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Phase space geometry of chaotic reactive scattering: Gateways, windings, and halos
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We present a renewed geometrical approach to classical reactive scattering. We treat here a linear triatomic
indirect reaction. Geometry in phase space is presented by means of a careful analysis of the asymptotic motion
and its consequences on finite-distance properties. It allows us to define a gateway to the reaction and prob-
ability densities on the surface of section. Because of chaos, the gateway is surrounded by windings, whose
existence is proved. Windings are grouped in halos, on which statistical repartition of reactants is assumed.
Halos allow us to treat the whole chaotic scattering in a simple and meaningful way. By measuring areas, we
are able to calculate the reaction probability in a simple but realistic model. This computation agrees with
averaging over trajectorieS1063-651X97)09601-3

PACS numbg(s): 05.45:+b, 34.10+x, 82.20.Fd

I. INTRODUCTION ond, a classical approximation to the nuclear motion within
this single potential sheet. These approximations, even if
There has appeared recently a renewed interest in chaoti®mewhat restrictive, have to be employed in order to pin-
scattering as a tool to deal with reactive scattering in chemipoint the role of chaos in reactive scattering. The type of
cal physics. The coming of age of classical scattering theornalysis presented here has been partly inspired by analo-
(for a review, Sedl]) has prompted a number of authors, gous |dea..S that have been deVeIOped. in bound systems.
including ourselves, to try to apply the concepts of transientf ansport in phase space through turnstiles has been known
chaos to the understanding of individual, simple chemicafor some time now5,6] and applied in the context of micro-
events. One of the goals of all those studies is to try toSCopic physicgclassical and quantunby Bohigas and co-
calculate and possibly to understand the outcome of an eworkers[7]. Their successful extensions of transport in phase
ementary chemical reaction, knowing that the reactants argPace into the quantum regime is also an encouraging pros-
statistically distributed in a well defined manner prior to theP€ct.
reaction[2,3]. In this way, microscopic dynamics would be
related to chemical kinetics. Very simply here, we would like
to devise a simple geometrical way to calculatelto depict From the dynamical point of view, much progress has
the statistical outcome of a simple triatomic reactive colli-been made these past years in the theory of unbound Hamil-
sion A+BC—~ABC—A+BC, where A,B,C are symbols tonian chaos. Chaos has long been suspected to play an im-
for single atoms. Even more simplified, we shall deal hereportant role in the dynamics of the molecular collisid8$
like in another pap€drd], exclusively with the collinear, sym- and by now, chaotic scattering theory is well established, in
metric reactio’A+BA’—~ABA'—AB+A’ and try to calcu-  both its classicall] and quantuni9] versions. Simple mod-
late its reaction rate at a defined energy. els such as the three-disk system have been completely ana-
Thus we wish in this paper to present a classical mecharyzed; they demonstrated the existence of transient chaos for
ics approach to reactive scattering througbometry and Hamiltonian dynamic$10]. Chaotic scattering has the dis-
probability flows in phase spac&Ve shall limit ourselves tinctive feature that the finite distance dynamics with all its
here to the first steps in this direction, within the frameworkintricacies projects itself towards infinity through the Hamil-
of a rudimentary model. This model — two-dimensional tonian flow. Conversely, the asymptotic conditions are faith-
configuration space, Morse potentials between atoms—fully projected into the interacting region. As a consequence,
shows, nevertheless, the essential features we are lookiwge have access to the properties of the chaotic motion thanks
for: (i) an asymptotic free motion of the fragments, whichto suitable observables and we should be able to gain profit
represents the states before reaction, @nahaotic dynam-  of the nowadays well-known structures that exist in scatter-
ics inside the interaction region, since chaos is the rule rathéng chaos.
than the exception in any general scattering process. Through All previous attempts that dealt with chaos together with
a geometrical analysis of transport in phase space we shatbactive scattering, including our own, concentrated on the
tend to replace averages over trajectories by measures kfng-time behavior of chaotic dynamics. They focused on the
surface areas and their intersections. We hope that suchsingularities of the various deflection functions that connect
geometrical view will open the way to a qualitative under-incoming to outgoing asymptotic regions of the scattering
standing of the phenomena at hand, for it offers a globakvent. These singularities arise from the image through the
visualization of the reaction process. This approach relietiamiltonian flow of the invariant set that exists at finite dis-
heavily on two approximations: first, the Born-Openheimertance. They consist in the periodic and quasiperiodic orbits
approximation, with one electronic level completely decou-embedded in the overall flo@or an image of such a set, see
pled from all others throughout the reactive event and sed4] and Fig. 9 therein It is clear that finding such an invari-

A. Chaos theory
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ant set amounts to exploring the dynamics at the infinite time Also, by determining the Lyapunov exponent of primary
limit, in order to distinguish the invariant orbits with respect periodic orbits at finite distance and by computing their un-
to the very long ones. Knowing the multifractal properties ofstable manifolds, it became possible to associate resonances
this invariant set allows one to compute the asymptotic propwith those orbits. Therefrom, many classical and semiclassi-
erties of the scattering chaos. Especially of interest are theal analyses were proposed. Recently, semiclassical chaotic
average Lyapunov exponent and the escape rate. This apeattering has been examined in some désai€[19], where
proachdid not however, allow us to calculate the averagemany earlier references are cite@hese authors concentrate
value of observables of chemical interest and, in particularpn the periodic orbit analysis in order to reconstruct the
the reaction rate. whole scattering picture and to recover a semiclassical image
by summation in a trace formula. An analysis of finite-
B. Chemical physics distance properties of the chaotic motion in the double Morse
, . o ) potential, based on the stable and unstable manifolds of the
~ Without emphasis on Hamiltonian chaos, reaction dynamy,arioys periodic orbits, was also proposed by Berblinger and
ics has been the subject of a very large number of theoretlcgﬂ,ch"er[zo]_ Also in a preceeding papg4], studied in depth
works that have concentrated on one aspect or another, @ere the finite-distance properties of the scattering chaos:
different levels of sophistication. In order to obtain the varia-periodic orbits, invariant set, hierarchy of orbits, as well as
tions of the differential or integral cross sections, one resortshe influence of those properties on global aspects of chaos.
most often to a time-independent quantum formalism or taSymbolic dynamics was proposed[#] as well as irf21]. It
classical trajectory calculations. Even if they are usually nosummarizes all the properties of the finite-distance chaos.
limited by the number of dynamical states or channels, quanSome other recent papers also analyzed a model chemical
tum calculations become very difficult as soon as the numbeteaction in the spirit of chaotic scatterifig2,23. A descrip-
of degrees of freedom increaskl]. Nevertheless, a very tion of the scattering process is given and also some parts of
good knowledge of the scattering event may be gained frorthe underlying hierarchy are described.
the behavior of the different vibrational energy levels, which ~ The paper is organized as follows. Section Il describes the
contain all the information, at least in the Born-Oppenheimeimodel we use as well as the relevant Hamiltonians. Then we
limit [12]. In classical formalisms, one computes trajectoriesshow in Sec. lll that the reaction has to proceed through
and averages over suitable statistical ensembtgisroca- special parts of the phase space, called gateways. We then
nonical or canonical Access to the various differential cross organize the chaos into windingSec. 1V) and halos(Sec.
sections is easy. However, because of their usual limitatio’), on which we define measures and probabilities before
to configuration(coordinaté space, it is difficult to correlate computing an actual model reaction rate and concluding. In
the results with the shape of potential surfaces or chemicairder to anchor our approach in firm ground, we found it
and dynamical variables. Also, because of the blind averagiececessary to adopt in several subsections rather math-
ing process, one cannot determine the influence and impogmatical language. The interested reader may thus go into all
tance of a given physical parameter in the actual value of atechnical details of our demonstrations. However, the reader
observable. interested mostly in the geometrical and computational re-
Some steps in the direction of geometrical analysis, whiclsults may easily skip the relevant sections and avoid the
prompted us to do the sudy presented here, had been undéemewhat cumbersome notations we introduced. The actual
taken in the pioneering works by Pollak, Child, and Pechu-demonstrations of lemmas and a theorem are postponed to
kas, extending over many yedi$3]. They showed clearly Appendices, so that the reader may more easily follow the
the crucial importance of the periodic orbits and especially ofohysical arguments. A preliminary and shortened version of
the periodic orbit dividing surface6PODS. Without the this paper is published elsewhdi2d].
present-day knowledge of scattering chaos they analyzed in
depth the flow in configuration as well as in phase space and Il. MODEL
discovered the windings phenomena, without any pfadf.
Somewhat later, several other authors began studies of the
phase-space geometry of simple chemical reacfibbs1§. The reaction model we shall use must be sufficiently
The relevant concepts of transport in phase space were ussiinple in order not to be blurred with unnecessary consider-
in those papers, in particular for unimolecular reactions andtions, yet general enough so that the conclusions of the
the H+H, reaction. These concepts were applied in order t@resent analysis are easily transposable to more accurate and
criticize and improve transition state theof§yST) and to  relevant models of chemical reactions. The first and most
calculate reaction rates. Indeed, many of the studies dealinportant limitation that we impose is the restriction to a
with the classical transition state problem. A clear image ofsingle internuclear potential sheet. The whole subsequent
the transition state would be a section in phase space th#tteory in its present form is thus adiabatic. Even if there
clearly distinguishes the flux containing only products of theexist now many classical and semiclassical ways to over-
reaction. It was recognized earlier that such a definition hasome this restriction and to treat properly the nonadiabatic
to be carefully scrutinized because of the occurrence ofransitions[25], we cannot include this complexity in a first
chaos and ever reentering trajectories. Still, the theory oflescription.
transport in phase space, together with the notion of turn- The second limitation is that we make use of a classical
stiles, proved to be the right tools to extend TST for generalmage of the dynamics and not a quantum one. This approxi-
situations. In order to fully compare these approaches witimation, largely used in the literature, relies on the heavy
ours, we shall finish this discussion in Sec. VII. masses of the nuclei. It is valid as long as the de Broglie

