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Universality in Ising-like phase transitions of lattices of coupled chaotic maps
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Critical exponents of nonequilibrium, Ising-like phase transitions in two-dimensional lattices of locally
coupled chaotic maps are estimated numerically using equilibrium finite-size scaling theory. Numerical data
supports the existence of a new universality class, which groups together phase transitions ofsynchronously
updatedmodels with Ising symmetry, irrespective of the specific microscopic evolution rule, and of the
presence of stochastic noise. However, nonequilibrium, Ising-like phase transitions of asynchronously updated
models belong to the Ising universality class. The new universality class differs from the equilibrium Ising
universality class by the value of the correlation length exponent,n50.8960.02, while exponent ratiosb/n
andg/n as well as Binder’s cumulantU* assume their usual value.@S1063-651X~97!15703-8#

PACS number~s!: 05.45.1b, 05.70.Jk, 64.60.Cn, 47.27.Cn
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I. INTRODUCTION

The emergence of long-range order, or collective beh
ior, in extended dynamical systems with short-range inter
tion and local chaotic dynamics has attracted consider
attention recently@1–8#. In particular, diffusivelike interac-
tion of identical, chaotic, dissipative dynamical units oft
gives way to spatiotemporally disordered regimes wh
chaos becomesextensive, that is where quantifiers of chaoti
activity—say the Lyapunov dimension or the Kolmogoro
Sinaı̈ entropy—scale with system size@9,10,4#. Intensive
quantities, such as entropy densities, are then expecte
remain well behaved in the ‘‘thermodynamic’’ limit of infi
nite system size, where simpler effective descriptions
high-dimensional spatiotemporal chaos may become p
sible. Short of a guiding principle from which invariant me
sures, order parameters, and other relevant statistical qu
fiers can be derived rigorously, the current understanding
the long-wavelength, low-frequency properties of exte
sively chaotic phases relies heavily on notions borrow
from the better established field of equilibrium statistical m
chanics, and adapted to the phenomenology of spatiotem
ral chaos@10–14#.

Transitions between distinct extensively chaotic regim
are liable to occur when some control parameter is var
and have been observed in both laboratory and nume
experiments. An interesting example is the transition
tween two disordered regimes observed in large aspect-
Rayleigh-Bénard cells, between a phase dominated by
chaotic interaction of straight convection rolls, and a ph
where spiral defects control the large-scale properties of
flow @7#. A natural order parameter is the average curvat
of rolls, which may be used to characterize the transition
an aspect ratio fixed by the experimental setup. Another
ample is given by electrohydrodynamic convection in ne
atic liquid crystals, known to possess at least two disti
spatiotemporally chaotic regimes. For large enough as

*Present address: Department of Physics, Kyoto Univers
Kyoto 606, Japan.
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ratios, an isotropic and an anisotropic phase are separate
a continuous transition@8#. An important, and much studie
model of spatiotemporal chaos is the complex Ginzbu
Landau equation, a nonlinear partial differential equation
scribing the slow modulations of an oscillatory mode close
a supercritical Hopf bifurcation@15#. Large-scale numerica
simulations support the existence of two turbulent regim
defined respectively by the absence and presence of zer
the amplitude of the complex field, and usually referred to
phase and amplitude turbulence. Due to numerical lim
tions, the status of this transition—smooth or sharp—as w
as the very question of its persistence in the infinite-size li
remain controversial@6#.

For lack of adequate theoretical insight, transitions b
tween extensively chaotic phases must be treated in a
nomenological manner, often drawing on intuition based
equilibrium statistical mechanics. While extensively chao
regimes occur in a wide range of extended dynamical s
tems, from nonlinear partial differential equations@9# to
coupled nonlinear oscillators@16#, we concentrate here o
coupled map lattices~CML’s!, or lattices of coupled, iterated
maps@17#. CML’s provide a convenient testbed for simula
ing extended systems with local chaos, since their mic
scopic dynamics can be adjusted at will. An additional m
tivation is numerical convenience: due to current numeri
constraints, CML’s are one of the few extensively chao
systems for which finite-size effects close to transitions c
be evaluated accurately enough to yield controlled, relia
extrapolations to the thermodynamic limit.

Lattices of diffusively coupled logistic maps are known
display intriguing, dynamically nontrivial collective behav
ior, such as periodic and quasiperiodic time evolution of c
lective variables@1#. Their rich phase diagram includes man
collective bifurcations, whose properties are similar to tho
of phase transitions@18#. Even though time-dependent co
lective behavior is often seen as a generic property
CML’s, the scope of this study will be limited to spontan
ously broken parity-reversal invariance, and exclude case
broken time-translation invariance similar to those repor
in @1,18#. Following the recent work of Miller and Huse@3#,
we choose as a reference the equilibrium two-dimensio
y,
2606 © 1997 The American Physical Society
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55 2607UNIVERSALITY IN ISING-LIKE PHASE . . .
Ising model, and consider only CML’s whose tim
asymptotic statistical properties remain stationary. In t
perspective, we present data obtained from numerical si
lations of several closely related, CML-like models whi
exhibit continuous phase transitions akin to the Ising fer
magnetic critical point. We successively address the rela
yet separate questions of scaling and universality, with
emphasis on accurate measures of the static critical e
nentsb, g, andn, obtained from equilibrium finite-size sca
ing laws. Our main result is that Ising-like transitions
CML’s respect equilibrium scaling laws, but form a ne
universality class, associated with a new ‘‘relevant’’ para
eter @5#: synchronous update, a defining feature of exten
dynamical systems. Provided that all lattice sites are upd
synchronously, estimates of the correlation-length expon
n consistently and significantly differ from the Ising exp
nent n Ising51. We find nsynchronous50.8960.02, while the
exponent ratiosb/n andg/n assume their traditional value
of 1

8 and
7
4, respectively.

This paper is organized as follows: in Sec. II, the contin
ous transition of a CML originally introduced in@3# is ex-
amined in detail. Following a summary of previous theore
cal and numerical work~Sec. II A!, we first review the
scaling properties of this transition for large system si
~Sec. II B!, before assessing the relevance of equilibriu
finite-size scaling laws~Sec. II C!. We next demonstrate tha
the presence of strong corrections to finite-size scaling
bids an estimate of critical exponents accurate enough
decide whether or not this transition belongs to the equi
rium Ising universality class~Sec. II D!. The question of uni-
versality in continuous transitions of CML’s is addressed
Sec. III. The Ising-like transition of a CML with short-rang
locally anisotropic coupling rule is introduced in Sec. III A
Thanks to weak corrections to finite-size scaling, we c
demonstrate that this transition does not belong to the Is
universality class. Since CML’s with different chaotic loc
maps exhibit the same scaling properties, we conjecture
estimates of critical exponents presented in Sec. II D
Miller and Huse’s model are in fact equal to their asym
totic, infinite-size values, and conclude that these transiti
form a new universality class. Next, we present evide
according to which synchronous update is the associ
‘‘relevant’’ parameter. While the presence of stochastic no
for synchronous update rules~Sec. III B! leads to critical
properties identical to those observed in the models of S
II and III A, asynchronously updated models turn out to b
long to the Ising universality class~Sec. III C!. The implica-
tions of these results are finally discussed in terms of
notion of weak universality, which may be relevant to fa
from-equilibrium models lacking a well-defined temperatu
~Sec. IV!.

II. CONTINUOUS TRANSITION OF A CML: SCALING
PROPERTIES

A. General considerations

At equilibrium, phase transitions are usually defined
points in parameter space where a system’s partition func
becomes nonanalytic in the infinite-size, thermodynam
limit. Transitions are called first or second order according
the singularity order of thermodynamic functions. In partic
s
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lar, second-order transitions are characterized by sing
second-order, but smooth first-order derivatives of the f
energy: the susceptibility, specific heat, and correlat
length all diverge at the transition. On the other hand,
order parameter vanishes in the disordered phase, variescon-
tinuously in the vicinity of the transition, and acquires non
zero values indicative of a spontaneously broken symm
in the ordered phase.

The notion of phase transition tends to be used in a so
what looser manner in far-from-equilibrium, determinist
many-body systems, for lack of a theoretical framewo
equivalent to equilibrium statistical mechanics. Apart from
few particular cases@19#, determining the invariant measur
of coupled dynamical systems remains an impossible ta
The partition function and other thermodynamic function
such as the specific heat, are usually not known. Appropr
order parameters are thus defined on a case-by-case, m
empirical manner. Low-dimensional dynamical syste
without external noise may exhibit symmetry and ergodic
breaking @20#: one may thus question whether symme
breaking in the thermodynamic limit adequately signals
occurrence of phase transitions in extended dynamical
tems@21#.

Spatial and temporal correlation functions of local va
ables can be systematically defined for extended dynam
systems. In fact, they may even form the basis of appro
mation methods aimed at predicting the emergence of lo
range order@22#. The combination of local chaos and diffu
sive coupling makes most extensively chaotic syste
spatially mixing. As a result, equal-time, two-point spat
correlation functions fall off exponentially at generic poin
in parameter space, allowing for the unambiguous definit
of a correlation length. Of course, finite-size systems nec
sarily possess a finite correlation length. For these reas
we choose to define thecontinuous transitionof an exten-
sively chaotic, extended dynamical system as a point in
rameter space where the correlation length associated
local variables diverges in the thermodynamic limit. Furth
use of the expression ‘‘second-order transition’’ will be r
stricted to equilibrium transitions with nonanalytic therm
dynamic functions. Thanks to finite-size scaling methods,
shall later give ample evidence that continuous transitions
defined above, do occur in CML’s.

