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Critical exponents of nonequilibrium, Ising-like phase transitions in two-dimensional lattices of locally
coupled chaotic maps are estimated numerically using equilibrium finite-size scaling theory. Numerical data
supports the existence of a new universality class, which groups together phase transisipmshobnously
updatedmodels with Ising symmetry, irrespective of the specific microscopic evolution rule, and of the
presence of stochastic noise. However, nonequilibrium, Ising-like phase transitions of asynchronously updated
models belong to the Ising universality class. The new universality class differs from the equilibrium Ising
universality class by the value of the correlation length exponent).89+0.02, while exponent ratiog/ v
and y/v as well as Binder's cumulatd* assume their usual valugs1063-651X97)15703-9

PACS numbds): 05.45+b, 05.70.Jk, 64.60.Cn, 47.27.Cn

[. INTRODUCTION ratios, an isotropic and an anisotropic phase are separated by
a continuous transitiof8]. An important, and much studied
The emergence of long-range order, or collective behavmodel of spatiotemporal chaos is the complex Ginzburg-
ior, in extended dynamical systems with short-range interackandau equation, a nonlinear partial differential equation de-
tion and local chaotic dynamics has attracted considerablscribing the slow modulations of an oscillatory mode close to
attention recentlyf1-8J. In particular, diffusivelike interac- a supercritical Hopf bifurcatiofl5]. Large-scale numerical
tion of identical, chaotic, dissipative dynamical units oftensimulations support the existence of two turbulent regimes,
gives way to spatiotemporally disordered regimes wheralefined respectively by the absence and presence of zeros of
chaos becomesxtensivethat is where quantifiers of chaotic the amplitude of the complex field, and usually referred to as
activity—say the Lyapunov dimension or the Kolmogorov- phase and amplitude turbulence. Due to numerical limita-
Sinal entropy—scale with system siZ®,10,4. Intensive tions, the status of this transition—smooth or sharp—as well
quantities, such as entropy densities, are then expected &s the very question of its persistence in the infinite-size limit
remain well behaved in the “thermodynamic” limit of infi- remain controversidl6].
nite system size, where simpler effective descriptions of For lack of adequate theoretical insight, transitions be-
high-dimensional spatiotemporal chaos may become posween extensively chaotic phases must be treated in a phe-
sible. Short of a guiding principle from which invariant mea- nomenological manner, often drawing on intuition based on
sures, order parameters, and other relevant statistical quangguilibrium statistical mechanics. While extensively chaotic
fiers can be derived rigorously, the current understanding ofegimes occur in a wide range of extended dynamical sys-
the long-wavelength, low-frequency properties of exten-tems, from nonlinear partial differential equatiofi@] to
sively chaotic phases relies heavily on notions borrowedtoupled nonlinear oscillatorsl6], we concentrate here on
from the better established field of equilibrium statistical me-coupled map lattice€CML’s), or lattices of coupled, iterated
chanics, and adapted to the phenomenology of spatiotempeaps[17]. CML's provide a convenient testbed for simulat-
ral chaog10-14. ing extended systems with local chaos, since their micro-
Transitions between distinct extensively chaotic regimescopic dynamics can be adjusted at will. An additional mo-
are liable to occur when some control parameter is variedivation is numerical convenience: due to current numerical
and have been observed in both laboratory and numericaonstraints, CML's are one of the few extensively chaotic
experiments. An interesting example is the transition besystems for which finite-size effects close to transitions can
tween two disordered regimes observed in large aspect-ratize evaluated accurately enough to yield controlled, reliable
Rayleigh-Bmard cells, between a phase dominated by theextrapolations to the thermodynamic limit.
chaotic interaction of straight convection rolls, and a phase Lattices of diffusively coupled logistic maps are known to
where spiral defects control the large-scale properties of thdisplay intriguing, dynamically nontrivial collective behav-
flow [7]. A natural order parameter is the average curvaturgor, such as periodic and quasiperiodic time evolution of col-
of rolls, which may be used to characterize the transition alective variable$1]. Their rich phase diagram includes many
an aspect ratio fixed by the experimental setup. Another exeollective bifurcations, whose properties are similar to those
ample is given by electrohydrodynamic convection in nem-of phase transition§18]. Even though time-dependent col-
atic liquid crystals, known to possess at least two distinclective behavior is often seen as a generic property of
spatiotemporally chaotic regimes. For large enough aspe@ML’s, the scope of this study will be limited to spontane-
ously broken parity-reversal invariance, and exclude cases of
broken time-translation invariance similar to those reported
*Present address: Department of Physics, Kyoto Universityjn [1,18]. Following the recent work of Miller and Hugé&],
Kyoto 606, Japan. we choose as a reference the equilibrium two-dimensional
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Ising model, and consider only CML's whose time- lar, second-order transitions are characterized by singular
asymptotic statistical properties remain stationary. In thissecond-order, but smooth first-order derivatives of the free
perspective, we present data obtained from numerical simwnergy: the susceptibility, specific heat, and correlation
lations of several closely related, CML-like models which |ength all diverge at the transition. On the other hand, the
exhibit continuous phase transitions akin to the Ising ferroprder parameter vanishes in the disordered phase, \amies
magnetic critical point. We successively address the relatedinyouslyin the vicinity of the transition, and acquires non-

yet separate questions of scaling and universality, with aerg values indicative of a spontaneously broken symmetry
emphasis on accurate measures of the static critical €xpgy the ordered phase.

nentsg, v, andv, obtained from equilibrium finite-size scal-

ing laws. Our main result is that Ising-like transitions of \ ot o0ser manner in far-from-equilibrium, deterministic,
CML’s respect equilibrium scaling laws, but form a new

! . . . . ., many-body systems, for lack of a theoretical framework
universality class, associated with a new “relevant” param-

- uivalent to equilibrium statistical mechanics. Apart from a
eter[5]: synchronous update, a defining feature of extende%q a b

q cal Provided that all lati ; q w particular casegl9], determining the invariant measure
ynamical systems. Provided that all lattice sites are updatege . ,pjed dynamical systems remains an impossible task.

synchr(_)nously, estimatgs_ of the 90rre|ati0n-|engt_h exponeny o partition function and other thermodynamic functions,

v consistently and significantly differ from the Ising expo- g1, a5 the specific heat, are usually not known. Appropriate

nent vising=1. We find vgyncnronous=0.89£0.02, while the  orqer narameters are thus defined on a case-by-case, mostly

exeonens ratloselv' and y/v assume their traditional values empirical manner. Low-dimensional dynamical systems

of 5 a_nd 4 res_pectlvely. . . without external noise may exhibit symmetry and ergodicity
This paper is organized as fO||0WSZ in Sec. I, the_ Com'nu'breaking [20]: one may thus question whether symmetry

ous transition of a CML originally introduced if8] is ex-  preaking in the thermodynamic limit adequately signals the

amined in detail. Following a summary of previous theoreti-o ¢ rrence of phase transitions in extended dynamical sys-
cal and numerical workSec. Il A), we first review the tems[21].

scaling properties of this transition for large system sizes gpatial and temporal correlation functions of local vari-
(Sec. II'B), before assessing the relevance of equilibriumapieg can be systematically defined for extended dynamical
finite-size scaling lawsSec. I Q: We ne>§t _dem_onstrate_ that systems. In fact, they may even form the basis of approxi-
the presence of strong corrections to finite-size scaling forgation methods aimed at predicting the emergence of long-
bids an estimate of critical exponents accurate enough tpynqe ordef22]. The combination of local chaos and diffu-
decide whether or not this transition belongs to the equilibj¢ coupling makes most extensively chaotic systems
rium Ising universality claseSec. 1 D. The question of uni-  gpatially mixing. As a result, equal-time, two-point spatial
versality in continuous transitions of CML'’s is addressed ingqrglation functions fall off exponentially at generic points
Sec. lIl. The Ising-like transition of a CML with short-range, i, narameter space, allowing for the unambiguous definition
locally anisotropic coupling rule is introduced in Sec. Il A. ot 5 correlation length. Of course, finite-size systems neces-
Thanks to weak corrections to finite-size scaling, we canyarily possess a finite correlation length. For these reasons,
demonstrate that this transition does not belong to the Ising,e choose to define theontinuous transitiorof an exten-
universality class. Since CML's with different chaotic local sively chaotic, extended dynamical system as a point in pa-
maps exhibit the same scaling properties, we conjecture thal meater space where the correlation length associated with
estimates of critical exponents presented in Sec. |1 D 0focq) yariaples diverges in the thermodynamic limit. Further
Miller and Huse's model are in fact equal to their asymp- se of the expression “second-order transition” will be re-
totic, infinite-size values, and conclude that these transitiongyicted to equilibrium transitions with nonanalytic thermo-
form a new universality class. Next, we present evidenceynamic functions. Thanks to finite-size scaling methods, we

according to which synchronous update is the associateghg| |ater give ample evidence that continuous transitions, as
“relevant” parameter. While the presence of stochastic noisgyefined above. do occur in CML’s.

for synchronous update ruléSec. Il B) leads to critical At equilibrium, the divergence of coherence time and

properties identical to those observed in the models of Secgngih scales observed at the transition point is responsible
Il and 1l A, asynchronously updated models turn out to be-,r ‘gne of the most spectacular properties of second-order
long to the Ising universality clagSec. Il O. The implica-  phase transitions: universality. The occurrence of fluctua-
tions of these results are finally discussed in terms of theons on all length scales translates quantitatively into scaling

notion of weak universality, which may be relevant to far-|5,ys which govern the behavior of macroscopic quantities
from-equilibrium models lacking a well-defined temperaturecjose to the transition. Second-order transitions can then be

The notion of phase transition tends to be used in a some-

(Sec. IV). classified according to the values of the corresponding expo-
nents. Thanks to a diverging correlation length, the numeri-
Il. CONTINUOUS TRANSITION OF A CML: SCALING cal value of these critical exponents is insensitive to many

PROPERTIES details of the underlying physics, as expressed by a micro-
scopic Hamiltonian function. Universality classes, or sets of
transitions possessing the same critical exponents, gather
At equilibrium, phase transitions are usually defined agphysical phenomena of seemingly different nature, provided
points in parameter space where a system’s partition functiothat a small number of macroscopic constraints are re-
becomes nonanalytic in the infinite-size, thermodynamicspected. Static exponents of second-order transitions in equi-
limit. Transitions are called first or second order according tdibrium, locally interacting systems without disorder depend
the singularity order of thermodynamic functions. In particu-only on the type of symmetry broken by the ordered phase