A. Classical, collinear reactive scattering
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FIG. 1. Collinear configuration of the three atoms in collision.
r;, andr, are the two local coordinates.

fo2

wavelength does not vary too rapidiy 4g/\ gg<<1. Equiva-
lently, if Sis a characteristic action of the motion, we have
S/i>1. We explicitly neglect such effects as tunneling,
which are known to be non-negligible for light reactantlike
hydrogen or deuterium. Also, quantization of rotation and
vibration is, of course, not included.

The third limitation that we are forced into for the mo- ot
ment is that we deal only with a collinear, symmetric reac-
tion (Fig. 1). The two degrees of freedom arg ,r,,, the FIG. 2. Morse potential in obligue reduced coordinates. The
internuclear distances with a fixed center of mass. The twe@rojection of theX section is shown together with the two reaction
diatoms AB and BA’ interact exclusively with identical channels. All quantities plotted here and in all subsequent figures
Morse potentials. If this two-dimensional restriction is some-are dimensionless.
what limiting, and may be thought to be less credible from a i )
chemical physics point of view, it is still indispensable for a @nd the conjugate momenfg, andp,; follow easily. The

visual approach to phase-space analysis. Actually, the vastamiltonian in oblique coordinates, with potential coupling,
majority of studies of dynamics in phase space is done witPecomes

the following dimensional scheme: configuration space 2D, 1

phase space22=4D, constant energy shel-41=3D, and H= 2—(I0§DL P2+ Vi(ro1.fo2)+Va(rr).  (6)
Poincaresection 3-1=2D. A well chosen section is a faith- m

ful image of the dynamics. If the section is 2D, it can be . :

easily printed and visualized. The main advantage of thérhe Morse potential is written as

1.7
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model we used, besides its simplicity and generality, is that it Viorsd 1) =D(1—e 2 ~Re))2, 7
has been studied many times and in great detail and the pre-
vious analyses are compatible. In this configuration, one may resort to the following re-

duced coordinates, denoted by their tildes:
B. Hamiltonians

T=ar, 8
We use the following model of the symmetric collinear ®
reaction. LetA,B,A’ be the three atoms and let the relative P=p/VmagD, (9
coordinates (or local coordinates be rj;=|r,—rg| and
ro.=|ra—rg| (Fig. 1). By eliminating center-of-mass mo- T=a\D/mpgt, (10)
tion, we obtain the Hamiltonian with kinetic coupling
H="HID. (11

2 2
Pi1 Pi2

= +
H 2Mag  2Mpp

1
_m_Bp'lp'2+vl(r'l)+V2(r'2)’ @ please note the disappearance of a factor of 2 with respect to

[4]. Since in the following we will useeduced oblique co-
with mpg the reduced magsm;;=mym;/(m,+m;)]. In or-  ordinatesonly, obtained fromr,; andr,,, we apply the
der to restore the image of a pure potential motion, oneimple notationq,,q, andp;,p, for these new coordinates
changes from kinetic to potential coupling®6,27. In the  and their conjugate momenta, respectively. In these vari-
simple symmetric triatomic configuration, the kinetic cou- ables, the reduced Hamiltonian for tAB A case is
pling can be removed by introducing two new kinematic

arameters H SinZ(P R
0 H= "5 (p}+p3) +{1~exd — (41~ zCotp—Ro) 112

1 ~

OO = T g mp” @ +{1-exd — (dz/sing—Re)1}2 (12

4 Symmetric and antisymmetric coordinates are easily defined
- M 3) as(Fig. 2
2mp+mg
_ | _ As=(To1+T62)/ V2, (13
Oblique coordinates are then defined as
da=(fo1=To2)/ V2. (14

Fo1="r1171T12C08p, (4) _ . _
Only two parameters remain to determine the dynamics,

I o2="r|Sing (5) namely, the reduced enerfiyand the mass ratio coslin all
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subsequent figures, we se}/mg=0.5 and the reduced en-
ergyE=1.4. These values do not qualitatively affect the pic-
tures.

Let us describe the peculiarities of the potential form used
so that we can point out the limitations and the ways to
overcome them.

(i) There is no finite distance threshold. Also the
AB---A’ vibration periodic orbit is set to infinityand is
marginally stable, a zero Lyapunov exponent.

(i) The asymptotic behavior of the Morse potential is
very peculiar; this has been clearly indicated[#]. How-
ever, multipolar long-distance potentials between ground- Y
state atoms and molecules are attractive and behave like
r—",n=6, which is very similar, for practical purposes, to
the Morse potential. The infinitely distant periodic orbit is trajectories belonging t€ differ only by a phase. The intersection

mar.llgnally stable sinca>2. . . of x and theX plane is the poinP. It lies on a closed convex curve
_(iii) For 1<E<2 Morse potentials suppottvo finite- ¢, insideU;, with the unstable manifold of the periodic orbit at
distance periodic orbits of a period of the order of di®e infinity. AU, is the interior ofU,.

reduced units namely, the antisymmetric, stalile=0 orbit

and the symmetric, unstabtp, =0 orbit. There exists, thus, it to the asymptotic regions at infinity. We shall call both the
in the middle of the chaotic saddle a stable island whos@ntrance and the exit the “gateways” of the reaction.
dynamics is disconnected with asymptotic motion. Fortu- In Sec. Il C we defined a first asymptotic part of the
nately, this island is surrounded by a strong, highly unstabl&cattering trajectory. It corresponds to a vibratkg oscil-
1:3 resonance that limits the influence of the stable islandkator and anA’ atom whose motion is nearly decoupled. In
and the cantori. It has been observed4hthat only high in  the potential coupling imagéHamiltonian in obligue coor-
the hierarchy of orbits are the sti<_:ky_tori observable. Weginates, with a fixed center of mass, the enerfys divided
shall completely neglect this complication. into vibrationalE, (the AB motior) and translationa, (in-

C. Asymptotic motion coming A’ atom). In phase space, the representative point
has two nearly independent motions: the first one at constant
momentum, describing the translational motion, and the sec-
ond one, a closed circularlike curve, describing the oscilla-
tory motion. Their_combination yields a helical trajectory.

