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In this work we analyze the degree of homogeneity and stationarity of the transfers in the inverse energy
cascade of two-dimensional turbulence. Two extreme cases, namely, a well-developed inverse energy cascade
in a robust statistically steady state and the collision of two vortices of the same sign, which is a clear
illustration of a nonstationary cascade regime, are studied. We consider the absolute tjpasfecalel
produced by the nonlinear term of the Navier-Stokes equation. The scaling properties of the transfer hierarchy
(n P (n Py~1~% are examined. We defink=(8.,— 8,)/{% , where(} is the scaling of the third-order
structure function of absolute velocity incremend,is a quantity tracing the smallest but most frequent
transfers, and,, characterizes the largest but rarest transfers. We showAtpktys a fundamental role in the
scaling description of the cascade dynamics. In two-dimensional energy cascade, the important property of the
relationship between the scaling of the structure functions and the distribution of the heterogeneities in the
physical space given b, — &) is the invariance ofA. Finally, we determine the physical meaning of the
formally introduced adjustable parameters in She-Levdd@gs. Rev. Lett72, 336 (1994 ] and Dubrulle
[Phys Rev. Lett73, 7 (1994); 73, 959 (1994 ] intermittency modeld.S1063-651X97)11902-X]

PACS numbds): 47.27—i

[. INTRODUCTION scale motion and the dissipation. In these situations—this is
often the case in practice e.g., in geophysics—, the concept
It is well known that in the inviscid limit as well as in a of a local *homogeneous and stationary continuous inertial
statistically steady state, the two-dimensiof2D) Navier-  cascade” is not straightforwardly established. An interesting
Stokes equation is characterized by a family of integral conissue, therefore, is to investigate the degree of universality of
straints very different from the 3D situation. Basic quadraticthe transfer dynamics in these cases.
invariants in 2D are the kinetic energy and the mean vorticity !N @ recent wor{8] we partially analyzed this problem
square(enstrophy. They are both transferred via nonlinear through the investigation of the scaling properties of statisti-
terms in the Navier-Stokes equation from one scale to ancally steady incompressible 2D turbulence using the inter-
other following Kolmogorov-Kraichnan's cascade scenario:Mittency model proposed by Dubrul[®]. This model is a
a direct enstrophy cascade from injection scales toward smamodified version of the model of She and Levedu6] for
dissipative scales, and an inverse energy cascade towad® turbulence. The modification in Dubrulle’s approach
large scales. However, many theoretical and numerical studakes into account the original idea proposed by Betzil.
ies [1-5] tend to support the idea that the description ofl11]. This idea, called “extended self-similaritythereafter
two-dimensional turbulence is not achieved according to th&SS is to consider the scaling of velocity structure functions
phenomenological theory suggested by Kolmogoféy7].  under the form
T_wo-dimensional turbulgnce_can be considered as the synop- (| 801[Pyoc | v, [S)ép 45 1)
tic result of a complex distortion process of the velocity field,
caused and maintained by the carrying power of longor gl p ands. It generalizes the self-similar scaling of the
Ilf_etlme_coherent structures. The dynamical behawc_Jr qf t""_o'pth-order moment of the velocity incremedis, at scalel,
dimensional turbulence strongly depends on the distribution

of coherent vortices, their generation processes, and the sta- {SvPyocl . 2
bility of their interactions. The phenomenological description
of such dynamics remains an open question. Experimental investigation of relatiofl) in 3D turbulence

In numerical simulations of two-dimensional turbulence,shows that the relative exponefy/{; tends to be a scale-
the relatively large fluctuation of the observed spectral beindependent quantity in the inertial range, even if the abso-
haviors from one numerical experiment to another, dependute exponents, and {; may depend o, for example, at
ing on the nature and location of the forcing and dissipationjow Reynolds numbef12]. In [11], the authors concluded
tend to support the existence of nonuniversal distribution othat ESS may be “more fundamental than the self-similar
the active structures participating in the transfers. In othescaling with respect tb usually observed at very high Rey-
words, for insufficient Reynolds numbers, homogeneity andholds numbers.” From a theoretical point of view, ESS
stationarity is not achieved for relative large scales in theherefore opens possibilities regarding the interpretation and
inertial range in which the probability distribution for the the definition of an “inertial range.” An inertial range is
velocity incrementstructure functionsdepend on the large- physically defined as a range of scales where both the forcing
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and the dissipation process are irrelevant. In isotropic homo- 4.0 S ——— et
geneous situations, this implies self-similar scaling of the &p . D\ F\ a

third-order structure function, and by extension, self-similar r
scaling of all structure functions. Since neither dissipation,
nor forcing explicitly appear in ESS relations like E@), it 30 [
could be used for definition of a “generalized inertial
range,” and therefore enable the definition of scaling expo-
nents in turbulent flows when the deviation from the seminal
Kolmogorov’'s 1941 theory is non-negligible, and the funda- 2.0
mental resultZ;=1 in the inertial range is not observed. It
could be used, for example, in situations where the structure
function does not display any evidence of self-similarity with
[, such as low Reynolds number experimdg|, or even in
certain nonhomogeneous or nonstationary situations. The co-
incidence of relative scaling exponents computed at low
Reynolds number using ESS with relative scaling exponents
computed in the usual inertial range at large Reynolds num-
ber tends to support this picture. This therefore suggests that
ESS could be a natural analyzing tool when investigating 10”
certain nonstationary or nonhomogeneous situations. One
goal of the present contribution is to explore this issue par- 4.0 -
tially in inverse 2D energy cascade. /& |y G .