A. General considerations
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and on the space dimensidn23]. and Husd 3], who introduced a coupled map lattice specifi-
How microscopic details become irrelevant close to thecally designed to exhibit an Ising-like continuous transition
transition point is best understood within the framework ofbetween two extensively chaotic phases. Their results are
the renormalization grouf23]. A coarse-grained Ginzburg- twofold: first, the large-scale properties of ttierromagneti-
Landau functional is usually postulated to describe the largeeally) ordered phase are well described by the same Lange-
scale behavior close to criticality. This functional dependsvin equations as used at equilibrium to characterize the slow
only on the space dimensionality and on symmetries of thevolution of antiphase droplets of the Ising model. Second,
system. Thanks to the associated Gibbs measure, contribthe static and dynamic critical exponents they measure at the
tions arising from small length scales can be integrated oufransition are “consistent with” the Ising universality class.
iteratively. Critical exponents are obtained as eigenvalues ofhe first point provides additional evidence that slow modes
the linearized iteration operator close t¢stablg fixed point  of extensively chaotic phases usually decouple from their
of the renormalization flow. In many cases, their numericalmicroscopic, chaotic background, which may then be cor-
values can only be calculated perturbatively close to the uprectly approximated by stochastic noise. In fact, the diffusive
per critical dimensiord;, above which fluctuations become relaxation of antiphase droplets they observe can probably be
irrelevant. A remarkable level of agreement between theorytraced back to the diffusive nature of interactions built in the
experiments, and numerical simulations validates the mangnicroscopic evolution rule of this CML. On the other hand,
assumptions involved in this procedure, ranging from thewe believe that their second conclusion should be taken only
validity of ad hoccoarse-grained descriptions to the conver-literally, without hastily proceeding to infer that this critical
gence properties of perturbative expansions. pointdoesbelong to the Ising universality class. As we shall
Some degree of universality is naturally expected to holdshow below, answering this question on the basis of data
for nonequilibrium transitions with a diverging correlation obtained from numerical simulations of thisole model
length[24]. A coarse-grained description is then provided bywould require prohibitively large computing power, due to
a Langevin equation, i.e., a stochastic partial differentiathe occurence of unusually strong corrections to finite-size
equation for the slow modas, of the system, of the follow- scaling laws.
ing form:

O, t) = FL i, V il + (X, 1), (1) B. Continuous phase transition

Coupled map lattices were introduced as generic, humeri-
where fast, microscopic degrees of freedom are modeled by@ally economical models of spatio-temporally chaotic
Gaussian,s-correlated white noisep(x,t), and the func- reaction-diffusion systen{47]. A CML is well-defined once
tional F describes thgnonlineay interaction between the  three ingredients are given: a lattice geometry; a microscopic
modes{ ¢, k=1, ... n}, taking into account all operators evolution rule, expressing interaction between neighboring
compatible with the underlying symmetries. Provided that arsites; and a local map which governs the reaction part of the
equation such a€l) accurately describes the slow modes oftime evolution of local variables. In order to produce a fer-
the system, the standard prescriptions of the dynamic renoromagnetic critical poin{3], Miller and Huse considered a
malization grougd23—-25 lead to sufficient conditions under two-dimensional CML with nearest-neighbor, diffusive cou-
which a nonequilibrium transition is expected to belong topling on a square lattice and with an odd, chaotic local map.
the universality class of the Ising model, for both static andn this section, we introduce their model, and discuss its
dynamic critical exponent26,27. Irreversible, nonequilib-  statistical properties, as observed for large lattices.
rium contributions become irrelevant close to the fixed point The choice of a two-dimensional geometry is motivated
of the renormalization flow provided that the transition is by the absence of compelling arguments and of convincing
well described by a single, nonconserved, scalar order paxperimental evidence supporting the existence of genuine
rameter, and that the underlying model involves only shortphase transitions between chaotic phases in one-dimensional
range interactions. For conciseness, such transitions will bextended dynamical systems. To our knowledge, time-
referred to adsing-like transitionsin the following. Note dependent collective behavior has never been reported in
that a microscopic, up-down symmetry is in principlet  one-dimensional CML'§1]. Our simulations of the “phase
required[27]. transition” of a one-dimensional model reported 80] does

In fact, much evidence has been gathered, according toot show any evidence either of critical properties, or of a
which Langevin equations similar to E¢l) faithfully de-  diverging correlation length. For the complex Ginzburg-
scribe the large-scale properties of extensively-chaotit.andau equation, the exact status of the transition from de-
phasesof extended dynamical systems. Mesoscopic Langefect turbulence to phase turbulence in the infinite-size limit
vin equations have been successfully applied to systems &smooth crossover or true phase transitjorémains unre-
diverse as CML’s with conserved quantitiesl], cellular ~ solved[6]. For all practical purposes, the Mermin-Wagner
automata with quasiperiodic time evolution of collective theorem, stating the impossibility of long-range order in one-
variableq 28], or the Kuramoto-Sivashinsky equation, whosedimensional equilibrium systems with short-range interac-
large-scale properties are well described by the Kardartions, seems to hold true for extensively-chaotic dynamical
Parisi-Zhang stochastic growth equati@9]. systems.

Far less is known about the validity of Langevin descrip- Following Miller and Huse, here we consider the simple
tions and renormalization group approximations in the vicin-case of a square, two-dimensional lattice. Nearest-neighbor
ity of continuous transitions of extended dynamical systemsgoupling is chosen in conformity with the equilibrium Ising
A recent study addressing these questions is due to Millemodel. Continuous local variable$¥j are assigned to nodes



55 UNIVERSALITY IN ISING-LIKE PHASE . .. 2609

10 A H-'nvf-;,q_‘.-r“m

—— Miller and Huse o e~ > £
- y=x ’

= e

=00

P

-10 -
-1.0 0.0 1.0

FIG. 1. A graph of the piecewise linear local map of Miller and
Huse’s model.

of a lattice of linear sizd_, where indices andj denote

discrete Cartesian coordinates, dnddices discrete time. At
each time step, all sites are updatesiynchronouslhaccord-

ing to the following evolution rule:

Hl_(l 4g)f(X| J)+g(f(xl—l])+f(xl J—l)+f(xl+l])
+1(,j42), 2

where the coupling constary, a real parameter, takes its
values in the real intervd,3] so as to insure the invariance
of the CML'’s phase space under ry®.

When the local phase space is a parity-invariant interval,
spin variables:fit,j can be naturally defined as

o ;=sgnx ;) e{-1,1. 3

Combining this remark with the additional requirement of
local chaos, Miller and Huse were led to the choice of the
odd, piecewise linear, everywhere expanding map defined on
the bounded intervdl—1,1] by (Fig. 1)

AR

( 1
—-3x—2 |if —1$xs—§
FIG. 2. Typical snapshots of Miller and Huse’s model, in time-
f(x)=¢ 3x if — Eg < l (4) asymptotic regimes observed far from the transition point
3 3 9.~ 0.205 for a linear siz& =400. Up- and down-spins are repre-
1 sented by black and white pixels, respective{g) Disordered,
—3x+2 if =sx=<1. “paramagnetic”’ phaseg=0.18. (b) Ordered, “ferromagnetic”
\ 3 phaseg=0.23.

This map is chaotic, its positive Lyapunov exponent is equalncreased rigidity leads to thelynamica) selection of a pre-

to In3, and its invariant measure is uniform pn 1,1]. ferred sign: the CML exhibits ferromagnetic long-range or-
For numerical convenience, the evolution rul@ is der. Both phases are extensively chaotic, as can be checked,

supplemented with periodic boundary conditions. Startingor instance, from numerical estimates of the Kolmogorov-

from random initial conditions uniformly distributed in Sinal entropy obtained for different lattice sizes. They are

[ —1,1], a unique attracting steady state is reached after axamples of “fully developed spatiotemporal chaos,” the

generally short relaxation time. Depending on the couplingstrong-coupling regime of many diffusively coupled CML's,

strengthg, two qualitatively distinct regimes are observed as was first observed by Kaneko in coupled logistic maps

(Fig. 2: for values smaller than a critical coupling strength [31].

denotedy., the CML is “paramagnetic,” since positiveip) Ergodicity being assumed, the ensemble avekggeof

and negativeldown) spins are equiprobable. Abowg, an  any observablé of the CML is equated with its temporal
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the correlation functiorinot shown suggests that the corre-
lation length may diverge at that point in the thermodynamic
limit, signaling the occurrence of a continuous phase transi-
tion. We now proceed to the definition of the corresponding
order parameter.

For a finite-size lattice, the instantaneous magnetization is
defined as the spatial average of spin values:

1
th:FiEj al ;. (6)

Note that the local spin3r}’j are intermediate variables

which do not take a direct part in the dynamics. Because of
finite-size effects, sign reversals o, occur in the ordered
phase, on a time scale long compared to that of its fluctua-
tions. It is therefore customary to define the finite-size order
parameteM | as[32]

t=tg+tm

_ t\_ t
Me=(mi)=g—7 2 Imil, @)

FIG. 3. A typical snapshot of Miller and Huse’s model close to
its transition point, obtained in the time-asymptotic regime forwhereby the ordered phase exhibits non-zero values of the
L =400 andg=0.205=g.(L =400). Up- and down-spins are rep- finite-size magnetizatioM, . Note that the average interval
resented by black and white pixels, respectively. of time between two sign reversals of the instantaneous mag-
netization diverges with system sig21], an indication that
average, and in practice computed along a trajectory as  ergodicity breaking and symmetry breaking occur only in the
thermodynamic limit.
. The susceptibility of equilibrium Ising systems is tradi-
t:Et A, (5 tionally defined as the response of the order parameter to an
0 external perturbation. For lack of a standard, unambiguous
way to couple the CML to an external fie]ld1], we choose
to define the finite-size susceptibilify; as follows:

t=tg+tm

(A= o+ 1

wheret, andt,,, respectively, denote the duration of dis-
carded transients, and tkgufficiently long integration time.
Note that relaxation times toward the attractor may become X =LA(Im|-M)?), (8)
long, in the ferromagnetic phase, due to the diffusivelike

decay of large antiphase droplets which may arise from exynere the averagé) is computed as in Eq5).

ceptional initial conditions. In the following, care has been  cjose to the transition, we checked that both magnetiza-
taken to insure that the observed statistical properties do inon and susceptibility depend algebraically on the distance
deed correspond to the time-asymptotic, stationary regime.tq criticality (see Fig. 4 for our raw dataln the infinite-size

Spatial patterns are homogen(_eous and isotropic on Iengmnit, the following power laws are expected to apply:
scales large compared to the lattice step. Macroscopic quan-

tities such as the averaged activ{ty) may thus be obtained M~(g—g.)? for g=g.,

either from the time average of a local variabdﬁsogjo, for

any fixed lattice site of coordinatesy(jy), or from that of x~19—9d 7

the space average (Xf'j computed over the lattice. For all -

(normed vectorv of the plane, a one-dimensional, equal- &~lg—gd ™" ©

time, two-point spatial correlation functid®,;(r) can be de- where, y, andw are the usual static critical exponefi2s].

fined along directiorv. The spatial extension of clusters of aq g first step, we estimate the effective exponghts,and
aligned spins in the disordered phase is of the order of a fev;;1024 defined’ for a finite sizé = 1024 as

lattice steps far from the transition poigt [see Fig. 2a)].