FIG. 3. Scheme of a trajectorywinding on the cylindeC. All

Let us Ilimit ourselves to one of the channels

ri3rp.,fe, that is,q; >R, [28]. In reduced, oblique coor-
dinates, the Hamiltoniafil2), we have approximately

H="Hy+Ho+1, (15) For a fixed value oE, , all the helices differ only by a phase
and assemble to form a surface having in phase space the
where topology of a cylindrical surfacésee Fig. 3 Varying con-
tinuously the value oE, between 0 and& amounts to vary-
sin2<pp§ ing continuously the diameter of the cylinder, thus covering
1= (16)  the whole three-dimensional manifold of all trajectories at a

given energy. Let us call this cylindrical volunt

iRon2 Since the surface of section is dividing, any trajectory
SITeP; belonging to the above-described cylin@@must cross, at
Hy= +V(qy). (17) elonging to the above-described cylindemust cross, a
2 least once. That is, the set of all first intersections between

) o 3, andC has a disklike topology. We callU, the disk and
One sees readily that the Hamiltonil) corresponds to the U, its border. The bordet,, being the trace of the widest

free translation energl, while the other, Hamiltoniat17),  possible cylinder, belongs to orbits having as much vibra-
energyE, describes free diatomic vibration. These energiegional energy as possible. These orbits belong to the unstable
are quasiadditive. The vibrational fraction is readily ex-manifold of the infinitely distant periodic orbit; s¢4]. One

pressed in this picture &5=E, /E. may thus identify this unstable manifold witt; on 3.
The potential surface being symmetric with respect to
. GATEWAYS 23 there corresponds to any trajectory a twin one, symmetric
with respect ta. Both cross®, at the same pointds,ps),
A. Entrance and exit gates but with an opposite sign g, (Fig. 4). Also, inverting the

In this section, we describe the geometrical pathwayéiirection of any trajectory is equivale.nt to changing the sign
through which the reaction has to proceed in the phase spac® the momenta and thus transforming @s(ps) point on
Let us choose a Poincaseirface of sectiol, that is divid- = iNto a (s, —ps) point. We deduce thaf) AU, is the set
ing. Such a surface is crossed at least once by any trajector9f all first intersections _of scattering trajectories comlng_from
but for the symmetric periodic orbit. This dividing surface is &ither channel and (ii) by making the transformation
here theq,=0 surface(see Sec. Il and Fig.)20n that T(ds,Ps)=(ds,—pPs), the AU; set is transformed into
surface there exists well defined domains that act as entrandeS, =T(AU,). AS; is the set of alllast intersections be-
and exit gates to and from the interaction region and connedtveen the3 plane and the trajectories before they depart
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FIG. 4. (a) Four trajectories represented by one pointXrin
configuration spacdgb) Same trajectories in thE section; the two
points are related by time inversion.

definitely to infinity, in either channel. In analogy toU,,
the border ofAS;,S; belongs to the stable manifold of the
infinitely distant periodic orbits. Let us stress again ttigto
each point ofAU; there correspond two twin trajectories,
coming from each channel, ard) to each point ofAS;
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FIG. 5. Gateway to the reactioA:U,, entrance gateAS,, exit
gate.

As a conclusion to this subsection, we organized the al-
lowed region in% into a disjoint set of successive mappings
of the entrance and exit gates. In the asymptotic region, the
entrance dynamical states are very well defined; they are
represented in the model by the vibrational energy probabili-
ties. On the surface of section at infini®”, the microca-
nonical ensemble will be described by a density probability
p”. The Cartan-Liouville theorem allows us to define prob-
ability densities in phase space, especially on&fiesection
(ro1—0°). This probability densitywhich is conserved in the
Hamiltonian flow is transported towards the interaction re-
gion. Then, by the definition of the entrance gat®J,,
through its one-to-one correspondence with, we project
the density probability of the exterior world inside the reac-
tion dynamics(see Fig. 6. The reaction proceeds by succes-
sive mappings to progressively cové, by the images of
AU;. This will define onAS; a probability density after the
reaction. Similarly, for the same reasons, the reaction dy-
namics is projected from S; to the products of the reaction,
again at infinity, in the outside world. Therefore, associating

there correspond two twin trajectories, aiming at each charprobabilities with possible microcanonical dynamical states

nel.
The set

will be called thegatewayof the reaction. It is shown in
Fig. 5. )

We denote byM the mapping associated with the Poin-
care section X. By definition, AU,=M(AU, ;) and
Up,=M(U,_41). TheAU,,n=1,2,.. . tile the whole region
of % allowed by energy. If we denote by 1 the inverse
map ofM and we defindS,=M ~*AS,_,, another tiling of
the X section by the set of thAS,,n=1,2,..., may be
found.

Let us discuss thA U, tiles. First, they cover the whole

region, except for a set of measure zero, the invariant set of

the chaotic scattering29]; see[4] for details. Second, let us
suppose there exists a poiats AU,,NAU,,, m<n. Then,
let us take its mth inverse image, implying
M™M(P)¢&3X for M™™(AU,,) not defined andM™"(P)
e for M~™(AU,), m<n, defined. So there is nB for
any finite value ofm,n.

is equivalent to associating a probability density function
with the entrance and exit gatasG=AU,UAS;.

It is clear that the gateway may remind the reader of the
turnstiles defined by Wiggins or oth€i] as a tool for ana-
lyzing transport in phase space. There are, however, differ-
ences. One is that the lobes composing the turnstile are bor-
dered by both stable and unstable manifolds, while here the

8
-~ Hamilt. flow

Soc

FIG. 6. Hamiltonian flow projects a surface from infinity to the
3, section.

)



276 H. WADI AND L. WIESENFELD 55

perspective is such that some lobes are purely sf@blan-  As trajectories are conserved for sufficiently small areas,
stablg and some are mixed. Also, the definition of thedP,=dP,,; and by the Cartan-Liouville theorem,
U,,S, sets is unique, in contrast to the relative character ofi§,=dS,, ;. Thus

the ordering of lobes. This comes about from the existence of .

unbound, separable motion that puts a clear limit to the un- Pn(0s,Ps) =pn+1(M(0s,Ps)). (22)
bound chaos, in opposition to phase-space motion in the )
presence of bound chaos. A more general and full descriplhis process eventually transformsp(gs,ps) into
tion of the phase space at hand is deferred to a future worke' (ds,Ps), With (ds,pg) € AS;. In summary, knowing the
Now, we have to define measures on the sets and find tH&ansformation

way these measures follow the mappings.
R

—p' 23
B. Measure on the gates p=p @3

The dynamics of the reactive scattering being Hamil-is the same as knowing how the reaction proceeds inside the
tonian, it is straightforward to define an invariant measure irintéraction region between the gatewafg. 5. The trans-
phase space, thanks to the Cartan-Liouville theorem. Let urmation R contains all the geometrical information about
denote byu(AU,) a measure oAU,. As we have chosen the reaction mechanism. We changed the problem from a
S, to be spanned by two conjugate coordinates,ps) (i.e.,  Statistical analysis of trajectories to a problem of topology

{9s.pst=1), we may identify the measure and area and measure of surfaces: What are the surfaces of intersec-
tion between the successivdJ,,,n=1,2,..., and theexit
AS;? Let us remark here that the transformation may be
w(AUp) = Lundqsd Ps- (19 simple for nonchaotic processes or exceedingly complicated

if the motion is chaotic.

