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Electroconvection in a suspended fluid film: A linear stability analysis
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A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it.
We present a linear stability analysis for this system. The forces driving convection are due to the interaction
of the applied electric field with space charge that develops near the free surfaces. Our analysis is similar to
that for the two-dimensional Bard problem, but with important differences due to coupling between the
charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter
‘R as a function of the dimensionless wave numkefR, which is proportional to the square of the applied
voltage, is analogous to the Rayleigh number. The critical vaRieand «. are found from the minimum of
the stability boundary, and its curvature at the minimum gives the correlation Iéngfihe characteristic time
scaler,, which depends on a second dimensionless pararfigtanalogous to the Prandtl number, is deter-
mined from the linear growth rate near ons&t.and =, are coefficients in the Ginzburg-Landau amplitude
equation that describes the flow pattern near onset in this system. We compare our results with recent experi-
ments.[S1063-651X97)06702-Q

PACS numbep): 47.20.Ky, 47.65+a, 61.30-v

[. INTRODUCTION stability mechanism we describe, however, is not specific to
smectic films and would presumably apply to any suffi-
The regular patterns that form when a dissipative, non<iently two-dimensional, weakly conducting fluid film. In
equilibrium system is driven just beyond the threshold offact, similar convective flows have been observed in thicker
certain symmetry-breaking instabilities are in many waysfilms of nematic and isotropic liquidgll]. In these cases,
analogous to the simple ordered phases that appear followirtgpwever, surface tension effects and the convective flow it-
equilibrium phase transitiord]. Patterns can, however, ex- self cause thickness variations in the films, which make their
hibit interesting nonlinear dynamical behavior, for example,behavior more complicated than that of the smectic films.
chaotic motion, which has no analog in equilibrium systems. The model we describe below is physically similar to a
Several fluid-dynamical systems undergo pattern-forming inhighly simplified one proposed by Faetti, Fronzoni, and
stabilities that are amenable to both theoretical and laboraRolla[11] for the “vortex mode” convection they observed
tory studies. Examples that have been extensively exploreth nematic films, but our analysis is carried much further.
into the nonlinear regime include Rayleigh+Bed convec- There is also some similarity between the driving mechanism
tion [1,2], Taylor vortex flow[1,2], and electroconvection in considered here and that which drives electroconvection near
nematic liquid crystal$3]. In each of these cases, an essenthe free surface in a partly filled capaci{dr2].
tial foundation for understanding the nonlinear behavior is a The relevant experimental arrangement is shown sche-
complete analysis of the initial linear instability. The linear matically in Fig. 1. A thin fluid film is suspended between
stability analyses for Rayleigh-Bard convection and Tay- electrodes, with both its top and bottom surfaces free. The
lor vortex flow are classic problems in fluid mechanicswidth of the filmd is much larger than its thickness and
[1,4,5. The mechanism of the linear instability for electro- we will treat it as being purely two dimensional. When the
convection in nematic liquid crystals required many years talc voltage applied across the electrodes exceeds a critical
elucidate, but even this very complex system is now reasonvalue, the film convects in a pattern of vortices confined to
ably well understood in both the linear and the nonlinearthe plane of the film. We neglect any effects of air drag by
regimes(3]. assuming that the film is suspended in vacuum. We will also
Our objective in this paper is to carry out a realistic lineartreat the film as a weak Ohmic conductor and neglect any
stability analysis for a different electrically driven instability, electrochemical charge production on the electrodes or in the
namely, electroconvection in a thin, suspended fluid film. Webulk of the fluid. The currents involved are assumed to be
have observed electroconvection patterns in experiments aufficiently small that magnetic forces are insignificant.
thin suspended films of smecti-liquid crystals[6-10], The body force responsible for driving any electroconvec-
which are isotropic in the plane of the film but have a layeredive flow results from an electric field acting on regions of
structure that very strongly impedes flows perpendicular tononzero charge density in the fluid. To analyze the electro-
the film. As a result, these films can convect rapidly with noconvection system we must first identify the mechanism that
change in thickness. We have observed convection in filmgives rise to regions of locally unbalanced charge in the
only a few molecules thick. Our immediate goal is to under-fluid, and second, solve for the charges and fields self-
stand the onset of electroconvection in this system. The ineonsistently, since these are coupled by Maxwell’s equa-
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NS convective face is zero, and thus there are no forces to drive convection,
(a) L TR flow even if an electrostatic surface charge is present. This in-
' > verted base state configuration is analogous to the mass den-
sity inversion that arises in the’Bard problem, and in Sec.

electrode Il we show that it leads to a hydrodynamic instablity when
wires the applied voltage is sufficiently large. Unlike the density in
the Banard problem, however, the charge density in the base
Ry state is a nonlinear function of position across the film.
il \L By treating the film as two dimensional, we neglect the
diffusion of charge on the scale of the film thickness

G R 0 U
T which acts to smear the surface charge over a thickness of
|‘7 d —)| K order the Debye screening lengtl, [8]. For the very thin
films considered here,p may be comparable t& in which
case the surface charges and surface forces described above

Eomside will extend over the whole thickness of the film. One can
(b) EJ. show that the total charge contained in one such Debye layer
outside is the same as that which would reside at one surface in the

1 absence of diffusion. The approximation that the film is a
outside two-dimensional conducting sheet may be expected to break
down for thick films for whichs>\p . In this limit, surface
ML ¢ forces may lead to significant shears and internal flows, as is
(—',-—- E inside apparently the case in thick nematic and isotropic fildfH.
‘ Diffusion on the much larger scale of the film widths also
neglected.