The exponential decay of correlation functioBg(r) leads M 1004~ (9— g(1024)P1024  for g=g.(1024),
to the natural definition of correlation lengths denoged In
fact, neither the functional form oE;(r) nor the numerical X1024~ |0 — 0c(1024)| ~ 71024 (10)

value of ¢&; depend on the choice of the direction this

isotropic system is well described by a unique correlationwhereg.(1024) is the effective transition point. In order to

length &. avoid notoriously inaccurate nonlinear fits for several un-
Snapshots taken close to the transition show the formatioknown variables, our measurement protocol is as follows.

of clusters of spins on all length scales comprised betweeRor a fixed value 0f.(1024), we fit the log-log plot of, say,

the CML'’s natural cut-off scales, i.e., between 1 dntht-  magnetization vs distance to criticality by a straight line, and

tice stepg(cf. Fig. 3. The accompanying algebraic decay of thus obtain a firstg-dependent estimate ¢;,,. Our final
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, In [3], Miller and Huse only claimed “consistency” with
10 . . Ising values, yet did not attempt to measure the values of
critical exponents directly, nor to investigate the strength and
0s |- - - | influence of finite-size effects. Since their results were ob-
& tained for significantly smaller lattices, our estimai&s.
;f (11)] suggest that finite-size effects are indeed strong in this
06 1 system, and can by no means be neglected. This essential
A, point will be tackled in the following section, whose main
\sf 04 - E 1 purpose is to check the validity of valu€sl), thanks to a
finite-size scaling analysis of statistical properties close to
the critical point. This in turn gives way to controlled ex-
trapolations of finite-size quantities in the infinite-size limit,
and to reliable error bars on estimatesgef 3, v, andv.

0.18 o,ﬁo o,éz 0.24 C. Finite-size scaling

& Even though finite-size systems at equilibrium do not un-
dergo true phase transitions, their behavior close to the

® (infinite-size transition point provides useful quantitative in-

formation on properties valid in the thermodynamic limit. At

i equilibrium, the bulk free energyF of an isotropic,

d-dimensional magnetic system of finite sizesubject to an

external fieldB at temperaturd, can be written close to the

transition point under the following scaling form, up to cor-

] rection terms which we choose to ignore for the moment:

60000

40000

Aro24

F(T,B,L)=L 9F(T-TZ|L¥ BLE YY) (12
20000 A
whereF is the rescaled free-energy function afd is the
infinite-size critical temperaturesee[32] for recent reviews
on finite-size scaling anfB3] for seminal papejs One can
easily show that Eq(12) leads, at the critical temperature
T, and under zero external field, to finite-size scaling laws
for the magnetization and susceptibility:

0.18 0.20 0.22 0.24

FIG. 4. Macroscopic quantifiers of Miller and Huse’s model.
Plots of (a) the magnetizatioqmy,9 and (b) the susceptibility
X1024 @re presented as a function of the coupling constafar a
large sizelL =1024. Time averages are performed over a sampling xL(T)~LY". (13
time t,,~O(10°). In this case, the magnetization can be computed
without an absolute value, sintg is much smaller than the sign- The exponents used in Eq4.2) and(13) are identical to the
reversal time-scale. standard, infinite-size quantitiggs y, andv. These relations

thus provide a convenient way to estimate their numerical
stimate ofg.(1024) andBg,4 COrresponds to the optimal fit values from finite-size simulations.
within a reasonable interval of values@f(1024), defined as From an experimental viewpoint, a finite-size system cor-
the locus on they axis of a local maximum of the quality rectly approximates the infinite-size limit when its size is
coefficient of fits. The same procedure is applied to bothmuch larger than its correlation-length> ¢, . Of course,
magnetization and susceptibility data, and yields mutuallythis cannot remain true infinitely close f6;, where the
consistent values of the critical point. Our estimates are  correlation length diverges. Finite-size scaling is thus ex-

pected to apply as soon &ss¢, , i.e., sufficiently close to

M (Tg)~L"A,

9c(L=1024=0.20515, the transition point. Even though we are unable to define
explicitly an effective, coarse-grained free energy for Miller
B1024=0.09, and Huse’s CML in the spirit of Eq(12), we expect the
same quantitative behavior to apply to its nonequilibrium
YV1024=1.48. (11 continuous transition for the following reasons.

(i) The phase transition of this model appears to be well
These values are obvioushpot consistent with Ising expo- defined in the thermodynamic limit only, as shown by our
nents. investigations(see Sec. Il B as well as by numerical mea-
In this section, no attempt is made to provide error bars orsures of the average sign-reversal time in the ordered phase
values(11), which may arise from a combination of finite [21].
size effects, finite equilibration time effects and systematic (ii) Only one length scale diverges at the transition: the
deviations due to the choice of the measurement procedureorrelation length¢, . The CML is isotropic at large enough
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(@) Let g; denote the infinite-size transition coupling con-
stant. Scaling laws similar to Eqél3) are expected to hold
in a neighborhood of this point, e.g.,

1.0 T

oL=20 voo
08 t aL=32 Le0%°°” 4

oL =50 o ® ML(g)NLi'B(g): gev(g?:o)a (14
x L =64
06 - i where B(g) is a smooth function of). Therefore, reliable
é values for the exponent ratig&/ vand y/v can only be ob-
= ‘ ¥ tained onceg; is known with sufficient accuracy. From Fig.
04 e 0 § 1 5(b), we see that an effective critical coupling constant
dc(L) can be defined for a given finite sizeas the abscissa
oo o . of the global maximum ofy, . Our data is consistent with

02t et L0 1 the following scaling law[33]:

X ox x X

ge(L)—ggol ™1, (15

0 [ ‘
0.190 0.200 0.210 0.220 ] ) ) -
g which can be fitted simultaneously fgf and ». However,

we prefer to evaluatg, independently of the exponent A

150 (b} useful quantity is Binder's cumulant, (g) [34], defined as

3 U(@)=-3+M{(g)/M{*(9))% (16)
oL=20
°L=32 whereM ) denotes théth-order moment of the magnetiza-
o L=50 fi (K) _ t\k . .
< L=64 | ion M®¥=((m;)*). According to the same analogy with

equilibrium second-order transitioh&q. (12)], we are led to

100 %
&%
o %% write the scaled form of Binder's cumulant as

Xe

UL(g)=U((g—g5)L™). 17

Remarkably, size-dependent prefactors cancel on the right-
hand side of Eq(17) [34]. As a result,U, (g) becomes in-
dependent of at criticality,

8

-]
P®o00c0pecses

%19 020 021 0.22 UL(ge)=U* VL. (18)

At equilibrium, the quantityU* is a universal ratio of am-
FIG. 5. Size dependence of the macroscopic quantifiers oPlitudes. Its numerical value is estimated to be

Miller and Huse’s model. Plots d&) the magnetizatioM, and(b) —U*~1.830-1.835 for the Ising universality clasee[35]
the susceptibilityy, are presented as a function of the coupling for further reference)s _ o ' .
constantg, for four different system sizes 20L<64. A time av- In practice, our estimatg, is determined by plotting

erage is performed ovef,~O(107), a time scale much larger than graphs ofJ, (g) vsg for system sizes ranging frotn= 32 to

the average time between two sign reversals of the instantaneod8 (Fig. 6). The simulation times—typically £otimes the

magnetization. The transition is rounded and shifted due to finitecoherence time—are long enough in order to achieve satis-

size effects. factory statistical accuracy. Error bars then correspond to the
extension of the intersection region. Our estimates are

length scales. Length scales related to dynamic quantifiers,

such as the Lyapunov dimension, vary smoothly close to the gc =0.205 342),

transition[4]. Even though a proper finite-size study of this "

result remains to be conducted, this suggests that the onset of —U*(g;)=1.8324), (19
long-range order is decoupled from the CML’s microscopic

dynamics. where numbers between brackets correspond to the uncer-

We now provide qualitative and quantitative evidencel@Nty on the last digis) of the measured quantity:
supporting the relevance of E¢L2) to Miller and Huse’s 9c =0.205340.000 02, —U*(g;)=1.832-0.004. Even
CML. In Fig. 5, we show plots of the CML's order param- for the largest sizes considerpd.,,L,) =(64,128), a slow
eter and susceptibility vs coupling constant for system sizedrift toward larger values of is observed when comparing
ranging fromL = 20 to 64. Experimental conditions are un- the successive locations of_ the intersection points of curves
changed, with integration timess,~0(10"). As expected, Yi,(9) andU, (g). Accordingly, a systematic uncertainty
the divergence of the susceptibility is rounded and shiftedn the position of the infinite-size critical point cannot be
over some parameter region, while the magnetization deexcluded. Note, however, that the valuelf given in Eq.
creases smoothly to a small constant value in the disordergd9) is in remarkable agreement with that expected for the
phase(see Fig. 4 for comparisgn Ising universality class.
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FIG. 6. lllustration of the relevance of Binder's method when

estimating the critical coupling constant of the continuous transition ®
of Miller and Huse’s model. Plots of Binder's cumulant with re-
spect tog are presented for system sizes<A0<128. Symbols
correspond to raw data, plain lines to polynomial fits. Estimates for 20l © Data
g. and U* reflect the size of the intersection region of curves Slope 714
obtained for sizes 32L.<128.

We now proceed to measure exponent raiiig, y/v

and 1b. Figure 7 shows that the expected scaling laws: ii 15+ .
M (ge)~L A", =
xu(gg)~L" (20)
1.0 - |
are indeed respected wheg is equal to its measured value
(19). Linear fits in the log-log scale for 20L <64 lead to .
the estimates 1.0 1.2 14 1.6 18 2.0

log,, L
Blv=0.1254),
FIG. 7. Measure of the critical ratigd/ v and y/ v for Miller and
ylv=1.76X10), (22) Huse’s model. Log-log plots ofa) the magnetizatioM  (g.) and
(b) the susceptibilityy, (g;) vs system size are presented at criti-

in good agreement with the Ising valueg/¢)sn,—3 and  cality [g.=gc=0.205 34(2]). The solid lines correspond to Ising
(Y1V) 1sina= % The main source of error stems from the un-€xponents, in good agreement with numerical data. Note the weak-
certaintygon 9> ness of corrections to dominant scaling.