At equilibrium, the divergence of coherence time a
length scales observed at the transition point is respons
for one of the most spectacular properties of second-o
phase transitions: universality. The occurrence of fluct
tions on all length scales translates quantitatively into sca
laws, which govern the behavior of macroscopic quantit
close to the transition. Second-order transitions can then
classified according to the values of the corresponding ex
nents. Thanks to a diverging correlation length, the num
cal value of these critical exponents is insensitive to ma
details of the underlying physics, as expressed by a mic
scopic Hamiltonian function. Universality classes, or sets
transitions possessing the same critical exponents, ga
physical phenomena of seemingly different nature, provid
that a small number of macroscopic constraints are
spected. Static exponents of second-order transitions in e
librium, locally interacting systems without disorder depe
only on the type of symmetry broken by the ordered ph
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and on the space dimensiond @23#.
How microscopic details become irrelevant close to

transition point is best understood within the framework
the renormalization group@23#. A coarse-grained Ginzburg
Landau functional is usually postulated to describe the lar
scale behavior close to criticality. This functional depen
only on the space dimensionality and on symmetries of
system. Thanks to the associated Gibbs measure, cont
tions arising from small length scales can be integrated
iteratively. Critical exponents are obtained as eigenvalue
the linearized iteration operator close to a~stable! fixed point
of the renormalization flow. In many cases, their numeri
values can only be calculated perturbatively close to the
per critical dimensiondc , above which fluctuations becom
irrelevant. A remarkable level of agreement between the
experiments, and numerical simulations validates the m
assumptions involved in this procedure, ranging from
validity of ad hoccoarse-grained descriptions to the conv
gence properties of perturbative expansions.

Some degree of universality is naturally expected to h
for nonequilibrium transitions with a diverging correlatio
length@24#. A coarse-grained description is then provided
a Langevin equation, i.e., a stochastic partial differen
equation for the slow modesfk of the system, of the follow-
ing form:

] tfk~xW ,t !5F@fk ,¹W fk#1h~xW ,t !, ~1!

where fast, microscopic degrees of freedom are modeled
Gaussian,d-correlated white noiseh(xW ,t), and the func-
tional F describes the~nonlinear! interaction between then
modes$fk ,k51, . . . ,n%, taking into account all operator
compatible with the underlying symmetries. Provided that
equation such as~1! accurately describes the slow modes
the system, the standard prescriptions of the dynamic re
malization group@23–25# lead to sufficient conditions unde
which a nonequilibrium transition is expected to belong
the universality class of the Ising model, for both static a
dynamic critical exponents@26,27#. Irreversible, nonequilib-
rium contributions become irrelevant close to the fixed po
of the renormalization flow provided that the transition
well described by a single, nonconserved, scalar order
rameter, and that the underlying model involves only sho
range interactions. For conciseness, such transitions wil
referred to asIsing-like transitionsin the following. Note
that a microscopic, up-down symmetry is in principlenot
required@27#.

In fact, much evidence has been gathered, accordin
which Langevin equations similar to Eq.~1! faithfully de-
scribe the large-scale properties of extensively-cha
phasesof extended dynamical systems. Mesoscopic Lan
vin equations have been successfully applied to system
diverse as CML’s with conserved quantities@11#, cellular
automata with quasiperiodic time evolution of collecti
variables@28#, or the Kuramoto-Sivashinsky equation, who
large-scale properties are well described by the Kard
Parisi-Zhang stochastic growth equation@29#.

Far less is known about the validity of Langevin descr
tions and renormalization group approximations in the vic
ity of continuous transitions of extended dynamical syste
A recent study addressing these questions is due to M
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and Huse@3#, who introduced a coupled map lattice speci
cally designed to exhibit an Ising-like continuous transiti
between two extensively chaotic phases. Their results
twofold: first, the large-scale properties of the~ferromagneti-
cally! ordered phase are well described by the same Lan
vin equations as used at equilibrium to characterize the s
evolution of antiphase droplets of the Ising model. Seco
the static and dynamic critical exponents they measure a
transition are ‘‘consistent with’’ the Ising universality clas
The first point provides additional evidence that slow mod
of extensively chaotic phases usually decouple from th
microscopic, chaotic background, which may then be c
rectly approximated by stochastic noise. In fact, the diffus
relaxation of antiphase droplets they observe can probabl
traced back to the diffusive nature of interactions built in t
microscopic evolution rule of this CML. On the other han
we believe that their second conclusion should be taken o
literally, without hastily proceeding to infer that this critica
point doesbelong to the Ising universality class. As we sh
show below, answering this question on the basis of d
obtained from numerical simulations of thissole model
would require prohibitively large computing power, due
the occurence of unusually strong corrections to finite-s
scaling laws.

B. Continuous phase transition

Coupled map lattices were introduced as generic, num
cally economical models of spatio-temporally chao
reaction-diffusion systems@17#. A CML is well-defined once
three ingredients are given: a lattice geometry; a microsco
evolution rule, expressing interaction between neighbor
sites; and a local map which governs the reaction part of
time evolution of local variables. In order to produce a fe
romagnetic critical point@3#, Miller and Huse considered a
two-dimensional CML with nearest-neighbor, diffusive co
pling on a square lattice and with an odd, chaotic local m
In this section, we introduce their model, and discuss
statistical properties, as observed for large lattices.

The choice of a two-dimensional geometry is motivat
by the absence of compelling arguments and of convinc
experimental evidence supporting the existence of genu
phase transitions between chaotic phases in one-dimens
extended dynamical systems. To our knowledge, tim
dependent collective behavior has never been reporte
one-dimensional CML’s@1#. Our simulations of the ‘‘phase
transition’’ of a one-dimensional model reported in@30# does
not show any evidence either of critical properties, or o
diverging correlation length. For the complex Ginzbur
Landau equation, the exact status of the transition from
fect turbulence to phase turbulence in the infinite-size lim
~smooth crossover or true phase transition?! remains unre-
solved @6#. For all practical purposes, the Mermin-Wagn
theorem, stating the impossibility of long-range order in on
dimensional equilibrium systems with short-range inter
tions, seems to hold true for extensively-chaotic dynami
systems.

Following Miller and Huse, here we consider the simp
case of a square, two-dimensional lattice. Nearest-neigh
coupling is chosen in conformity with the equilibrium Isin
model. Continuous local variablesxi , j

t are assigned to node
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55 2609UNIVERSALITY IN ISING-LIKE PHASE . . .
of a lattice of linear sizeL, where indicesi and j denote
discrete Cartesian coordinates, andt indices discrete time. At
each time stept, all sites are updatedsynchronouslyaccord-
ing to the following evolution rule:

xi , j
t115~124g! f ~xi , j

t !1g„f ~xi21,j
t !1 f ~xi , j21

t !1 f ~xi11,j
t !

1 f ~xi , j11
t !…, ~2!

where the coupling constantg, a real parameter, takes i
values in the real interval@0,14] so as to insure the invarianc
of the CML’s phase space under rule~2!.

When the local phase space is a parity-invariant inter
spin variabless i , j

t can be naturally defined as

s i , j
t 5sgn~xi , j

t !P$21,1%. ~3!

Combining this remark with the additional requirement
local chaos, Miller and Huse were led to the choice of
odd, piecewise linear, everywhere expanding map define
the bounded interval@21,1# by ~Fig. 1!

f ~x!55
23x22 if 21<x<2

1

3

3x if 2
1

3
<x<

1

3

23x12 if
1

3
<x<1.

~4!

This map is chaotic, its positive Lyapunov exponent is eq
to ln3, and its invariant measure is uniform on@21,1#.

For numerical convenience, the evolution rule~2! is
supplemented with periodic boundary conditions. Start
from random initial conditions uniformly distributed i
@21,1#, a unique attracting steady state is reached afte
generally short relaxation time. Depending on the coupl
strengthg, two qualitatively distinct regimes are observe
~Fig. 2!: for values smaller than a critical coupling streng
denotedgc , the CML is ‘‘paramagnetic,’’ since positive~up!
and negative~down! spins are equiprobable. Abovegc , an

FIG. 1. A graph of the piecewise linear local map of Miller an
Huse’s model.
l,

f
e
on

l

g

a
g

increased rigidity leads to the~dynamical! selection of a pre-
ferred sign: the CML exhibits ferromagnetic long-range o
der. Both phases are extensively chaotic, as can be chec
for instance, from numerical estimates of the Kolmogoro
Sinaı̈ entropy obtained for different lattice sizes. They a
examples of ‘‘fully developed spatiotemporal chaos,’’ th
strong-coupling regime of many diffusively coupled CML’
as was first observed by Kaneko in coupled logistic ma
@31#.

Ergodicity being assumed, the ensemble average^A& of
any observableA of the CML is equated with its tempora

FIG. 2. Typical snapshots of Miller and Huse’s model, in tim
asymptotic regimes observed far from the transition po
gc;0.205 for a linear sizeL5400. Up- and down-spins are repre
sented by black and white pixels, respectively.~a! Disordered,
‘‘paramagnetic’’ phase,g50.18. ~b! Ordered, ‘‘ferromagnetic’’
phase,g50.23.
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average, and in practice computed along a trajectory as

^A&5
1

tm11 (
t5t0

t5t01tm

At, ~5!

where t0 and tm , respectively, denote the duration of di
carded transients, and the~sufficiently long! integration time.
Note that relaxation times toward the attractor may beco
long, in the ferromagnetic phase, due to the diffusivel
decay of large antiphase droplets which may arise from
ceptional initial conditions. In the following, care has be
taken to insure that the observed statistical properties do
deed correspond to the time-asymptotic, stationary regim

Spatial patterns are homogeneous and isotropic on le
scales large compared to the lattice step. Macroscopic q
tities such as the averaged activity^x& may thus be obtained
either from the time average of a local variablexi0 , j 0

t , for

any fixed lattice site of coordinates (i 0 , j 0), or from that of
the space average ofxi , j

t computed over the lattice. For a

~normed! vector vW of the plane, a one-dimensional, equa
time, two-point spatial correlation functionCvW(r ) can be de-
fined along directionvW . The spatial extension of clusters o
aligned spins in the disordered phase is of the order of a
lattice steps far from the transition pointgc @see Fig. 2~a!#.
The exponential decay of correlation functionsCvW(r ) leads
to the natural definition of correlation lengths denotedjvW . In
fact, neither the functional form ofCvW(r ) nor the numerical
value of jvW depend on the choice of the directionvW : this
isotropic system is well described by a unique correlat
lengthj.