FIG. 1. (8 Schematic of the film and electrodes, as used in. .In. Sgc. lil, we des.cnbe the linear stability analysis f(.)r
smectic experimentss]. The film and electrode are shown enor- |nf|n|tes!mal.perturbatlons about the base state. The stability
mously exaggerated in thickness; in fasfii~10"°. (b) Schematic calculation 'S sor_newhat analqgous to that for thenﬁ_d
illustration of the fields inside and outside the film in the small box problem. Dimensionless quafnt't'é% and P appear, Wh'_Ch
in part (a). « is a surface charge density. are anglogous to the Rayleigh and _Prandtl numbﬂrgs

proportional to the square of the applied voltage, wiilés
tions. In our model, the charge density arises due to the elethe ratio of the thin film charge relaxation time to the viscous
trical boundary conditions at the free surfaces of the filn  relaxation time.
The inset to Fig. 1 shows the essential details of the charge The differences between our calculation and thedd
separation mechanism. Below the onset of convection, thproblem are due to the additional coupling between the field
applied voltage drives a uniform, steady current dendity and the charge density, which is also responsible for the
through the film. This is accompanied by a constant electriconlinearity of the base state charge density. The charge den-
field Ej,sige=J/ o, whereo is the bulk conductivity. The in- sity and the field are analogous to the mass density and the
terior field Ej,siqe has no component perpendicular to the film gravitational acceleration in the ‘Bard problem; the new
plane. However, the exterior fiell, sjqe Must have both requirement that these also satisfy Maxwell's equations
parallel and perpendicular components just outside the freemounts to requiring a nonlocal relation between the charge
surfaces of the film. It cannot, in general, be perpendicular talensity and the electric potential. If we suppress this nonlo-
the surface because the surface is not an equipotential: tloality by assuming these are simply proportional, the base
film is an Ohmic conductor, so its surface potential variesstate charge density becomes linear and our problem reduces
linearly with the coordinate between the electrodes. The parcompletely to the Beard case. Interestingly, this proportion-
allel componenE|Lutsideis equal toEj¢qe by the usual match-  ality is nearly correct except near the edges of the film.
ing conditions on electric fields across surfaces. The perpen- In Sec. IV we discuss the results for the neutral curve and
dicular componentEy,,.qe IS proportional to the surface compare the predictions for the critical voltage and the
charge densityr at that location. It is the interaction of the critical wave numberc. with the values obtained from ex-
parallel component of the fielH; = EuutsideWith the sur- Periments. We also calculate the correlation lenggtrom
face charge density at the two free surfaces that drives the the curvature of the neutral curve negrand the character-
convective flow above the onset of the instability. istic time 7, from the linear growth rate at.. These quan-

In Sec. II, we calculate the surface charge density belowities, which are coefficients in the Ginzburg-Landau equa-
onset by solving for the fieldsxteriorto the film. This prob-  tion that describes the amplitude of the pattern near onset, as
lem is solved analytically for thin films in two simple elec- discussed belo10,13, are also compared with experimen-
trode geometries. We find that a “charge inversion” is set upt@l results. Section V is a brief summary and conclusion.
in the base state: the film has a positive charge density close
to the positiye electrode and_a_negative charge (_jer!sity clo_se Il. THE BASE STATE CHARGE DENSITY
to the negative electrode. This inverted charge distribution is
sustained by the applied potential difference across the con- Our first task is to calculate the configuration of charges
ductor: without a potential difference, the film surfaces areand fields below the onset of convection. As described in the
equipotentials, the component of the field parallel to the surpreceding section, this is essentially an electrostatic problem

E
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FIG. 2. Coordinates used in the analysis, in which the film is
treated as a two-dimensional sheet. The appropriate Green'’s function is constructed from a

_ . . _ i unit line charge aty{’,z') and its image aty’,—z’),
in the region exterior to the film. The coordinates used and

the geometry of the electrodes and film are shown in Fig. 2. (y—y')2+(z—2")?
The origin is at the center of the film, which lies between G(y,z;y',2')=—In — .
z=+5/2 andy = =d/2. We will consider the limit of a thin (y=y")"+(z+2')
film for which s<d. The film is assumed to extend infinitely
in the x direction. The upper and lower surfaces of the film

2.3

The potential at any point in the upper half plane is given by

are free and the region outside the film has permittiiy 1 (= 9G
The permittivity e of the fluid will turn out to be irrelevant to \If(y,z)=—j Yy ,00— dy’
the analysis of the base state. 41 ) 9Z° ], _o
The film will be treated as a charged conducting sheet of . WY O
negligible thickness in th&-y plane with bulk conductivity :Ef Z(y—)z y'. (2.4)
o. Its edges aty=+d/2 are held at applied potentials m) w2+ (y=y')

+V/2 by electrodes of zero thickness. Below the onset of

convection, the film behaves as an Ohmic conductor, so thathe surface charge density on the film is a consequence of
the potential on the film varies linearly betweerV/2 and  the fact that the components of the electric fields inside and

+V/2 for —d/2<y=<d/2. The potential is zero on theaxis outs_ide the conducting _film are different. Inside the cqnduc—
and agz|— . The potential exterior to the film is symmetric tor. in the absence of diffusion, ttrecomponent of the field
above and below the-y plane and independent af The IS |d¢nt|c_ally zero, as in Flg.(lb_), and hence only the exter-
charge density is proportional to the perpendicular compo- nal field is reqwred to determ_lne the surface charge _den_sny.
nent of the field exterior to the film, at the film’s surface, andAS mentioned in the Introduction, the presence of a diffusion
so to thez derivative of the potential there. To calculateve layer near the surface does not change the total charge den-
need only solve for the potential in the upper half of he sity pres_ent, per unl_t area. The surface charge dens!ty.on the
z plane, subject to boundary conditions on thexis. We Upper sideof the film is —eqdW/dz|,-g,. In the limit

will consider two simple electrode geometries, which we re-S—0, d¥/dz is discontinuous ?crosspo, SO we use a one-

fer to as “plates” and “wires.” In the plate geometry, we sided derlvat_|ve valid aa_—>0 . Tc_) get the total surface
specify the potential on the rest of tigeaxis to be— V/2 for charge densityq on the film, we introduce a factor 2 to
y<—d/2 and+ V/2 for y>d/2. Solving for the potential is a account for the two free surfaces, so that