-

In order to measure, we choose to use the scaling laws . _ - w4 .
boring pointsg; andg. , g; <0, <g. . This method turns

agUL(gz)NLllv, out to be difficult to control, and is overly sensitive to statis-
tical errors on the values of the original data, in this case
9 InM(LZ)(g“’)~L1’”, U.(g.) andU,(g;). We choose instead to first fit the ex-
g ¢ perimentakcurve U, (g), by a polynomial functiorP(g), and
agInML(gf)~L1’”, (22) then approximate the derivative by the polynomial's deriva-

tive at the critical pointdyU, (g¢)=P'(g;). When a suffi-
easily derived from Eq(12) [32]. Even though only the first cient number of data points spread over a large enough in-
and second moments of the magnetization will be consideretg¢rval of g values are considered, the numerical value
here for computational reasons, logarithmic derivatives of alP’(g.) turns out to be independent of the degree of the
higher-order moments also scale withwith a dominant polynomial P. Figure 8 shows plots, drawn on a log-log
exponent equal to &/ At equilibrium, numerical differentia- scale, of the quantitiesdgU (g;), JdginM (g;) and
tion of noisy data can be avoided: derivatives on the left-g,InM{?(g) thus obtained. Corrections to scaling are clearly
hand side of Eq(22) can be expressed as combinations ofpresent for the smallest sizes. Linear fits on the four right-
moments by using the properties of the Boltzmann weightmost points of each data set in Fig. 8 2<64) lead to
This is, however, not possible in this case. An alternativehe following estimate:
method consists in approximating the derivatiye.g.,
95U (g9¢)] by a finite difference taken between two neigh- v=0.87417). (23
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FIG. 8. Direct measure of the correlation-length exponefur L
Miller and Huse’'s model. Log-log plots of the derivatives of
U.(9y), InM(g,), and Ir1\/I(L2)(gC) Vs system size are presented at the (b)
critical point, g.=g, =0.205 342), for system sizes in the range 6.0 '
16<L=<64. Straight lines of slope i/;,=1 and 1/0.887 are - =
drawn. Strong corrections to dominant scaling are present. The =
value of v,+=0.887, our reference, is obtained from the same data 50l - ]
by taking into account a single corrective expon@it Sec. Il D. ) = 0A=U,
Visually, this slope hardly differs from 1/0.874, as obtained from = *A=hM,
Sec. Il C's estimater= 0.874, which overlooks possible corrections ~ - *A=hnM,
to scaling. Ta0 ]
QQM
As before, the main source of uncertainty derives from the - -
error bars affecting the value gf . Note that our measure- T = =
ment protocol leads to mutually consistent behavior for the 0T o ’
three quantities in E22), even though one would in prin- *
ciple expect the stability and accuracy of measures to be
ordered as 2.0 :
0 50
o 2 0 o L
IUL(GD) =agINMP/(gD) =3gInM (), (24)

since statistical accuracy decreases with the order of mo- FIG. 9. A convenient display of corrections to dominant scaling
ments ofm,t_ involved. affecting the measure of for Miller and Huse’s model. Lin-lin

In this section, we have first of all confirmed—albeit Plots of the quantities JgU, (gc)/L™", dginM(g)/L*", and
indirectly—the validity of Eq.(12) for the nonequilibrium %inMP(@/LY” ~ are  presented ~at criticality [gc=g7
continuous transition of Miller and Huse’s CML. However, —0-205 34(2] vs system sizé.. In graph(a), rapid convergence to
our quantitative estimates of critical exponents are in partiaft P/atéau which may faithfully represent infinite-size behavior is
disagreement with the conclusions []: while the ratios cached for our estimate=0.887. Usingr= vigjng=1.0 instead
Blv and y/v agree with Ising values, our—so far naive— [graph(b)] leads to possible, but extremely late convergefses
estimate ofv is not compatible with the Ising correlation- tex).
length exponentysip,g=1. In Sec. I D, we attempt to answer saturation forL<64. However, a very slow convergence
the following question: does this discrepancy reveal actuatannot be ruled out for very large system sizes.
asymptotic behavior, or is it only due to the presence, for |n order to assess quantitatively the validity of this obser-
small systems, of corrections to dominant scaling whichyation, we turn once more to results known to hold at equi-

might obscure the true, infinite-size behavior? librium. According to renormalization group theory, conver-
gence toward asymptotic behavior is generically controlled
D. Corrections to finite-size scaling by irrelevant operators, i.e., operators whose eigenvalues

The relevance of corrections to dominant scaling laws iSclose to the relevant fixed point are negative. For finite-size

perhaps best shown by graphs of the quantitiesgyStemS' the scaling form of the free energy becomes, in the
&gUL(g:)/Ll/V, &glnML(g:)/Ll/V’ and aglnM(LZ)(g:)/Lllv VS Slmplest case,

system sizeL. When the numerical value=0.887 is used F(TB.L) =L 9E(T=TLY BLB+NIv g | ~olv

[cf. Eq. (30)], such graphs show clear evidence of conver- (T.B.L) « LT T )(’25)
gence towards well-defined limiFig. 9a)]. The same com-

ment is valid forv=0.874[Eq. (23)]. Nonetheless, plots ob- where only one irrelevant scaling fielf,, is included, and
tained for v= vgne=1 [Fig. 9b)] have not reached w is the associategoositive) corrective exponent. In prac-
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tice, deviations from asymptotic scaling laws under zero ex- (a)

ternal field derive both from the presence of irrelevant op- 0.05 ! ‘
erators and from the experimental uncertainty on the location
on the infinite-size critical point. The large size behavior of \

thermodynamic quantities is then controlled by a double ex- 00 W Z;Z:iﬁiﬁf,
pansion in powers of. " and of the reduced temperature VY — 8, =020536
(T=TLY. 003 1\

Assuming that an equation analogous to &) is valid e
for Miller and Huse’s CML, we obtain the following expres- £
sions: 0.02

M (9)=L P"(ag+a;L “+---+by(g—gd)LY"+ ),
0.01

xL(@)=L""(CotciL ™+ - +dy(g—gl)LY"+- ),

dgUL(9) =L (eg+e L™+ - +fi(g—gH)L"+- ), 0.00 0.8 0.9 1.0 11

dgInM (9) = Ll’”(q0+ g™+ +r1(g—g2°)L1/V+ S,

(b)

IgnMP(9) =LY (sp+ L™+ - - - +t3(g—gp)LY+ - - ), 0
(26) Cg. =020532, ®w=132,v=0872
. 0g, =020534, = 124,v=0895
where a,,b,, ..., n=0,1, ... are nonuniversal, real pa- 55| o g =0.20536,@=117,v = 0.905 i

rameters. A simpler ansatz is, however, necessary, since each
of these equations already involves a larger number of un-
known variables than can be expected to be determined reli- =
ably from the available data points. Inspection of both graphs = 30 1
of Fig. 9 reveals qualitative consistency with the presence of

one corrective exponent, as in E@6). In addition, the ~
growth of error bars with system size can be interpreted, for

. .. .. 25 B
data of similar statistical accuracy, as deriving from the pres-
ence of a correction term such ag{g‘f)Ll"’. Since our
main goal is to improve the reliability of estimates of the
critipal exponenty, we chpose to take ipto account oek 29 o0 .02 0.07 0.06 0.08
fectiveexponentw(g), as in the expression e

dgInM{?(g) =L 9 (so(g) +5,(g)L @),  (27) FIG. 10. An estimate of the effective, corrective exponent

for Miller and Huse’s CML. Plots ofy? vs v, obtained for an
wherev(g), »(9), Sp(g), ands;(g) are smooth functions of already optimized value ob,, are shown in graplta) for three
the coupling constang. Error bars on, e.g.y, then corre- fixed values of the critical coupling constant spanning the confi-
spond to the range covered by values/0f) wheng varies  dence intervalg.=g; €[0.205 32,0.205 3p Linear fits corre-
within the confidence interval obtained for the critical cou- sponding to the minima of the three curves are presented in graph
pling g; . (b), where symbols denote our data, obtained in each case for the

We now describe our measurement protocol in the paroptimal triplet @c,w,v).

ticular case ofagInM(Lz)(gff). Generalization to other “ther- ) N
modynamic” quantities on the left-hand side of Eg6) is 9c over the relevant interval. The three quantities
straightforward. Letg, assume a fixed value in the confi- dgUL(9Z)/L™, aginMPA(G)LY” and dginM (gg)IL™" are
dence interval previously obtained fgf [cf. Eq.(19)]. For ~ @nalyzed along the same lines, yielding mutually consistent
fixed, reasonable values of »), we plot results. Our global estimate is
L~ YaInMP(g,) with respect td~“. A linear fit leads to a
first estimate ofsy(g.,v,w) ands;(g.,v,w), as well as of
the corresponding?(g.,»,») measuring the quality of the _ ) ) ) ) )
fit—not to be confused with the critical susceptibligfg.). This valug ofw |s_compat|ble with a rapid rglaxatlon to an
The critical couplingg.. being fixed, we determine the expo- @Symptotic behavior reached as soon.as32, in agreement
nents(»(g.), »(g.)) from the best fit, defined as the locus of With Fig. (b). _
a local minimumy?(g.) = miny4(g.,v,). In practice, a clear ~ APPlying the same method to exponent ratjgsv and
minimum of the functiony®(g.,»,w) is observed, and cor- /v Yields the following estimates:
reponds to fits of good qualithcf. Fig. 10; a projection on
the planew=w(g.) is used for clarity in Fig. 1&]. The Blv=0.1284), wy=9(4),
final error bars onv andw correspond to the extremal values
obtained when applying the same protocol while varying ylv=174810), w,=5.7(5). (29

»=0.887118), w,=1.5+0.4. (29)
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TABLE I. Critical exponents of Ising-like phase transitions of
CML’s. For each model, we give numerical estimates of the critical
point g¢, Binder's cumulant—U*, and the three static critical
exponents3, y, andv. The ratio (8+ v)/v~2.0 is everywhere in
agreement with an hyperscaling relationship. The abbreviations
MH4, C4, and MH3 correspond respectively to Miller and Huse’s
model, to the CML with cubic map discussed in Sec. Il A 1, and to

the locally anisotropic, three-neighbor coupling CML of Sec. E
IIl A 2. The three transitions belong to the safmen-Ising univer- 2
sality class. dg
B 05| oL=20 %;,g 8
oL=32
MH4 MH3 c4 oL=50
«L=64
ar 0.205 34(2) 0.251 18(4) 0.178 64(4) ---= Slope 0.111
—u* 1.832(4) 1.823(3) 1.83(1) — - Slope -0.775
Blv 0.125(4) 0.131(6) 0.125(7) 1050 220 10 0.0 1.0
ylv 1.748(10) 1.74(3) 1.75(4) log,o(L" 1g~8.V3.)
2B+ y)v 2.00(2) 2.01(4) 2.00(5)
B 0.111(5) 0.117(7) 0.114(11)
y 1.55(4) 1.55(5) 1.60(11) —10}
v 0.887(18) 0.895(12) 0.91(4) D e en B
Taking into account one corrective exponent leads here to  -15 -
improved agreement with Ising values. The large values of \Q
oy and o, are consistent with a fast relaxation to asymp- 11\_0
totic behavior, as observed in Fig. 7. The discrepancies ob- #
served in the measured values ®f, wy, and w, appar- -20 | °L=20
ently contradict Eq.(26), where a single exponenb is i:;f)
present. This is easily accounted for by remembering that < L=64
o as measured here is an effective corrective exponent, in- ——= Slope ~1.55
tegrating all possible sources of corrections to scaling. An —23 ‘ ‘ .
accurate determination of th@nique exponente would -3.0 -20 -1.0 0.0 1.0
require data of much better statistical quality. Combining log,, (L 1g-g Vg,)
Eqgs.(28) and(29), we obtain the following final estimates of
critical exponents: FIG. 11. Data collapses close to the continuous transition of
Miller and Huse’s model. The data are the same as in Fig. 5. Log-
B=0.11%5), log plots of the reduced magnetizatibfi’”M, [graph(a)] and sus-
ceptibility L~ ""y, [graph(b)] are presented vs the reduced control
y=1.554), parameter.”|g—g.|/g. for numerical valuegy.=g; =0.205 34,
Blv= (BIv)5ing=0.125, ylv= (y/v)singl. 75, »=0.887, and
»=0.88718), (30) 20<L=<64. Note the good agreement of asymptotic behavior with

the non-Ising exponent=0.887.

as reported in Table I, where Miller and Huse's CML is
referred to as MH4.