Snapshots taken close to the transition show the forma
of clusters of spins on all length scales comprised betw
the CML’s natural cut-off scales, i.e., between 1 andL lat-
tice steps~cf. Fig. 3!. The accompanying algebraic decay

FIG. 3. A typical snapshot of Miller and Huse’s model close
its transition point, obtained in the time-asymptotic regime
L5400 andg50.205.gc(L5400). Up- and down-spins are rep
resented by black and white pixels, respectively.
e

x-

n-
.
th
n-

w

n

n
n

the correlation function~not shown! suggests that the corre
lation length may diverge at that point in the thermodynam
limit, signaling the occurrence of a continuous phase tran
tion. We now proceed to the definition of the correspond
order parameter.

For a finite-size lattice, the instantaneous magnetizatio
defined as the spatial average of spin values:

mL
t 5

1

L2(i , j s i , j
t . ~6!

Note that the local spinss i , j
t are intermediate variable

which do not take a direct part in the dynamics. Because
finite-size effects, sign reversals ofmL

t occur in the ordered
phase, on a time scale long compared to that of its fluct
tions. It is therefore customary to define the finite-size or
parameterML as @32#

ML5^umL
t u&5

1

tm11 (
t5t0

t5t01tm

umL
t u, ~7!

whereby the ordered phase exhibits non-zero values of
finite-size magnetizationML . Note that the average interva
of time between two sign reversals of the instantaneous m
netization diverges with system size@21#, an indication that
ergodicity breaking and symmetry breaking occur only in t
thermodynamic limit.

The susceptibility of equilibrium Ising systems is trad
tionally defined as the response of the order parameter t
external perturbation. For lack of a standard, unambigu
way to couple the CML to an external field@11#, we choose
to define the finite-size susceptibilityxL as follows:

xL5L2^~ umL
t u2ML!2&, ~8!

where the averagê& is computed as in Eq.~5!.
Close to the transition, we checked that both magnet

tion and susceptibility depend algebraically on the dista
to criticality ~see Fig. 4 for our raw data!. In the infinite-size
limit, the following power laws are expected to apply:

M;~g2gc!
b for g>gc ,

x;ug2gcu2g,

j;ug2gcu2n, ~9!

whereb, g, andn are the usual static critical exponents@23#.
As a first step, we estimate the effective exponentsb1024and
g1024, defined for a finite sizeL51024 as

M1024;„g2gc~1024!…
b1024 for g>gc~1024!,

x1024;ug2gc~1024!u2g1024, ~10!

wheregc(1024) is the effective transition point. In order t
avoid notoriously inaccurate nonlinear fits for several u
known variables, our measurement protocol is as follo
For a fixed value ofgc(1024), we fit the log-log plot of, say
magnetization vs distance to criticality by a straight line, a
thus obtain a first,g-dependent estimate ofb1024. Our final

r
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stimate ofgc(1024) andb1024 corresponds to the optimal fi
within a reasonable interval of values ofgc(1024), defined as
the locus on theg axis of a local maximum of the quality
coefficient of fits. The same procedure is applied to b
magnetization and susceptibility data, and yields mutua
consistent values of the critical point. Our estimates are

gc~L51024!.0.20515,

b1024.0.09,

g1024.1.48. ~11!

These values are obviouslynot consistent with Ising expo
nents.

In this section, no attempt is made to provide error bars
values~11!, which may arise from a combination of finit
size effects, finite equilibration time effects and systema
deviations due to the choice of the measurement proced

FIG. 4. Macroscopic quantifiers of Miller and Huse’s mod
Plots of ~a! the magnetization̂m1024& and ~b! the susceptibility
x1024 are presented as a function of the coupling constantg for a
large sizeL51024. Time averages are performed over a samp
time tm;O(105). In this case, the magnetization can be compu
without an absolute value, sincetm is much smaller than the sign
reversal time-scale.
h
y

n

c
re.

In @3#, Miller and Huse only claimed ‘‘consistency’’ with
Ising values, yet did not attempt to measure the values
critical exponents directly, nor to investigate the strength a
influence of finite-size effects. Since their results were o
tained for significantly smaller lattices, our estimates@Eq.
~11!# suggest that finite-size effects are indeed strong in
system, and can by no means be neglected. This esse
point will be tackled in the following section, whose ma
purpose is to check the validity of values~11!, thanks to a
finite-size scaling analysis of statistical properties close
the critical point. This in turn gives way to controlled ex
trapolations of finite-size quantities in the infinite-size lim
and to reliable error bars on estimates ofgc , b, g, andn.

C. Finite-size scaling

Even though finite-size systems at equilibrium do not u
dergo true phase transitions, their behavior close to
~infinite-size! transition point provides useful quantitative in
formation on properties valid in the thermodynamic limit. A
equilibrium, the bulk free energyF of an isotropic,
d-dimensional magnetic system of finite sizeL, subject to an
external fieldB at temperatureT, can be written close to the
transition point under the following scaling form, up to co
rection terms which we choose to ignore for the moment

F~T,B,L !5L2dF̂~ uT2Tc
`uL1/n,BL~b1g!/n!, ~12!

where F̂ is the rescaled free-energy function andTc
` is the

infinite-size critical temperature~see@32# for recent reviews
on finite-size scaling and@33# for seminal papers!. One can
easily show that Eq.~12! leads, at the critical temperatur
Tc

` and under zero external field, to finite-size scaling la
for the magnetization and susceptibility:

ML~Tc
`!;L2b/n,

xL~Tc
`!;Lg/n. ~13!

The exponents used in Eqs.~12! and~13! are identical to the
standard, infinite-size quantitiesb, g, andn. These relations
thus provide a convenient way to estimate their numer
values from finite-size simulations.

From an experimental viewpoint, a finite-size system c
rectly approximates the infinite-size limit when its size
much larger than its correlation-length:L@jL . Of course,
this cannot remain true infinitely close toTc

` , where the
correlation length diverges. Finite-size scaling is thus
pected to apply as soon asL&jL , i.e., sufficiently close to
the transition point. Even though we are unable to defi
explicitly an effective, coarse-grained free energy for Mill
and Huse’s CML in the spirit of Eq.~12!, we expect the
same quantitative behavior to apply to its nonequilibriu
continuous transition for the following reasons.

~i! The phase transition of this model appears to be w
defined in the thermodynamic limit only, as shown by o
investigations~see Sec. II B!, as well as by numerical mea
sures of the average sign-reversal time in the ordered p
@21#.

~ii ! Only one length scale diverges at the transition: t
correlation lengthjL . The CML is isotropic at large enoug

g
d
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length scales. Length scales related to dynamic quantifi
such as the Lyapunov dimension, vary smoothly close to
transition@4#. Even though a proper finite-size study of th
result remains to be conducted, this suggests that the ons
long-range order is decoupled from the CML’s microsco
dynamics.

We now provide qualitative and quantitative eviden
supporting the relevance of Eq.~12! to Miller and Huse’s
CML. In Fig. 5, we show plots of the CML’s order param
eter and susceptibility vs coupling constant for system s
ranging fromL520 to 64. Experimental conditions are u
changed, with integration timestm;O(107). As expected,
the divergence of the susceptibility is rounded and shif
over some parameter region, while the magnetization
creases smoothly to a small constant value in the disord
phase~see Fig. 4 for comparison!.

FIG. 5. Size dependence of the macroscopic quantifiers
Miller and Huse’s model. Plots of~a! the magnetizationML and~b!
the susceptibilityxL are presented as a function of the coupli
constantg, for four different system sizes 20<L<64. A time av-
erage is performed overtm;O(107), a time scale much larger tha
the average time between two sign reversals of the instantan
magnetization. The transition is rounded and shifted due to fin
size effects.
rs,
e

t of

s

d
e-
ed

Let gc
` denote the infinite-size transition coupling co

stant. Scaling laws similar to Eqs.~13! are expected to hold
in a neighborhood of this point, e.g.,

ML~g!;L2b̂~g!, gPV~gc
`!, ~14!

where b̂(g) is a smooth function ofg. Therefore, reliable
values for the exponent ratiosb/nandg/n can only be ob-
tained oncegc

` is known with sufficient accuracy. From Fig
5~b!, we see that an effective critical coupling consta
gc(L) can be defined for a given finite sizeL as the abscissa
of the global maximum ofxL . Our data is consistent with
the following scaling law@33#:

gc~L !2gc
`}L21/n, ~15!

which can be fitted simultaneously forgc
` andn. However,

we prefer to evaluategc
` independently of the exponentn. A

useful quantity is Binder’s cumulantUL(g) @34#, defined as

UL~g!5231ML
~4!~g!/„ML

~2!~g!…2, ~16!

whereML
(k) denotes thekth-order moment of the magnetiza

tion ML
(k)5^(mL

t )k&. According to the same analogy wit
equilibrium second-order transitions@Eq. ~12!#, we are led to
write the scaled form of Binder’s cumulant as

UL~g!5Û„~g2gc
`!L1/n…. ~17!

Remarkably, size-dependent prefactors cancel on the ri
hand side of Eq.~17! @34#. As a result,UL(g) becomes in-
dependent ofL at criticality,

UL~gc
`!5U* ,;L. ~18!

At equilibrium, the quantityU* is a universal ratio of am-
plitudes. Its numerical value is estimated to
2U*;1.830–1.835 for the Ising universality class~see@35#
for further references!.