Dirichlet problem, which we solve below using a Green’s P
function. This geometry corresponds to a film held between 0= —2ep—
infinite knife edges. Most of the experimen68—10, how- Iz
ever, used thin wire electrodes to support the edges of the

film, as shown schematically in Fig(d). To model this ge- Using this with Eq.(2.4), interchanging the order of differ-
ometry, the applied potentiat /2 is specified only at the entiation and integration, and using E@.2) gives

two pointsy= =d/2. For|y|>d/2 we require that the de-

(2.5

z=0%

rivative of the potential on thg axis be zero. Thus, in the _ lq (y)= J_dlz —ViI2 dy’
upper half of they-z plane, we must solve a mixed 2¢y P —e Z2H(Y=YD)TT | e
boundary-value problem with Dirichlet conditions for ,
—d/2<y=d/2 and Neumann conditions foy|>d/2. This is f‘“z Vy'/d dv’
done analytically below, using the method of dual integral _anZ?+(y-y')? y o
equationg 14].
+ J T2y 2.6
A. The base state for plate electrodes a2 225 (y_y,)z y z=0+, -

We begin with the simpler plate electrode configuration.
We must solve the Laplace equation for the potenfiain ~ where the subscrigs denotes plate electrodes. After integra-
the upper halfy-z plane, tion, the resulting expression was expanded as a power series
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..................

V(y,z)= f:we—“sin(ky)dk. (2.10

IS
L |
1

With this ansatz, we find the dual integral equations

8]
T T T
|

----- - “AK)_ v
_ fTsm(ky)dk:ay for |y|<d/2, (2.1
N ] 0

se,
el
ot
ot

Charge density (in units of Vaod'l)
=)

¥ J AK)sinky)dk=0 for |y|>d/2.  (2.12
4F ] 0
05 0 0.5 This pair of integral equations may be solved for the poten-
* y (in units of d) * tial in the upper half plane by the method of Snedd4,
electrode electrode giving
at-Vi2 at +V/2 V(=dy(kd2)
V(y,z)= EJ Te Sinky)dk,  (2.13
0

(s o:?cIiGIi. nii erg?rgzecgarge densities for pledashed linpand wire whereJ, is the first-order Bessel function of the first kind.

Using Eq.(2.5), the total surface charge density is given by

in z and evaluated az—0". After some simplification, we

. . *© 260V y
find the surface charge density for the case of plate elec-q (y)=eovf Ji(kdr2)sin(ky)dk= .
trodes to be given by " 0 d J(di2)?-y?
(2.19
B 2V'~‘oI y—d/2 ) The subscripiv denotes wire electrodes. This result is also
Ap(y) ="~ d " y+d/2|’ @7 shown in Fig. 3. As for the plate electrodes, we find an

inverted charge distribution and divergences at the edges of

e - the film.

This distribution is shown in Fig. 3. Note that the charge : e
density is positive near the pos?tive electrode and negagtJive_ Bglow the onset of C(_)nvectlon,Athe electric flelgl_ln5|de the
near the negative electrode, giving the charge inversion ddllm IS constant and points alongy. The force driving the
scribed in the Introduction. The charge density diverges agonvection is due to the in-plane electric field acting on the
the electrodes, which is an unphysical consequence of thgharge densitieq. Unlike the Beaard problem, in which the
limit s—0. In the real system, the finite thicknesses of thel€mperature profile is linear below onset, here the charge
film and electrodes will impose a cutoff ay,. This diver- density, and hence the body force, is not lineay.iThis has
gence, while unphysical, is weak enough to be mathematth® effeqt_ of introducing certain nonconstant coefflc!ents into
cally tractable. It will turn out that the rigid boundary condi- the stability problem, as described in the next section.

tions we impose on the flow, described in the next section,

ensure that the contributions from the edges of the film are ll. LINEAR STABILITY ANALYSIS

small. On the other hand, the fact tiegi(y) is not a linear
function ofy has important consequences for the quantitativqnﬁ
results of the stability analysis.

In this section we consider the stability of the base state to
nitesimal perturbations. We will show that for sufficiently
largeV, the electrical forces overcome viscous and conduc-
tion losses and the film becomes unstable to convection.

B. The base state for wire electrodes

We now turn to the case of wire electrodes. For this case, A. Perturbation equations

the mixed boundary—value_ eIectrostatic' problem can be Within the thin film, we assume that the fluid velocityis
solved by the theory of dual integral equatigfid]. We must  confined to the film plane, with=ux+vy. In addition, we
solve Eq.(2.1), subject to the mixed boundary conditions i neglect any shears in the direction. As discussed

v above, these assumptions are reasonable in the context of

V(y,0)= 3V for |y|=<d/2, (2.8 thin smectic films, where the layer structure strongly inh.ibits
flow across layers. We treat the film as a two-dimensional
conducting fluid, with areal material parametess=sp,

oW (y,z) 17s=S7, andos=so, wheres is the film thicknessp is the
0 =0 for |y|>d/2. (2.9  Dbulk density,7 is the bulk molecular viscosity, and is the
z=0" bulk conductivity.(In smecticA films, the viscosity is highly

anisotropic; the relevant component to use fpis 73, the
By separation of variables and using the fact thatviscosity related to shears within layer plane$She two-
¥ (0,0)=0, we make the ansatz that the potential in the up-dimensional pressure field is given B¢=sP. The flow is
per half plane can be written as driven by the surface force densitEs, whereEg is the
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electric field in the film plane. The flow velocity is governed is a self-consistent solution that corresponds to hydrostatic
by the two-dimensional Navier-Stokes equation equilibrium. The pressure gradient points everywhere toward
the midline of the filmy=0.