Some limitations of ESS have, however, already been de- a3 \
tected. Stolovitzky and Sreenivasan pointed out that the ESS
property could be limited to low-order moments3]. Also,
recent experimental and numerical investigations have 5
shown that ESS holds in 3D homogeneous and isotropic tur- C E \,
bulence both at low and high Reynolds numbers, and for a C N
wide range of scales. However, ESS is not observed in situ- f ™~
ations when a strong mean shear is pre$g4t, such as in 20 - b . S
boundary layer turbulence and in the shear behind a cylinder C I NNV
[15]. Our investigation of numerical 2D turbulence showed E
that ESS is also present there. In Fig. 1 we reproduce the C C ——————
comparison between the absolute expongnand the rela- 10 | B
tive exponent,/Z; in a well-developed inverse energy cas- ;
cade computed if8] (the corresponding experiment is called E
R1024F256 in the present papem this experiment, the ;
energy flux defined in Fourier space is constant in the range C e ar e
0.2<k/k,;=<1, wherek, is the wave number at which forcing 10°? 10° 10!
occurs; see[8]. This corresponds to a scale interval Vi
1=<I/l,=<5, wherd = 7/k, . It is clear that, for low value g
(p=<6), the relative scaling exponents in this interval tends to  FIG. 1. The absolute exponer(® and relative exponent$€) as
be scale independent. By contrast, the absolute exponent dignctions of nondimensional scale for increasing values of
pends orl. In the light of the previous discussion, this could p=2(A), 3(B), 4(C), 6(D), 8(E), 10(F), and 12G); I, is the
be seen as a little bit surprising, since large scales are donfiercing scale.
nated by large vortices generating strong local shear and
nonhomogeneous or nonstationary regimes. In tworelative exponents was observed in 3D turbulence, in
dimensional turbulence, where vortex interactions are ReyRayleigh-Benard convection in the Bolgiano regifd&], in
nolds number dependefl6], the statistical properties of the solar wind[18], or in Gledzer, Ohkitami, and Yamada
such regimes are insufficiently known. One goal of the(GOY) shell models with different hyperviscositi€s9], de-
present contribution is to partially explore this issue. Wespite the differences between the absolute scaling exponents.
shall show that the ESS property is observed in 2D sheaFhese “universal values” are also consistent with the values
situations. we measured in the 2D inverse cascade energy ré8be

A goal of the present work is connected with the univer-This could suggest that the relative scaling exponents de-
sality of the scaling exponents. The existence of ESS has legends on the conservation laws, but not on the way the tur-
more and more people to focus on ‘“relative scaling expo-bulence is produced or dissipated.
nents” such ag,/{; rather than “absolute exponents” such ~ Motivated by these remarks, we were led to revisit the
as {,. This interest, first motivated by experimental conve-experimental analysis reported[i8] in order to, on the one
nience, was increased when it was discovered that the relétand, unmask the influence of nonhomogeneity, nonstation-
tive scaling exponents seem to carry a form of universalityarity, and shear in the transfers in the inverse energy cascade
absent in the absolute scaling exponents: the same set of two-dimensional turbulence, and, on the other hand, to
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investigate the role of the third-order structure function in Indeed, Eq.(5) could also be recast in different way,
nonlocal, nonhomogeneous, and nonstationary dynamicaamely,
We therefore consider two extreme cases, namely, a well

developed inverse energy cascade in a robust statistically Svd law g
steady state and the collision of two signlike vortices, a good m = @ (6)
|

illustration of a nonstationary cascade regime. We develop
specific tools and a methodology suitable for the analysis of
nonlocal, nonstationary, and/or nonhomogeneous situation%
These tools are described in Secs. Il and Ill. We shall show. ties
that the third-order structure function plays a fundamental’ °PE"ES:

role in the scaling description of the 2D energy cascade dy- aw

namics. We also determine the physical meaning of the for- _ P\ p

mally introduced adjustable parameters in She-Levédag X=Y=(XR)=cy(YP), Vp. @

and Dubrulle[9] intermittency models. Numerical experi-' Relation(6) is one consequence of E@). However, Eq(6)

ments are described in Sec. IV. Our conclusion follows iNdoes not necessarily imply relations{#. Actually, accord-
Sec. V. ing to Eq.(4) the absolute exponent for structure functions
are related by

law
here the symbok here refers to having the same scaling

Il. ANALYZING TOOLS AND METHODOLOGY

The phenomenological theory suggested by Kolmogorov gp:EJr Tpi3 (8)
in 1941 6] to describe the probability distribution for the 3
relative velocities in locally homogeneous and isotropic ran- . _ /3 . :
dom velocity fields remains one of most robust approaches inherle Toi3 IS the scglmg ofe "), and_characterlzes the in-
the experimental and theoretical study of developed turbulerterm'ttency correction. Clearly, relatiof8) guarantees the
flows. The Kolmogorov-Obukhov approach is founded on a2asIC resultz=1 for fully developed, homogeneous, and sta-
relatively simple quantitative description of cascade phe_tlonary energy cascade. On the other hand, relat@nve
nomenon in the inertial range in which the turbulence maytan deduce that

be considered locally homogeneous. The basic prediction for

the pth-order moment of the velocity incremeéit, at scale e _P La+ T, (9)
[ in the energy inertial range is "3 P
(S0P)~ B3P, (3) wherer} are the scaling exponents ¢ P'3)/(&,)P%. Rela-

tions (8) and (9) only coincide if (g) is constant. In the
where ¢, refers the continuous mean transfer from largenonhomogeneous situations studied in the present work, this
scales to small scales. It is constant in this case throughoig not necessarily so, and formulati¢®) is better adapted.
the cascade, and equal to the mean dissipation rate in the One important observation is that the refined similarity
flow domain;( ) refers to averaging over all position vector hypothesis under forrt6) does not predetermine the scaling
X. of third-order structure function. Consequently, relatién
may be used in situations in which the constraint imposed by
homogeneous, infinite Reynolds number and stationary as-