Assuming that the exponemt holds its Ising value, we
implement the same protocol, this time varying ogland
w. Within this constraint, the “best fit” can no longer cor-
respond to a global minimum of?(g. ,v,w) [cf. Fig. 10a)].
The value thus obtained fa#gj,q is smaller than 1:

In addition, indirect support of the validity of estimates
(30) is provided by collapses of magnetization and suscepti-
bility data obtained for different system sizes. Neglecting
corrections to scaling in Eg25), the following homoge-
neous forms are expected to apply:

LA"M(9)=M((g—g;)L™™),
V= Viging™ 1= 0, 1sing= 0.6+ 0.2, (31)

L™ x(9)=x(g—g5)L™). (32
indicative of an extremely slow rate of convergence toward
asymptotic behavior. Using the corresponding values offhe data sets previously presented in Fig.L5<64) yield
e0(9c), do(ge), andsy(g.) as reference points, we find that excellent collapses for=0.887 [Eq. (28)], and the Ising
convergence to asymptotic behavior, defined as a relativéalues g/v=0.125 and y/v=1.75 (Fig. 11). Interestingly,
deviation of less than 1% from asymptotic values, wouldthe large-size behavior &fl, andy, , as observed in log-log
then be reached fdr=0(10%), or well beyond the reach of scale in the limifg—g;|LY"—, is consistent with straight
current computing power. lines of respective slopeg=0.111, —y/2=-0.775, and
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—y=-—1.55, in agreement with Eq.30). The same esti- critical exponents, when averaged over continuous local
mates[Eq. (30)] are also consistent with relatiqd5), and variables, as in
deviate only slightly from values obtained directly from

simulations of large-size systerfis=1024, Eq.(11)]. Note, mto =
however, that the quality of collapses obtained from @&4) contL
is similar for bothv=0.887 andv= vgjng=1.

Numerical data presented in this section strongly suggedbstead of local spingcf. Eq. (6)]. Simulations reported in
that the continuous transition of Miller and Huse’s CML this article required about seven years of the CPU time of a
doesnot belong to the Ising universality class. Provided thatDEC/Alpha processor running at 110 MHz. For brevity's
the behavior observed far< 64 meaningfully approximates Sake, only figures related to the exponendre included, in
the infinite-size limit behavior, our estimate of the practice figures similar to Figs. 8 and 9 of Sec. Il. The inter-
correlation-length exponenty=0.887(18), is significantly ested reader is referred [86] for additional details, and in
lower than the expectedg,=1. Yet a slow crossover to particular for graphs leading to estimates of the critical
Ising behavior cannot be ruled out for very large systerrpoints and of exponent ratigs/v and y/v.
sizes. On the sole basis of data presented so far, our claim
does not constitute a definite proof. Unfortunately, our analy- A. Testing universality within CML's
sis of corrections to scaling also shows that the sizes needed

in order to provide a decisive numerical answer to this pointphase transitions of s . - :
. . - ystems with short-range interaction only
lie far beyond present computing capabilitigs=0(10°) ]. depend on the type of broken symmetry and on the space

The true critical exponents of the transition, be they Ising O%imensionality. In this section, we consider extensively cha-

NI

EJ Xt (33

Static critical exponents of equilibrium second-order

?ﬁt‘ are _naturalli/_ ex_pec'ged (;0 tt)e In some tshen‘s% unlve:,rs tic, purely deterministic, synchronously updated, two-
€ coming section IS aimed at assessing the “degree” Ok;mansjonal CML's with an Ising-type ordering transition.

universality of the non-Ising estimat¢30). The changes made on Miller and Huse’s CML are known to

be irrelevant at equilibrium: we first modify the local map
IIl. RELEVANT PARAMETERS (Sec. lll A, then the coupling schem@&ec. Il A 2). The
FOR NONEQUILIBRIUM UNIVERSALITY corresponding transitions are thus expected to belong to the
same universality class.
The continuous phase transition first reported3his by
no means a unigue phenomenon: Ising-like transitions are 1. Smooth local map
easily observed in coupled map lattices and related models CML’s which combine evolution rulg2) with an odd

[4], once a small number of conditions is fulfilled. The mod- local map admitting three unstable fixed points ritst nec-
els investigated in this section share the following properties;

h . X ssarily exhibit an Ising-like phase transitif86]. In some
the e\_/olutlon rule_ IS homogen_eous,_the local map is _Odd an(gaases, the CML remains paramagnetic for all parameter val-
chaotic. The lattice is two dimensional, and coupling be-

ues. In others, a period-doubling transition is observed. Since

twegn sites is S?Oft_ range?. At th‘lf’ rgackrosc_optlﬁ Ievzl, aawe relationship linking microscopic dynamics and macro-
up-down Symmetry 1S Spontan€ously broken in the ordere copic ordering is unclear at present, our approach remains
phase. These restrictions are inspired by the Cond't'onﬁwostly empirical

which are known to define universality classes at equilibrium ™ 4 4. model we investigate is obtained by replacing

[23]. Our main goal here is to test whether or not the samey . piecewise linear map of Miller and Huse's mo@El.
conditions hold for far-from-equilibrium transitions of

CML’s (Sec. lll A). Furthermore, the phase transition of a(4)] by a smooth, cubic map of the intenjat 1,1J (cf. Fig.

CML belonging to the same universality class as Miller andlz)’
Huse's model may turn out to be free fromonuniversal f(x)=3x—4x°, (34)
corrections to dominant scaling, thus allowing a reliable es-
timate of the correlation-length exponemt We would also  while other features of the model are left unchanged. Since
like to determine which features specific to CMLs may affectits map possesses both expanding and contracting parts. the
critical properties. In particular, the role played by boundedcorresponding coupled system, referred toGis, may be
deterministic local fluctuations and by synchronous updat¢hought of as more generic than Miller and Huse’s model.
will be assesse@Secs. Il B and Il C, respectively Whereas théone-dimensionalcubic map is conjugate to the
All models discussed in Sec. Il are simulated and anapiecewise linear mafEq. (4)], and is therefore characterized
lyzed according to the experimental protocol exposed in deby the same Lyapunov exponent, this property does not hold
tail in Sec. Il. Initial conditions are drawn at random over thefor the coupled system. Lattices of coupled cubic maps turn
CML’s phase-space, boundary conditions are periodic. Allout to be less chaotic, as can be quantitatively shown, e.g.,
regimes considered correspond to the unifuenerical at- by numerical calculations of the Lyapunov spectra. Longer
tractor of the system’s dynamics. The largest system size isoherence times then translate into longer simulation times,
Lmax=128. The achieved statistical accuracy is of the samédor a given level of statistical accuracy.
order for all models. Overall consistency in the measurement An Ising-like transition, phenomenologically similar to
process allows meaningful comparison of exponent valueshat of Miller and Huse’'s CML, is observed at intermediate
everywhere estimated by taking into account one effectiveoupling strengtly. The spatial extension of the intersection
corrective exponenfcf. Sec. Il D. Note that macroscopic region of curves of Binder's cumulaid, (g) leads to an
guantities exhibit the same scaling behavior, for the samestimate of the critical coupling constant:
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FIG. 12. A graph of the smooth, cubic local map used in model
C4. . (D)
3.0 T
g.=0.178 644),
o] E
—U*(g¢)=1.831). (35) 25 pm——=—= ST -+
4 E
This value ofU* is again compatible with the Ising estimate. == 0cA=U,
The critical behavior is everywhere similar to that of Miller & N ;zi}ngﬁn |
and Huse’s model. Estimates of critical ratios and exponents, <~ =M
obtained from Eq(35), are consistent with valug®28) and i
(29): -
15 e e ———— ——=
Blv=0.1257), N =
_____ by =y _________________%___
=
viv=1.754),
1o 0 50 100 150
v=0.91(4). (36) L

V_alues_ o_tl)_tag?e(lj f_rom EgSG) for the ?Xp_(t)rr]]eEr(]é%agdy are FIG. 13. Measure of the correlation-length exponerfor the
given in Table I, in good agreement wi . Conver- o > X
gence to Ising asymptotic behavior is rapid for both magne-c‘;?gt'r:'l;’;”zotlﬁf];'o: g{rg?c:ii;ﬁebﬁ 'gﬁf;r?;%p%rgoﬁrgr}‘;?t'
tization and susceptibility, as confirmed by large values o'there quantities,U, (g.), .M, (g0), andd.InM@(g,) are Iotte’d
the corresponding corrective exponenig~ w,~5. As be- A 9c), og VLG, g " ng‘: P

) . vs L on a log-log scale at the critical poigt=g.=0.178644).
fore, strong corrections to scaling render the measurement qur best estimate {=0.91) is tested in grapﬁjb), presenting
v |nconcIL_JS|ve(F|g. 139 the possibility of a slow_ relaxation 24UL(G)/LY, 3ginM (gL, andaglnM(Lz)(gc)/Ll’” vsL on a lin-
toward Ising behavior, governed by a corrective exponenj, scae.
smaller than 1, cannot be ruled out.