u Expanding the divergence in E@.4) and using Eq(3.2)
_ 2 1
Ps ot +(u Ju VsPst nsVsutqEs,  (3.) the charge continuity equation becomes
where V is the two-dimensional gradierfta/ax%—g/a/ay. &q
The fluid is assumed to be incompressible, so that i Vsd=osVs B @7

Vs-u=0. (3.2 Note thatV- E is not equivalent t&/- E, because of discon-
tinuities in thez component ok atz=0. ThusVy-: E4 is not
This condition may also be viewed as a constant thicknesgirectly related to the charge densiy V.- E can be found
assumption. We impose physically realistic rigid boundaryonly after solving the full three-dimensional Laplace prob-
conditions onu at the edges of the film, so lem given by Eq(3.6).
To examine the stability of the base state, we introduce

u=0 3_0_0 at y—+d/2. (3.3 perturbed quantities
1 ay .
u=0+u, (3.9
The motion of charge is governed by the charge continuity

equation q=9%+q?, (3.9

J P=PY+PD, 3.1
a_?:—Vs-Js:—Vs-<qu+asEs), (3.4 T 319
Es=EQ+EW, (3.11)

in which Jg is the two-dimensional current density in the
plane of the film, and includes contributions from both con-where EL0)= E§,°)y and EN=ELx+EMy. Here E(yo)—
duction (osEs) and convectiondu). Diffusion of charge in  —v/d andq(o) is the base state charge density found in Sec.
the plane of the film has been neglected. Il. To first order in the small perturbations, Ed8.1), (3.2),

The electric field in the plane of the filfEg is given by and(3.7) become

Es=—V¥=—V¥|,_o. (3.5 Ve-ul=0, (3.12
As in Sec. Il,'¥ is the potential that solves thtaree- auD R R
dimensionalLaplace equation P = — VP + pVaut + qOED X+ g VEPY
2\ — ~
VP =0 (3.6 +q<°)E§,1)y, (3.13
in the half space=0, with the surface charge density given PRES
by Eg.(2.5). =—uV.vq— o Vs (EPx+EMY)]. (3.19
The surface charge density in Egs. (3.1) and (3.4) in ot A~ 7l Vo (B v Y]

principle contains both the density of free charggs. and

that of the dielectric polarization charges, so that Taking the curl of Eq(3.13 eliminates the pressure. Taking
q=iee— Ve- Ps. HereP,=sP, whereP, the bulk polariza- & Second curl and using E(B.2) gives

tion density, is given byP=eyxE, where y is the electric

susceptibility. Inside the filmE=Eg, independent ot, and ps=V2ub =5 V2v2y -y,

has zeroz component. Equatiof2.5), which involves only St

exterior fields, therefore only giveg.e.. In the base state, A A A
however,V,- E<=0 andq= Qee, SO pf)elarization effects are X[VX (qOEx+qVEPY+q VEMY)].
irrelevant. In the general case, one can show, using the scal- (3.195
ings given below, that the dimensionless form of ¥hePg

terms are proportional tgs/d. For the experiments of inter- From this equation, we select tlyecomponent, which is
est, ys/d~10"%4, so we can safely neglect polarization ef-

2~(1) (0) (1)
fects. _ _ _ p ﬁvzvu): 7 Vzvzv<1)+E<o>r9 a- aq'” JE;
Equations(3.1)—(3.6) have a simple solution wheum=0. Sot s s's's Y gx? ay  ax
Equation (3.6), subject to the appropriate boundary condi- (3.1

tions, corresponds to the base state charge-density problem

solved in Sec. II. Once the fields andare found from Eqs. Using the fact thag(® is only a function ofy, Eq. (3.14

(2.5 and(3.6), Eg. (3.1) can be solved for the pressure ~ becomes

whose gradient balances the surface force dengiy.

Equation (3.4 then gives a constant current density aq 0 @9 . <&E§<1> . JEM
S

J.=0oEs, with a constant interior fielE= — (V/d)y. This a ay X ay

). (3.19
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In the previous equation&" is the in-plane electric field and
produced by the charge distributigff). Introducing pertur-
bations for the electric potential witlr =¥+ e

1) _ 1) __ H . . .
have E{!=— VW {l=—vW®|,_, The perturbation po- whereQ=0|,_,. The three-dimensional Laplace equation,

tential W) is the solution of a new three-dimensional gq. (3.18, becomes
Laplace problem ire=0 analogous to Eq3.6),

(D2— k?)Qs— y®—QA =0, (3.25

3?3

qu’(l)ZO, (3.18) VZ(QeiKX):|:_+ —K2

07y2 P QZO, (32@

with qV=—2e(a¥ Y/ 52)|,— o+
We now replace the various field components with th
appropriate derivatives of the potential in E¢8.16 and 0

(3.17) to get 0= _ZE

ewith Eg. (2.5 imposing the condition that

(3.27

z=0%"
2+(1) (0) 924 (1)
pSngv(“: 7V2V2p M+ E§0>‘9 q2 + 99 9 \st , Equation(3.26) is atwo-dimensionaHelmholtz equation in
at IX aay X the half planex=0, z=0, which is perpendicular to the
(3.19 plane of the film. Equationé3.26) and(3.27) determine the
rather complicated nonlocal coupling between the in-plane
)_ (3.20 potential functionQ(y,«,y)=Q(y,0,«,y) and the charge
density function®(y, «,v).
Two dimensionless groups appe&; which plays the
art of the Rayleigh number, arfgd, which plays the part of
e Prandtl number. In terms of the bulk, rather than surface,