A. Kolmogorov picture and the analysis of turbulence . -
sumptions, 1.e.,

An important step in the development of relati@) and

of the locally continuous inertial cascade concept is the in- (6v3)
terpretation and discussion about the Landau critical remark lim lim lim T e (10
[20] concerning the random nature of the energy dissipation, =0 v—0 10

which is a fluctuating function of the coordinatesind time. . ) )
For insufficient Reynolds number, these fluctuations may delS Violated[see[21] for a detailed discussion of Eq10)].
pend on the large-scale motion. The refined Kolmogoroyiowever, we may observe that E§) is not the only dimen-

similarity hypothesig7] transforms relatior(3) into sional law compatible with Kolmogorov picture. Relati(g)
was first proposed by Dubrullg9] to account for ESS in
<5v|">~(s|"’3>lp’3~|§p, (4) some situations. However, it bears a potentially deeper

meaning: it guarantees that the partial derivative of the prob-
where nowe, is the dissipation rate averaged over a spherica&bility distribution with respect td is zero, and then guar-
volume of radiusl/2 centered inx. Here the scale$ are  antees the most general requirement for scale symmetry of
defined in the energy inertial range. A basic ingredient in thighe probability distribution ofsv, (for more general discus-
phenomenology is the existence of a range of scéles  sions on the scale symmetry, see, 422,23)). We may then
inertial range in which the dissipation and the forcing are expect Eq.(6) to hold in a more general context than Eq.
irrelevant, i.e., the probability distribution ofv, depends (10). Indeed, this form of scaling has been observed in many
only on the variation of energy per unit time at that scgle different flows, from isotropic turbulence to boundary layer,
and on the scal& for scales ranging from the integral scales up to the dissipa-

tion range[24], i.e., far beyond the range of validity of Eq.

P(6v))=F(g,l). 5) (10.
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This interesting property makes E@) the best tool for in the Dubrulle model. The identitg=1y is of course guar-
analyzing flows which are not necessarily homogeneous, is@nteed only if{;=1.
tropic, or stationary, in situations where some form of scale Here g andvy are adjustable parameters characterizing the
invariance can be expected. To do that, it will be necessargpecificity of each flow(conservation laws, forcing, degree
to define more precisely what is exactly meant by the quanef homogeneity. She and Leveque showed that correction
tity g in Eq. (6). Before that, let us first examine the impli- (15) is in good agreement with 3D experimental results re-
cation of both similarity hypothes&4) and(6) to the scaling  ported by Benzet al. [11] for a=8=42.
- Note that, according to Eq12), the deviation from the
linear p/3 behavior in relation4) is determined for alp by
B. Link between transfer and velocity increments the value of the adjustable paramegeand the scaling prop-
erties of(g;) ande/". If it can be reasonably assumédk in
fully developed turbulence and in continuous cascade sce-
‘nario) that the lower structurde,) is a scale-independent
quantity kept constant by the mean dissipatioth-a0, then
correction(12) is determined by3 ande,” only. This is the
essence of the She and Leveque model. In a more general
case, Eq(12) also depends on the degree of homogeneity of
The first moment of the transfer rate;) and, consequently,

She and Levequel0] and Dubrullg[9] proposed a simple
model to describe the intermittency phenomenon in fully de
veloped 3D turbulence. They predict the scaligg of
p-order moments of the velocity increments, and their devia
tion from behavior(3). Their approach is based on the fol-
lowing hypotheses:

(i) The moments of the energy transfer satisfy the relatio

(e p+l> (eP) 1° on the nonpredetermined scaling properties(&f?). This
! | = 'p_l , (1)  was implicitly considered in an experimental stuf8] in
e (ef) e (el D) which the ESS property was used in order to obtain a sig-

. . nificant improvement in experimental measurements of
whereg is a positive constant smaller or equal to 1, arfd P P

; b X ; /5.

p/63
IS a .normaI|2|.ng factor which can then be mterp_reted as thé As stated in introduction, the existence of ESS may rep-
relative contribution to the transfer of the most intermittent

structures at scalé. The straightforward development for resent more than an experimental tool to compute more pre-
B i 9 P cise scaling exponents. In our opinion, it could be viewed as
p=0,1,2...,p leads to the formula

a way to define an “inertial” range, even in situations where
1—gP3)(1— the exact relatio{10) does not necessarily hold. The main
(&)t £"A-5) _ ssaril na
L 8;”13/3_ (12 goal of the present work is to clarify this problem within
[ formulation(6) and the investigation of the physical meaning
of different parameters ag B, and{; in the particular case
of nonlocal 2D inverse cascade process.

(e P)~

(i) In the She-Leveque model, the quantity,)/e|" is
given by
aw C. Transfers in 2D inverse cascade

o 8—w~|“, (13 The discussion about the validity of hypothe$ésor (6)

: : was made in the context of three-dimensional turbulence. In
where e, refers the continuous mean transfer kept constanfv0-dimensional turbulence the situation is more compli-
by the mean dissipation ratelat-0 in the flow domain. This cated. The condensation of vorticity and energy into coherent
corresponds to a case whéeg) is a scale independent quan- vortices depends both on the existence of the energy invari-

tity and e shows a scale-divergent behavior. ant and on the localness of flow dynamics in physical space
(i) In Dubrulle’s model, the quantitye,)/s | satisfies [3]. These two f_undamental properties of tw_o-d|me_:n3|onal
the relationship turbulent dynamics are the two most notable ingredients ab-

sent in the seminal Kolmogorov’s theory. They sustain the

3 concept of the nonuniversality of power laws in the enstro-
~(dv7)?, (14) phy and energy inertial ranges. This conclusion is confirmed
by results for numerical simulations concerning the enstro-

wherey is an adjustable parameter characterizing the degrelehy inertial range reporting nonuniversal energy spectra

of heterogeneity of the transfer field and of the most inter-Steeper than the™ spectrum expected in phenomenological
mittent structures participating in the transfers. theory. The problem, however, is less prominent in the en-
The combination of Eq(12) with Eqgs.(4) and(13) or (6) ergy inertial range in which the fate of coherent structures
and (14) implies that the scaling exponents of thth-order ~ and their contribution to the energy cascade has not yet been

(1)
e

moment of the velocity increment are given by adequately studied in numerical simulations. In this case, the
viscous dissipation at large scales is negligible in the limit
1—pP3 | o0, and the statistically steady state is only achieved by the

gng[l—a]—ka (15

1-8 introduction of external friction in the Navier-Stokes equa-
tion. The consequence of external artificial large-scale dissi-
in the She-Leveque modé¢in this casel;=1 is imposedi  pation to the transfer dynamics in the inverse cascade was
and by analysed by Smith and Yakh¢®5]. There are situations
where both the energy and the enstrophy are transferred to-
ﬁ: p [1— 4]+ (16) ward large scales. Thie > spectrum[which is consistent
{3 3 Ty with Eq. (4)] predicted by Kraichnaf26] is observed only in