As stated in the Introduction, the scattering system is open. Finally, but most important, we also need to evaluate the
This means that the total number of trajectories present in th@€an values of the physical observables, such as reaction
interaction region diminishes after each Poincarapping Pprobability and vibrational energy. If) is any (classical
M. The measure of the successive imagés, must show observable, it will take o U, the valueQ)(gs,ps), thanks
this decrease. Indeed, as any scattering trajectory leaves te the Hamiltonian flow fromS™ towardsX. The set of
S surface through\ S;, we have the relation points satisfyind)<((gs,ps) <€ +dQ will be an element
of surface belonging ta\U;. By spanning the() value,
m(AU)=u(AU,_1)—u(AU,_1NAS)). (200 AU, will be charted by the different values tlieobservable
takes on it. Similarly, by transforming g¢,ps) into
We may also inquire about the fate of a sufficiently small(qs,—pg) we obtain the corresponding chart &®,;, the
element of surfacedS= 6qsdps belonging to the entrance exit gate. The whole gateway is labeled by the values of the
gateAU,. After a certain number of successive iterations of)(qs,ps) function, for reactants and products. The mean
M, it will be projected into the exit gat&S;. In the mapping Vvalues at the entrance and exit are easily calculated:
process, its measure will be conserved, so that
dS(entrancey 6S(exit) for the set of invariant orbits is of .
measure zero. This conservation of measure has often been (Q)in=f Q(gs,ps)p(0s,ps)ddsd ps, (24
underlined in different contexts of chaotic Hamiltonian dy- AU
namics[1].
Being equipped with a measure, it is now possible to as- N
sociate a probability density functiop(qs,ps) with each <Q>out:J Q(gs,ps)p’(ds,ps)dasdps. (25
point (qs,ps) e AU,, as well as an element of probability 451
dPs=pdgsdps. We associate with an ared in AU, the

probability Knowing the charts on the gateway and the reaction trans-
R
formationp—p' allows one to calculate the mapping
P(A)= L\d Ps= fAP(QSapS)qudpS- (21)

R
Through the mapping, this probability density function (Din—=>{(Dout-
will be transferred from the entrance gaiéJ,; to the exit
gateAS,. Let us look at the conservation rule B{A). If |t is thus possible to know to which kind of statistical distri-
A, is thenth image of an area through the mappiMgand  bution the reactive scattering event heads.
dP,=p,dS, an element of probability defined on it, one has

- IV. WINDINGS
M
Pn=Pn+1 This section aims at showing the consequences of the
winding theorem on the topology of theU , surfaces, or in
M other words, on the reaction dynamics. We shall thus first

dP,=p,dS:=dPy;1=pn+1dS11- have some definitions, state the theorem, outline its demon-
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section with 3, of all trajectories coming froml'®, and
Z\ (a) I'*¢ the set of all intersections with another sectiSf
(e'=¢). We identifyI'® with I'®* (Fig. 7).

We see thus that the=0 parameter is used to label the
furthest section a given trajectory may reach. A trajectory
that reaches infinity with zero kinetic translational energy is
characterized by =0. Now, let us describe a given section
8¢, with ¢’ >¢. The & section is thudurther away from
the interaction region than th&® section. It is easy to con-

vince oneself that different curve®¢', e#¢’, may not
cross. Now, a trajectory that grazed thé curve loses some

(b) vibrational energy in the course of its progression fr6fn
towardsSe’ (Fig. 7), even fif this loss is exponentially small
Energy limit Se Qe [30]. Since the 8¢’ section displays the vibrational

, coordinates—remember that vibration and translation are
',:"'-- nearly separable in the asymptotic region—f?fe"" is sur-
it rounded by thd*" closed curve. The argument may be re-
peated for any triplet’ >g,;>¢,: The I'*’ curve encircles

the'*1¢" curve, which itself encircles thE*2:¢" curve. The
Mg Hamiltonian flow transports this structure to tBesection
without disturbing it, as long as the nearest sectiin still
belongs to the asymptotic region.

Knowing further that lim_,Uf=U,, we find that the
Ui curves encircleU, for e>0 and U} encirclesUi' if

e>¢'. We have thus surrounddd; by a foliation of U7,
FIG. 7. Various sections and curves associated with a trajectoryijth ¢ uniformly increasing with distance 0.

ending inS*® (see the text for detaiis(a) in “perspective” and(b) If we now apply in3 the time-reversal transformation

in configuration space. The decrease of amplitude of the vibrationa1.( )=(qs,— ps), e obtain from the family}U® a new

motion is grossly exagerated. q,s"ps qs’, F.)S ' : ~ 1 .
family S;, encircling the stable manifol®;: T(U7)=S].

stration, and then return to the consequences on the shapesTdTen,Ui is the set of fiF'St interactiong Wi'tﬁ of trajeptories
the successivdU,,. The complete demonstration is shown issued from theS® section at zero kinetic translational en-
in the Appendixes and the less mathematatically oriente@rgy ands; is the set of trajectories obtained frod by
reader may go from here to Fig. 8 and then to Sec. IV C. inverting the sign of momenta. These are thus trajectories
whose translational kinetic energy goes to zero&n As
A. Definitions and notations before, we have, for any value af, M(U7)=Up,, and

M~Y(S)=S’.; As a closure relation, we have also

For all that follows, we suppose thaji>r ;. Let us also . .
recall thatVyorse— 1 for ry—o. M(S)=U; .
Let us denote by, the value ofr,; that verifies(for
foi> Re) B. Winding theorem
Viorsd F5) =1~ £=> im 12, = Ro—In /2. Wg may how state pr?cisely the theoréﬁi\g."_S)._ .
e—0 If (i) I belongs toS,, (i) P belongs toSiO, (i) Pl is a
curve of finite length, andiv) by going onPI, from P to
Let us now consider trajectories whose translational kinetid. we define a bijection between the successive points on
energyE, goes to zero for the sectiofi*=r,=r¢, (letus Pl and theS;] curves, withe diminishing continuously from
recall thatS*=°=S%). SectionS® is spanned by conjugate ¢, to 0, thenM(P1) is a spiral winding infinitely around
coordinates ;,p,; . The Hamiltonian reads U;.
) For the ease of the reader, the demonstration of the theo-
Poj . rem is dealt with in Appendix C. The theorem is essentially
H= S ValoiiFoj) +Valro)). a consequence of the definitions f. S; is the border be-
tween trajectories that will return and crassonce more and
This relation defines o8¢ a closed curve, which we denote trajectories that have just cross&dfor the last time before
I'?; see Fig. 7. definitely going away. So the nearer a point fréhh is to
Since the Vyose Ppotential is strictly increasing for S, the farther away the trajectory it defines will go into the
roi>Re, any trajectory going through® has to cross the asymptotic region and the nearer th it will again cross
3. Poincaresection at least once. We denote§ the inter- . By continuity arguments and by an asymptotic analysis in
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12 In Fig. Y@ the gatewaysAU; andAS, are represented
Ps together with the limiting curvél = E. The entrance and exit
gateways do not cross each other, so that at that particular
06 - energy and mass ratio, no trajectory crosEesnly once.
AU,=M(AU,) is also represented in the same figure. We
see thatAU, crossesS;, so thatAU,NAS;#0. Some tra-
jectories go to infinity after having crosséd twice. Next,
AU,, AS;, and AU; are represented in Fig.(l9. AU,
crossesAS;. Some trajectories go to infinity after three
crossings; these are the simplest reactive trajectories. We see
that AU, is qualitatively different fromAU,,AU,. It winds
a2 0 1 2 3 aroundA U, an infinite number of times, as a consequence of
Qs the crossing ofU, and S;: AU3W..1(AU,). Next we see
AU4 in Fig. 9c). We see that the following are true:

-0.6 -

FIG. 8. Winding theorem. By the Poincareapping, the seg- WT
mentPI is mapped onto the spiral wound arousd;. AUj crossesAS; =AU ,W._1(AU,),

phase, one can show the infinite spiral shape of the image of i
PI. M
AU3W301(AU1):>AU4WQC1(AU2)