2L 2yl
7+ v
ax ay

B )
aT_

+
at Vo Tay s

Equations(3.18—(3.20 are the equations for the perturba-
tions that we must solve to determine the stability of the bas

state. . ;
The specification of the boundary conditions necessary tcr)n aterial parameters, they are given by
solve Eg. (3.18 requires some explanation. By writing €2V?
Y=¢O+¢@d we split the full Laplace problem of Eq. R=—— (3.28
(3.6) into separate Laplace problems at each order. At zeroth oS
order, the boundary conditions at=0 on ¥ are those gnd
described in Sec. Il for each electrode configuration in the
base state. In particula®(®) was set equal to= V/2 at the €7
edges of the film. At first order, the boundary conditions on - pods’ (3.29

v require that¥ D=0 at the edges of the fim and on
both of the electrodes in the plate case. In the wire electrod®, the control parameter, is proportional\g. It is interest-
case we requird¥)/4z|,_,+=0 for |y|>d/2 andz=0.In  ing to note thatR is independent odl, the width of the film.
either electrode case, we will find Dirichlet boundary condi- The Prandtl-like paramete? may be regarded as the ratio
tions for ¥ () on the film itself by self-consistently solving 74/7, of the two time scales in the problem, the charge re-
Eq. (3.20. Proceeding in this way, the boundary conditionslaxation time for thin films{8] 7,= €yd/o's, and the viscous
on the total potentiall’ are satisified by the superposition of relaxation timer, = pd? ».
PO and @), The effect of the nonlineay dependence of the derivative
of the base state charge dendity®)(y) is contained in the
B. Normal mode expansion nonconstant coefficien®(y). For the plate and wire elec-

trode configurations, we find from Eq&.7) and(2.14) that
We now expand the velocity, charge density, and potenQ(y) is gi\II%L;] b)l/ wet 427 2.19

tial perturbations in normal modes that are periodig inith

wave numbek and have growth rate, 8
p D= A(y)elkx 7, (3.21) Qply)= w(1—4y?) (330
qV=01(y,k, )&, @22 o
v=0(y,zk,y)ek " (3.23 Qw(y)=ﬁr, (3.3)

We substitute Eqg3.21)—(3.23 into Egs.(3.18—(3.20 and
nondimensionalize the system by dividing lengths dby
times by eyd/og, and charge densities byV/d. We then
write D=¢/Jdy and define new dimensionless quantities
k=kd and Q(y)=d?Dq®(y)/e,V. The resulting dimen- The above equations bear a strong analogy to the corre-
sionless equations are sponding equations in the Bard problem. The correspon-
dence becomes complete if the nonlocal coupling of the
charges and potentials given by E@8.26) and (3.27) is
suppressed by simply settirg< V. Applying this assump-

respectively.

C. Analogy to the Benard problem

(D2— K2)( D2 2 % A+K2R(O-Q0)=0 (3.24
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tion to the base state removes the nonlinedependence of in which
the charge density so th@(y)=1. In fact, a detailed analy-

sis shows that] is always nearly proportional t¥ in the

central part of the film. This can be seen, for example, in Fig.

3 neary=0. If this proportionality is assumed to hold every-

where, then our continuity equation for charge, E8.4), and
becomes identical to the thermal diffusion equation in the
Benard problem. Under the same assumption, the force term

gEs in Eq. (3.1) becomes proportional tqy, which is the
form of the analgous term in the Bard problem. Turning
the argument around, one can say that the reason that olsing a similar Fourier expansion 6fs,, and imposing the
systemdoes notreduce to the Beard problem is because the zero boundary conditions gt=+1/2, we find
charges and fields are nonlocally coupled via the charge dis- .
tribution’s own self-field. .- Brmn (—1)"costixy)
ST &0 [(2nm)2+k%]|  cosh«/2)
D. The compatibility condition (3.39

1/2
Pmo=2 . Q(y)Cm(y)dy (3.37

1/2
bmn=4 . Q(y)Cr(y)cog2nmy)dy. (3.39

—cog2nmy)|.

To find the conditions thak, P, , andy must satisfy for 1, calculate) ,,, we used a Romberg numerical integration
solutions to exist, we so_lve the Ilne_anzed equations byscheme[16] to tabulate the integrals fds,.. in Egs.(3.37)
means of various expansions. A crucial step that must bStnd(3.38) for the each of the two electrode geometries, using

done numerically is the solution of the Helmholtz equation in .
- ) : Qp andQ,, as given by Eqs(3.30 and(3.31). We used an
the plane perpendicular to the film, EQ.26), which neces- upper cutoff ofn=29, which was dictated by the double

sarily involves a numerical relaxation calculation. L
At the edges of the filmy=*1/2, the rigid boundary precision accuracy of the Romberg scheme.
conditions on the flow velocity™®), given by Eq.(3.3), re- 2. The potential function€.,, for 7+0
quire thatA (y) satisfy the four conditions
For nonzeroy, we solved
A(£1/2)=DA(*=1/2)=0. (3.32
(D?*=xk*)Qsm=QCrp+ ¥Opy (3.40
To ensure this, we expantl(y) as ) ] ]
by an iterative scheme. We used the=0 solution, Eq.

°° (3.39, to find a first approximatiof2 ) From this, we cal-
A(Y)=le AnCm(Y), (3.33  culated the corresponding approximate the charge-density
- function ®°! using the relaxation algorithm described in
where theC,(y) are even Chandrasekhar functidds, Sec. lllD 3 below. ThelQCr,+ y®R! was Fourier expanded
in the same manner a&@C,, in Egs. (3.36—(3.38 above.
cosiiAy) cog\nyy) This expansion was used to find a series solution analogous
Cinly) = COSHA/2)  COSINT2) (339 {0 Eq. (3.39 for the next approximatio®2lt] which was

then relaxed to fin® [} This sequence of steps was iterated
Here\, is the mth root of tanhk,/2)+tan(\/2)=0 [15]. until it converged for botH),,, and ®,,. The convergence
We can restrict the expansion to even functions because afiterion was a sum of the squares of 100 differences in
the symmetry of the equations abgut 0. Note that an ex- successive iterates distributed oss@<1/2. For|y|<0.1,
pansion inC,, has been shown to give a good description ofthe sum converged after seven or eight iterations to a preci-
the velocity field measured in experiments on electroconvecsion limited by the Romberg integration scheme used to find
tion in smectic filmg8]. Only relative amplitudes matter in the Fourier coefficients.
Eq. (3.33, so we seA;=1. It follows from linearity that we
can also writeQQ=2 A, and =3 ,A0., where 3. The charge-density functio®

