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Universal limit mapping in grazing bifurcations
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Grazing bifurcations are nonsmooth bifurcations that occur in impacting mechanical oscillators. A sign of
the lack of smoothness is a square root expression that arises in mappings describing the dynamics. Certain
types of grazing bifurcations involve chaotic bands, or period adding cascades with or without chaotic bands.
There is also a characteristic scaling behavior present. Here this type of bifurcation is investigated, and the
self-similarity under scaling is used to derive a renormalized limit mapping. A study of the dynamics of the
limit mapping identifying all attractors for all parameter values is also presef$d4063-651X97)09401-4

PACS numbegs): 05.45+b, 03.20+i

I. INTRODUCTION (i) If A<<2/3 there are stable periodic windows. The win-
dows accumulate on=0 and the periods increase by 1 from
When studying models of impacting mechanical systemswindow to window. All orbits have a single low velocity
where the approximation of instantaneous velocity change ampact. There is a scaling in the limit—0 such that each
the moment of impact is used, one typically encounters grazperiodic window is mapped onto the nextiifis scaled by
ing bifurcations of periodic orbits. The grazing bifurcation is \2.
not found in smooth dynamical systems, and is an effect of (iv) If 1/4<\<2/3 the periodic windows do not overlap,
the fact that an impact with low velocity is sensitive to small and there is a chaotic band between windows.
changes in the initial conditions. The sensitivity is inversely (v) If A<<1/4 the periodic windows have a bit of overlap,
proportional to impact velocity. Thus, if a stable periodic and one or two of the stable orbits are always present. The
orbit is shifted under a parameter change, so that it has a zepurpose of the present investigation is to start with the form
velocity (grazing impact, stability will typically change. of the Poincarenapping for a general impacting system, and
Grazing bifurcations have been the subject of several inderive an impact return mapping very similar to that of Budd
vestigations recently. Whiston investigated the geometry ond Dux[3]. Then we show how a one-dimensional limit
the singularities, the grazing bifurcations of a saddle pointmapping can be obtained through renormalization as we let
and the creation of chaotic sets for a linear driven impacthe bifurcation parameter go to zero. The mapping obtained
oscillator[1]. Nordmark studied the bifurcations of a node in is piecewise continuous with an infinite number of branches.
single degree of freedom driven impact oscillati2é The  Other investigators have generally studied a low order ap-
existence of an attractor under conditions on the eigenvalugsroximation to the Poincareapping of the system. Using
and an orientation condition was shown. The possibility ofthe limit mapping, we prove the existence of stable periodic
existence of chaos for an interval of the bifurcation param-orbits, and chaotic motion.
eter was demonstrated, as was a scaling behavior. Budd and
Dux studied the linear impact oscillator with driving near Il. POINCARE MAPPINGS
resonance, and obtained an impact return mapping that is NEAR A GRAZING PERIODIC ORBIT
close to being one dimensional, when close to the bifurcation o ) o,
point [3]. Lamba and Budd made a careful estimate of the ~We will introduce a convenient form of the Poincanep-
Lyapunov exponent in the chaotic baf]. Fredriksson and PiNg near a grazing periodic orbifredriksson ar,Ld Nord-
Nordmark gave a derivation of the local form of the PoincareMark[5]). We assume thaba section coordinateR™ and a
mapping for systems with more than one degree of freedorRifurcation parameter e R™ are introduced in such a way
[5]. that the grazing fixed point is at=0 Wheny=0.
There have also been a number of studies of explicit map- The mapping neax=0, »=0 can be written as
pings with square root terms. Nusseal. [6] studied a map- _
LI ; ; . . . p=feq, (D)
ping in one dimension. An equivalent mapping was studied

by Foale and Bisho}p7]. A two-dimensional mapping was \yheref describes the nonimpact dynamics, apaorrects

thoroughly examined by Chiat al.[8,9]. for low velocity impactsfeg is the composition of andg,
In the current investigation we concentrate on the casefog) (x)=f(g(x)). The functionf

where the bifurcation leads to an attractor with either stable

periodic motion of long period, or chaotic motion. What is f(x,v):RNXRM—RN
observed after the bifurcations is well summarized in Chin . )

et al. [8]. We assume a bifurcation parametersuch that 1S Smooth withf(0,0)=0. We write

there is a grazing bifurcation asincreases through 0. Call _
; L i A=D,f(0,0). 2)
the largest eigenvalue of the periodic orbit
(i) For v>0 there is an attractor of siZ8(\/v). Points neax=0 may or may not undergo a low velocity
(i) If 2/3<\ there is chaotic motion for@v<v'. impact. We will use the values of a smooth function
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h(x,v):RNXRM—R
with h(0,0)=0 to separate the cases. We introduce