In practice, our estimategc
` is determined by plotting

graphs ofUL(g) vsg for system sizes ranging fromL532 to
128 ~Fig. 6!. The simulation times—typically 103 times the
coherence time—are long enough in order to achieve sa
factory statistical accuracy. Error bars then correspond to
extension of the intersection region. Our estimates are

gc
`50.205 34~2!,

2U* ~gc
`!51.832~4!, ~19!

where numbers between brackets correspond to the un
tainty on the last digit~s! of the measured quantity
gc

`50.205 3460.000 02, 2U* (gc
`)51.83260.004. Even

for the largest sizes considered@(L1 ,L2)5(64,128)#, a slow
drift toward larger values ofg is observed when comparin
the successive locations of the intersection points of cur
UL1

(g) andUL2
(g). Accordingly, a systematic uncertaint

on the position of the infinite-size critical point cannot b
excluded. Note, however, that the value ofU* given in Eq.
~19! is in remarkable agreement with that expected for
Ising universality class.
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We now proceed to measure exponent ratiosb/n, g/n
and 1/n. Figure 7 shows that the expected scaling laws:

ML~gc
`!;L2b/n,

xL~gc
`!;Lg/n ~20!

are indeed respected whengc
` is equal to its measured valu

~19!. Linear fits in the log-log scale for 20<L<64 lead to
the estimates

b/n50.125~4!,

g/n51.761~10!, ~21!

in good agreement with the Ising values (b/n) Ising5
1
8 and

(g/n) Ising5
7
4. The main source of error stems from the u

certainty on gc
` .

In order to measuren, we choose to use the scaling law

]gUL~gc
`!;L1/n,

]glnML
~2!~gc

`!;L1/n,

]glnML~gc
`!;L1/n, ~22!

easily derived from Eq.~12! @32#. Even though only the firs
and second moments of the magnetization will be conside
here for computational reasons, logarithmic derivatives of
higher-order moments also scale withL with a dominant
exponent equal to 1/n. At equilibrium, numerical differentia-
tion of noisy data can be avoided: derivatives on the le
hand side of Eq.~22! can be expressed as combinations
moments by using the properties of the Boltzmann weig
This is, however, not possible in this case. An alternat
method consists in approximating the derivative@e.g.,
]gUL(gc

`)# by a finite difference taken between two neig

FIG. 6. Illustration of the relevance of Binder’s method wh
estimating the critical coupling constant of the continuous transi
of Miller and Huse’s model. Plots of Binder’s cumulant with r
spect tog are presented for system sizes 20<L<128. Symbols
correspond to raw data, plain lines to polynomial fits. Estimates
gc

` and U* reflect the size of the intersection region of curv
obtained for sizes 32<L<128.
-

d
ll

-
f
t.
e

boring pointsgc
2 andgc

1 , gc
2,gc

`,gc
1 . This method turns

out to be difficult to control, and is overly sensitive to stat
tical errors on the values of the original data, in this ca
UL(gc

1) andUL(gc
2). We choose instead to first fit the ex

perimentalcurve UL(g), by a polynomial functionP(g), and
then approximate the derivative by the polynomial’s deriv
tive at the critical point:]gUL(gc

`).P8(gc
`). When a suffi-

cient number of data points spread over a large enough
terval of g values are considered, the numerical val
P8(gc

`) turns out to be independent of the degree of
polynomial P. Figure 8 shows plots, drawn on a log-lo
scale, of the quantities]gUL(gc

`), ]glnML(gc
`) and

]glnML
(2)(gc

`) thus obtained. Corrections to scaling are clea
present for the smallest sizes. Linear fits on the four rig
most points of each data set in Fig. 8 (32<L<64) lead to
the following estimate:

n50.874~17!. ~23!

n

r

FIG. 7. Measure of the critical ratiosb/n andg/n for Miller and
Huse’s model. Log-log plots of~a! the magnetizationML(gc) and
~b! the susceptibilityxL(gc) vs system size are presented at cri
cality @gc5gc

`50.205 34(2)#. The solid lines correspond to Isin
exponents, in good agreement with numerical data. Note the w
ness of corrections to dominant scaling.
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As before, the main source of uncertainty derives from
error bars affecting the value ofgc

` . Note that our measure
ment protocol leads to mutually consistent behavior for
three quantities in Eq.~22!, even though one would in prin
ciple expect the stability and accuracy of measures to
ordered as

]gUL~gc
`!&]glnML

~2!~gc
`!&]glnML~gc

`!, ~24!

since statistical accuracy decreases with the order of
ments ofmL

t involved.
In this section, we have first of all confirmed—albe

indirectly—the validity of Eq.~12! for the nonequilibrium
continuous transition of Miller and Huse’s CML. Howeve
our quantitative estimates of critical exponents are in par
disagreement with the conclusions of@3#: while the ratios
b/n and g/n agree with Ising values, our—so far naive—
estimate ofn is not compatible with the Ising correlation
length exponentn Ising51. In Sec. II D, we attempt to answe
the following question: does this discrepancy reveal ac
asymptotic behavior, or is it only due to the presence,
small systems, of corrections to dominant scaling wh
might obscure the true, infinite-size behavior?

D. Corrections to finite-size scaling

The relevance of corrections to dominant scaling laws
perhaps best shown by graphs of the quanti
]gUL(gc

`)/L1/n, ]glnML(gc
`)/L1/n, and ]glnML

(2)(gc
`)/L1/n vs

system sizeL. When the numerical valuen50.887 is used
@cf. Eq. ~30!#, such graphs show clear evidence of conv
gence towards well-defined limit@Fig. 9~a!#. The same com-
ment is valid forn50.874@Eq. ~23!#. Nonetheless, plots ob
tained for n5 n Ising51 @Fig. 9~b!# have not reached

FIG. 8. Direct measure of the correlation-length exponentn for
Miller and Huse’s model. Log-log plots of the derivatives
UL(gc), lnML(gc), and lnML

(2)(gc) vs system size are presented at t
critical point, gc5gc

`50.205 34(2), for system sizes in the rang
16<L<64. Straight lines of slope 1/n Ising51 and 1/0.887 are
drawn. Strong corrections to dominant scaling are present.
value ofn ref50.887, our reference, is obtained from the same d
by taking into account a single corrective exponent~cf. Sec. II D!.
Visually, this slope hardly differs from 1/0.874, as obtained fro
Sec. II C’s estimaten50.874, which overlooks possible correction
to scaling.
e

e

e

o-

l

al
r
h

s
s
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saturation forL<64. However, a very slow convergenc
cannot be ruled out for very large system sizes.

In order to assess quantitatively the validity of this obs
vation, we turn once more to results known to hold at eq
librium. According to renormalization group theory, conve
gence toward asymptotic behavior is generically control
by irrelevant operators, i.e., operators whose eigenva
close to the relevant fixed point are negative. For finite-s
systems, the scaling form of the free energy becomes, in
simplest case,

F~T,B,L !5L2dF̂„~T2Tc
`!L1/n,BL~b1g!/n,Sirr L2v/n

…,
~25!

where only one irrelevant scaling fieldSirr is included, and
v is the associated~positive! corrective exponent. In prac

e
a

FIG. 9. A convenient display of corrections to dominant scali
affecting the measure ofn for Miller and Huse’s model. Lin-lin
plots of the quantities ]gUL(gc)/L

1/n, ]glnML(gc)/L
1/n, and

]glnML
(2)(gc)/L

1/n are presented at criticality @gc5gc
`

50.205 34(2)# vs system sizeL. In graph~a!, rapid convergence to
a plateau which may faithfully represent infinite-size behavior
reached for our estimaten50.887. Usingn5 n Ising51.0 instead
@graph ~b!# leads to possible, but extremely late convergence~see
text!.



ex
p
tio
o
ex
re

-

-
ea
u
re
ph

fo
es

e

f

u-

a

-

-
of

-

s
ing

es

ent

n

nfi-

raph
r the
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tice, deviations from asymptotic scaling laws under zero
ternal field derive both from the presence of irrelevant o
erators and from the experimental uncertainty on the loca
on the infinite-size critical point. The large size behavior
thermodynamic quantities is then controlled by a double
pansion in powers ofL2v and of the reduced temperatu
(T2Tc

`)L1/n.
Assuming that an equation analogous to Eq.~25! is valid

for Miller and Huse’s CML, we obtain the following expres
sions:

ML~g!5L2b/n
„a01a1L

2v1•••1b1~g2gc
`!L1/n1•••…,

xL~g!5Lg/n
„c01c1L

2v1•••1d1~g2gc
`!L1/n1•••…,

]gUL~g!5L1/n„e01e1L
2v1•••1 f 1~g2gc

`!L1/n1•••…,

]glnML~g!5L1/n„q01q1L
2v1•••1r 1~g2gc

`!L1/n1•••…,

]glnML
~2!~g!5L1/n„s01s1L

2v1•••1t1~g2gc
`!L1/n1•••…,

~26!

where an ,bn , . . . , n50,1, . . . are nonuniversal, real pa
rameters. A simpler ansatz is, however, necessary, since
of these equations already involves a larger number of
known variables than can be expected to be determined
ably from the available data points. Inspection of both gra
of Fig. 9 reveals qualitative consistency with the presence
one corrective exponent, as in Eq.~26!. In addition, the
growth of error bars with system size can be interpreted,
data of similar statistical accuracy, as deriving from the pr
ence of a correction term such as (g2gc

`)L1/n. Since our
main goal is to improve the reliability of estimates of th
critical exponentn, we choose to take into account oneef-
fectiveexponentv(g), as in the expression

]glnML
~2!~g!5L1/n~g!