Q,, and®,, are the solutions corresponding Ao=C,,. As We solved the Helmholtz equation, E8.26), for Q. for
above, we denotesm=Qp|z—o. each of the two electrode geometries, using a singue
algorithm [16]. In each case, the Dirichlet conditions on
QO for —1/2<y<1/2 andz=0 are given byQg, [Eq.
Setting y=0 and substitutingC,, for A in Eq. (3.25 (3.39] in the case ofy=0 or by the corresponding expres-

1. The potential functionQ,, for y=0

gives sion during iteration for y#0. Beyond the film, for
. ly|>1/2,z=0, we applied the Dirichlet conditiof2 ,,= 0 in
(D*= k%) Qsm=QCh, (339  the plate electrode case and Neumann conditions

. . . )  (0Q!32)|,=0=0 in the wire case.
Wh|ch_ may be solved directly by Fourier expansion. Since Because,, is even iny, it need only be relaxed in the
QCp, is even, we expand first quadrant of they-z plane. We used aiNxN square
o lattice of cells in this quadrant, witN¢,,<<N points between
C.= b. cog2n , 33 y=0 andy=1/2. On the outer edges of the lattice, we set
QCnm nZO mrCOSZNTY) (339 Q.,=0 to enforce the zero boundary condition at infinity.
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Starting withN=100 andNy,,,=50, we systematically in-
creased\ and Ny, is such a way thalNg,,/N—0. All the

guantities calculated below showed a small residual mono-

tonic variation withNg,,, ; we removed this by plotting each
against 1Ny, and extrapolating to Ng;,,—0.

From the resulting(},,,, the charge density perturbation
0, was determined from Eq3.27) by taking the one-sided
z derivative numerically®, was therefore only known at

Nsim lattice points across the film. For the purposes of inte-

gration, we used a Chebyshev interpolatid®] of these
points.

4. The compatibility condition

To find the general compatibility conditions on solutions,
we substitute the expansions far, 15, and © into Eq.
(3.29 to get

(D2_ K2)( D2

>

1

+ K>R(O 57— QQgrm) |An=0. (3.41)

Multiplying by the Chandrasekhar functid®,(y) and inte-

grating fromy=—1/2 toy= +1/2, we form inner products,
denoted by( ). Then Eq.(3.41) becomes a linear homog-
enous system with the determinant compatibility condition

ol

+ k?R(C|(® — Q(25m)>‘ =0.

‘<c.(D2—K2)(D2—K2—
(3.42

After some simplification, this can be written as

Y
7_3(le_ K25Im) ‘ =0,

(3.43

‘ (Nt K4 Bim— 262X+ K2 RF i —

whereF,=(C{(0,— QQ,)). The matrix elementX,,, are
given analytically by[4]

Xim=(C/Cpm) (349

when |#m (3.45

2
Ni (G ChmCrc)
m

. y=1/2
- 1 1 "nen 1 m-y2
7 ECmCm—Z(Cm) when I=m, (3,49
m y=1/2
where C! =D?C,,(y), etc. The matrix elements,(«,7)
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FIG. 4. AmplitudesA, andA; of the second and third terms of
the expansion foA(y), Eq. (3.33.

Qg are simple smooth functions for the first few values of
m and are straightforward to integrate numerically.

E. Marginal stability

To find the conditions for marginal stability, we set the
growth rate of the perturbationg equal to zero in the com-
patibility condition, Eq.(3.43. The Prandtl-like dimension-
less groupP drops out, so that the marginal stability condi-
tions are independent @, just as is the case in the Bard
problem. Eq.(3.43 then implicitly defines the marginal sta-
bility curve R=Ry(«). We proceed as follows. Choosing a
value of k, we setl=m=1 and calculaté-,,(x). Then Eq.
(3.43 can be simply solved to get the first approximation
RE (k). We then findF,,(«) for I, m=1,2 and search near
RE (k) for roots of the 2 2 determinant, E¢(3.43), to find
REl(k). We can then usé;=1 to findA, in Eq. (3.33 by
backsubstitution. We carried this algorithm to the third order
in the Chandrasekhar expansion, for which the maximum
value of|A;] is of order 102 and the resulting neutral curve
Ro(x) no longer changes significantly. Figure 4 shows the
amplitudesA, andA; for the wire case, relative tA;=1. It
is clear that the higher terms in the Chandrasekhar expansion
contribute very little to the sum in E¢3.33.

Figure 5 shows the neutral curve for the plate and wire
electrode configurations. The minima of these curves define
the critical values<, andR.=TRy(«.) for each case. These
values are listed in Table I. We find that both neutral curves
give k. between 4 and 5, but th&, is lower for the wire
electrode case. This is apparently due to the steeper slope of
q©(y), evident in Fig. 3, for the case of wire electrodes.
Neither value of, is particularly close to the Berd value
of 3.114, but they are in reasonable agreement with the value
determined from the smectic film experime&8,10, as
discussed in Sec. IV below.

We can define a length scagg in terms of the curvature
of Ry(x) nearx; [1,2,5]:

,_1d%
072 di? . '

= Ke

(3.47

were evaluated numerically for each electrode configuration

using Romberg integratiofi6]. The divergences i@(y) at
the edges of the film are overcome beca@sgy) goes to
zero sufficiently fast aty==+1/2. The functions®,, and

wheree.=[Ro(x)/R.]—1. This length will appear as a co-
efficient in an amplitude equation description of the convec-
tion pattern near ons¢l,2,5]. To find &, accurately, we fit
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FIG. 5. Neutral curve for platédashed ling and wire (solid

line) electrodes. FIG. 6. 7y as a function ofP for wire electrodes.