C=D,h(0,0#0. 3
When h>0 (nonimpacting pointsthere is no low velocity
impact, sog should then be the identity mapping. Ao 0
(grazing points we have a grazing impact, and whbhr:0
(impacting point} there is a low velocity impacig can be
written as

g(x,v):RNXRM RN,

X if h(x,»)=0
9=k ymy+x if hixpy=<o, P

where

y=v=h(x,»), 5
andb is a smooth function

b(x,y,v):RNXRx RM RN

with

B=Db(0,0,0+#0. (6)

From this it follows thatg is a continuous mapping, but
D,g is unbounded for small negativre

Whenv=0, we see that=0 is a fixed point off, and we
assume that for small there is a fixed poink (v) of f with
X(0)=0. If h(X)>0, thenx is also a fixed point of the full
Poincaremappingp. The grazing bifurcation occurs as
tries to enter the impacting regidm<0. For h(X)<0 we
introducex=—h(X).

We now make the following assumption§) A has a
single eigenvaluex of largest modulus, and<ON<1. To
this eigenvalue corresponds a right eigenvegicand a left
eigenvectorg*, with ¢* p=1. (ii) ¢*B#0 and Cp+#0.
(iii) CA"B>0 for alln=1. These conditions are sufficient to
guarantee an attractor of sie¥ \/x) for all sufficiently small

positive k. The key feature of the dynamics for small posi-
tive « is that iterates repeatedly return to the impact region,

UNIVERSAL LIMIT MAPPING IN GRAZING BIFURCATIONS

267

z<1 for impacting points,z>1 for nonimpacting points,
z=1 for grazing points, an&(Xx)=0. Then we have for
impacting pointgy=b+/x1—2z+x. Now if x is of the order
x and we keepg<1 fixed, the only important contribution
will be B\/k\/1—z, with other terms vanishing in relation to
this ask—0.

Turning to f", we have for small x—X that
f(x)=X +A"(x—X)+ O(x—X)?. For largen, A" will be
dominated by the effect of the eigenvalue largest in modulus,
SOA"= p\"¢p* + smaller terms.

Putting this together we find

)\H(X)

N

As has been pointed out earlier, there is a scaling relation
such that the dynamics df is similar if « is scaled by a
factor A2. To take advantage of this fact we introduce two
new parameterg and m, where u e (A?,1] and m is an
integer. Any positivex can be uniquely written as

k=pu(N""IChP*BY1—N)2.

We will also writek(x) =m—n(x).
Now we can keez<1 andpu fixed and letm—oo. All
x dependence except througtwill vanish, and we find

z(f"og(x))= (Ce)(p*B)VI=2z(X)+---. (8

(©)

k(x)—K(z), (10
AV1-
Z(fnog(X))HG(Z):\/lT)\—\/;iK(Z). (11)

As the range ofG is [\,1), for the dynamics we need only
study G on this interval. The different intervals on which
K is constant and thu& continuous can be given explicitly.
Let

J=1—uN\?(1—\) for keZ (12

and let
lo=[N,Jdol, 13
l=(Jx_1,J¢] for k>0. 14

but the typical time between impacts is large, of the ordefrhank will have the valuek if ze I

—log(x).

A. The return mapping and its limit form

In the limit mappingG, the parametex should be treated
as fixed, whereag is a bifurcation parameter. The value of
\ is the only trace left of the original choice of the functions

We will study the dynamics using a return mapping fromf: b, andh, as long as they meet the requirements stated

the impact region back to itself. The mapping K
=(fog)"=f"g, where n(x) is chosen such that
h(f%g)=0 for 1<k=n-—1, buth(f"g)<0. Thusn(x) in-

above. Thus the mapping is universalfor a large class of
impacting systems and not dependent on most details of the
system at hand.

dicates the number of iterations needed to return to the im- 'he mappingG is of course significantly different from

pacting regionF is continuous in regions whenme is con-

the mappingF for finite m in that F is a mapping inRN

stant, but discontinuous where makes a jump. To find a WhereasG is a mapping inR. Also F has a finite set of

useful limit form of the return mapping, we will introduce
the coordinate

zZ(X)=[xk+h(x)]/«. (7

continuous branches, but the number of branche& daé
infinite. The one-dimensional character of bdtlandg in-
creases with increasing so the difference is only important

wheren is not large, that is, for close to 1. There, however,
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! G'(z)= 2 20
P (z)=- 20=7) (20)
0.95r -
The values ofu, \, and K(z) have canceled out of the
0.9} calculation, so the slope is only dependentzmregardless
of which branch the fixed point is on. The slope is between
(=) 0.85( —1 and 0 if 0<z<2/3, and is less thar 1 if 2/3<z<1.
Let us consider the fixed point on the leftmost branch
08 (K=0). Wheny is close to 1, the fixed point will be close to
N\, so if A<2/3 it will be stable for allu close to 1. If
1/4<\<2/3, the slope at the fixed point will decrease
0.75
through—1 asu decreases through
. . 2
087 0.8 0.9 1 3A

z M= Z=N)" (21)
FIG. 1. The mappings when\ =0.7 andu=0.7, together with

the identity line. This indicates the possibility of a period-doubling bifurcation

at u=uo andz=2/3. In fact, the period-doubling bifurca-
tion is always subcritical since the third derivative of
GoG atz=2/3 is 27/4 and thus positive.