„s0~g!1s1~g!L2v~g!
…, ~27!

wheren(g), v(g), s0(g), ands1(g) are smooth functions o
the coupling constantg. Error bars on, e.g.,n, then corre-
spond to the range covered by values ofn(g) wheng varies
within the confidence interval obtained for the critical co
pling gc

` .
We now describe our measurement protocol in the p

ticular case of]glnML
(2)(gc

`). Generalization to other ‘‘ther-
modynamic’’ quantities on the left-hand side of Eq.~26! is
straightforward. Letgc assume a fixed value in the confi
dence interval previously obtained forgc

` @cf. Eq. ~19!#. For
fixed, reasonable values of (n,v), we plot
L21/n]glnML

(2)(gc) with respect toL
2v. A linear fit leads to a

first estimate ofs0(gc ,n,v) and s1(gc ,n,v), as well as of
the correspondingx2(gc ,n,v) measuring the quality of the
fit—not to be confused with the critical susceptiblityx(gc).
The critical couplinggc being fixed, we determine the expo
nents„n(gc),v(gc)… from the best fit, defined as the locus
a local minimumx2(gc)5minx2(gc ,n,v). In practice, a clear
minimum of the functionx2(gc ,n,v) is observed, and cor
reponds to fits of good quality@cf. Fig. 10; a projection on
the planev5v(gc) is used for clarity in Fig. 10~a!#. The
final error bars onn andv correspond to the extremal value
obtained when applying the same protocol while vary
-
-
n
f
-

ch
n-
li-
s
of

r
-

r-

gc over the relevant interval. The three quantiti
]gUL(gc

`)/L1/n, ]glnML
(2)(gc

`)/L1/n and ]glnML(gc
`)/L1/n are

analyzed along the same lines, yielding mutually consist
results. Our global estimate is

n50.887~18!, vn51.560.4. ~28!

This value ofv is compatible with a rapid relaxation to a
asymptotic behavior reached as soon asL532, in agreement
with Fig. 9~b!.

Applying the same method to exponent ratiosb/n and
g/n yields the following estimates:

b/n50.125~4!, vM59~4!,

g/n51.748~10!, vx55.7~5!. ~29!

FIG. 10. An estimate of the effective, corrective exponentvn

for Miller and Huse’s CML. Plots ofx2 vs n, obtained for an
already optimized value ofvn , are shown in graph~a! for three
fixed values of the critical coupling constant spanning the co
dence intervalgc5gc

`P@0.205 32,0.205 36#. Linear fits corre-
sponding to the minima of the three curves are presented in g
~b!, where symbols denote our data, obtained in each case fo
optimal triplet (gc ,v,n).
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Taking into account one corrective exponent leads here
improved agreement with Ising values. The large values
vM andvx are consistent with a fast relaxation to asym
totic behavior, as observed in Fig. 7. The discrepancies
served in the measured values ofvn , vM , andvx appar-
ently contradict Eq.~26!, where a single exponentv is
present. This is easily accounted for by remembering
v as measured here is an effective corrective exponent
tegrating all possible sources of corrections to scaling.
accurate determination of the~unique! exponentv would
require data of much better statistical quality. Combini
Eqs.~28! and~29!, we obtain the following final estimates o
critical exponents:

b50.111~5!,

g51.55~4!,

n50.887~18!, ~30!

as reported in Table I, where Miller and Huse’s CML
referred to as MH4.

Assuming that the exponentn holds its Ising value, we
implement the same protocol, this time varying onlyg and
v. Within this constraint, the ‘‘best fit’’ can no longer co
respond to a global minimum ofx2(gc ,n,v) @cf. Fig. 10~a!#.
The value thus obtained forv Ising is smaller than 1:

n5 n Ising51⇒vn,Ising50.660.2, ~31!

indicative of an extremely slow rate of convergence tow
asymptotic behavior. Using the corresponding values
e0(gc), q0(gc), ands0(gc) as reference points, we find tha
convergence to asymptotic behavior, defined as a rela
deviation of less than 1% from asymptotic values, wou
then be reached forL.O(105), or well beyond the reach o
current computing power.

TABLE I. Critical exponents of Ising-like phase transitions
CML’s. For each model, we give numerical estimates of the criti
point gc

` , Binder’s cumulant2U* , and the three static critica
exponentsb, g, andn. The ratio (2b1g)/n;2.0 is everywhere in
agreement with an hyperscaling relationship. The abbreviat
MH4, C4, and MH3 correspond respectively to Miller and Huse
model, to the CML with cubic map discussed in Sec. III A 1, and
the locally anisotropic, three-neighbor coupling CML of Se
III A 2. The three transitions belong to the same~non-Ising! univer-
sality class.

MH4 MH3 C4

gc
` 0.205 34(2) 0.251 18(4) 0.178 64(4)

2U* 1.832(4) 1.823(3) 1.83(1)

b/n 0.125(4) 0.131(6) 0.125(7)
g/n 1.748(10) 1.74(3) 1.75(4)
(2b1g)/n 2.00(2) 2.01(4) 2.00(5)

b 0.111(5) 0.117(7) 0.114(11)
g 1.55(4) 1.55(5) 1.60(11)
n 0.887(18) 0.895(12) 0.91(4)
to
f
-
b-

at
n-
n

d
f

ve

In addition, indirect support of the validity of estimate
~30! is provided by collapses of magnetization and susce
bility data obtained for different system sizes. Neglecti
corrections to scaling in Eq.~25!, the following homoge-
neous forms are expected to apply:

Lb/nML~g!5M̂ „~g2gc
`!L1/n…,

L2g/nxL~g!5x̂„~g2gc
`!L1/n…. ~32!

The data sets previously presented in Fig. 5 (L<64) yield
excellent collapses forn50.887 @Eq. ~28!#, and the Ising
values b/n50.125 andg/n51.75 ~Fig. 11!. Interestingly,
the large-size behavior ofML andxL , as observed in log-log
scale in the limitug2gc

`uL1/n→`, is consistent with straigh
lines of respective slopesb50.111, 2g/2520.775, and

l

s

.

FIG. 11. Data collapses close to the continuous transition
Miller and Huse’s model. The data are the same as in Fig. 5. L
log plots of the reduced magnetizationLb/nML @graph~a!# and sus-
ceptibility L2g/nxL @graph~b!# are presented vs the reduced cont
parameterL1/nug2gcu/gc for numerical valuesgc5gc

`50.205 34,
b/n5 (b/n) Ising50.125, g/n5 (g/n) Ising1.75, n50.887, and
20<L<64. Note the good agreement of asymptotic behavior w
the non-Ising exponentn50.887.
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2g521.55, in agreement with Eq.~30!. The same esti-
mates@Eq. ~30!# are also consistent with relation~15!, and
deviate only slightly from values obtained directly fro
simulations of large-size systems@L51024, Eq.~11!#. Note,
however, that the quality of collapses obtained from Eq.~17!
is similar for bothn50.887 andn5 n Ising51.

Numerical data presented in this section strongly sugg
that the continuous transition of Miller and Huse’s CM
doesnot belong to the Ising universality class. Provided th
the behavior observed forL<64 meaningfully approximate
the infinite-size limit behavior, our estimate of th
correlation-length exponent,n50.887(18), is significantly
lower than the expectedn Ising51. Yet a slow crossover to
Ising behavior cannot be ruled out for very large syst
sizes. On the sole basis of data presented so far, our c
does not constitute a definite proof. Unfortunately, our ana
sis of corrections to scaling also shows that the sizes nee
in order to provide a decisive numerical answer to this po
lie far beyond present computing capabilities@L.O(105)#.
The true critical exponents of the transition, be they Ising
not, are naturally expected to be in some sense unive
The coming section is aimed at assessing the ‘‘degree’
universality of the non-Ising estimates~30!.

III. RELEVANT PARAMETERS
FOR NONEQUILIBRIUM UNIVERSALITY

The continuous phase transition first reported in@3# is by
no means a unique phenomenon: Ising-like transitions
easily observed in coupled map lattices and related mo
@4#, once a small number of conditions is fulfilled. The mo
els investigated in this section share the following propert
the evolution rule is homogeneous, the local map is odd
chaotic. The lattice is two dimensional, and coupling b
tween sites is short ranged. At the macroscopic level,
up-down symmetry is spontaneously broken in the orde
phase. These restrictions are inspired by the conditi
which are known to define universality classes at equilibri
@23#. Our main goal here is to test whether or not the sa
conditions hold for far-from-equilibrium transitions o
CML’s ~Sec. III A!. Furthermore, the phase transition of
CML belonging to the same universality class as Miller a
Huse’s model may turn out to be free from~nonuniversal!
corrections to dominant scaling, thus allowing a reliable
timate of the correlation-length exponentn. We would also
like to determine which features specific to CMLs may affe
critical properties. In particular, the role played by bound
deterministic local fluctuations and by synchronous upd
will be assessed~Secs. III B and III C, respectively!.

All models discussed in Sec. III are simulated and a
lyzed according to the experimental protocol exposed in
tail in Sec. II. Initial conditions are drawn at random over t
CML’s phase-space, boundary conditions are periodic.
regimes considered correspond to the unique~numerical! at-
tractor of the system’s dynamics. The largest system siz
Lmax5128. The achieved statistical accuracy is of the sa
order for all models. Overall consistency in the measurem
process allows meaningful comparison of exponent valu
everywhere estimated by taking into account one effec
corrective exponent~cf. Sec. II D!. Note that macroscopic
quantities exhibit the same scaling behavior, for the sa
st
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critical exponents, when averaged over continuous lo
variables, as in

mcont,L
t 5

1

L2(i , j xi , j
t , ~33!

instead of local spins@cf. Eq. ~6!#. Simulations reported in
this article required about seven years of the CPU time o
DEC/Alpha processor running at 110 MHz. For brevity
sake, only figures related to the exponentn are included, in
practice figures similar to Figs. 8 and 9 of Sec. II. The int
ested reader is referred to@36# for additional details, and in
particular for graphs leading to estimates of the critic
points and of exponent ratiosb/n andg/n.