€. to a parabola over a range= k.= Ak and then system-
atically reducedA « until the value of¢, taken from the fit
became independent df«x. This corresponded to a fitting ~ The stability analysis presented above demonstrates that a
rangee,<5x 10"4. The values of,, given in Table I, were thin, weakly conducting suspended fluid film becomes un-
slightly dependent on the electrode configuration. stable to spatially periodic convective flow if a sufficiently
large voltage is applied across the film. Since our analysis is
linear, it cannot describe the convection pattern above onset,
F. The linear growth rate y but it does provide important information about the onset of

Returning to the full compatibility condition Eq3.43 _convegtion. In thi; section, we discuss the theoretical results
in the light of previous experiments on smedi#e-8,10 and
nematic[11] films.

Equation(3.28, combined with the neutral curve, predicts
that the onset of convection occurs at a critical voltage pro-
_, (e portional to the film thickness and independent of the film
o T ¢ ' (348 width d, given by

K:KC,E:O

IV. DISCUSSION

with y#0, we consider the behavior of the growth ratef
the linear modes near the critical values®®fand k. The
time scaler,, defined by

s
where e=(R/R.)—1, will also appear in an amplitude VC=E—\/077RC. 4.0
0

equation description of the pattern near orjde2,5|.

The matrix elemenk,,(«,y) is rather expensive to cal-
culate for y#0 because we must use the iteration schem
outlined in Sec. llID 2. It is most computationally efficient to

h I fix k= h lve Eq3.43 f . : .
choose a value of, fix « =« and then solve E¢3.43 for proportional tosyon and independent afl from a highly

7_20 Ighlf/ gviag 1d?12?n gf(t)rrwetgncrY ::1%?25 glzlh ;rr] rr:rc])g e;ar_ll%ee re§imp|ified model of the “vortex mode” observed by them in

sults depend of?. The resulting functiony(e€) is very nearly nematic fllms[ll]. . L

linear in e with a P-dependent slope ang(0)=0. We de- In experiments on copvectlon in ;mecnc filmé, has
terminedr, from polynomial fits toy(e) for 7=0.01. The Peen found to be proportional ®for films up to about 20
results are only slightly dependent on electrode configuraMolecular layers(i.e., about 63 nmthick [10]. For larger
tion. 7, is plotted as a function oP for wire electrodes in S: V¢ grows somewhat more slowly. This may be a sign that
Fig. 6. ForP>1, 7, tends towards the limiting values given layer-over-layer shears in the direction exist for thicker

in Table I. films; such flows are not accounted for in our calculation. A
linear dependence &f. on s has also been observed in ex-
periments on nematic film{d.1]. The nematic films are much
thicker than the smectic films and have significant thickness
nonuniformities. They also exhibit slow flows even below

%’he dependence d&f; on o7 follows inevitably from di-
mensional analysis. Faett al. also found a critical voltage

TABLE I. Numerical results.

Electrode geometry Wires Plates the onset of convection, making.(s) rather difficult to
critical wave numbelk, 4.744 4.223 measure.

critical control parameteR 76.77 91.84 Our most recent experiments on smectic filfa6] show
correlation lengthg, 0.2843 0.2975 no dependence d&f, ond for films with d between 0.7 and
time scalero(P=) 0.351 0.372 2.0 mm, with thicknesses between 2 and 25 molecular

layers, that is, between 6.3 nm and 80 nm. This is consistent
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with the prediction of Eq(4.1). Over about the same range mensional by dividing by the measured film widihwhich
of thickness, as noted abowg, is also proportional t®, as  is known to within about 5%. The main obstacle to making
predicted. A weak variation o ; with d, however, was ob- quantitative comparisons to our predictions ¥g(s) and
served in our earlier worf8] for d in the larger range 0.36— 7, are the poorly known material parametersand (espe-
3.5 mm. This work used a thicker filid07 molecular layers, cially) . These appear in the expression for the slope
or 340 nm and a slightly different electrode configuration, V.(s)/s and are also required for calculating nondimensional
with guard electrodes outside the main electrode wirestimes. Realistic smectic films are sufficiently viscous that
These features may have contributed sotidependent they have values oP>1, so that we expect the infinite-
three-dimensional effects. limit of 74 to apply. The conductivityr for the doped smec-
The wave number at onset observed in smectic film extic liquid crystal used in our experiments has been measured
periments i§10] k®P=4.94+ 0.0 1. The measured value at 1 kHz in a bulk samplg17] and at dc in an annular film
of d is uncertain to+5%, so this result yields a measured [18]. Over this frequency range, it changes by a factor of 3.
dimensionless wave number®P'=4.94+0.25. This is in To get agreement betwees§™ and our theoretical value
satisfactory agreement with the value ef=4.74 found requires a value otr that lies between the dc and 1-kHz
from the minimum in the calculated neutral curve for wire measurements. Agreement with tg(s)/s data[10], how-
electrodes. At present, no data are available for comparisoaver, requires using a value af a factor of 20 larger than
to the predictions for the plate electrode geometry. that estimated by extrapolating measurements ohade in
It is interesting to note that the charge relaxation timethe higher-temperature nematic phé$@]. This discrepancy
Tq= €0d/ oS appropriate to thin conducting films emerges asmay be a result of neglecting the effects of air drag on the
the natural unit of time in our analysis. As discussed in Refmoving film, which are likely to be important for thin, fast-
[8], in a thin film the relaxation time is greater than the bulk moving films[20].
value ¢/ o by the factord/e,s, wheree, is the relative per- The instability we have described occurs in thin films of
mittivity of the fluid. This is a consequence of the restrictedfluids that are isotropic in the plane of the film. It should also
geometry and the fact that the fields lie in the free spacexist for anisotropic fluid films near dc, for example in films
outside the film. The wave number of the convection patterrof smecticC and -<C* materials. In smecti€ materials, the
observed at onset changes when the film is driven with amolecules are tilted with respect to the layer planes, so the
voltages for frequencies much larger tham,1/It would be  layers are two-dimensional analogs of a nematic fluid.
interesting to modify our analysis to allow for time-periodic SmecticC* materials have an additional broken symmetry
driving voltages. that allows a spontaneous electric-dipole moment in the
It is often useful to describe patterns near onset with amplane of the layers. Flows in these materials will involve
equation for the slowly varying amplitud& of the pattern. strong orientational effects. It should be straightforward to
For one-dimensional systems that are symmetric undegeneralize our analysis to the anisotropic case, which may
A— —A, the appropriate amplitude equation is the Ginzburglead to interesting new effects. Recently, it has been sug-
Landau equatiofl,2], gested that electroconvection, driven by the analog of the
Carr-Helfrich mechanism that operates in negative dielectric
anisotropy nematicf3], may occur in smecti€ films under
) ac voltageg21]. If materials with the right parameters exist,
IR A APA+ gzﬂ (4 itseems likely that the new instabiliies will coexist or com-
0ot 9 Oox%" ' pete at low frequencies with the instability we have consid-
ered here. Something of this sort is observed in nematic films

