of
the averages as a function of the number of snapshots t
into account.

Precisely speaking, we use 1024 imagesK1
sn, . . . ,K1024

sn ,
which we divide randomly intom groups ofn51024/m im-
ages. From every groupi ( i51 . . .m) we calculate the av-
erage imageKi

av. Thus each averageKi
av consists ofn ran-

domly selected snapshots and none of the 1024 snapsho
used twice. Then we calculate the correlation length

jn5
1

m(
i51

m

j~Ki
av!,

wherej(Ki
av) denotes the correlation length of the avera

Ki
av. The amplitude is calculated in a similar way. So eve

data point is the result of all 1024 stored images.

v-

.

FIG. 15. Order parameterQ and correlation lengthj of the
averages as a function of the amount of snapshots considered

FIG. 16. Upper plot: wave numberk of averages and snapsho
in the regime of STC, taken from the central regime of the digitiz
image. Lower plot: estimated anglew0 of the oblique structures in
the regime of STC.
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2748 55STEFAN RUDROFF AND INGO REHBERG
The decay of the order parameterQn towards a final value
of Q`54.35° follows a power law with an exponent o
about20.8. This is significantly faster than the convergen
rate for a purely stochastic process with an exponent
20.5.

3. Wave numbers of averages

As shown in Fig. 16, the wave numberkav of the averages
is systematically larger than the wave numberksn of the
snapshots in the regime of STC. The data shown here
taken from the central part of the image as described ab
In the following we try to give an explanation for the diffe
ent wave numbers.

By visual inspection of the pattern, one has the impress
of fluctuating coherent structures within the regime of ST
These structures are reminiscent of oblique rolls and see
oscillate between two states as indicated in Fig. 17. We h
made no attempt to quantify this statement. We believe
these structures are a manifestation of the two unstable fi
points corresponding to oblique roll solutions with a fin
angle6w.0. These oblique rolls are provided by the zigz
instability @17#. Within an infinite system, they are stab
@18#. In our system, we do not observe stable oblique ro
presumably because they create defects at the lateral bo

FIG. 17. Illustration of inclining and rotating patches.
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aries and thus lead to STC. If this assumption is correc
snapshot would be dominated by patches of oblique r
with the wave numberksn,x because the solution has th
highest probability of being in the neighborhood of one
the two unstable fixed points. We speculate that the ro
from zig to zag is via a rotation of the patch~compare Fig.
17, bottom!. The transient normal pattern then has a larg
wave numberkav,x5ksn,xcosw0

21 when passingw50. Be-
cause only this pattern is able to match with the late
boundaries, the averages will consist of this type of patte

In Fig. 16 ~bottom! we show the angle w0
5arccos(ksn,x /kav,x). This plot could give a hint about the
angle corresponding to the unstable oblique rolls. The fig
indicates a quantization of the angle atw053.5° that is be-
lieved to be caused by the finite-size quantization within
cell.

IV. SUMMARY AND CONCLUSION

In order to quantify recent findings about spatial symm
tries in spatiotemporal chaotic patterns, we have perform
experiments of electroconvection in cells with a small asp
ratio. After discussing the characteristics of the onset of c
vection, we presented quantitative results concerning s
tiotemporal chaos. We regard a Gaussian decay to be
adequate function to fit spatiotemporal correlations. It tu
out that, within the regime of STC, the correlation time d
creases with increasing control parameter according t
power law. We are able to quantify the difference betwe
averages and snapshots in terms of our empirical fitting fu
tions. In particular, we have measured amplitudes, w
numbers, correlation lengths, and correlation times. In p
ciple, one could expect a spatial dependence of all th
numbers. A systematic survey of those effects is curren
under investigation.
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