A. Testing universality within CML’s

Static critical exponents of equilibrium second-ord
phase transitions of systems with short-range interaction o
depend on the type of broken symmetry and on the sp
dimensionality. In this section, we consider extensively c
otic, purely deterministic, synchronously updated, tw
dimensional CML’s with an Ising-type ordering transitio
The changes made on Miller and Huse’s CML are known
be irrelevant at equilibrium: we first modify the local ma
~Sec. III A 1!, then the coupling scheme~Sec. III A 2!. The
corresponding transitions are thus expected to belong to
same universality class.

1. Smooth local map

CML’s which combine evolution rule~2! with an odd
local map admitting three unstable fixed points donot nec-
essarily exhibit an Ising-like phase transition@36#. In some
cases, the CML remains paramagnetic for all parameter
ues. In others, a period-doubling transition is observed. Si
the relationship linking microscopic dynamics and mac
scopic ordering is unclear at present, our approach rem
mostly empirical.

The first model we investigate is obtained by replaci
the piecewise linear map of Miller and Huse’s model@Eq.
~4!# by a smooth, cubic map of the interval@21,1# ~cf. Fig.
12!,

f ~x!53x24x3, ~34!

while other features of the model are left unchanged. Si
its map possesses both expanding and contracting parts
corresponding coupled system, referred to asC4, may be
thought of as more generic than Miller and Huse’s mod
Whereas the~one-dimensional! cubic map is conjugate to th
piecewise linear map@Eq. ~4!#, and is therefore characterize
by the same Lyapunov exponent, this property does not h
for the coupled system. Lattices of coupled cubic maps t
out to be less chaotic, as can be quantitatively shown, e
by numerical calculations of the Lyapunov spectra. Long
coherence times then translate into longer simulation tim
for a given level of statistical accuracy.

An Ising-like transition, phenomenologically similar t
that of Miller and Huse’s CML, is observed at intermedia
coupling strengthg. The spatial extension of the intersectio
region of curves of Binder’s cumulantUL(g) leads to an
estimate of the critical coupling constant:
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gc
`50.178 64~4!,

2U* ~gc
`!51.83~1!. ~35!

This value ofU* is again compatible with the Ising estimat
The critical behavior is everywhere similar to that of Mille
and Huse’s model. Estimates of critical ratios and expone
obtained from Eq.~35!, are consistent with values~28! and
~29!:

b/n50.125~7!,

g/n51.75~4!,

n50.91~4!. ~36!

Values obtained from Eq.~36! for the exponentsb andg are
given in Table I, in good agreement with Eq.~30!. Conver-
gence to Ising asymptotic behavior is rapid for both mag
tization and susceptibility, as confirmed by large values
the corresponding corrective exponentsvM;vx;5. As be-
fore, strong corrections to scaling render the measureme
n inconclusive~Fig. 13!: the possibility of a slow relaxation
toward Ising behavior, governed by a corrective expon
smaller than 1, cannot be ruled out.

Local maps defined on the whole real axis, such as
~40!, were also investigated. In all cases considered, prel
nary results indicate that strong corrections to dominant s
ing impair the evaluation ofn, while relaxation toward
b/n5 (b/n) Ising and g/n5 (g/n) Ising is fast. This suggests
that critical exponents are indeed insensitive to the choic
a local map, and that the presence of strong correction
scaling forn may in fact be related to the particular evolutio
rule used so far, i.e., to nearest-neighbor coupling o
square lattice.

2. Transition with weak corrections to scaling

The role played by the~short-range! evolution rule is in-
vestigated in this section. We focus on a CML defined by
combination of Miller and Huse’s map@Eq. ~4!# and a locally
anisotropic evolution rule

FIG. 12. A graph of the smooth, cubic local map used in mo
C4.
s,

-
f

of

t

q.
i-
l-

of
to

a

e

x2i , j
t115~123g! f ~x2i , j

t !1g„f ~x2i21,j
t !1 f ~x2i11,j

t !

1 f ~x2i , j11
t !…,

x2i11,j
t11 5~123g! f ~x2i11,j

t !1g„f ~x2i , j
t !1 f ~x2i12,j

t !

1 f ~x2i11,j21
t !… ~37!

referred to as MH3. Rule~37! is defined on a two-
dimensional square lattice of Cartesian indices (i , j ), and ap-
plied synchronously to all lattice sites. Each site is coupled
three of its nearest neighbors: sites belonging to even~odd!
columns of the lattice are coupled vertically to their northe
~southern! neighbor only. The coupling constantg thus be-
longs to the interval@0,13]. An Ising-like phase transition

l

FIG. 13. Measure of the correlation-length exponentn for the
continuous transition of modelC4 ~cubic local map, four-nearest
neighbor coupling!. A direct measure is obtained from graph~a!,
where quantities]gUL(gc), ]glnML(gc), and]glnML

(2)(gc) are plotted
vs L on a log-log scale at the critical pointg5gc

`50.17864(4).
Our best estimate (n50.91) is tested in graph~b!, presenting
]gUL(gc)/L

1/n, ]glnML(gc)/L
1/n, and]glnML

(2)(gc)/L
1/n vs L on a lin-

lin scale.
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occurs for a critical couplinggc;0.25. Thelocal anisotropy
of rule ~37! is erased at large scales, where patterns are
tropic ~Fig. 14!.

Since a unique correlation lengthj can be defined, and
shown to diverge at criticality, we expect the finite-size sc
ing laws discussed in Sec. II to apply. Accordingly, Binde
method leads to an estimate of the critical coupling cons

gc
`50.251 18~4!,

2U* ~gc
`!51.823~3!, ~38!

FIG. 14. Typical snapshots of model MH3~locally anisotropic
evolution rule! taken in the time-asymptotic regime far from crit
cality @gc

`50.25118(4)#. Up- and down-spins are represented
black and white pixels, respectively.~a! Disordered phase
g50.18. ~b! Ordered phase,g50.28. The system size isL5400.
o-

l-

nt

where the estimated cumulant is slightly lower than its Is
value. We find values of critical quantities:

b/n50.131~6!,

g/n51.73~3!,

n50.895~12! ~39!

for corrective exponentsvM;vx;5. A crucial observation
is that corrections to dominant scaling are suppressed for
quantities]gUL(gc

`), ]glnML
(2)(gc

`) and ]glnML(gc
`) ~cf. Fig.

15!. Convergence to asymptotic behavior is already achie
for the smallest size considered,L512. This feature justifies
the somewhat unusual choice of rule~37!. The numerical
value n50.895(12) given in Eq.~39! is obtained from
straightforward linear fits of the data presented in Fig.
over the whole range of available sizes (12<L<128). We

FIG. 15. Measure of the correlation-length exponentn for the
continuous transition of model MH3~piecewise-linear local map
three nearest-neighbor, locally anisotropic coupling!. The quantities
plotted are the same as described in Fig. 13, for the relevant
merical valuesg5gc

`50.251 18(4), n50.895. Notice the absenc
of corrections to scaling in graph~b!.
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can thus safely conclude that this transition doesnot belong
to the Ising universality class, since its correlation expon
n is not consistent withn Ising51.

Table I sums up the numerical values of critical expone
of models MH4, C4, and MH3. Since excellent mutu
agreement is achieved, and since critical exponents ar
principle insensitive to microscopic details of the CML, su
as the choice of the local map or local coupling, our d
strongly suggest that the three transitions belong to a un
universality class, characterized by a correlation-length
ponent significantly lower than the Ising value. In oth
words, we now feel confident that the estimates ofn derived
in Secs. II D and III A 1 from the scaling behavior of sy
tems of small sizes are in fact equal to values pertaining
the infinite-size limit. Note that we have no specific und
standing as to why implementing evolution rule~37! happens
to suppress corrections to scaling. In particular, strong c
rections to scaling are again observed in the nearby cas
nearest-neighbor coupling on a honeycomb lattice. The c
pling scheme~37! may thus constitute a fortunate, yet is
lated case.

B. Noise-driven phase transitions

Phase transitions of two-dimensional, extensively-cha
CML’s, which were expected to belong to the Ising unive
sality class on rather general grounds, turn out to exh
universal, yet distinctly non-Ising critical behavior. For on
dimensional CML’s, it was recently argued that the nonu
versal behavior of phase transitions akin to directed perc
tion may be related, below threshold, to the inher
complexity, and thus to the ‘‘imperfect’’ character of dete
ministic fluctuations produced by chaotic dynamical syste
@13#. In the context of nonequilibrium growth phenomen
roughening exponents of nonlinear, stochastic partial dif
ential equations subjected to colored noise are known to v
continuously with the value of the exponent governing
tail of the noise distribution@37#. It is thus natural to wonde
whether the unexpected critical properties reported ab
may be connected to the particular nature of the determi
tic, bounded fluctuations generated by chaotic maps.

This question is now addressed, by investigating the c
cal properties of noise-driven phase transitions of stocha
CML’s. When subject to an external, unbounded, wh
noise, the local phase space of each individual map m
nonetheless remain invariant under the CML’s evolut
rule. For that reason, we opt for an odd, chaotic map defi
on the whole real axis as~cf. Fig. 16!

f ~x!5l~x2x3!exp~2x2!, ~40!

and characterized by three unstable fixed points for la
enough values of its real parameterl. The exponential in Eq
~40! ensures that the CML’s attracting set remains bound

1. Four-neighbor coupling

Map ~40! is first implemented on a square lattice wi
nearest-neighbor coupling. The evolution rule of the res
ing synchronously-updated, stochastic CML reads
t

s
l
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xi , j
t115~124g! f ~xi , j

t !1g„f ~xi21,j
t !1 f ~xi , j21

t !1 f ~xi11,j
t !