This fixed point of G is of course a periodic point of
periodm for p, so this leads to a sequence of periodic win-
dows where the period increases by 1 between consecutive

G is very steep and the same holds for and we do not
expect that this will have much influence on the dynamics.
To useG to make predictions about the dynamicg-ofor

finite m, we should use

k=p(\"1CHp* Bm)z, (15) windows. If we look at the two ends of the periodic vyirldow
for the mappingp, the one of smallek is thus a subcritical
n(xX)=m—K(z)+- - -, (16)  Pperiod-doubling bifurcation and co.rrespond's,ut@ Mo The
upper end corresponds fo=1 and is a grazing bifurcation.
_ K This grazing bifurcation is not of the type studied here,
X=X+ ¢@Z+ SR (17 which leads to a continuously growing attracting set, as can

be seen from the fact that the eigenvalue of largest modulus
is —N/[2(1—)\)] and thus negative.

If 0 <A <1/4 there will be no period-doubling bifurcation
To study the stability of the dynamics &, the derivative ~ ON branch 0 ag decreases from 1 towards. This implies

lll. THE DYNAMICS OF G

is needed. We get that for u close to 1 the fixed point on the branch over
will also be stable. When decreases from 1 it will lose
A stability in a subcritical period-doubling bifurcation at
G'(z2)=— < . (19
21NV K@ 1-2 3
G' is always negative, and #>J, it is less than—1. Thus

it it clear that in the interval J;,1) there is an invariant set
with chaotic motion for all parameter values. A more inter-
esting question is that of attractors.

This means that there are two stable solutions for
pm1<u<1. For the mapping they correspond to periogh
andm—1. There is always at least one stable periodic solu-
tion of p for x small, and the bifurcations they undergo are
as above.
The maximal value oG’ is atz=X\, where In Fig. 2 we show the different regions where stable fixed
points exist. RegiomN is outside of allowed parameter val-
A ues. In region 1 there is a stable fixed point on branch 0. In
2(1-1\) \/; region 2 there are two stable fixed points, one on each of the
branches 0 and 1. The dash-dotted line marks the period-
Now if 2/3<\<1 this is still less than-1 for all allowed doubling bifurcation on branch 0 at= u,. The dashed line
w. Thus there are no stable periodic orbits and the limitmarks the period-doubling bifurcation on branch 1 at
mapping is chaotic for ali. The same should hold fdf = ;. It can be remarked that the, curve is a continua-
(andp) for all 0<«<«’. Figure 1 shows an example where tion of theu, curve, if we do not normalize the parameter
the expanding character of the mapping is seen. to the interval §2,1].

A. Chaos for all p

G'(NM)=- (19

B. Stable fixed points C. When no fixed point is stable

We can easily see that there is a fixed point on each of the Consider the case when H4 <2/3 arﬁ)\2< n< o
branches ofG. If z is one of the fixed points, we can use Then there exists a fixed poiat with 2/3<z<J, with an
Egs.(11) and(18), together withG(z) =z, to show that eigenvalue less than1. Forz>z, the derivative ofG is
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FIG. 3. The mappindgd when\ =0.5 andu=0.3, together with

FIG. 2. The different parameter regions for the mapp{dg ) e
the identity line.

RegionN is outside of allowed parameter values. In reg®mo-
tion is chaotic on the whole interval. In region 1 there is a single 5
attractive fixed point. In region 2 there are two attractive fixed FOr O<A<2/3 we havex“<uy<1, for 1/4<\<2/3 we

points. haveuo<ug, and for 0<A <1/4 we haveuy<u;. We will
now show thatG can have no other attractors besides the
less than—1 but this is not necessarily the case when fixed points on branches 0 and 1.
e[)\,z).. To get around this, considés-G for ze[\,z). Suppose 14\ <2/3 with ug<u<1, or <A <1/4 with
The derivative 0fG°G is larger than 1 near=z and we can  u,<u<pu;. There is a stable fixed poimty in I, and an
in fact show that the second derivative @#G is a positive  unstable fixed poink, on I,. Construct a mapping that is
number times the factor 2/3G. SinceG(z)>z>2/3, the GG on [\,z,] and G on (z4,1). For this mapping, all
second derivative is negative and the derivativese in-  points inl, go to z, monotonically, whereas for the other
creases witlz decreasing fronz. The fact thalG-G consists  points, the mapping has a slope that is greater than 1 in
of more than one branch in the regia[\,z) does not modulus.
cause any problems, since the derivative increases with de- Suppose 1/4\<2/3 with uo<p<wmg, or 0<A<1/4
creasingz in each branch and when going from one branchwith 7\2<,u<,ug. Now there is an unstable orbit of period
to the next the derivative increases by a factor fwhich  two with membersz, and z, on branch 0. Again studying
can be seen from the fact that this is also the case for th@-G on |,, we find that points in the intervalz{,z,) go
mappingG). In short, if we define a mapping monotonically toz ,, and that the mapping has slope greater
than 1 in modulus outside of this interval.