C. Windings

In this section we describe the consequences of the wind=or AU, something new appears ag@gee Fig. @d)]. Since
ing theorem(WT) on the topology of the successiveU,  AU,W..1(AU,), the intersection obl, andS, is made of an
surfaces. Here we shall be very specific in our example: twanfinity of disjoint bands, thinner and thinner as one nears the
coupled identical Morse potentials, mass ratio 1:2:1, and refimit point U,N'S, [see Fig. &)]. The image of each of

duced energfE=1.4; see Sec. |l B. these bands is a winding dfUg aroundAU ;. In this way
1.2 1.2
Ps | T (a) (c)
0.6
0.0 - 1
-0.6 -
-1'2-1 3
1.2
Ps
06 [
ool -
el @
-1.2_1 - . - 3 -1.2 - . -
0 1 2 qs -1 0 1 2 QS 3

FIG. 9. Exit gatewayA S, and the various mappings afU,. (a) The first map ofAU,, AU,, retains a regular shagénite perimetey.
(b) The second mappingU; winds an infinite number of timeAU;. (c) The third mappingAU, winds an infinite number of times
AU, and AU,. (d) The fourth mappingAUg winds an infinite number of timeAU; and AU, and a double infinite number of times
AU; (see the tejt



AUs

AU

AU,

FIG. 10. Beginning of one hierarchy of discontinuities near
U;. One shows the odd seriadJ,; which windsAUsg, which winds
AUj3, which windsAU ;. Another series is generated By ,.
AUg winds around the winding of AUj, i.e,
AUsW,1(AU3) andAUsW,.2(AU4). In summary,

M
AU4WOC1(AU1):>AU5W001(AU2),

WT
The ensemble oAU, n=3, ... o, winds aroundAU,

an infinite number of times, in a hierarchic self-similar way,
as explained in Fig. 10. One may say that the analysis pr

AU4W301(AU2)
AU, crossedAS;

AUSWOOZ(AU]_)
AUSle(AUS)).

sented thus far concentrates on the trajectories in the asym

totic regions and their fate inside the interaction region. Thi
analysis may be seen as complementary to the periodic or

described earlier; s§d] or many other earlier references on
general chaotic scatterifd0].

V. HALOS

In Sec. Il we defined in the Poincare secti®ntwo par-

ticular zones that we called the gateways of the chemical

reaction. We could define an entrance gaté; and an exit

gateAS,. On both gates a probability density function was

defined:p(qs,ps) andp’(gs,ps), respectively. The chemi-
cal reaction proceeds frop(qs,ps) towardsp’ (ds,ps)-
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Energy barrier

(b)

FIG. 11. (a) Windings surroundingAU, that form dU,. (b)
Halo dU;.

surface covered by the windings is far from negligible. In

Sther words, windings compel us to speak in probabilistic
frms in those regions where they are present. We shall de-
Sermine the probability of encountering an odd or even wind-

) . . an , coming from any part oAU,. This leads us to the
analysis and the multifractal aspects of the chaotic scatterin g g yp !

Qoncept ofhalos whose purpose is to separate windings

from the rest of the flux, thus dividing the covering &5,

into a regular and a probabilistic part: thdJ , surrounded
by its halodU,, .

A. Definition

Our aim is to properly delimit zones where the windings

are located. The windings, which we defined in Sec. IV,

come from trajectories whose translational energies go to
zero far inside one of the channels. We introduce thus a
critical distancer{=R®,i=1,2, with

Now, we have to answer simple questions about an iso-

lated reaction: What is the overall reaction probabilty

and what is the mean valug)) of an observabld)? An-
swering these problems amounts to knowing ha®, is
covered by the successive imaged, of AU;. In particular,
the set of reactive trajectorig8 is given by

R

U
k=1,2,...

(AU 1NASy), (26)

as a reactive trajectory crosses thesection arodd number
of times before leaving. We could measuRedirectly in a
picture of, if the reaction were not chaotic, that is, in the

absence of windings. To see that this task is impossible, it is

sufficient to consider the set of windings arousd),; see
Fig. 9. The complexity of the covering &S, by the suc-

cessiveAU, precludes any direct measurement. Yet the total

VMorse(ric):l_sc- (27

We calldU, the halo ofAUq; it is the set of the first inter-
section with>, of all trajectories that begin with zero kinetic
energy at a distance further from the equilibrium point than
R®. The set of all trajectories originating from tR& section

will exactly cross3 on a closed line we caIU"“‘C, which
surrounds the unstable manifold,. The halodU; is the

region between the two curvdd; and USC; see Fig. 11.
Through the transformatioﬁ', we define the hal@s, of
AS, as the region between ti# and Sic. Using the Poin-
caremapM, one has

M(S5)

Ui, ee(0,.e°], (28
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FIG. 12. Different Poincarenappings, indicated by arrows, be- FIG. 13. Regular zonA Z; with its halodZ;, coming from the

tweendU,, dU, andds,. ensembleAU; [compare with Fig. @)].

so that As before,AZ,, is the interior of theZ,, curve, whiledZ, is
- its halo, betweelZ,, andZﬁc, andHZ,=AZ,UdZ,.
M(dS;)=dU;. (29) We shall now see the exit gateS,; as being covered by

) . L A elements of the differenAZ, anddZ,. The former ones,
By taking successive images, we defilg =M(U,_1), Az NAS, are theregular zones in the exit gate; they do not

n=2,3, ... . Similarly, the region betwedt, and Uf,c de-  show windings, and numerical evalution of their measure is
fines the halo oAU, denoteddU, . possible. On the contrary, the sets of the fodid,NAS;

contain all windings, by construction. They constitute the

B. Pseudogateways probabilistic zones of the exit gate. Inside an intersection

dZ,NAS, all that is hoped for is to compute the measure-

Let us consider the two setsU,=(AU,UdU,) (the set ment of a definite part coming from a subset of the entrance

andits halg and’HS$;=(AS,UdS,); see Fig. 12. We know .
that any trajectory whose representative point lies in:sideq '
AS; has no image, for the trajectory heads towards infinity
after this last crossing. Therefore, the 380,NAS; has no

image in 3. On the other side, the images of the set The reactive trajectories are those that crdssn odd
HU,NdS; belong to the halo oAU,, namely,dU,;: the number of times. Therefore, for the intersections
outgoing translational energy of these trajectories goes tdZ,NAS;, the probability of being reactive is 0 or I,
zero in either channel at a distance larger tiin so that being even or odd, respectively. For the probabilistic zone
they will again crossX, but inside the halo ofAU;. But dZ,NAS,, let us denote byP, the probability of finding
these trajectories are already present in the . In  inside a reactive trajectory. We shall make the further hy-

C. Probability densities

order not to count them twice, we have to admit that pothesis that the probability density associated viathis
. constant over the wholdZ,, surface. This amounts to sup-
M[HU,NdS;] (30 posing that all windings are uniformly distributed inside

is not defined. We may conclude that we have to admit hergzr,’\l'owi taking into account that any point @fZ, is the

that the whole intersection of sets and hatos,NHS, has  image of a point indZ, ; and taking this relation back to

no image, similar tdAU,N AS,; having strictly no image. In dz,=dU;, we are led to

this sense, the uniohlG="HU,UHS, plays a role similar

to the gatewaAG=AU,;UAS;,. Therefore, we calHG the P, for oddn

pseudogatewapf the reaction. Pn
Let us now try to divide a given set into regular and

irregular partsAU, is thus divided into a regular patZ, |t js enough to calculat®, to obtain anyP, probability. In

N 1-P; forevenn. 39

and a part that winds around some other 5&t,—AZ,,  order to calculatd®,, let us begin with the following remark.
thus being contained is some halt),,. We have the defi- The odd (even windings of the intersection§{Z,NdS,
nitions (see Fig. 1B yield the even(odd) windings ofdZ;. This may be seen by
~ forming the seM (HZ,NdS;). From this remark, we obtain
Z,=M[Up_1~(Up_ 1N HSD], @ g (Hzn1d%)

the following two relations on the measures:
Z5° =M[UZ" ,— (U5 NHS)]. 32

F=M[U; (UL NHS)] (32 P02~ S, W(AZndS)
We also define, in a coherent way, "~

Z,=Uy, (33 +n§1 (1-Pu(dz,NdS) (36

Z; =U7 . (39 and
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trajectory in the ensembleAZ,NAC,)NAS,, andP?, the
(1- Pl)M(dzl):n;l m(AZrn-1NdS) probability of finding inside some windindZ, a trajectory
originating fromAC,. We need to know botlﬁ’g andP? in
order to know the probability of a winding to contain an
+n§l Pnu(dZ,NdS,). (37 image ofAC, that is odd, that is, a part &C, that reacts.
We again make the hypothesis that windings are uniformly