1 f ~xi , j11
t !…1h i , j

t , ~41!

whereh i , j
t denotes Gaussian, white noise with the followin

correlation functions:

^h i , j
t hk,l

t8 &52Dd~ i2k!d~ j2 l !d~ t2t8!. ~42!

Sequences of uncorrelated pseudorandom numbers are
duced by a generator of Fibonacci type, with a period mu
longer than theO(1011) numbers needed for the largest siz
considered. Their distribution is made Gaussian by a s
dard Box-Müller-type algorithm. We checked that our resu
are not altered by a different choice of random-number g
erator.

Three control parameters are in principle available:
coupling strengthg, the map’s parameterl, and the noise
intensityD. The value ofl is first set so that the correspond
ing pure CML @evolution rule ~2!# undergoes a coupling
driven Ising-like transition for an intermediate value ofg.
The coupling constant is next chosen in a range compat
with the existence of a ferromagnetic phase. For the sa
fixed set of parameter values (l,g), a noise-driven Ising-like
transition occurs under evolution rule~41! for a critical noise
intensityDc . Strong enough external noise, somewhat sim
lar to the temperature of equilibrium systems, destroys lo
range order and leads to a paramagnetic phase (D>Dc).

For thefixed setof parameter values (l,g)5(5.0,0.22),
the locus of an Ising-like phase transition can be circu
scribed to the region defined by

Dc
`50.018 05~15!,

2U* ~Dc
`!51.834~13! ~43!

by applying Binder’s method on numerical data obtained
sizes 12<L<64 only, due to the additional numerical cost
drawing random numbers. Good agreement with the Is
value ofU* is again observed. The status of critical quan
ties is similar to that obtained for models previouly defin

FIG. 16. A graph of the smooth, local map used in stocha
modelsN4 andN3.
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on a square lattice with nearest-neighbor coupling, as
scribed in Secs. II and III A 1. Our estimates are

b/n50.122~6!,

g/n51.70~4!,

n50.88~6! ~44!

for effective corrective exponents equal tovM56(1),
vx52.6(1), andvn55.5(1.0). While good agreement wit
Ising values is easily obtained for exponent ratiosb/n and
g/n, strong corrections to dominant scaling~cf. Fig. 17! as
well as larger than usual error bars hinder a straightforw
evaluation ofn. Values of the critical exponentsb, g, and
n are listed in Table II, under the headingN4. Preliminary
results on other noise-driven transitions of stochastic CM
obeying evolution rule~41!, for different choices of param

FIG. 17. Measure of the correlation-length exponentn for the
noise-driven continuous transition of stochastic CMLN4 ~local
map defined over the whole real axis, nearest-neighbor coupl!.
The quantities plotted are analogous to quantities described in
13, for the relevant numerical valuesD5Dc

`50.018 05(15),
n50.88. Graph~b! shows the presence of strong corrections
dominant scaling.
e-

d

s

eters (l,g), as well as oncoupling-driven phase transitions
observed when varyingg for fixed parameter values
(l,D), suggest that the intensity of corrections to scaling
rather insensitive to the particular choice of model, provid
that the evolution rule involves nearest-neighbor coupling
a square lattice.

2. Three-neighbor coupling

We now consider a variation on evolution rule~37!, modi-
fied so as to include additive white noise. The resulting no
CML, denoted hereafter asN3, is defined on a square lattic
as follows:

x2i , j
t115~123g! f ~x2i , j

t !1g„f ~x2i21,j
t11 !1 f ~x2i11,j

t !

1 f ~x2i , j11
t !…1h2i , j

t ,

x2i11,j
t11 5~123g! f ~x2i11,j

t !1g„f ~x2i , j
t11!1 f ~x2i12,j

t !

1 f ~x2i11,j21
t11 !…1h2i11,j

t , ~45!

where h i , j
t denotesd-correlated Gaussian noise@cf. Eq.

~42!#, and the functionf is the map~40!. Since the corre-
sponding deterministic CML remains paramagnetic for
values of the coupling strength whenl55, we choose to se
the two control parameters to the value
(l,g)5(4.5,0.25). The deterministic limitD50 corre-
sponds to an ordered, ferromagnetic phase. A noise-dr
Ising-like phase transition is observed for a noise intens
D>Dc strong enough to destabilize this regime. Since
trace of the microscopic anisotropy present in rule~45! is left
at large enough length scales, we safely turn to the sa
finite-size scaling laws in order to estimate the critical qua
tities of this transition.

Numerical data obtained from simulations of finite-si
systems (8<L<64) lead to the following estimate of th
critical noise intensity:

Dc
`50.023 66~6!,

2U* ~Dc
`!51.830~6!, ~46!

ig.

TABLE II. Critical exponents of synchronously updated, st
chastic CML’s. Abbreviations MH4,N4, andN3 correspond re-
spectively to Miller and Huse’s model and to the noisy CML
discussed in Secs. III B 1 and III B 2, defined by nearest-neigh
and locally anisotropic three-neighbor coupling schemes. The th
transitions belong to the same~non-Ising! universality class.

MH4 N4 N3

gc
`/Dc

` 0.205 34(2) 0.018 05(15) 0.023 66(6)
2U* 1.832(4) 1.834(13) 1.830(6)

b/n 0.125(4) 0.122(6) 0.126(7)
g/n 1.748(10) 1.70(4) 1.752(11)
(2b1g)/n 2.00(2) 1.95(6) 2.00(3)

b 0.111(5) 0.108(13) 0.113(9)
g 1.55(4) 1.50(14) 1.56(5)
n 0.887(18) 0.88(6) 0.89(2)
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where the value of Binder’s cumulant at criticality is in goo
agreement with the Ising result. The corresponding expon
ratios are

b/n50.126~7!,

g/n51.752~11!,

n50.89~2! ~47!

obtained for corrective exponents equal tovM52.5(7) and
vx52.2(1). However, rule~45! suppresses corrections
dominant finite-size scaling of the quantities]DUL(Dc

`),
]DlnML

(2)(Dc
`) and]DlnML(Dc

`): relaxation to asymptotic be
havior is clearly achieved as soon asL516 ~Fig. 18!.

FIG. 18. Measure of the correlation-length exponentn for the
noise-driven continuous transition of stochastic CMLN3 ~local
map defined over the whole real axis, three nearest-neighbor
cally anisotropic coupling!. The quantities plotted are analogous
quantities described in Fig. 13, for the relevant numerical val
D5Dc

`50.02366(6), n50.89. As before, corrections to scaling a
suppressed by the implementation of three-neighbor, locally an
tropic coupling.
nt

Exponentsb, g, andn, listed in Table II under the head
ing N3, are not compatible with the Ising universality clas
Since modelsN4 ~Sec. III B 1! and N3 ~this section! are
expected to belong to the same universality class, we bel
that the previous estimates~44! do indeed correspond to
infinite-size, asymptotic behavior. Moreover, good agre
ment is achieved between the present values~47! and those
already obtained for Miller and Huse’s CML with four- an
three-neighbor coupling@Eqs. ~30! and ~39!#. We conclude
that the nature of the microscopic fluctuations generated
CML’s is not a relevant parameter for critical exponents
Ising-like phase transitions of CML’s. This is in a sen
mildly surprising: we already showed in Secs. II and III
that transitions of deterministic CML’s using different ma
@Eqs.~4!, ~34!, and~40!#, and thus characterized by differen
invariant measures, do belong to the same universality cl
This section generalizes this first, and until now implic
result to the~generic! case of unbounded local fluctuations

C. Deterministic, asynchronously updated models

Equilibrium stochastic systems, such as the Ising mo
can be simulated numerically thanks to the Monte Carlo
gorithm, which ensures that the system’s phase spac
sampled according to its invariant measure. Spins are usu
updated asynchronously, in practice one at a time, the pre
order of update being irrelevant. Even though intermedi
situations, e.g., simultaneous update of appropriately defi
clusters of spins@38#, were considered in order to speed u
simulations, it is generally believed that equilibrium sp
systems such as the Ising model cannot be simulated by
chronous algorithms@39#, at least for cellular automata with
discrete phase space. Furthermore, simulations of Lang
equations, such as Eq.~1!, also respect asynchronous n
merical schemes. Since such equations form the backbon
theoretical arguments ruling out non-Ising critical behav
in Ising-like transitions of CML’s@26,27#, it is natural to ask
whether a so far largely unnoticed, yet fundamental disti
tion between synchronously and asynchronously upda
systems may not lie of the origin of the non-Ising behav
reported here.

In this section, we attempt to determine whether synch
nous update is the relevant parameter responsible for the
ported deviation from Ising universality. We consider var
tions of Miller and Huse’s model obtained by updatin
lattice sites one by one. An asynchronous update can
course be implemented in a number of different ways. F
simplicity’s sake, we focus here on a fixed, sequential
date. In practice, we choose to update the~square! lattice’s
rows one after another, and sites within the same row
lowing their column’s index. A pictorial representation
given by the following graph:

•••→~1,1!→~2,1!→~3,1!→•••→~L,1!→

→~1,2!→~2,2!→~3,2!→•••→~L,2!→

•••

→~1,L !→~2,L !→~3,L !→•••→~L,L !→•••, ~48!

lo-

s

o-



s
en

up
a
W
e
u

L
in
be

iz
al
u
ri
e
o

ee
da

w
lo
e-

ou-

es

in
n

ted
or
de-
es
r

55 2623UNIVERSALITY IN ISING-LIKE PHASE . . .
where arrows indicate the order of update between site
indices (i , j ), helical boundary conditions being used wh
linking two consecutive rows. Other asynchronous schem
may involve, for instance, the random choice of each
dated site over the lattice, where disorder may be either
nealed or frozen. Such choices are left for future study.
believe that results presented in this section are of a gen
nature, and do not depend on the type of asynchronous
date implemented in practice.