Local maps defined on the whole real axis, such as Eq. i1 ¢ ‘ )

(40), were also investigated. In all cases considered, prelimi- X2, = (1=39)f(Xg ;) +9(F(Xgi_1)) +F(Xzi11))
nary results indicate that strong corrections to dominant scal- +EO 1))
ing impair the evaluation ofy, while relaxation toward 2. j+105
Blv= (BIv)singand y/v= (y/v)sing is fast. This suggests
that critical exponents are indeed insensitive to the choice of x4y, =(1-39)f(Xy.q;) +9(F(Xy )+ F(Xyi15))
a local map, and that the presence of strong corrections to
scaling fory may in fact be related to the particular evolution +(Xpis1j-1)) (37)
rule used so far, i.e., to nearest-neighbor coupling on a

square lattice. referred to as MH3. Rule(37) is defined on a two-
dimensional square lattice of Cartesian indice$)( and ap-
plied synchronously to all lattice sites. Each site is coupled to
The role played by théshort-rangg evolution rule is in-  three of its nearest neighbors: sites belonging to €oeld)
vestigated in this section. We focus on a CML defined by thecolumns of the lattice are coupled vertically to their northern
combination of Miller and Huse's mdjcq. (4)] and a locally ~ (southerf neighbor only. The coupling constagtthus be-
anisotropic evolution rule longs to the interval0,3]. An Ising-like phase transition

2. Transition with weak corrections to scaling
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FIG. 15. Measure of the correlation-length exponerfor the

- »
PRI ok S T continuous transition of model MHBiecewise-linear local map,
R .f ".‘;> “"'.“ ke '*',.: Dl :',-'4,. ’..{.: L three nearest-neighbor, locally anisotropic couplifidhe quantities
Lo e '*,. i LS plotted are the same as described in Fig. 13, for the relevant nu-
N Ty e et e e merical valuegg=g; =0.251 1§4), »=0.895. Notice the absence
(b) of corrections to scaling in grap().

where the estimated cumulant is slightly lower than its Ising

FIG. 14. Typical snapshots of model MH®cally anisotropic . e 2
P b H Y P value. We find values of critical quantities:

evolution rulg taken in the time-asymptotic regime far from criti-
cality [g; =0.25118(4). Up- and down-spins are represented by

black and white pixels, respectively(@) Disordered phase, Blv=0.1316),
g=0.18.(b) Ordered phaseg=0.28. The system size Is=400.
ylv=1.733),
occurs for a critical coupling .~ 0.25. Thelocal anisotropy
r=0.89512) (39

of rule (37) is erased at large scales, where patterns are iso-
tropic (Fig. 14). _ _ _

Since a unique correlation lengthcan be defined, and for corrective _exponent&;M~wX~5._A crucial observation
shown to diverge at criticality, we expect the finite-size scalS that corrections to dominant scaling are suppressed for the
ing laws discussed in Sec. Il to apply. Accordingly, Binder's quantitiesdgU  (gz), dginM{Z(gy) and d4InMy(g7) (cf. Fig.

method leads to an estimate of the critical coupling constant®). Convergence to asymptotic behavior is already achieved
for the smallest size considerdds=12. This feature justifies

the somewhat unusual choice of rul@7). The numerical
value »=0.895(12) given in Eq.39) is obtained from
straightforward linear fits of the data presented in Fig. 15,
—-U*(g;)=1.8233), (38)  over the whole range of available sizes €Il2<128). We

97=0.251 184),
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can thus safely conclude that this transition dnesbelong 20

to the Ising universality class, since its correlation exponent Tt fmeEx e

v is not consistent with vging=1. Ax)=3(x=xiJe
Table | sums up the numerical values of critical exponents

of models MH4, C4, and MH3. Since excellent mutual

agreement is achieved, and since critical exponents are in

principle insensitive to microscopic details of the CML, such

as the choice of the local map or local coupling, our data 0.0 ”

strongly suggest that the three transitions belong to a unique

universality class, characterized by a correlation-length ex- ’

ponent significantly lower than the Ising value. In other

words, we now feel confident that the estimates aferived

in Secs. I D and Il A1 from the scaling behavior of sys-

tems of small sizes are in fact equal to values pertaining to

the infinite-size limit. Note that we have no specific under- 20, ’ 0.0 0

standing as to why implementing evolution r¢8) happens

to suppress corrections to scaling. In particular, strong cor-

rections to scaling are again observed in the nearby case of -5 16 A graph of the smooth, local map used in stochastic

nearest-neighbor coupling on a honeycomb lattice. The COUs,gdelsN4 andN3.

pling schemeg(37) may thus constitute a fortunate, yet iso-

fated case. X = (1= 4g)F( )+ 9 (K3 )+ 0 )+ ()

+f(Xit,j+1))+ 77it,ja (42)

fix)

y=

B. Noise-driven phase transitions

Phase transitions of two-dimensional, extensively-chaotihere», ; denotes Gaussian, white noise with the following
CML’s, which were expected to belong to the Ising univer-correlation functions:
sality class on rather general grounds, turn out to exhibit ¢ v . ]
universal, yet distinctly non-Ising critical behavior. For one- (mijm)=2Da(i—k)8(j—1)s(t—t"). (42

dimensional CML'’s, it was recently argued that the nonuni-
versal behavior of phase transitions akin to directed percola>eduénces of uncorrelated pseudorandom numbers are pro-

tion may be related, below threshold, to the inherentduced by a generator of Fibonacci type, with a period much
complexity, and thus to the “imperfect” character of deter- 10Nger than th@(10™) numbers needed for the largest sizes
ministic fluctuations produced by chaotic dynamical system&onsidered. Their distribution is made Gaussian by a stan-
[13]. In the context of nonequilibrium growth phenomena, dard Box-Miller-type a_Igonthm. We checked that our results
roughening exponents of nonlinear, stochastic partial differ@€ not altered by a different choice of random-number gen-
ential equations subjected to colored noise are known to var§'ator: o ,
continuously with the value of the exponent governing the THrée control parameters are in principle available: the
tail of the noise distributiofi37]. It is thus natural to wonder C€OUPling strengttg, the map’s parametex, and the noise
whether the unexpected critical properties reported abovitensityD. The value o is first set so that the correspond-
may be connected to the particular nature of the determinisDd Pureé CML [evolution rule (2)] undergoes a coupling-
tic, bounded fluctuations generated by chaotic maps. driven Ismg—hke transition for an |ntermed|ate value @f _
This question is now addressed, by investigating the criti-1 "€ coupling constant is next chosen in a range compatible
cal properties of noise-driven phase transitions of stochastiith the existence of a ferromagnetic phase. For the same
CML’s. When subject to an external, unbounded, whitefixed set of parameter values ,_(g), a n0|se—dr|ve.n. Ismg—pke
noise, the local phase space of each individual map mué{ansmon occurs under evolution rulél) fpracrmcal noise
nonetheless remain invariant under the CML’s evolutionintensityD.. Strong enough external noise, somewhat simi-
rule. For that reason, we opt for an odd, chaotic map defineltr to the temperature of equilibrium systems, destroys long-

on the whole real axis a&f. Fig. 16 range order and leads to a paramagnetic phBse[},).
For thefixed setof parameter values\(g)=(5.0,0.22),
f(x)=N(x—x3)exp —x?), (40 the locus of an Ising-like phase transition can be circum-
scribed to the region defined by
and characterized by three unstable fixed points for large D;=0.018 0515),
enough values of its real paramekerThe exponential in Eq.
(40) ensures that the CML'’s attracting set remains bounded. —U*(D;)=1.83413 (43

by applying Binder's method on numerical data obtained for
sizes 12 L <64 only, due to the additional numerical cost of
Map (40) is first implemented on a square lattice with drawing random numbers. Good agreement with the Ising
nearest-neighbor coupling. The evolution rule of the resultvalue ofU* is again observed. The status of critical quanti-
ing synchronously-updated, stochastic CML reads ties is similar to that obtained for models previouly defined

1. Four-neighbor coupling
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FIG. 17. Measure of the correlation-length exponerfor the
noise-driven continuous transition of stochastic CMI4 (local

map defined over the whole real axis, nearest-neighbor coypling
The quantities plotted are analogous to quantities described in Fig.

13, for the relevant numerical valueB=DZ=0.018 05(15),

v=0.88. Graph(b) shows the presence of strong corrections tonhere 7]it‘ denotes 5-correlated Gaussian noigef. Eq.
dominant scaling. !

on a square lattice with nearest-neighbor coupling, as d

scribed in Secs. Il and Il A 1. Our estimates are

Blv=0.1226),
vIiv=1.704),

v=0.886) (44)

for effective corrective exponents equal toy,=6(1),
,=2.6(1), andw,=5.5(1.0). While good agreement with
Ising values is easily obtained for exponent rat®/ss and
vyl v, strong corrections to dominant scalifef. Fig. 17 as
well as larger than usual error bars hinder a straightforwardritical noise intensity:
evaluation ofv. Values of the critical exponents, v, and
v are listed in Table II, under the headitgt. Preliminary
results on other noise-driven transitions of stochastic CML'’s
obeying evolution rulg41), for different choices of param-

2621

TABLE Il. Critical exponents of synchronously updated, sto-
chastic CML'’s. Abbreviations MH4N4, andN3 correspond re-
spectively to Miller and Huse’s model and to the noisy CML'’s
discussed in Secs. Il B 1 and Il B 2, defined by nearest-neighbor
and locally anisotropic three-neighbor coupling schemes. The three
transitions belong to the sanfeon-Ising universality class.

MH4 N4 N3
97/DE 0.20534(2)  0.01805(15)  0.023 66(6)
—u* 1.832(4) 1.834(13) 1.830(6)
Blv 0.125(4) 0.122(6) 0.126(7)
ylv 1.748(10) 1.70(4) 1.752(11)
2B+ y)lv 2.00(2) 1.95(6) 2.00(3)

B 0.111(5) 0.108(13) 0.113(9)

y 1.55(4) 1.50(14) 1.56(5)

v 0.887(18) 0.88(6) 0.89(2)

eters {,g), as well as orcouplingdriven phase transitions
observed when varyingg for fixed parameter values
(\,D), suggest that the intensity of corrections to scaling is
rather insensitive to the particular choice of model, provided
that the evolution rule involves nearest-neighbor coupling on
a square lattice.

2. Three-neighbor coupling

We now consider a variation on evolution r&), modi-
fied so as to include additive white noise. The resulting noisy
CML, denoted hereafter a3, is defined on a square lattice
as follows:

Xor 1= (1=30)f (X ;) +9(F(x5 1)+ F(X5 4 1))

+f(xt2i,j+1))+ 77t2i,j '

Xy 1= (1=30)f(Xbi, 1) F9(F (X5 D)+ F (X1 2))

+ f(XtZJirJrll,jfl))_F 77t2i+1,j , (45

(42)], and the functionf is the map(40). Since the corre-
sponding deterministic CML remains paramagnetic for all
Salues of the coupling strength whan=5, we choose to set
the two control parameters to the values:
(N,0)=(4.5,0.25). The deterministic limitD=0 corre-
sponds to an ordered, ferromagnetic phase. A noise-driven
Ising-like phase transition is observed for a noise intensity
D=D, strong enough to destabilize this regime. Since no
trace of the microscopic anisotropy present in 14l is left
at large enough length scales, we safely turn to the same
finite-size scaling laws in order to estimate the critical quan-
tities of this transition.