1— p/3

1-8




55 SOME PROPERTIES OF TWO-DIMENSIONAL INVERS. . . 2697

well-developed forced and dissipated simulations, where thaertial range quantity in local or nonlocal dynamics. Note

statistically steady state is sufficiently rob(ig7,28,§. Re- that this quantity is defined in physical space, and is there-

cent numerical experiments performed by Bof26] show, fore better suited for investigations in nonhomogeneous situ-

however, an unexpected behavior of the inverse cascade dgtions than the energy flux defined, e.g., in Fourier space.

namics. These results suggest that there is not much possi- In our analysis we shall therefore consider that the prob-

bility of reaching any robust steady state, and show arability distribution in physical space for the relative veloci-

anomalous scaling itt 3 for the energy spectrum at large ties in 2D cascade dynamics is basically determined by the

scales. absolute contribution to the transfer of the nonlinear term in
We now return to the interpretation of relati¢d), and its  the Navier-Stokes equation. That is,

adaptation to the 2D inverse cascade problem. Reld&pn

means that the third-order velocity structure function and the m=|al. (21)

first moment of the energy dissipation rate have the same | ) ] ) )

statistical properties. This statement contains some contrdVith this choice, relation$5) and (6) may be rewritten as

dictions (see, e.g.[21]): first, the right hand side of Ed6)

refers to a positive value, while the left hand side can have P(l6vi)=F(m.D (22
any sign; also, the left hand side concerns the pulsations (Hnd

velocity—a characteristic of the inertial range—and the right

one deals with the dissipation, which, following the defini- R

tion of the inertial range, is not important at these scales, and al (23

become non-negligible only at dissipative scales. (|6v)®) W

This problem deserves special consideration.\,ebe a o
volume (or a surface, in the 2D casef scalel, laying in the Note that absolute values of the velocities increments must

inertial range. The variation of kinetic energy per unit mass2€ Chosen to guarantee the consistency of E23.and(23),
in this volume is given by becausey is the absolute value of energgr enstrophy flux
through the control surface at scaleOur choice of the ab-

1 1 solute value is essential. Indeed, we assume ¢{hatcon-
HEI= = (v*+P)v,dS— v |, e(dv tains both the stationary continuous part of the transfer from
IS IV one scale to anothéwhich will then be the same throughout
1 in the inertial range, and equal to the dissipation rate or forc-
+ v Iy (x)dV. (17)  ing rate and a secondary “parasite” scale-dependent local-
|

ized conservative flux related to the internal shape and the
distribution of the structures participating to the transfers.
We interpret the “continuous” part of the inverse energy
transfer as a formation of stable large-scale structures, while
the “parasite” loops correspond to unstable large-scale
structures which decay back. We can assume that the relative
HE=—0—g+q, (18) number of unstable structures increases with the Reynolds
number. This means that the dynamics of the cascade pro-
whereg, andq, are positive, and; can be positive or nega- cess becomes nonlocal, and depends on larger scales. Taking

Here§S is the surfacdor contouy of V|, &(x) is the rate of

energy dissipation, and(x) is the rate of energy input by
forcing; v, is the normal component of to the surface ele-
ment (or contour elementdS. Thus

tive. the absolute value enables us to take into account both
Let ¢ be a fluctuating function of the coordinatesand  above-mentioned contributions, which we believe are both
time, important in determining the shape of the structure functions,
i.e., of the probability distribution functioR®(| sv|).
e|l=eotel, (19 Of course, the scaling properties of relatidfs and (23)

) o are equivalent only in the case where:
andg,=q, a homogeneous and stationary forciag;is the

mean dissipation rate, and in any stationary case must be law
equal toqy. Thus (SvP)y={(|v|P). (24)
Ej=—01+(do—€0)— &/ , (200 This is not true in generdi30,31. We show in Sec. IV A

, ) _ that Eq.(24) is well satisfied fop=3, but becomes increas-
where bothoy and ¢ are sign-changing, scale-dependentingly erronate for larger odd values pf This shows that our
values. Note that is a true inertial range quantity and, in a methodology is not strictly equivalent to the model devel-
local dynamics, the latter term concerns the processes ope&sped by Dubrullg9], and might be considered a new phe-
ating out of inertial range scales. This description remainshomenomgy_ Note that the good agreement between the
true in a 2D inverse cascade process. In this case, the dynamwdel of She and lveque and experimental results was ob-
ics is nonlocal, and; may be negligibles;=(1V))[5(v*>  tained using the absolute value of velocity increments, which
+P)v,dS, the physical-space energy flux through the surqustifies our phenomenology from another point of view.
face S, is the most important characteristic of the cascade We may also observe that, in the 2D incompressible case,
process, especially when the large-scale friction is negligiblea similar argumentation could be developed for the variation

The previous discussion therefore suggests interpretingf the enstrophy per unit mass, in which cagewould be
the quantitys, appearing in Eq(6) as g, which is a true  defined in term of the flux of the square vortici&y? rather
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than in term ofv2+ P. Dimensionally, relation(6) is un-  well on(8&—é.). The parametrizatiot81) requires thah(p)
changed whether one considessas 7 defined in term of goes to 1 whemp goes to 0, anth(p) goes to 0 whemp goes
velocity or vorticity. The adoption of one or the other pre- to c.

scriptions depends whether one considers that energy or en-

strophy transfers determine the dynamics. In 2D, there could

be some ambiguity. We have, therefore, tried both prescrip- A. Interpretation of & and 4.

tions. They both appeared to give similar results, but results The measurement (ﬂ) andd, provides interesting infor-
obtained with the vorticity were slightly less noisy, so we mation about the internal shape and spatial repartition of the
adopted the vorticity prescription. The difference could bestructures responsible for the transfer. By definitiopf;
induced by the numerical procedure computingrom o,  characterizes the scaling properties of the structures respon-
since we only solved the barotropic vorticity equation.sible for the largest, but rarest, transfer. For example, if these
Therefore, in our experimental investigation, we will define structures have a scale-independent shapep; if they are