[11,22] in which both a “vortex” and a “domain” mode are
Here the amplitudé\ can be taken as the amplitude of the fgynd.

convective velocity field and governs the nonlinear satura-
tion of the amplitude&, and =, are characteristic length and
time scales introduced earlier. We have previously demon-
strated that measurements near the onset of convection in we have presented a linear stability analysis for the onset
smectic films can be described well by E(.2) with  of electroconvection in a thin conducting fluid with two free
e=(V/V,)®~1 [8,10]. The onset of convection occurs at a surfaces. We found the neutral stability curRg(«), along
supercritical bifurcation, and the dependence of the flow with its critical valuesR and ., and the correlation length
velocity above onset, the behavior of the amplitude of con¥, implied by its curvature neat.. The linear growth rate
vection near a lateral boundary, and the relaxation of thyas used to find the characteristic timg This was done for
pattern amplitude after sudden changeg iare all well de-  two simple electrode configurations. These results were com-

scribed by fits to Eq(4.2). Equation(4.2) can also be de- pared with experiments, mainly on smectidilms. Several
rived from the full eleCtrOhydrOdynamiC equations of motion genera”zations of this ana|y5i5 were Suggested_

presented abovil3].
Our analysis gives theoretical results fé and 7y, as
discussed above. Our predicted value for correlation length is
0=0.285, which is about 20% smaller than the experimen- \we would like to thank S. S. Mao and T. Molteno for
tal value[10] of £5*'=0.36+0.03. This is in fair, but not interesting discussions and J.T. Gleeson for making conduc-
completely satisfactory, agreement. To arrive at beff*  tivity measurements. This research was funded by the Natu-
and 58"‘” the experimental measurements were made nondial Sciences and Engineering Research Council of Canada.

V. CONCLUSION

ACKNOWLEDGMENTS



2692 DAYA, MORRIS, AND de BRUYN 55

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Pl§s.851 [12] W. V. R. Malkus and G. Veronis, Phys. Fluids 13 (1961).

(1993. [13] V. B. Deyirmenjian, Z. A. Daya, and S. W. Morri@npub-
[2] G. Ahlers, inLectures in the Sciences of Complexisglited by lished.

D. Stein(Addison-Wesley, Reading, MA, 198%. 175. [14] I. Sneddon,Mixed Boundary Value Problems in Potential
[3] L. Kramer and W. Pesch, iRattern Formation in Liquid Crys- Theory(North-Holland, Amsterdam, 1966p. 103.

tals, edited by A. Buka and L. KrameSpringer, New York,  [15] There are typographical errors in RES]: the sign is incorrect

1995; Ann. Rev. Fluid Mech27, 515 (1995. in Eq. (B4) and « and 8 are interchanged in Eq$B4) and
[4] S. Chandrasekhadydrodynamic and Hydromagnetic Stability (BS5).

(Oxford University Press, London, 1961 [16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
[5] M. A. Dominguez-Lerma, G. Ahlers and D. S. Cannell, Phys. Flannery, Numerical Recipes in QCambridge University

[6] glu\ll(\jlsl\z/lz 3565128‘3- B d A. D. May, Phys. Rev. Lett Press, Cambridge, 1082
YV, VIOTTS, . K. de Bruyn, and A. . May, Fhys. kev. Le "[17] J. T. Gleesor{private communication

65, 2378(1990. .
. [18] Z. A. Daya (unpublishedl
71 S. W. Morris, J. R. de Bruyn, and A. D. May, J. Stat. PHgA4. )
71 I . y [19] H. Kneppe, F. Schneider, and N.K. Sharma, Ber. Bunsenges.

1025(1993). . o
[8] S. W. Morris, J. R. de Bruyn, and A. D. May, Phys. Rev44 Phys. Chem85, 784 (1981). _
8146(1991). [20] Y. Couder, J. M. Chomaz, and M. Rabaud, Physicam406
[9] S. S. Mao, J. R. de Bruyn, Z. A. Daya, and S. W. Morris, Phys. (1989.
Rev. E54, 1048(1996. [21] S. Ried, H. Pleiner, W. Zimmermann, and H. Brand, Phys.
[10] S. S. Mao, J. R. de Bruyn, and S. W. Morris, Physicéd\be Rev. E53, 6101(1996.
published. [22] S. Faetti, L. Fronzoni, and P. Rolla, J. Chem. P8.1427
[11] S. Faetti, L. Fronzoni, and P. Rolla, J. Chem. PH8.5054 (1983.

(1983.