Summing Eqs(36) and (37) we get distributed insidedZ,, so that Pﬂ and P{ are uniform.
Therefrom, for the same reasons as bef&®g (35)], one has
wdZ)= 2 w(AZ,NdS)+ X u(dZ,NdSy). PO forodd n
(38 Pn= 1-PY forevenn. 42
Using the relations foP,, [Egs. (35)], relation (36) may be

Furthermore, taking into account th&Z,, , ; is the image of

written dZ, and windings are uniform idZ,, we have
zZ__ z
Pop(dZy)= X w(AZyNdS)+Py 3, p(dZpnNdS) Pa=P1 Vn. 43
In order to calculateP?, we remember that the windings
_ dz, are coming from the intersectionAZ,NdS;, and
+(1-P dZy,1NdS). 39 1 9 n
(1-P) X p(dZzn-1NdS) (9 47 s, Thus
This leads to
Pin(dZy) = 2 m(AC,NAS)+PLY w(dZ,NdS).
2 {R(8ZonNdS) + p(dZzn1NASy} (44
Py= . ExtractingP; and recalling the definition okZ,,, Egs.(32)
w(dZy) + 2 {u(dZpn_1NdS) —u(dZnNdS))} and(32), one obtains
n=1
(40)
. _ 2 wAC,NdS)
Using Eq.(38), P; may be rewritten as pZ= _ (45)
> w(AZ,NdS)
2 {w(AZoyNdS)) + p(dZzn NS} =L
P1= - (4D Now, for P9, the derivation is similar to that in Sec. V C, by
nZ1 {n(AZ,NdS) +2 u(dZy,-1NdS)} inserting the appropriate?,
It is clearly seen in Eq41) that O<P;<1. pg 2u(dzy)= 2 w(AC,,NdS))
n=1

D. Probabilities from a part of the entrance gate

z 0
It is also interesting to compute the probability of reaction +P1 Plngfl m(dZznNdS,)
of trajectories originating from a particular region &tJ,,
where the dynamical variabl@ takes a value we are inter-

=)
ested in. This region will be transported in the course of the +(1 Pl)n;l #(dZzn-1NdSy) |
reaction towards the exit gate. We shall thus calculate the
reaction probability or the mean value of some observable, (46)

provided that we originate only from a particular part of theTherefrom we deduce the probability of reaction, coming
entrance gate, chararacterized, through the Hamiltonian ﬂo‘f\fom the a,reaAcl' '

from S” to 3, by some values of the observables. Let us call
the region insideAU,, AC;.
On the regular part, we define 21 m(AC,,NdS)) + Pizl u(dZy,-1NdS)
n= n=
Py=

AC,=M"(AC,)NAZ,. '
nmMHACHNAZ, PE| S, m(AZ,NS)+23, p(dZz 4Ny

Once more, as in Sec. VC, the regular parts are calculable " "~ (47)

numerically: One measures thus the sucessive imaAggs

of AC; and the areas of the intersections Equations(41l) and(47) are the main quantitative results of

(AC,NAZ,)NAS,. For the regular parts, it is useless to this paper. Together with the actual measuring of the inter-

introduce probabilities. sections of surfaces, they allow for a prediction of a reaction
However, the statistical zones &fS, are described by rate or any observable, from the whole entrance gate or a

two probabilities:Pﬂ, the probability of finding a reactive suitable part of it.
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12 TABLE Il. Summary of the different contributions to the overall
Ps reaction rate.
10
0 Weight (%)
0 P, [Eq. (41)] 52
04l i direct (reactive 42.0
halos(reactive 16.7
02 :
00 L Total reaction rate
k gs ° surfaces 58.7
trajectories 56.8

FIG. 14. Overall outcome of the reaction, with the parameters
described in Sec. VI. The different zones that cover the exit gate
AS;UdS; are shown. The limits of thaU, sets are in full lines
and the limits of halos in dot-dashed lines. The numerical values o
the areas are given in Table I.

mounts to 5 aE=1.4. As onlyAZ,,AZ; contribute sig-

ificantly as nonwound regions to the reaction, it is clear that
the larger number of loops comes from the halds ,dZ;.
The overall reaction rate is found at 58.7%. It is difficult at
this stage to have an estimate of the error, which depends on

In order to verify our previous analysis, it is interesting to many factors, uncontrolled at the moment. So the best com-

illustrate it with a specific example. We keep the same paparison is with a well-established method, the sum-over-
rameters as before, namelg=1.4 andm,/mg=0.5[Eq. trajectory method. The maximum allowed incoming momen-
(12)]. The AU, surface is supposed to have a constant dentum atE=1.4 is[Eqgs.(12) and(17)] p; max=0-67. By setting
sity of probability p(qs,ps) =const. To start, we measure the appropriate weight function to account for const and
the different relevant surfaces of Fig. 14. Results are showby averaging over 1000 trajectories for each of the 13 mo-
in Table I. Indeed, one sees that the numbeif,,dU, menta chosen, an overall mean reaction rate of 56.7% is
needed is very small. 97% of the surface of the exit haldound, in excellent agreement with the surface calculations.
‘HS, is taken into account just by measuring the intersectiond hese results are summarized in Table . It is clear that this

VI. NUMERICAL RESULTS

with AU, ,dU,,n=1,...,5.Also, AZ, has no intersection,
since[Fig. 9Ac)] it lies totally in theps<0 region. A sum-

mary of the contributions to reaction rate is given in Table II.

We also have to calculate;, the probability of being reac-
tive inside an odd haldEq. (41)]. We find a value of

comparison is for illustrative purposes for the moment. A
series of calculations, with different sets of parameters,
should show the influence of phase-space geometries on the
rate of reaction and how good the halo-gateway method is
with respect to a sum over trajectories.

P,=0.52 showing that the halos are nearly equally divided
into reactive and nonreactive trajectories. Also the relative

importance of halognearly 40% of the total surfagés con-

sistant with the large amount of chaos found in our earlier

VIl. DISCUSSION

The whole analysis we have proposed in this paper is

analysis; seg4]. There, it was found that the average numberpased on a careful description of the motion at the asymp-
of loops, or successive maps in our present languagqetic limit and on how this near-integrable motion projects

TABLE I. Weights of the different intersections in Fig. 14. The
notations refer to the figure. The parameters &e 1.4 and
mA/mBZO.S.

Intersection Weight%)
AU,NAS; 11.3
AU,NdS; 10.8
dU,NAS,; 115
du,Nnds; 4.0
AU3NAS; 29.2
AUz;NdS; 8.9
dU;NAS,; 9.9
dus;Nds; 5.8
AUsNAS; 2.0
AUsNdS; 0.9
dUsNAS; 1.6
dUsNds; 0.5
remaining parts 3.6

itself onto the periodic orbit dividing surface. Simply from

that analysis, we have been able to reconstruct nearly the
whole image of the chaos at hand. Indeed, it is because of the
non-integrable nature of the Hamiltonian that any crossing of
U, and S; occurs at all[31,32. For a nonchaotic Hamil-
tonian, S; and someU,, would coincide and the windings
would disappear altogether. Any mixing would be absent in
the course of the reaction. This simple reasoning shows also
how particular the integrable case is.

In the course of the analysis, we have been able to define
on the, surface two particular zones, which form together
the gateway. This gateway may be crossed only once by any
trajectory going to or leaving the interaction region. It is thus
tempting to identify our gateway with a classical image of
the transition state. It must be borne in mind, however, that
such an easy definition of the gateway was made possible by
the simplicity of the definition of the periodic orbit dividing
surfaceX. It is not yet clear how to define a gateway in a
direct reaction such as+H, — H, +H, where at minimum
distance there is a potential barrier instead of a well.

The extent of the intersections of the exit gate and the
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successive maps of the entrance gate determines the overlat, unwound parts diminishes with respect to the irregular
shape of the reaction. If nearly all trajectories leave after garts, inside windings. In our case, as soonza¥, all levels
few mappings, the reaction will look simple from the outsidebecome superficially alike, consisting of windings of wind-
and the intermediate product short lived. On the other handngs around the maidU;,AU,,AZ; sets. In that way, all
a domination of several high-order mappings will shift the high-order contributions to chaos are put inside the halos of
balance towards complicated trajectories and a long-lived insome lower-order set. The halesplacethe whole compli-
termediate complex. However, one must recall thatthele  cated structure that unfolds as we go into higher and higher
motion in phase space is analyzed here in the framework ai. We may thus say that halos cut the hierarchy at some level
fully chaotic motion: hyperbolic motion in the surface of and allow us to simplify drastically the whole picture. It is
sectionX. in the language of dynamics. This is what allowed thus in some defined part of the phase space, the ensemble of
us to speak about unstable periodic orbits and their stablhe halos, that the old statistical assumptions of equireparti-
and unstable manifolds that cross and wind. Otherwisdion of reactant§34] gain some validity. It would be most
stated, if for some defined value of AU,NAS, is very interesting to compare the gateway-halo method to some
large, most trajectories will exit aften loops. But the es- pure statistics in the case of very extended ctiao®ll mea-
sence of the analysis shows that for some region of the ersure of theAZ, ensembles
trance gate, a complex situation will indeed occur whose As we have said earlier, once the trajectory leaves the
statistical weight is small. interior of the interaction region, a sensible model should
It has often been observed that for some regions of thénclude the possibility of that trajectory being perturbed:
reaction parameters, the course of the scattering looks regiWhen the diatom is far from the atom for a sufficiently long
lar and for some other regions it looks chad®8]. One is  time, it experiences perturbations from the exterior world.
then tempted to find a border between chaotic and nonchdhe model used here is microcanonical, so that energy is
otic zones in reaction processes. We feel that examination gfonserved. Also, the perturbation acts only far from the cen-
the various intersections of the gateway mappings provides . Its effect is thus to move the representative point in phase
quantitative and qualitative basis for this distinction. It prop-space to another point in the same energy shell, also far from
erly underlines the necessary coexistence of long-lived anthe interaction region. In the picture used here, the different
short-lived trajectories and the fuzziness of the barrier bewindings that form the halos are blurred, leading to the sta-
tween chaotic and nonchaotic motion. tistical assumption inside the halos. Actually, it was not
The gateway we defined is surrounded by a series of inphysically meaningful to suppose that a long-lived trajectory,
finitely elongated images of itself, created by the Hamil-extending far away, “remembers” where it came from, even
tonian flow, as we described in detail: the windings. This isif this memory is the condition for the hierarchic organiza-
an image in the Poincargection of both chaos and asymp- tion of chaos.
totic integrability. It is clear that this image, characteristic of ~ Also, this image of a gateway surrounded by its halos,
classical mechanics —infinitely detailed structure, hierarchiliving in phase space, is easily adaptable to a semiclassical
cally organized with a fractal set of discontinuities—cannotframework in a time-dependent or -independent picture. In-
survive in the real physical world. In particular, the reactiondeed, halos provide a natural way of smoothing structures
we examine cannot survive a long time without being subwith respect to some characteristic actgnto be compared
jected to any concievable kind of external perturbation; alsdo %. In that sense, one may also say that halos are a classical
the spatial extent of the reaction must be short in order foimage for the quantum resonances that are seen in triatomic
the atoms not to be subjected to forces originating from outeollisions, when the outgoing diatomic fragment has much of
side. It is absolutely necessary to introduce time scales ani¢s energy trapped in a high vibrational sta8s].
length scales over which the full classical dynamics cannot As alluded to in the Introduction, several authors already
survive. This has brought us to introduce the concept of habegan to decribe the structure of the periodic orbit dividing
los. We believe that they should constitute a model of ssurfaceX. The cylindrical manifolds of DelLeort al. [18]
bridge between rigorous classical mechanics and the realre quite similar to outJ, andS,. However, these authors
physical world in this context. did not consider scattering but closed the phase space and in
Halos are formed by the windings around the images ofubsequent works concentrated rather on isomerization pro-
the entrance and exit gates. Since the dynamics inside theesses. However, the structuring role of the stable or unstable
windings is infinitely complicated, we replace the exact pic-manifolds of carefully chosen periodic orbits is clearly seen,
ture by a statistical one. The border of a halo is determine@s well as the importance of their first and last intersections
by some physical or geometrical arguments and inside thwith the, section, called reactive islands. However, the pos-
halo, we have made the assumption of an equirepartition dfibility of having finite area per infinite perimeter islands,
the different levels of the hierarchy, each with its own over-while being latent in the figures, was not clearly described.
all probability. We are then able to calculate the relevanfThe successive images &f; and S;, which build up the
density probabilities inside the halos and proceed towardphase-space image of the reactitime R transformation, Eq.
reaction rates or average of observables. We showed ho(@23)], have been described in some detail, with some
precisely this method works, even when we include veryglimpses of the windings, by Polla&t al. [13,14], princi-
large halos around the gateways and cut the hierarchy apally in the framework of the transition state theory. A gen-
ready at the fifth level, thereby avoiding all influence of theeral review is provided in Ref.36]. The reaction rate has
Kol'mogorov-Arnold-Moser region. also been calculated either by minimizing and maximizing
As we proceed deeper and deeper into the hierarchies diux through sectionda TST approachor by use of the
AU, , we have seen that the relative importance of the regumaximum-entropy principle in the irregular regions Bf
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Since scattering chaos was not yet fully understood as a dy- APPENDIX A
nre:m|cql systt_am, thtire ;']V"’}S ho art]ttempt t% C:;a.lfatr.ly C|rcumbscr(|jbe Let us recall the notations of Sec. IV. From what we have
]E ags |1|n regions, f ﬁ alos, Wdere probabilities :nat)ll r? es'aid, the trajectory going throudh will see its translational
IN€d. rowever, a fully mixing dynamics was Implicitly ny- iqatic energy go to zero of§°°. The state of the system is
pothesized in the windings, so that maximum entropy coul

I, from P to, following hypothesesii) and(iv), we define

; : an ensemble of trajectories, all defined uniquely by the index
(hyerbolic coordinatgs They clearly understood that there ¢. Let us denotec(t) such a trajectoryxis a point in phase

was chaos in their_sy_stem,very similar t(_) ours. In light of thespace. Each trajectoryx®(t) crosses on a specific point
present work, their Elgs. 11-117] dgscrlbe the successive M®, on the curvel'*. On the sections®o, s,>¢, the trajec-
images 01U1. an_dSl, ina somgwhgt different cont.ext.—three tory x°(t) has two crossing points: on its way aut"*® and
dividing periodic orbits at finite distance—but windings are " e N0 Toe.s
not seen as such. However, the surface of section used nega its way back from_S M + eI'**0. We notet(e, &), the
not represent faithfully the Hamiltonian flux, since it is not ime the fepresentative point takes to go back and forth, be-
an attractive PODS, in the language of Pollak. Still, in RefsfweenMZ"® and M. The trajectoryx(e,t) has enough
[15,16, the gateway is clearly present and its importanceranslational energy to go to the sectisfi, which is the
properly stressetk.g., Fig. 10, Ref[15]). The appearance of farthestit can gov(e) is the average speéh modulug for
successive intersections of the lobes of the unstable manflch a trajectorx(e,t), between sectios®® andS* (Fig. 7).
folds (U, now) with the first lobe of the stable manifold ~ Lemmal
(S; now) is also described and these intersections were right- R
fully incorporated into the reaction rate. In retrospect, the limv(e)=0. (A1)
very importance of gateways and their images in phase space =0
were apprehended already in the mid 1980s. Now, thanks to . . .
the firm theories on the existence and properties of scattering Demonstration Let us set the ongin of times when
chaos, it has been possible to pursue further the analysie,t) crossesS™. So x(e,0)eS* and r,>0, so that
begun some time ago, towards a quantitative analysis. X(e,t(gg,€9)) € S°0 andr,;<<0. The discussion rests only on