7 as very localized structures of characteristic size much smaller
than any inertial range scale.qg., very thin lines extending
77|=£2 f wzvndl‘, (25) on s_cales smalle_r than th_e inertial sgalthey can pe ap-
| , proximated by Dirac functions, and,=D, whereD is the

space dimensiorthere D=2); if they behave like a self-
wherev,, is the normal component ofto the elementll of  similar singularity with exponent, then 8, =« if they are
the ContOUlS| Containing the control surface at scaleen- “regu|ar” Structures(not scale divergemtthen 5,<0.
tered onx. For fixedt, we obtained a distribution of values By contrast,&, characterizes the structure responsible for
for » depending on the position where it is taken. Averagethe smallest(close to zerd but most frequent transfer. It
values can then be obtained by averaging over all positiogepends both on the shape and the spatial repartition of these

vectorsx. structures. For example, if they are small isolated Dirac
peaks, 5=D. This is a very inhomogeneous situation. A
Ill. TRANSFER HIERARCHY IN 2D TURBULENCE more homogeneous situation can be obtained with space-

. . . . filling scale-independent structures. In this caggs0.
We investigate the properties of the transfers by consid- Note that when the transfer is due to only one type of

. “ TR +1 :
ggﬂgdtgs batt):v((njlu“t;i:;ags;ﬁ:j hc,!e(;gﬁ]hg’é]f;s Y{nP). Itis isolated structuresg,=4,. This is also a nonhomogeneous
y d n situation, but it leads to a nonintermittent situation for the

(p P 1> velocity structure fgnctions. _ _
7]|0= lim ——5—=(n), (26) We may then single out four special cas@$:Case A:
p—o (77) 86=0.,=0; the transfers are constant and nonintermittent.
This situation is the ideal situation considered K#1. (ii)
. (nP™h Case B:§#0 and 8,=&; the base of the hierarchy is sta-

(27) tistically nonhomogeneous, but the degree of nonhomogene-
ity does not increase with. This is a nonhomogeneous and
nonintermittent caseiii ) Case C:5,=0 andd,# &; the base

of the hierarchy is statistically homogeneous, but there is
intermittency. This situation corresponds to tKé2 situa-
tion. (iv) Case D:§#0 and 8.+ &; both nonhomogeneity
and intermittency prevail. This represents a maximal devia-

p—o <77I>

The quantity? is equivalent to the mean absolute energy
flux, while " characterizes the relative contribution of the
most intermittent structures at scalel et us now define the
following local scaling exponents:

d |n7]|0 tion from theK41 hypothesis.
50: T Ty A (28)
d Inl
n B. Interpretation of h(p)
dIny’ Relations(30) and (31) involve the hierarchy( P*1)/
== A (29 (nP) and the scaling limitss, and &, for all p. The factor

(8= 8,) is linked to the maximum of amplitude of the inter-
In the inertial rang€(if any), these two exponents are con- mittency phenomenon in each turbulent flow, wheriegs)
stant. In the following discussion, it is not necessarily so. refers to the corresponding correction as function pof
For any values op, we can parametrize the evolution of Clearly, if h(p)=1 for all p, the correction introduced by Eq.

the hierarchy as function g andl as (31) comes only from the basic properties(ajf).
The simplest function which satisfies the constraints on
dIn{n P™—d In(7 P) h(p) is
P dni * 30
h(p)=e ?P, (32)

where g, is again a local exponent obeying

8p= 8.+ (85— 8.)h(p), (31  wherea= h'(0) characterizes the steepnes$ifp) at p=0,
i.e., the properties of the transfer hierarchy at moderate val-
andh(p) is a monotonous decreasing positive functiorpof ues ofp. Using Eq.(31), the first derivativen’(0) is defined
smaller or equal to 1, which, in general, may depend just aby 5")(0). We obtain
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5';(0) can be expressed using the functiofp), &, and ., intro-
a=——-. (33 duced above. They are
oo 0
* — J—
Clearly, sinces,(0)=0, we havea=0. g_j':: p [1_ (8 *50)}+ (& *50) I(p/3), (39
On the other hand, simple manipulation shows that, for 503 {3 {3
every valuesd,# &, hierarchies(30) and (31) verifies the . . L
relation For example, assuming the simplest approximation

h(p)= P andl(p)=(1— B°)/(1— B), one recovers formula
(16) applied to exponents of the absolute velocity incre-
ments. The important observation is that form(89) for the
relative scaling exponent$ /{3 is obtained without the ESS
assumption1). We see that the relative exponents only de-
pends or (p) and on the statistical properties of the quantity

+1> h(p)/[(p—1)]

(P | (D
ni{nP) (2 (nP™H

Note that, if 5,=&, (or 8.— &), thenh(p)/h(p—1)=1 [or
h(p)/h(p—1)—1]. We see that Eq(34) is consistent with
the hierarchy(11) postulated by She and LevequH)|, pro-
vided thath(p) have been defined in the frame of the ap-
proximation(32). That is,

(34)

(8= 6p)
5o

h(p) The scale independence of the relative exponents, i.e., ESS,
h(p—1) =B=e 4 is guaranteed, provided only boltfip) andA are scale inde-
pendent. The first property is linked with the existence of a

both scale ang independent. Here the physical meaning ofwell-defined “hierarchy.” The second property has been ob-

the adjustable parameter in intermittency mod&® and[9] ~ Served, for example, in well developed 3D isotropic turbu-

B is established: under assumptit8®), 3 is determined by lence, Rayleigh-Benard convecti¢4], or in shell models

Egs.(33) and (35). with hyperviscositie$19]. In all these caseg\ appears to be
Dubrulle [9] and She and Waymiri82] showed that re- about two-thirds, predicted by She and Leveue]. A fit

lation (11) with constantg holds when the probability den- With experimental measurements of Bewtial. [11] gives
sity function for ¢, is a log-Poisson distributiottsee, for A=0.82[36]. In systems with different conservation laws,

example [33] for experimental discussion in the shell mod- SUCh @s shell mode[83] or in the 2D enstrophy cascafig],

ely. We see that this is, strictly speaking, a simplifying as-2 iS different from this value. In the enstrophy cascade0
sumption which results only from the approximatio{®2) (no intermittency, but in the inverse energy cascade, we
and (35). In this sense, the log-Poisson model is only thefound A=~0.47[8]. From all these experimental results one
simplest modelization of the hierarchy. More complex hier-May speculate thah appears as a universal quantiiye.,
archies result in nonconstangp)/h(p—1) (see examples in |nerendent of the_mgan dissipation, flow geometry, station-
[32,2 or in Sec. I\J. Note, however, that for large enough, &/ty, or homogeneityin the energy cascade rangeAlfis a