Numerical data obtained from simulations of finite-size
systems (&L=64) lead to the following estimate of the

D.=0.023 666),

—U*(D;)=1.8306), (46)
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(a) ExponentsB, vy, andv, listed in Table Il under the head-
ing N3, are not compatible with the Ising universality class.

25 ¢ °A=U, Since modelsN4 (Sec. IlI B 1) and N3 (this section are
*A=InM, . . .
%A =nM? expected to belong to the same universality class, we believe
Siope 1/0.89 that the previous estimatg@4) do indeed correspond to
20 T Sopel 1 infinite-size, asymptotic behavior. Moreover, good agree-

ment is achieved between the present val4és and those
already obtained for Miller and Huse’s CML with four- and
i three-neighbor couplingEgs. (30) and (39)]. We conclude
that the nature of the microscopic fluctuations generated by
CML’s is not a relevant parameter for critical exponents of
Ising-like phase transitions of CML’s. This is in a sense
mildly surprising: we already showed in Secs. Il and Il A
that transitions of deterministic CML's using different maps
[Egs.(4), (34), and(40)], and thus characterized by different
03 10 15 20 invariant measures, do belong to the same universality class.
log, L This section generalizes this first, and until now implicit,
result to the(generig case of unbounded local fluctuations.

1.5

log,, 3, A(D,)

1.0

L5 : .
% C. Deterministic, asynchronously updated models

------------ E-"""-"""""""""- Equilibrium stochastic systems, such as the Ising model,
can be simulated numerically thanks to the Monte Carlo al-
0A=U, gorithm, which ensures that the system’s phase space is
*A=lnM, sampled according to its invariant measure. Spins are usually
E3 rA=M, updated asynchronously, in practice one at a time, the precise
order of update being irrelevant. Even though intermediate
. situations, e.g., simultaneous update of appropriately defined
= = . clusters of spin$38], were considered in order to speed up
3= k3 simulations, it is generally believed that equilibrium spin
-—I--E—-———l—------————z———— systems such as the Ising model cannot be simulated by syn-
K o chronous algorithm§g39], at least for cellular automata with
discrete phase space. Furthermore, simulations of Langevin
05 ! : equations, such as E@l), also respect asynchronous nu-
0 50 100 150 . . .
L merical schemes. Since such equations form the backbone of
theoretical arguments ruling out non-Ising critical behavior
FIG. 18. Measure of the correlation-length exponerfor the in Ising-like transitions of CML’_S[26'27-|' itis natural to ask
noise-driven continuous transition of stochastic CMI3 (local ~ Whether a so far largely unnoticed, yet fundamental distinc-
map defined over the whole real axis, three nearest-neighbor, Idion between synchronously and asynchronously updated
cally anisotropic coupling The quantities plotted are analogous to Systems may not lie of the origin of the non-Ising behavior
guantities described in Fig. 13, for the relevant numerical valuegeported here.
D=D?=0.023666), v=0.89. As before, corrections to scaling are  In this section, we attempt to determine whether synchro-
suppressed by the implementation of three-neighbor, locally anisoaous update is the relevant parameter responsible for the re-
tropic coupling. ported deviation from Ising universality. We consider varia-
tions of Miller and Huse's model obtained by updating
where the value of Binder’s cumulant at criticality is in good lattice sites one by one. An asynchronous update can of
agreement with the Ising result. The corresponding exponerfiourse be implemented in a number of different ways. For
ratios are simplicity’s sake, we focus here on a fixed, sequential up-
date. In practice, we choose to update thguare lattice’s
Blv=0.1267), rows one after another, and sites within the same row fol-
lowing their column’s index. A pictorial representation is
given by the following graph:

" 3,AD,)
Py
(=3

vlv=1.75211),
--—(1,)—(2,)—(3,)—---—(L,1)—
v=0.892) (47)
—(1,2—(2,2—(3,2—---—(L,2)—
obtained for corrective exponents equaldg =2.5(7) and
w,=2.2(1). However, rule(45 suppresses corrections to
dominant finite-size scaling of the quantitiggU, (D),
apINMP(DY) and dpInM_ (D): relaxation to asymptotic be-
havior is clearly achieved as soon las 16 (Fig. 18). —-(1L)—(2L)—=(3L)—=---—(L,L)—---, (48
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where arrows indicate the order of update between sites of (a)

indices ,j), helical boundary conditions being used when
linking two consecutive rows. Other asynchronous schemes 30 A
may involve, for instance, the random choice of each up- -
dated site over the lattice, where disorder may be either an- % /%
nealed or frozen. Such choices are left for future study. We = -
believe that results presented in this section are of a general
nature, and do not depend on the type of asynchronous up-
date implemented in practice.

25 | s

log,, 9,A(g.)

1. Four-neighbor coupling R

We first choose to implement Miller and Huse's CML < - cA=U,
with nearest-neighbor coupling on a square lattice according s $A=Ina®
to the fixed, sequential, site by site update rule described v ——- Slopel =
above. For periodic boundary conditions, ry® now as- , ,

sumes the form 10 L5
log,, L

X = (1—-4g)f (X )+ g (1) +F(x{ T ) +F(x{,q))

+(X j41))- (49 200 : : .

The local map is left unchangdaf. Eq. (4)], the unique “"“;‘gfz'f' """"""""" -1---

control parameter is the coupling constan [0,3].
An Ising-like transition occurs at 10.0 T

97 =0.112 555),

0A=U,
0.0 - *A=InM, 4

*A=InM"

~U*(g?)=1.83514), (50)

L9 Ag,)

as estimated according to Binder's method for systems sizes
smaller thanL =64, a limit imposed by the larger than usual
coherence times present in this system. An asynchronous up-
date turns out to stabilize the ferromagnetic phase: the criti- —100 | i
cal coupling(50) is much lower than that estimated in the : ' '
synchronous case, E@19). We find that convergence to
Ising critical behavior is achieved as soonlas 20 (cf. Fig.
19). The estimated critical exponents are

FIG. 19. Measure of the correlation-length exponerfor the

Blv=0.11712), coupling-driven continuous transition of asynchronously-updated
model MH4 Async.(piecewise-linear local map, nearest-neighbor
vlv=1.7645), coupling. The quantities plotted are analogous to quantities de-
scribed in Fig. 13, for the relevant numerical values

v=1.027) (51)  g=g;=0.112%(5), v= wgne=1. Convergence to Ising behavior

for (large corrective exponentsy, =6(2), w,=3.0(1), and Is achieved as soon as=20.

w,=4.5(1.5). Estimates of exponengs v and v are given

in Table Ill, under the heading MH4 Async., and fully agree
with Ising exponents. This suggests that synchronous upda
is indeed relevant in the renormalization group sense.

where periodic boundary conditions are used, and the cou-
péing constantg belongs to the intervdl0,3].

According to numerical data obtained for system sizes
smaller tharL,,,= 128, a transition is observed at

2. Three-neighbor coupling 97=0.158 472)
c ' '

In order to check the robustness of this first result, we

naturally turn to an asynchronously-updated version of lo- —-U*(g7)=1.83212) (53
cally anisotropic rulg(37). Once adapted to site by site, se-
guential update, its evolution rule reads for a critical coupling constant much lower than measured in
the synchronous ca$gq. (38)]. Critical exponents are again
X 1= (1=309) f(Xy ;) +g(F (x5 2y ) + (X5 11)) in good agreement with Ising values,
+F(X5141)), Blv=0.12413),
Xoi +1=(1=39) F (i 1) +FOG D + (X142 ylv=1.721),

+FOG - 1), (52) »v=0.994), (54)
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TABLE lll. Critical exponents of asynchronously-updated mod- (@)
els. Abbreviations MH4, MH4 Async., and MH3 Async. corre- : '
spond respectively to Miller and Huse’s model and to the asynchro- AU .
nously updated models discussed in Secs. IIC1 and IlIC 2, *A =1nLML -
defined by nearest-neighbor and locally anisotropic three-neighbor *A=InM,” -
coupling schemes. Ising-like transitions of asynchronously updated 3.0 ——— Slope 1 /

models belong to the Ising universality class. -

MH4 MH4 Async. MH3 Async.

log,, agA(g[)
\
\

oz 0.20534(2)  0.11255(5)  0.15847(2) g
—u* 1.832(4) 1.835(14) 1.832(12) e /;59*/

Blv 0.125(4) 0.117(12) 0.124(13) 20t
ylv 1.748(10) 1.76(5) 1.72(1)

2B+ y)Iv 2.00(2) 2.01(8) 1.96(3) . ‘ ‘
1.0 15 2.0

8 0.111(5) 0.126(27) 0.123(18)
y 1.55(4) 1.79(17) 1.71(9)
v 0.887(18) 1.02(7) 0.99(4)

except for exponent ratigy/ v, slightly lower than expected. =
The corresponding corrective exponents @fe=2.2(4) and 15+ .
w,=2(1). The quantities d,U,(g;), dginM(gc), and oA=U,
dnMP(g?) reach an asymptotic scaling regime consistent sA=InM,
with the Ising universality class fdr~ 32 (cf. Fig. 20. Nu-

merical estimates of exponen® v, and v are listed in

Table I, under the heading MH3 Async. Note that the com- .
bination of error bars on/v and v leads to a value ofy el hd

consistent withyjging= 3. e S S E

L™"3,A.)
9

Consistency between exponeri&l) and (54) confims [~~~ T T T T
once more that critical properties do not depend on the par-
ticular choice of a microscopic evolution rule. Furthermore,
analysis of numerical simulations of models MH4 Async. 5 ‘ ‘
and MH3 Async. suggest that Ising-like transitions of asyn- 0 20 100 150
chronously updated lattices of locally coupled chaotic maps
belong to the Ising universality class. In other words, a syn- _
chronous update appears to be the relevant parameter respon-F'G- 20- Measure of the correlation-length exponerfor the
sible for the deviation from Ising universality observed in coupling-driven contlngous .tran.smon of asynchronously-updated
lattices of coupled chaotic maps. quel MH3 Async._ (plecewlse-llngar local map, three-nearest-

Asynchronously updated models with adequate micro_nelghbor, locally an_ls_otroplc c_oupl@gThe quantities plotted are
scopic symmetry provide interesting ways to simulate theanal_ogous to quanxtltles described in Fig. 13, for the relevant nu-
Ising model without having recourse to a pseudo-randommerical valueg=gc =0.158 472), v= vj5jng=1. Convergence to
number generator. The achieved numerical efficiency i¢SiNg behavior is achieved fdr~32.
however rather poor, since local variables are continuous.