1. Four-neighbor coupling

We first choose to implement Miller and Huse’s CM
with nearest-neighbor coupling on a square lattice accord
to the fixed, sequential, site by site update rule descri
above. For periodic boundary conditions, rule~2! now as-
sumes the form

xi , j
t115~124g! f ~xi , j

t !1g„f ~xi21,j
t11 !1 f ~xi , j21

t11 !1 f ~xi11,j
t !

1 f ~xi , j11
t !…. ~49!

The local map is left unchanged@cf. Eq. ~4!#, the unique

control parameter is the coupling constantgP@0,14#.
An Ising-like transition occurs at

gc
`50.112 55~5!,

2U* ~gc
`!51.835~14!, ~50!

as estimated according to Binder’s method for systems s
smaller thanL564, a limit imposed by the larger than usu
coherence times present in this system. An asynchronous
date turns out to stabilize the ferromagnetic phase: the c
cal coupling~50! is much lower than that estimated in th
synchronous case, Eq.~19!. We find that convergence t
Ising critical behavior is achieved as soon asL;20 ~cf. Fig.
19!. The estimated critical exponents are

b/n50.117~12!,

g/n51.76~5!,

n51.02~7! ~51!

for ~large! corrective exponentsvM56(2),vx53.0(1), and
vn54.5(1.5). Estimates of exponentsb, g andn are given
in Table III, under the heading MH4 Async., and fully agr
with Ising exponents. This suggests that synchronous up
is indeed relevant in the renormalization group sense.

2. Three-neighbor coupling

In order to check the robustness of this first result,
naturally turn to an asynchronously-updated version of
cally anisotropic rule~37!. Once adapted to site by site, s
quential update, its evolution rule reads

x2i , j
t115~123g! f ~x2i , j

t !1g„f ~x2i21,j
t11 !1 f ~x2i11,j

t !

1 f ~x2i , j11
t !…,

x2i11,j
t11 5~123g! f ~x2i11,j

t !1g„f ~x2i , j
t11!1 f ~x2i12,j

t !

1 f ~x2i11,j21
t11 !…, ~52!
of
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where periodic boundary conditions are used, and the c
pling constantg belongs to the interval@0,13].

According to numerical data obtained for system siz
smaller thanLmax5128, a transition is observed at

gc
`50.158 47~2!,

2U* ~gc
`!51.832~12! ~53!

for a critical coupling constant much lower than measured
the synchronous case@Eq. ~38!#. Critical exponents are agai
in good agreement with Ising values,

b/n50.124~13!,

g/n51.72~1!,

n50.99~4!, ~54!

FIG. 19. Measure of the correlation-length exponentn for the
coupling-driven continuous transition of asynchronously-upda
model MH4 Async.~piecewise-linear local map, nearest-neighb
coupling!. The quantities plotted are analogous to quantities
scribed in Fig. 13, for the relevant numerical valu
g5gc

`50.11255(5), n5 n Ising51. Convergence to Ising behavio
is achieved as soon asL520.
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except for exponent ratiog/n, slightly lower than expected
The corresponding corrective exponents arevM52.2(4) and
vx52(1). The quantities ]gUL(gc

`), ]glnML(gc
`), and

]glnML
(2)(gc

`) reach an asymptotic scaling regime consist
with the Ising universality class forL;32 ~cf. Fig. 20!. Nu-
merical estimates of exponentsb, g, and n are listed in
Table III, under the heading MH3 Async. Note that the co
bination of error bars ong/n and n leads to a value ofg
consistent withg Ising5

7
4.

Consistency between exponents~51! and ~54! confirms
once more that critical properties do not depend on the
ticular choice of a microscopic evolution rule. Furthermo
analysis of numerical simulations of models MH4 Asyn
and MH3 Async. suggest that Ising-like transitions of asy
chronously updated lattices of locally coupled chaotic m
belong to the Ising universality class. In other words, a s
chronous update appears to be the relevant parameter re
sible for the deviation from Ising universality observed
lattices of coupled chaotic maps.

Asynchronously updated models with adequate mic
scopic symmetry provide interesting ways to simulate
Ising model without having recourse to a pseudo-rando
number generator. The achieved numerical efficiency
however rather poor, since local variables are continuo
Recent work by Sakaguchi@2# showed that the Ising mode
can also be implemented exactly thanks to a semisync
nous update scheme, where two checkerboard sublattice
a two-dimensional, square lattice of locally coupled B
noulli maps are updated one after the other. Since this m
respects a detailed balance, and is characterized by a G
invariant measure, its critical exponents are exactly know
be equal to their Ising values, a point that we checked
numerical simulations analyzed as before. This further s
gests that synchronous update ofall lattice sites may well be
an isolated case within the spectrum of possible upd
schemes: an asynchronous update decomposed on two
lattices suffices in order to restore Ising universality.

IV. DISCUSSION

Ising-like, chaos-to-chaos phase transitions of coup
map lattices are well described by scaling and finite-s

TABLE III. Critical exponents of asynchronously-updated mo
els. Abbreviations MH4, MH4 Async., and MH3 Async. corr
spond respectively to Miller and Huse’s model and to the async
nously updated models discussed in Secs. III C 1 and III C
defined by nearest-neighbor and locally anisotropic three-neigh
coupling schemes. Ising-like transitions of asynchronously upda
models belong to the Ising universality class.

MH4 MH4 Async. MH3 Async.

gc
` 0.205 34(2) 0.112 55(5) 0.158 47(2)

2U* 1.832(4) 1.835(14) 1.832(12)

b/n 0.125(4) 0.117(12) 0.124(13)
g/n 1.748(10) 1.76(5) 1.72(1)
(2b1g)/n 2.00(2) 2.01(8) 1.96(3)

b 0.111(5) 0.126(27) 0.123(18)
g 1.55(4) 1.79(17) 1.71(9)
n 0.887(18) 1.02(7) 0.99(4)
t
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scaling laws valid at equilibrium. This confirms indirect
that symmetry and ergodicity breaking, as signaled by
divergence of the system’s~unique! correlation length, occur
in the infinite-size limit. As for equilibrium systems, the nu
merical value of critical exponents which govern scali
laws is insensitive to microscopic details of the model, su
as the choice of a local map or evolution rule. Our ma
result is that the nature of update is a relevant parame
continuous transitions of two-dimensional, synchronous
updated CML’s with an Ising-like, discrete broken symme
form a new universality class. On the other hand, transiti
of asynchronously updated models belong to the equilibri
Ising universality class. Interestingly, the nature of loc
fluctuations—deterministic or stochastic—turns out to be
relevant.

Deriving accurate numerical estimates of critical exp
nents of deterministic systems is a notoriously difficult ta

o-
,
or
d

FIG. 20. Measure of the correlation-length exponentn for the
coupling-driven continuous transition of asynchronously-upda
model MH3 Async. ~piecewise-linear local map, three-neare
neighbor, locally anisotropic coupling!. The quantities plotted are
analogous to quantities described in Fig. 13, for the relevant
merical valuesg5gc

`50.158 47(2), n5 n Ising51. Convergence to
Ising behavior is achieved forL;32.
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@6,12,13#. We believe that the methodology followed here
reliable for two main reasons: corrections to dominant sc
ing are taken into account and quantified; estimates of c
cal exponents are always derived from at least two tra
tions belonginga priori to the same universality class. Th
latter point suggests that systematic errors of an unkno
nature do not bias our estimates. According to our simu
tions, the universality class of synchronously-updated m
els is characterized by the exponents

b50.115~9!,

g51.55~5!,

n50.89~2! ~55!

obtained when combining error bars of estimates pertain
to the three models MH4, MH3, andN3, chosen for the
~highest! quality of their data. Narrower error bars, whic
still lie within confidence intervals~55!, can be obtained for
exponentsb andg when giving credit to exact Ising value
for exponent ratiosb/n andg/n, while retaining the numeri-
cal estimaten50.89(2). Note that synchronous update do
not affect the value of Binder’s cumulant, nor the validity
the hyperscaling relation~cf. Tables I, II, and III!

2b1g5nd ~56!

known to hold at equilibrium in the case of fluctuatio
dominated transitions@23#. Preliminary results suggest tha
Eq. ~56! may also hold in the case of transitions of thre
dimensional hypercubic lattices, an observation compat
with a value of the upper critical dimension equal todc54
for Ising-like transitions of CML’s@26,27#.

The notion ofweak universality, as introduced by Suzuk
in the context of equilibrium critical phenomena@40#, may
provide a useful basis in order to account for exponent v
ues ~55!. A number of exactly solved equilibrium model
such as Baxter’s eight-vertex model@41#, are known to ex-
hibit anomalous, nonuniversal critical behavior, charac
ized by a continuous variation of critical exponents with p
rameters of the model which are in principle irreleva
However, theratios b/n, g/n and f̂5(22a)/n respect
Ising behavior. Suzuki noticed that, close to the transit
point, the magnetization and susceptibility depend on
correlation lengthj according to the scaling laws

M;j2b/n,

x;jg/n, ~57!

while the singular part of the free energy behaves as

f s;j2~22a!/n. ~58!

Only quantities defined with respect toj remain universal in
the case of Baxter’s model, while usual exponents, defi
with respect to the temperature difference from critical
(T2Tc), depend on details of the model. For this reas
the—intrinsically defined—correlation length seems be
apt at quantifying departure from criticality, and thus critic
phenomena, than does an external control parameter su
the temperature. Weak universality denotes the independ
l-
i-
i-

n
-
-

g

-
le

l-

r-
-
.

n
e

d

,
r
l
as
ce

of correlation-length-related exponents, such asb/n, g/n,
and f̂, on microscopic details of the model@40#. In this
sense, Baxter’s model belongs to theweakuniversality class
of the Ising model.

Even though Baxter’s eight-vertex model admittedly re
resents a nongeneric, exceptional case@42#, we would like to
assess the relevance of Suzuki’s weak universality to n
equilibrium, