
PHYSICAL REVIEW E JANUARY 1997VOLUME 55, NUMBER 1
Universal limit mapping in grazing bifurcations

Arne B. Nordmark
Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

~Received 22 May 1996!

Grazing bifurcations are nonsmooth bifurcations that occur in impacting mechanical oscillators. A sign of
the lack of smoothness is a square root expression that arises in mappings describing the dynamics. Certain
types of grazing bifurcations involve chaotic bands, or period adding cascades with or without chaotic bands.
There is also a characteristic scaling behavior present. Here this type of bifurcation is investigated, and the
self-similarity under scaling is used to derive a renormalized limit mapping. A study of the dynamics of the
limit mapping identifying all attractors for all parameter values is also presented.@S1063-651X~97!09401-4#

PACS number~s!: 05.45.1b, 03.20.1i
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I. INTRODUCTION

When studying models of impacting mechanical syste
where the approximation of instantaneous velocity chang
the moment of impact is used, one typically encounters g
ing bifurcations of periodic orbits. The grazing bifurcation
not found in smooth dynamical systems, and is an effec
the fact that an impact with low velocity is sensitive to sm
changes in the initial conditions. The sensitivity is inverse
proportional to impact velocity. Thus, if a stable period
orbit is shifted under a parameter change, so that it has a
velocity ~grazing! impact, stability will typically change.

Grazing bifurcations have been the subject of several
vestigations recently. Whiston investigated the geometry
the singularities, the grazing bifurcations of a saddle po
and the creation of chaotic sets for a linear driven imp
oscillator@1#. Nordmark studied the bifurcations of a node
single degree of freedom driven impact oscillators@2#. The
existence of an attractor under conditions on the eigenva
and an orientation condition was shown. The possibility
existence of chaos for an interval of the bifurcation para
eter was demonstrated, as was a scaling behavior. Budd
Dux studied the linear impact oscillator with driving ne
resonance, and obtained an impact return mapping tha
close to being one dimensional, when close to the bifurca
point @3#. Lamba and Budd made a careful estimate of
Lyapunov exponent in the chaotic band@4#. Fredriksson and
Nordmark gave a derivation of the local form of the Poinca´
mapping for systems with more than one degree of freed
@5# .

There have also been a number of studies of explicit m
pings with square root terms. Nusseet al. @6# studied a map-
ping in one dimension. An equivalent mapping was stud
by Foale and Bishop@7#. A two-dimensional mapping wa
thoroughly examined by Chinet al. @8,9#.

In the current investigation we concentrate on the c
where the bifurcation leads to an attractor with either sta
periodic motion of long period, or chaotic motion. What
observed after the bifurcations is well summarized in C
et al. @8#. We assume a bifurcation parametern such that
there is a grazing bifurcation asn increases through 0. Ca
the largest eigenvalue of the periodic orbitl.

~i! For n.0 there is an attractor of sizeO(An).
~ii ! If 2/3,l there is chaotic motion for 0,n,n8.
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~iii ! If l,2/3 there are stable periodic windows. The wi
dows accumulate onn50 and the periods increase by 1 fro
window to window. All orbits have a single low velocity
impact. There is a scaling in the limitn→0 such that each
periodic window is mapped onto the next ifn is scaled by
l2.

~iv! If 1/4,l,2/3 the periodic windows do not overlap
and there is a chaotic band between windows.

~v! If l,1/4 the periodic windows have a bit of overla
and one or two of the stable orbits are always present.
purpose of the present investigation is to start with the fo
of the Poincare´ mapping for a general impacting system, a
derive an impact return mapping very similar to that of Bu
and Dux @3#. Then we show how a one-dimensional lim
mapping can be obtained through renormalization as we
the bifurcation parameter go to zero. The mapping obtai
is piecewise continuous with an infinite number of branch
Other investigators have generally studied a low order
proximation to the Poincare´ mapping of the system. Using
the limit mapping, we prove the existence of stable perio
orbits, and chaotic motion.