A (40)

(39

the hierarchy(7P*1)/(P) saturates toward the limig;". universal scale-independent quantity in the energy range,
According to Egs.(32) and (33), finally, we see that the
adjustable paramete® in the simplest approximatiofiog-
Poisson distributionis defined byh’(0), &, and 8,. The
property that3 may be universal in the frame of given con-

identity (40) justifies the universality of the relationship

1A
: (41

0
3y |
<|5UI|> (nloo

servation laws in nonhomogeneous and/or nonstationary

situations is therefore not guaranteed.

C. Achievement of ESS

which is consistent with the Dubrulle’'s assumptiti#) if
(6v?) and(|6v,|®) have same scaling properties. The inter-
esting conclusion is that the ESS property is generically
linked with the validity of relationshig41) in the inertial

We can now establish the link between absolute transfefange. Note that the universality df does not implie in

and velocity increments. From hierarchi@®) and (31), the
straightforward development fg@@=0,1,2...,p leads to the
formula

(1) o spnimn
! ' (39
wherel (p) is the function
p-1
I(p)= 2, h(q). (37)
q=0

precise way the universality of the relative scaling expo-
nents. They also depend on the complexityl @f).
Relation(41) may be rewritten as

(|6v)|3) |
I NS‘J(E

(80— 8g—A)IA

law
wheres, is the input rate at scalg. If (6v?)={(|sv,|*), this
relation appears as a generalizatito nonhomogeneous
situation$ of both K41 and K62 phenomenology based on
the exact resul¢10) valid for locally homogeneous and sta-

If Eq. (23) holds, the exponents of the absolute velocitytionary turbulence. In the first casé,=§=0 andA=0; in

structure functions

{|6v)[Py~1% (38)

the second cas@éy,=0 andé&,.=A, so that both formulas lead
to {3 =1. Otherwise,&,#8.#0, and we observe that Eqg.
(42) tends to exact resu(tl0) only if (8,— &) tends toA.



2700 BABIANO, DUBRULLE, AND FRICK 55

It is therefore interesting to evaluate the behaviorg\pf ;
I(p), and (8,— &) in various nonhomogeneous or nonsta- Ek) |
tionary situations, with given conservation laws. In Sec. IV
we present an experimental studyXfl (p), and(8,— &) in
different 2D energy cascade situations, namely, a statistically 1
steady well-developed energy cascade and a nonstationary L
vortex interaction.

IV. EXPERIMENTAL RESULTS

tadl 2 poum smd gasued spumd tiued o vned s aul

We use the classical simulation of stationary incompress- i
ible two-dimensional turbulence solving the barotropic vor- 0l 10z K
ticity equation on a periodic square doméihr,277), using a
pseudospectral scheme. We consider some experiments
which were already analyzed 8] 3

(i) An experiment at a resolution of 1728728 with a E(x) § \ b
forcing at wave numbek,;=40. In this simulation, both the 4 5B
inverse cascade of energy and direct cascade of enstrophy L 3
can be studiedexperiment R1728F40

(ii) An experiment at a resolution 1024024 with a forc-
ing at a large wave numb&r=256. This simulation presents
a well-developed inverse cascade of enekgxperiment [ k3
R1024F256.

(iii ) An experiment at a resolution 12828 unreported in
[8], with a forcing at wave numbég =10. This simulation
does not present any signature of a developed inverse energy
cascade, and will be used to analyze the interaction of the
same sign vorticegexperiment R128F1)0 E(k)

Here we consider a situation in which the two- 3
dimensional incompressible turbulence is forced by a station- ,
ary force whose spectrum is concentrated in a neighborhood 3
of the wave numbek,, and in which a robust statistically £
steady state is reached: the forcing which is defined by keep- ]
ing the amplitude of the modg constant in time is compen- L
sated for by the dissipation at small and large scales. In all
our simulations, a linear friction at largest scales was used. In
R1728F40 and R128F10 experiments, the dissipation at E
small scales was parametrized by the hyperviscosity method. : .
In the R1024F256 experiment, where the cutoff scale is of 10! k
the order of the input scale, the anticipated potential vorticity
method was usefB4]. The energy spectra are displayed in  FIG. 2. Energy spectra as function of wave numkeArrows
Fig. 2 (other information concerning these simulations andindicate the injection wave numbkr and the most energetic wave
more extensive analysis of corresponding energy spectra, eAumber kz; experiments R1728F4@a), R1024F256(b), and
ergy, and enstrophy fluxes in Fourier space, and structurR128F10(c).
functions characterizing these fields, can be found in our

previous studieg8,28,35). The vortex interaction is ana- spectra in the energy and enstrophy ranges, respectively. In

lyzed in the R128F10 experiment in a41-grid-interval : 5/3
> : . the R1024F256 experiment, a well-develoged” inverse
subdomairi.e., 2.2 times the most energetic scalesntered cascade of energy is resolved.

on one of the vortices. The motion of the subdomain is ex-
perimentally studied with a La_lgrangign monitoring of the 1. Comparison betweetido Py and (| 8v|°)

vortex epicenters. The vortex interaction is a nonstationary .

turbulent event. The Reynolds numbers in these simulations W% have performed a comparison betwegi f) and
are close to 800(R1728F40, 500 (1024F256, and 60 (|dv||") for odd valuesp=1, 3, 5, and 7. The result is dis-

(R128F10. In all three turbulent fields coherent structuresPlayed in Fig. 3. It can be seen that the scaling properties of
are present. the two quantities nearly coincide fp=3 in large interval,

but increasingly differ fop>3. This shows that;= {3 , but
{p# ¢y for p>3.