H:IAD—[ND), Finally, for 0<A<1/4 with u;<u<1, there are two
stable fixed pointg , andz;, and an orbit of period two with
membersz; andz, on branchl ;. Points inly go directly to
Z, and points in g;,2,) to z;. GoG has slope greater than 1
in (Jg,z1] andG has slope less than 1 in[z,,1).

We have shown that each stable fixed point has an invari-
creases fronz, and will be greater than 1 and increasing asant interval associated With. it, and it attrgcts this intc_erval. We
z decreases froma. Figure 3 illustrates this. Thus the map- Nave also shown that outside of these intervals, eithar

ping H will have no stable periodic points and the same goe$>°G has slope larger than 1 in modulus. To show that there
for G. For the mapping, if 1/4<\<2/3 andx small, a are no other attractors, we argue as follows. Consider an
stable periodn— 1 point a,nd a stable periad point will i)e open interval outside of the intervals around the stable fixed

separated by a band of chaos. Eomtsf, anéjtﬁu;:;::sswe |t.erat|otn|s oft :Ee éntetr)\llal. Since we
Returning to Fig. 2, we have shown that for regionthe . ave found that the mappn{gr at least the double mappmg
L : is expanding there, the interval increases in length over itera-
motion is chaotic. . . . X
tions. After a finite number of iterations at least one of two
things must happen: we intersect one of the intervals around
the stable fixed points, or the mapped interval contains one
Assumel <2/3. The subcritical period-doubling bifurca- of the pointsJ; of discontinuity forG. In the latter case the
tion creates an unstable orbit of period two. The amplitudénterval (z’',1) for somez’ <1 will be covered in the next
rapidly grows asu is changed until one of the two points in iteration, and yet another iteration later some points are
the period reaches where the orbit is destroyed in a grazing mapped into the intervals around the stable fixed points. To

G(G(2)) if ze[\,z]
H(z)= L (23
G(2) if ze[z,1),

the derivative will be less thar-1 and decreasing asin-

D. Impossibility of other attractors

bifurcation. This happens at conclude: Any open set contains points that converge to one
) of the stable fixed points, and thus there are no other attrac-
A JAESN (24) tors. (As was pointed out earlier, there is chaotic motion for
Mo~ |2 1-X\ all values ofA and w, but it is only attracting in regiort.)
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E. Summary k acts inN dimensions and only has a finite number of
Referring to Fig. 2, we have shown the following) In  discontinuities prevents the convergence from being uniform
region C there is a chaotic attractor spanning the whole in-in @ny normal sense of the word. Nevertheless, as differences
terval of allowedz values.(ii) In region 1 the only attractor are only pronounced near=1, where both mappings are
is a stable fixed point on branch @u) In region 2 the 0n|y very steep, we do not expect that this will affect the Validity
attractors are two stable fixed points, one on each off the given results.

branches 0 and 1. This investigation has not been much concerned with the
way particular aspects of the full system change the results
IV. REVIEW OF RESULTS AND DISCUSSION when the bifurcation parameter cannot be regarded as small.

o ) . ] For example, whem>2/3 it has often been observed that
For the limit mappings, we have been able to identify all staple periodic windows appear for large enough values of
attractors and found explicit regions where there is a chaotighe pifurcation parameter. Also, Budd and D[&] find a
attractor, a single fixed point attractor, and two fixed pointsypercritical period-doubling bifurcation in some of the pe-
attractors. The findings agree with the results of earlier inyjodic windows. As we have shown here, the period-

vestigations of particular systems in 1, 2, and 3 dimensionsgoubling bifurcation is always subcritical for small enough
The introduction of the limit mappinG enables us to make parameter values.

an analysis that should be valid for all considered systems, in
the limit of small bifurcation parameter.

The firm connection between results obtained for the limit
mapping, and the dynamics for the full system, is not strictly
shown in this papelG is a pointwise limit, and as has been  This work was supported by the Swedish Research Coun-
pointed out in a previous section, the fact tkafor nonzero  cil for Engineering Science§'FR).
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