The procedure we have proposed here has to be extend#te period G<t<t(eq,eq). During this periodi) from the
in three WayS EirSt, 0_ne has to deal with realisti-c CO”inearHam"tonian equationi‘oi is a decreasing function of time,
processes, with inclusion of potential holes and hills, as welpngji) the sections® recedes to infinity whea—0 and the
as;tago_ci aTymput)ttlc bghav(mag., van derV\/_aa]lsﬁec;ond, speedioi remains bounded so that l|imgt(eg,e)==. Let
o i = s not 00 demarng,ie ey il temieris choose an arivary speec 0. We dfine on a0

. . ) : N ; . trajectory t-(e,v), the amount of time during which
third dimension, energy, so that it still remains possible to . , , .
visualize it. The halos should still surround it and somel’oil>v. andt_(e.,v), the amount of time during which
model of mixing in phase space plus energy is to be in{roil <v. Then
cluded. But the most important and demanding extension is
towards three degrees of freedom, including rotation and vi- to(e,v)s sup to(e,v)<e,
bration of theAB fragment. Poincarsections are now four e€]020]
dimensional, difficult to visualize. However, the situation is
not hopeless, thanks to the tremendous simplification of© that
asymptotic separation of motions. _

limt_(e,v)=o0.
e—0

VIl CONCLUSION Calling v s the maximum ofv on the trajectory, we have

We have thus shown in this paper how to calculate reacthe inequalities
tion rate in the presence of classical chaos in a simple, yet
meaningful, example. Rather than resorting to a blind aver- — t=(&,0)Vmax t-(e,v)v
aging process, we have used a quantitative description of the <v(e)< t-(e,v)+t_(e,v) t-(e,v)+t_(e,0)’
geometrical motion in phase space. With the help of the defi- (A2)
nitions of the statistical zones, the halos, we have been able
to get rid of the classical intricacies of chaos in a physicallysg that
meaningful and numerically controlled fashion, thus opening

the way to a geometrical analysis of simple chemical reac- L t-(,0)0 max
tivity. 0<lim, _qv(e)<Ilim [
coolt=(g,v)+t_(g,v)
t-(e,v)v (A3)
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FIG. 15. Scheme for the theorefAppendix Q.

0<limv(e)<0+u.

e—0

(A4)

Equation(A4) being valid for any value o, one has the
desired resultAl).

APPENDIX B

The notations are the same as befdfey,e) is consid-
ered as a function of, 0<e=<g,,.

Lemma 2t(eq,¢) is a decreasing function ef.

DemonstrationLet us denote byl(¢) the distance sepa-
rating section S§°0 from &% d(e)=r,i(e)—roi(eo)
= —In(eleg). We havet(eq,e) =d(g)/v(e). Denoting by the
prime the derivation with respect g we have

d’(e)v(e)—d(e)v’(e)

t'(gg,8)= o)

Following Lemma 1p(g)=v(0)+ ye=ye. Then,

, —1+In(eleg)
t (80,8)—T+~ s

(B1)

Sincev(g)>0, y>0; consequently’(eq,e)<0 for & suf-
ficiently small.

APPENDIX C

Following from the theorem of Sec. IV B, we have the

following.

DemonstrationLet {C?;e € ]0,£°]} be a familiy of closed
convex curves with the following propertiésee Fig. 15

(i) C*e S°Vee]0,e7.

(i) C¢ is insidel'®¢", for any couple e’ <eg<g,.

(iii) The projection of theC® curves onto ther(,,,poz)

space does not depend enOtherwise stated, the equation

C®(ro2,Po2) =0 that defines the curvé® on S° does not
depend explicitly ore.

That one can construct such a family of curves is obvious

Now, for each curv&?®, we associate a poil@°, defined by
some €42,P02) Coordinates not depending enO?® is inside

the C® curves. Let us now consider one of those families
{C®;0% e e]0£°}. We shall now parametrize each curve by

a phase®d, in the following way: The value ofb on C° is
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defined mod 2r and the same phase is associated with two
points ({o2,P02.€) and (42,P02.€"), Which differ only by
the sectionS to which they belondi.e., by the fact that
#¢'). Let us recall that the trajectory denotedd¢,t) has
enough translational energy to go up to the sectiénWe
associate now a phask(e,e’) with that trajectory in the
following way. At timet, the trajectoryx(e,t) reaches the
sectionS®’, on the pointM ¢ =x(e,t)NS* . We define the
phase by the oriented segmeﬁms',M”']; see Fig. 15.

Now that a phase is associated with a trajectory in the
asymptotic domain, the demonstration proceeds in two
stages. In the first stage the winding theorem is valid on
S°0, that is, if M%0 belongs toI'®®o, if the M®o:#0oM%¢0
segment is of finite length whep,;>0 (outgoing trajec-
tory), and there exists a bijection betwektfo-*oM %0 and
the interval[e,0], then M?0:2oM%0 | p . <0 (incoming
trajectory is a spiral curve winding infinitely arounb®®o,

In the second stage, if the theorem is trueS5# it is true on
3.

To demonstrate the first stage, let us denotebbge) the
phase of the trajectory(e,t) on the first crossing of5®o
(outgoing, p,;>0) and ®F (&) the phase of the trajectory
X(&,t) on the second crossing 6F° (ingoing, p,1<0). We
define a timer(e) as

oF o B 2w
(e)— (@—mt(so,s),

where 27/ 7(e) represents the average phase velocity for the
trajectory x(e,t) between its two crossings 0. Let us
examine Eq(C1) for e—0. We have the following.

@)

(CY

7(e)=7(0)+ 61(&),
where

lim 01(8)=0

e—0

Indeed, where —0, the trajectory spends an arbitrary long
time arbitrarily near the section at infinitg®. Now, near
SO, trajectories tend to follow arbitrarily closely the evolu-
tion of a Morse oscillator of energig— 1. Then, timer(e)
converges towards a valu€0)+#0, so that

2 2

mZ T())[1+ 0,(e)].

where, as in the previous case,

lim 6,(&)=0.

e—0

(i) The segmenm ¢0-20M%%0 s of finite length. Indeed, it
is the image by the Hamiltonian flux of a finite length seg-

mentPI over a finite time. AP| is parametrized by a con-
tinuous index, it is always possible to write

D'(e)=1'(0)+ 3(¢),

again with
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lim 65(e)=0.

e—0

Summarizing, we write the result

PF(e)=¢' (0)+ " t(eo,8)+ bs),

7(0)
(C2

limé(e)=0

e—0

Equation (C2) means that®"(e) behaves liket(eq,e)/
7(0). Following the sign ofr(0), for sufficiently small val-
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ues ofe, the function®F(¢) is a decreasingdincreasing
function of ¢, going to +« (—) whene goes to zero.

To demonstrate the second stage let us consider, on Fig.
15, with ¢’ = ¢, the oriented segme@®oM? 0. This seg-
ment has, by the Hamiltonian flux, an image Bnof finite
length, extending away fronJ;. The curveM?@o:¢oM %0
cuts theO®oM*:?0 segment an infinite number of times, al-
ways in the same sense. Therefrom we deduceM(eRl)
cuts an infinite number of times, always in the same
sense, any oriented segment betwéknand Uio. We say
thatM (P1) winds aroundJ ;. This concludes the demonstra-
tion.
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