II. POINCARÉ MAPPINGS
NEAR A GRAZING PERIODIC ORBIT

We will introduce a convenient form of the Poincare´ map-
ping near a grazing periodic orbit~Fredriksson and Nord-
mark @5#!. We assume that a section coordinatexPRN and a
bifurcation parameternPRM are introduced in such a wa
that the grazing fixed point is atx50 whenn50.

The mapping nearx50, n50 can be written as

p5 f +g, ~1!

where f describes the nonimpact dynamics, andg corrects
for low velocity impacts.f +g is the composition off andg,
( f +g) (x)5 f „g(x)…. The functionf

f ~x,n!:RN3RM→RN

is smooth withf (0,0)50. We write

A5Dxf ~0,0!. ~2!

Points nearx50 may or may not undergo a low velocit
impact. We will use the values of a smooth functionh
266 © 1997 The American Physical Society
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55 267UNIVERSAL LIMIT MAPPING IN GRAZING BIFURCATIONS
h~x,n!:RN3RM→R

with h(0,0)50 to separate the cases. We introduce

C5Dxh~0,0!Þ0. ~3!

When h.0 ~nonimpacting points! there is no low velocity
impact, sog should then be the identity mapping. Forh50
~grazing points! we have a grazing impact, and whenh,0
~impacting points! there is a low velocity impact.g can be
written as

g~x,n!:RN3RM→RN,

g~x,n!5H x if h~x,n!>0

b~x,y,n!y1x if h~x,n!<0,
~4!

where

y5A2h~x,n!, ~5!

andb is a smooth function

b~x,y,n!:RN3R3RM→RN

with

B5b~0,0,0!Þ0. ~6!

From this it follows thatg is a continuous mapping, bu
Dxg is unbounded for small negativeh.

Whenn50, we see thatx50 is a fixed point off , and we
assume that for smalln there is a fixed pointx̃ (n) of f with
x̃ (0)50. If h( x̃ ).0, thenx̃ is also a fixed point of the full
Poincare´ mappingp. The grazing bifurcation occurs asx̃
tries to enter the impacting regionh,0. For h( x̃ ),0 we
introducek52h( x̃ ).

We now make the following assumptions.~i! A has a
single eigenvaluel of largest modulus, and 0,l,1. To
this eigenvalue corresponds a right eigenvectorf and a left
eigenvectorf* , with f*f51. ~ii ! f*BÞ0 andCfÞ0.
~iii ! CAnB.0 for all n>1. These conditions are sufficient t
guarantee an attractor of sizeO(Ak) for all sufficiently small
positivek. The key feature of the dynamics for small pos
tive k is that iterates repeatedly return to the impact regi
but the typical time between impacts is large, of the or
2 log(k).

A. The return mapping and its limit form

We will study the dynamics using a return mapping fro
the impact region back to itself. The mapping isF
5( f +g)n5 f n+g, where n(x) is chosen such tha
h( f k+g)>0 for 1<k<n21, buth( f n+g),0. Thusn(x) in-
dicates the number of iterations needed to return to the
pacting region.F is continuous in regions wheren is con-
stant, but discontinuous wheren makes a jump. To find a
useful limit form of the return mappingF, we will introduce
the coordinate

z~x!5@k1h~x!#/k. ~7!
,
r

-

z,1 for impacting points,z.1 for nonimpacting points,
z51 for grazing points, andz( x̃ )50. Then we have for
impacting pointsg5bAkA12z1x. Now if x is of the order
k and we keepz,1 fixed, the only important contribution
will be BAkA12z, with other terms vanishing in relation t
this ask→0.

Turning to f n, we have for small x2 x̃ that
f n(x)5 x̃1An(x2 x̃ )1O(x2 x̃ )2. For largen, An will be
dominated by the effect of the eigenvalue largest in modu
soAn5flnf*1 smaller terms.

Putting this together we find

z„f n+g~x!…5
ln~x!

Ak
~Cf!~f*B!A12z~x!1•••. ~8!

As has been pointed out earlier, there is a scaling rela
such that the dynamics ofF is similar if k is scaled by a
factor l2. To take advantage of this fact we introduce tw
new parametersm andm, wheremP(l2,1# andm is an
integer. Any positivek can be uniquely written as

k5m~lm21Cff*BA12l!2. ~9!

We will also writek(x)5m2n(x).
Now we can keepz,1 andm fixed and letm→`. All

x dependence except throughz will vanish, and we find

k~x!→K~z!, ~10!

z„f n+g~x!…→G~z!5
lA12z

A12lAmlK~z!
. ~11!

As the range ofG is @l,1), for the dynamics we need onl
studyG on this interval. The different intervals on whic
K is constant and thusG continuous can be given explicitly
Let

Jk512ml2k~12l! for kPZ ~12!

and let

I 05@l,J0#, ~13!

I k5~Jk21 ,Jk# for k.0. ~14!

ThenK will have the valuek if zPI k .
In the limit mappingG, the parameterl should be treated

as fixed, whereasm is a bifurcation parameter. The value o
l is the only trace left of the original choice of the function
f , b, and h, as long as they meet the requirements sta
above. Thus the mappingG is universalfor a large class of
impacting systems and not dependent on most details of
system at hand.

The mappingG is of course significantly different from
the mappingF for finite m in that F is a mapping inRN

whereasG is a mapping inR. Also F has a finite set of
continuous branches, but the number of branches ofG is
infinite. The one-dimensional character of bothf andg in-
creases with increasingn, so the difference is only importan
wheren is not large, that is, forz close to 1. There, however
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G is very steep and the same holds forF, and we do not
expect that this will have much influence on the dynamic

To useG to make predictions about the dynamics ofF for
finite m, we should use

k5m~lm21Cff*BA12l!2, ~15!

n~x!5m2K~z!1•••, ~16!

x5 x̃1f
k

Cf
z1•••. ~17!

III. THE DYNAMICS OF G

To study the stability of the dynamics ofG, the derivative
is needed. We get

G8~z!52
l

2A12lAmlK~z!A12z
. ~18!

G8 is always negative, and ifz.J1, it is less than21. Thus
it it clear that in the interval (J1,1) there is an invariant se
with chaotic motion for all parameter values. A more inte
esting question is that of attractors.

A. Chaos for all µ

The maximal value ofG8 is at z5l, where

G8~l!52
l

2~12l!Am
. ~19!

Now if 2/3,l,1 this is still less than21 for all allowed
m. Thus there are no stable periodic orbits and the li
mapping is chaotic for allm. The same should hold forF
~andp) for all 0,k,k8. Figure 1 shows an example whe
the expanding character of the mapping is seen.

B. Stable fixed points

We can easily see that there is a fixed point on each of
branches ofG. If z̄ is one of the fixed points, we can us
Eqs.~11! and ~18!, together withG( z̄ )5 z̄ , to show that

FIG. 1. The mappingG whenl50.7 andm50.7, together with
the identity line.
-

it

e

G8~ z̄ !52
z̄

2~12 z̄ !
. ~20!

The values ofm, l, and K( z̄ ) have canceled out of the
calculation, so the slope is only dependent onz̄ , regardless
of which branch the fixed point is on. The slope is betwe
21 and 0 if 0, z̄,2/3, and is less than21 if 2/3, z̄,1.

Let us consider the fixed point on the leftmost bran
(K50). Whenm is close to 1, the fixed point will be close t
l, so if l,2/3 it will be stable for allm close to 1. If
1/4,l,2/3, the slope at the fixed point will decreas
through21 asm decreases through

m05
3l2

4~12l!
. ~21!

This indicates the possibility of a period-doubling bifurcatio
at m5m0 and z̄52/3. In fact, the period-doubling bifurca
tion is always subcritical, since the third derivative of
G+G at z52/3 is 27/4 and thus positive.