10t 102 Kk

A. Transfer hierarchy: Stationary state

Here we analyze the high-resolution simulations
R1728F40 and R1024F256 in the statistically steady state. In
the R1728F40 experiment both the energy and enstrophy The experimental illustration of the transfer hierarchy
cascades are resolved. We observe a cloge 1§ andk > (5»P™1/(P) as a function of nondimensional scale

2. Transfer hierarchy
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In the energy intervall/l,=1), we observe a very differ-
ent behavior with a strong sensitivity of the hierarchy shape
FIG. 3. Comparison betwegfdv ) and(|dv||?) for p=1(A),  for moderate values gf. For p=0, the underlying shape is
3(B), 5(C), and 7D); experiments R1728F4@) and R1024F256 |43 (%~1%). As p increases, the slope rapidly converges to a
(b). strongly nhonhomogeneous situation characterized,byD
. . . (isolated Dirac pealis This process in the energy interval
11, (Iy=m/k) for increasing values op (up to p=12)is  cqregponds to case D described in Sec. Iil, and is as well
reported in Figs. @) (R1728F40 and 4b) (R1024F256 It .onfirmed by the R1024F256 experiméhig. 4b)]. We see
is quite clear that formulationg30) and (31) is well SUP-  {h4t in both simulations the underlying shape is characterized

ported. From Fig. &) we observe two different scaling by s,~% and the strongly nonhomogeneous threshold by
properties of the transfer hierarchy as a function ahdp. 5.=D.

In the enstrophy rangé/l,<1), the hierarchy shows a be-

havior which is consistent with case B described in Sec. Il 3. Behaviors ofA, (6,—&), and &%
namely,(n) is statistically nonhomogeneo(&,#0), and the ) ) ) )
degree of nonhomogeneity does not increase pith.~&,). The experimental illustration of the behaviors af

This result confirms the weak degree of intermittency char{d-— &), and {3 as function of nondimensional scdlg, in
acterizing the direct enstrophy cascade dynamics in the rghe well-developed inverse energy cascade F1024R256 is re-
bust stationary situatiof8]. Note also that the scaling of the Ported in Fig. 5. According to the spectrum behaviokii?”,
transfer hierarchy is close to* (8,~1) and that the case the exponents remains close to 1 fo/l,=1 (it tends to 3
8,=D is not reached in this range. It thus seems that the verwhenl/l,—0, seg2]). We observe that the scale dependency
crude growth ofp preserves the repartition of rarest andof {5 and(8.— &) remains correlated throughout the whole
frequent transfer in the enstrophy cascade. energy interval ¥£1/1,<5 resolved in this experiment. As a
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1/1y

FIG. 5. The behaviors oA (A), (8.—&) (B), andZ (C) as
functions of nondimensional scale; experiment F1024R256.

result,A appears as scale-independent quantity in well devel
oped and stationary inverse cascade dynamics. From Fig.
we may conclude that the value afis between 0.7 and 0.8,
as in the fit performed if36] for three-dimensional turbu-
lence, but slightly above the valigfrom the model of She
and Leveque.

4. Relative exponents

The only difference between the two behaviors for the
hierarchy( 7P )/(»P) in the energy rangéFig. 4 is that in
R1024F256 experiment the value 8f0) is smaller than in
R1728F40 experiment, in spite of the fact that in both case
we observe identical underlying shapgand strongly non-
homogeneous threshold,. The measured values &f, the
parametera defined by Eq.(33), and the corresponding
B=e"?in the log-Poisson approximation can be found in
Table I. In the R1728F40 experimer&, (0)=0.93(8=0.3),
whereas, in the R1024F256 experimeht(0)=0.2 (8=0.7).

This  experimental  observation indicates
h(p)/h(p—1)= (5, 8.)/(6,-1— 6..) depends onp, and

that functionsh(p) and I(p) do not only depend on the |
event the same basic properties already unmasked in high-

conservation laws. In this case, the paramgtén the log-
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vortex, is a clear illustration of the inverse energy cascade.
The two interacting vortices turn around each other, getting
closer and closer until they finally aggregate in a vortex. In
the nonstationary regime, the resulting vortex has a larger
scale than two incident vortices. Conversely, if the external
constraintgforcing and dissipationgenerate a robust steady
state, then after some relaxation time the vortex tends to
recover the scale of incident vortices. This process has a
nonstationary character. The various panels of Fig. 6 show
the vorticity levels in a 441 grids interval subdomain dur-
ing a typical collision of two vortices of the same sigx-
periment R128F10 Figure 7 shows the enstroplig) (aver-
aged in the 4k 41 grid interval subdomajrand the integral
I1=[{n,)dl defined over energy cascade scdl®sas func-
tion of time. During the collision of two vortice$2.3<t
<2.4) these quantities increase to a maximum value, and
after a transient regime they become stabilized around a sta-
tionary value. The energy and enstrophy were thus normal-
ized by the stationary values in the steady state, namely,
E=53 andZ=2500, respectively, in the R128F10 experi-
ment. The maximum of the enstrophy in the Figp)tefines
a local eddy-turnover times close to 0.028. From our experi-
myental study we may estimate that the length of the collision
of two vortices is close to 11 local eddy-turnover times. Pre-
scribing the forcing scale to be 50 km and the mean kinetic
energy to be 12.5 cfrs 2 (the ocean dynamics parameters,
for example we obtain the time-scale factoi =330 days
and the space-scale factdr=159 km. We may estimate that
the length of this nonstationary inverse cascade regime
linked to the collision of two vortices in the ocean context is
close to 100 days.

We shall illustrate our analysis in two different contexts:

gi) a time-averaged computation in all stationary interval 2.7

<t<3.3; and(ii) a time-averaged computation aroune.4,
which we may consider the most active episode characteriz-
ing the collision of two vortices.

1. Transfer hierarchy

Figures 8a) and &b) show the transfer hierarchy as func-

thattion of nondimensional scalt/l,(l,=w/k;) for increasing
values ofp (up top=12) in the cases defined above. Céige

s showed in Fig. 8). We indeed recover in this elementary

Poisson approximation appears as a nonuniversal quantityesolution simuI?tions and well-developed cascade dynam-
One may then question whether, under such conditions, th€s, namely,5~3 and 5,=D. Clearly, in this case, the en-
log-Poisson approximation indeed has any practical signifiergy interval is very short.

cance.