Recent work by Sakaguch2] showed that the Ising model scaling laws valid at equilibrium. This confirms indirectly
can also be implemented exactly thanks to a semisynchrahat symmetry and ergodicity breaking, as signaled by the
nous update scheme, where two checkerboard sublattices @fyergence of the system(sinique correlation length, occur

a two-dimensional, square lattice of locally coupled Ber-in the infinite-size limit. As for equilibrium systems, the nu-
noulli maps are updated one after the other. Since this modelarical value of critical exponents which govern scaling
respects a detailed balance, and is characterized by a Gibpg,q i5 insensitive to microscopic details of the model, such
invariant measure, its critical exponents are exactly known 9s the choice of a local map or evolution rule. Our,main
be eql_JaI to their _Ismg values, a point that we checked b3fesult is that the nature of update is a relevant parameter:
numerical simulations analyzed as before. This further SUGzontinuous transitions of two-dimensional synchronously-
gests that synchrono.us. updateatiflattice sites may well be updated CML'’s with an Ising-like, discrete b’roken symmetry
an isolated case within the spectrum of possible updat rm a new universality class. On the other hand, transitions

sch_emes: an as_ynchronous update c_Jecom_posed_on two s “asynchronously updated models belong to the equilibrium
lattices suffices in order to restore Ising universality. Ising universality class. Interestingly, the nature of local
fluctuations—deterministic or stochastic—turns out to be ir-
relevant.

Ising-like, chaos-to-chaos phase transitions of coupled Deriving accurate numerical estimates of critical expo-
map lattices are well described by scaling and finite-sizenents of deterministic systems is a notoriously difficult task

IV. DISCUSSION
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[6,12,13. We believe that the methodology followed here isof correlation-length-related exponents, suchgis, v/v,
reliable for two main reasons: corrections to dominant scaland ¢, on microscopic details of the modg#0]. In this

ing are taken into account and quantified; estimates of critisense, Baxter's model belongs to theakuniversality class

cal exponents are always derived from at least two transigf the Ising model.

tions belonginga priori to the same universality class. The  Eyen though Baxter's eight-vertex model admittedly rep-
latter point suggests that systematic errors of an unknowgesents a nongeneric, exceptional daka}, we would like to
nature do not bias our estimates. According to our Simulaassess the re|evance of Suzuki’s Weak universa"ty to non-
tions, the universality class of synchronously-updated modequilibrium, Ising-like transitions of CML's. In fact, weak
els is characterized by the exponents universality is systematically tested by finite-size scaling
methods. For systems whose finite-size correlation length

£=0.1159), &, scales withL at criticality,
y=1.5%5), f~gogrLs (59)
»=0.892) (55)

the scaling laws for finite-size quantities,
obtained when combining error bars of estimates pertaining

to the three models MH4, MH3, anN3, chosen for the M ~L~ A,
(highes quality of their data. Narrower error bars, which ,
still lie within confidence interval§55), can be obtained for xo~Lr, (60)

exponents3 and y when giving credit to exact Ising values . i )

for exponent ratiog/ » and y/ v, while retaining the numeri- cl0Sely parallel Eqs(57). Finite-size scaling estimates of
cal estimatev=0.892). Note that synchronous update does critical exponentss and y depend on an independent mea-
not affect the value of Binder's cumulant, nor the validity of sure of» [32]. Furthermore, the rati¢p can be expressed at
the hyperscaling relatiofcf. Tables I, I, and 1) equilibrium as

2p+y=vd (56) d=(2B8+y)lv (61)

known to hold at equilibrium in the case of fluctuation- , taing advantage of the scaling relation 28+ y=2.
dominated transition§23]. Preliminary results suggest that g\ ap, though a proper definition of exponenstill lacks in

Eq. (56) may also hold in the case of transitions of three-¢or_from.equilibrium CML'’s, it is tempting to link the valid-
d|menS|onaI hypercubic Iatt|_c'es, an obsgrvatlon companblgty of the hyperscaling relatiof6) to an hypothetical rela-
with a value of the upper Cr't'ca}l dimension equaldg=4  jon (58), which may relate the behavior of some coarse-
for Ising-like transitions of CML'Y26,27. . grained free energy to the correlation length at criticality.
_ The notion ofweak_L_ml_versall_tyas introduced by Suzuki More importantly, the control parameters we consider,
in the context of equilibrium critical phenomeid0], may ¢ nling strengthy and noise intensitP, are defined at the
provide a useful basis in order to account for exponent Valyicrascopic level of evolution rules. They were chosen on
ues (55). A number of exactly solved equilibrium models, 5 44 hoc basis, without particular theoretical grounding:
such as Baxter's eight-vertex modeil], are known t0 €x-  aempts to define a meaningful, macroscopic “temperature”
h|b|t anomalogs, nonunl_ve_rsal crltl_c_al behavior, cha_racterafOr extensively chaotic dynamical systems remain in their
ized by a continuous variation of critical exponents with pa-jntancy[10,11. We explicitly chose to define the continuous
rameters of the model which are in principle irrelevant.; o ncifion of a CML as a point in parameter space where the
However, theratios g/v, y/v and ¢=(2—a)/v respect (well-defined, macroscopicorrelation length, diverges in
Ising behavior. Suzuki noticed that, close to the transitionthe thermodynamic limit. These remarks justify the choice of
point, the magnetization and susceptibility depend on thehe inverse correlation lengtfi ! as a more natural quanti-
correlation lengtht according to the scaling laws fier of departure from criticality than, say, the reduced cou-
pling constant §—g.)/g.. In a renormalization-group con-
text, we tentatively introduced if6] a distinction between
g (57 scaling expor_1er‘1‘tsyB an_d Vas ,[,cf. Eaq. (12)], where
X ’ yg=(B+ y)/v is “superuniversal,” whiley;=1/v depends
on the type of update. This statement can now be rephrased
in somewhat more appropriate terms as follows: while syn-

fo~g @ lv, (58) chronous update defines a né€igstrong”) universality class,

all Ising-like transitions of CML'’s belong to the weak uni-

Only quantities defined with respect gremain universal in  versality class of the two-dimensional Ising model, for both
the case of Baxter's model, while usual exponents, definedynchronous and asynchronous updates.
with respect to the temperature difference from criticality —Quantities independent of the choice of a control param-
(T—T,), depend on details of the model. For this reasongter remain universal within a given weak universality class
the—intrinsically defined—correlation length seems bettef40]. Indeed, our analysis shows that Binder's cumulant
apt at quantifying departure from criticality, and thus critical U*, a quantity measureat criticality, is update independent.
phenomena, than does an external control parameter such & conjecture that the critical exponent which governs
the temperature. Weak universality denotes the independentee algebraic decay of the spatial correlation function at the

M,\/é*ﬁlv,

while the singular part of the free energy behaves as



2626 PHILIPPE MARCQ, HUGUES CHA'I:EAND PAUL MANNEVILLE 55

transition point, retains its Ising value for transitions of syn-of extended dynamical systems generically involve a broken
chronously updated modelg:= 7 |sing= 3. The same remark temporal symmetry. Of particular interest is the case of
also applies to a so far hypothetical exponértdsi,,=15,  Pperiod-doubling continuous phase transitions, whereby the
once appropriately defined from the response of the CML'gnacroscopic activity of lattices of, e.g., coupled logistic
order parameter to an external field. Estimatingnds from ~ Maps undergoes a sequence of subharmonic bifurcgtigns
numerical simulations may provide a direct test of our weakPreliminary results indicate that such transitions also belong,
universality hypothesis. This is left for future study. f_or static (_:rltlcal exponents, to the universality class of Ising-

To conclude, we would like to briefly discuss a number of!iK€ transitions of synchronously updated modgd§]. The
open questions raised by the present work. First of all, thé&'itical behavior of collective, forward Hopf bifurcations
existence of a nontrivial universality class of transitions of 1,43 may also yield non-mgan-ﬁeld critical exponents for
synchronously updated models represents a challenginﬂ“all enough space dimensions.

: - ; : c i Finally, we would like to make contact with real experi-
theoretical puzzle, since it questions the applicability of two ' : .
P 9 bp y j’nents, where theethodsxposed here may be applied fruit-

well-established tools—nonlinear Langevin equations an X ;
dynamic renormalization-group methods—to a new an ully, in spite of the somewhat remote nature of the models
]considered. Many large, homogeneous, far-from-equilibrium

largely unexplored context. One possible interpretation o o 2 o :
this discrepancy is that asynchronously updated stochast stems exhibit transitions between distinct spatiotemporally

equations may not adequately describe the large-scale pro haotic regime$7,8,44), or between ddynamically ordered

erties of extensively chaotic dynamical systems close to criti- tate and a spatiotemporally chaotic regip#6-47, where

cal points, i.e., nongeneric points where the synchronous n‘,jg)_rder parameters can be defined, and critical exponents mea-

ture of update is felt up to macroscopic length scales, a ured. Provided tha.t.spatial coherence scaI(_as diverge at
shown by the anomalous value of exponenGeneralizing reshold, such transitions may qualify as “continuous phase

spin-block renormalization methods to extended dynamicaﬁrgglis:'Ofgsr’msagrgeef;needct'g dstﬁcé . f‘ t:)n(:gzrca;gr:]lg'gfzﬁo-
systems may help building an appropriate, synchronousl 9 P pply P » P

updated, coarse-grained description of CML'’s close to criti- ided that the sizeL. Is redefined :’;13 an aspect ratio
cality. R=L/l, counted in units of the system’s natural length scale

While the scope of our investigations was deliberatelylo' as obtained from the relevant instability mechanism.

limited to static exponents, one would of course like to con-//hen the effective system sifedepends directly on one of

front the theoretical predictions ¢26,27] and preliminary the availabl_e control parameters, finite-size scaling may pro-
results of[3] concerning the dynamical critical exponent vide a feasible alternative to thdirecy measurement f.“eth' .
with extensive numerical simulations. Deviation from Ising ods used up to now, and lead to reliable, quantitative esti-
universality for transitions of synchronously updated system§nates of critical exponents.

may here be expected on the basis of equilibrium results,
where the exponemtis known to depend sharply on the type
of update[38]. One would also like to learn more about the  We gratefully acknowledge useful discussions with Henry
critical properties, both static and dynamic, of phase transiGreenside, Geoff Grinstein, and David Huse. Ph. M. would
tions of other extensively chaotic dynamical systems. Generalso like to thank Kunihiko Kaneko for his kind hospitality.
alization to Ising-like transitions of higher-dimensional lat- This work was made possible thanks to a generous allocation
tices is straightforward, and may lead to a numerical estimatef CPU time on the Cray-T3D supercomputer of Centre
of their upper critical dimension. Arguably, phase transitionsd’Etudes de Grenoble, CommissariatEnergie Atomique.
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