This fixed point ofG is of course a periodic point o
periodm for p, so this leads to a sequence of periodic w
dows where the period increases by 1 between consecu
windows. If we look at the two ends of the periodic windo
for the mappingp, the one of smallerk is thus a subcritical
period-doubling bifurcation and corresponds tom5m0. The
upper end corresponds tom51 and is a grazing bifurcation
This grazing bifurcation is not of the type studied he
which leads to a continuously growing attracting set, as
be seen from the fact that the eigenvalue of largest mod
is 2l/@2(12l)# and thus negative.

If 0,l,1/4 there will be no period-doubling bifurcatio
on branch 0 asm decreases from 1 towardsl2. This implies
that for m close to 1 the fixed point on the branch overI 1
will also be stable. Whenm decreases from 1 it will lose
stability in a subcritical period-doubling bifurcation at

m15
3

4~12l!
. ~22!

This means that there are two stable solutions
m1,m<1. For the mappingp they correspond to periodm
andm21. There is always at least one stable periodic so
tion of p for k small, and the bifurcations they undergo a
as above.

In Fig. 2 we show the different regions where stable fix
points exist. RegionN is outside of allowed parameter va
ues. In region 1 there is a stable fixed point on branch 0
region 2 there are two stable fixed points, one on each of
branches 0 and 1. The dash-dotted line marks the per
doubling bifurcation on branch 0 atm5m0. The dashed line
marks the period-doubling bifurcation on branch 1
m5m1. It can be remarked that them1 curve is a continua-
tion of them0 curve, if we do not normalize them parameter
to the interval (l2,1#.

C. When no fixed point is stable

Consider the case when 1/4,l,2/3 and l2,m,m0.
Then there exists a fixed pointz̄ with 2/3, z̄,J0 with an
eigenvalue less than21. For z. z̄ , the derivative ofG is
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55 269UNIVERSAL LIMIT MAPPING IN GRAZING BIFURCATIONS
less than21 but this is not necessarily the case whenz
P@l,z̄ ). To get around this, considerG+G for zP@l,z̄ ).
The derivative ofG+G is larger than 1 nearz5 z̄ and we can
in fact show that the second derivative ofG+G is a positive
number times the factor 2/32G. SinceG(z). z̄.2/3, the
second derivative is negative and the derivative ofG+G in-
creases withz decreasing fromz̄. The fact thatG+G consists
of more than one branch in the regionzP@l,z̄ ) does not
cause any problems, since the derivative increases with
creasingz in each branch and when going from one bran
to the next the derivative increases by a factor 1/l ~which
can be seen from the fact that this is also the case for
mappingG). In short, if we define a mapping

H:@l,1!→@l,1!,

H~z!5H G„G~z!… if zP@l,z̄ #

G~z! if zP@ z̄ ,1!,
~23!

the derivative will be less than21 and decreasing asz in-
creases fromz̄ , and will be greater than 1 and increasing
z decreases fromz̄ . Figure 3 illustrates this. Thus the ma
pingH will have no stable periodic points and the same g
for G. For the mappingp, if 1/4,l,2/3 andk small, a
stable periodm21 point and a stable periodm point will be
separated by a band of chaos.

Returning to Fig. 2, we have shown that for regionC, the
motion is chaotic.

D. Impossibility of other attractors

Assumel,2/3. The subcritical period-doubling bifurca
tion creates an unstable orbit of period two. The amplitu
rapidly grows asm is changed until one of the two points i
the period reachesl where the orbit is destroyed in a grazin
bifurcation. This happens at

mg5F12 SA113l

12l
21D G2. ~24!

FIG. 2. The different parameter regions for the mappingG.
RegionN is outside of allowed parameter values. In regionC mo-
tion is chaotic on the whole interval. In region 1 there is a sin
attractive fixed point. In region 2 there are two attractive fix
points.
e-
h

he

s

s

e

For 0,l,2/3 we havel2,mg,1, for 1/4,l,2/3 we
havem0,mg , and for 0,l,1/4 we havemg,m1. We will
now show thatG can have no other attractors besides
fixed points on branches 0 and 1.

Suppose 1/4,l,2/3 withmg,m,1, or 0,l,1/4 with
mg,m,m1. There is a stable fixed pointz̄ 0 in I 0 and an
unstable fixed pointz̄ 1 on I 1. Construct a mapping that i
G+G on @l,z̄ 1# and G on (z̄ 1,1). For this mapping, all
points in I 0 go to z̄ 0 monotonically, whereas for the othe
points, the mapping has a slope that is greater than 1
modulus.

Suppose 1/4,l,2/3 with m0,m,mg , or 0,l,1/4
with l2,m,mg . Now there is an unstable orbit of perio
two with membersz1 and z2 on branch 0. Again studying
G+G on I 0, we find that points in the interval (z1 ,z2) go
monotonically toz̄ 0, and that the mapping has slope grea
than 1 in modulus outside of this interval.

Finally, for 0,l,1/4 with m1,m,1, there are two
stable fixed pointsz̄ 0 andz̄ 1, and an orbit of period two with
membersz1 andz2 on branchI 1. Points inI 0 go directly to
z̄ 0 and points in (z1 ,z2) to z̄ 1. G+G has slope greater than
in (J0 ,z1# andG has slope less than21 in @z2,1).

We have shown that each stable fixed point has an inv
ant interval associated with it, and it attracts this interval. W
have also shown that outside of these intervals, eitherG or
G+G has slope larger than 1 in modulus. To show that th
are no other attractors, we argue as follows. Consider
open interval outside of the intervals around the stable fi
points, and successive iterations of the interval. Since
have found that the mapping~or at least the double mapping!
is expanding there, the interval increases in length over ite
tions. After a finite number of iterations at least one of tw
things must happen: we intersect one of the intervals aro
the stable fixed points, or the mapped interval contains
of the pointsJi of discontinuity forG. In the latter case the
interval (z8,1) for somez8,1 will be covered in the next
iteration, and yet another iteration later some points
mapped into the intervals around the stable fixed points.
conclude: Any open set contains points that converge to
of the stable fixed points, and thus there are no other att
tors. ~As was pointed out earlier, there is chaotic motion f
all values ofl andm, but it is only attracting in regionC.!

FIG. 3. The mappingH whenl50.5 andm50.3, together with
the identity line.
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E. Summary

Referring to Fig. 2, we have shown the following:~i! In
regionC there is a chaotic attractor spanning the whole
terval of allowedz values.~ii ! In region 1 the only attracto
is a stable fixed point on branch 0.~iii ! In region 2 the only
attractors are two stable fixed points, one on each
branches 0 and 1.

IV. REVIEW OF RESULTS AND DISCUSSION

For the limit mappingG, we have been able to identify a
attractors and found explicit regions where there is a cha
attractor, a single fixed point attractor, and two fixed po
attractors. The findings agree with the results of earlier
vestigations of particular systems in 1, 2, and 3 dimensio
The introduction of the limit mappingG enables us to make
an analysis that should be valid for all considered system
the limit of small bifurcation parameter.

The firm connection between results obtained for the li
mapping, and the dynamics for the full system, is not stric
shown in this paper.G is a pointwise limit, and as has bee
pointed out in a previous section, the fact thatF for nonzero
n

-
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k acts inN dimensions and only has a finite number
discontinuities prevents the convergence from being unifo
in any normal sense of the word. Nevertheless, as differen
are only pronounced nearz51, where both mappings ar
very steep, we do not expect that this will affect the valid
of the given results.

This investigation has not been much concerned with
way particular aspects of the full system change the res
when the bifurcation parameter cannot be regarded as sm
For example, whenl.2/3 it has often been observed th
stable periodic windows appear for large enough values
the bifurcation parameter. Also, Budd and Dux@3# find a
supercriticalperiod-doubling bifurcation in some of the pe
riodic windows. As we have shown here, the perio
doubling bifurcation is always subcritical for small enoug
parameter values.
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