B. Transfer hierarchy: Nonstationary regime

Case(ii) is shown in Fig. &). We see that the threshold
8, remains unchanged, whereas the underlying slégoe-

crease froms to a value close to 0.7 during the most active

episode characterizing the collision of two vortices. This

As pointed out if1] and[3], the collision of two vortices

shows that parameté, is a stationary function at times, i.e.,

of the same sign, which produces a coalescence into a singifring the interaction of two vortices, the repartition of rarest

TABLE |I. Measured values oﬁp, a, andg. i
|

Experiment

%

R1728F40 1.3
R1024F256 1.4
R128F1Qi)
R128F1Qii)

o & & 6 & & B

223 22 21 2 2 2 1281 0.278
16 166 1.7 1.7 18 2 0.333 0.716
125 195 2 2 2 2 2 0.933 0.393
07 195 2 2 2 2 2 0.961 0.382

a

but largest transfer is stationary. In contra$may change

n time. It seems that the vortex interaction tends to favor
ocally the homogeneous repartition of the smallest but most

frequent transfers at energy cascade scalgs0).

2. Behaviors ofA, (8.—é&), and &}
What is the evolution oA in this case? Figure 9 showls

(6.— &), and {3 in computation(ii). The value ofZ% in the
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FIG. 6. Time evolution of the vorticity levels during the collision of two vortices of the same sign inkad#3rid interval subdomain
for the R128F10 experiment. The images correspond to the tim2s3, 2.35, 2.38, 2.39, 2.5, and 2.8.

short developed energy intervakl/I,<1.3 is in this case (| dv,|®) and & remain correlated in time, even if the evolu-
close to 1.6. However, this anomalous large valug®pfis  tion of the turbulence have a nonhomogeneous and nonsta-
compensated for bys,— &), andA remains unchanged and tionary character.

close to the value between to 0.7 and 0.8 observed in the ,

stationary situatiorisee Fig. 5. This result does not implies 3. Relative exponents

in general way the universality df. The interesting obser- Figure 10 shows the comparison between the relative ex-
vation is thatA appears as a scale-independent stationarponents; /{3 for p=2, 4, and 6 as function of nondimen-
function at time in the energy interval as the nonhomogesional scalé/l, in the stationary passive peripdase(i)] and
neous threshold,, . This shows that the scaling properties of in the nonstationary regime during the collision of two vor-
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FIG. 7. The enstrophya) and the transfer integral=[(7,)dI
(b) during the collision of two vortices; experiment R128F10. FIG. 8. The transfer hierarchy as function of nondimensional
scale forp=0(A), 1(B), 2(C),...,12(M); (a) stationary interval
tices [case(i)]. We observe in caséi) that the collision [case (i)], (b) nonstationary regime[case (ii)]. Experiment
favors the definition of the relative exponents in a largesfR128F10.
intervall/l,>1, and ESS is present in the same wayget6.
In spite of the low Reynolds number, this is probably con-ary turbulent situations. This methodology also includes the
sistent with the fact that the vortex interaction tends to makeshe and Leveque and Dubrulle intermittency models, and
the mean transfer more homogeneous. By contrast, in(Dase provides a physical interpretation of the parameters appear-
ESS is present only fqgr=2. Note that the important resultis ing in these models. It has been applied on two cases drawn
that the relative exponents in these two different situationgrom 2D turbulence: in the inverse energy cascade regime,
are comparable in spite of the fact thd©.—d);  where the presence of strong vortices induces a nonhomoge-
#(8,— &)y - This confirms the low variability oA as func-  neous situation, and in the interaction of two vortices, a non-
tion of time and of the spatial repartition of the structuresstationary situation.
responsible for the smallest but most frequent transfers. Our analysis has revealed a number of interesting facts.
Finally, the measured values ¢f, the parametea de- (i) The limits of the log-Poisson description; in the
fined by Eq.(33), and the correspondingg=e™® can be present case, it appears unsupported even in the stationary
found in Table I. Note that, in both experimengs=0.933i)  regime. It could therefore be a peculiarity of homogeneous
and 0.964i), B=0.393i) and 0.38%i), and h(p)/ situations.
h(p—1)=(6p— 6.)/ (8,1~ J.) do not depend omp. (i) The existence of a scale-independent stationary pa-
rameterA, connected with the existence of ESS. This param-
eter, including the influence of inhomogeneities and cascade
properties, seems to depend mostly on conservation laws, but
Here we summarize our main results: a self-consistentot on the existence of an inertial range “a la Kolmogorov”
methodology, generalizing Kolmogorov's approach, has({;=1), nor on the presence of inhomogeneities or on non-
been developed to study nonhomogeneous and/or nonstatiostationary effects. These properties dfopen possibilities

V. CONCLUSION
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regarding the phenomenological description of the two-

dimensional turbulent dynamics, and suggest an interesting FIG. 10. The relative exponents as function of nondimensional
interpretation of some unexpected results of the numericalcale for increasing values gi=2(A), 4(B), and 6C); (a) case
simulations mentioned previously. For example, we have obg), (b) case(ii). Experiment R128F10.

served that vortex interactions tend to make the mean trans- ) ) »

fer more homogeneougs,—0), while keeping unchanged due the nonuniversality of the transition from mean to rarest
the structure of the rarest everni§,=cte=2 anda—1). In transfer events.

N Finally, the universality ofA is generically linked with
the extreme situation of a large-scale structure made only Oljelationship(42) which appears as a generalization to non-

interacting vortices, one may then expét=0, 5.=2, and  ,mogeneous and nonstationary turbulence of the classic
=0.37. SinceA does not depend on nonstationary EﬁgeCts’Kolmogorov’s approach. The analysis developed in this
A~0.7. From Eqs(40) and(39), {3~3 and{,~2, i.e.,, ak™  work is basically supported by specific properties of numeri-
energy spectra in the inverse cascade as in Borue’s numericgdl experiments. The other problem is the investigation of
experimentg29]. our methodology in laboratory dn situ experiments or in

(i) The nonuniversality of relative scaling exponents,the framework of 3D turbulent dynamics.
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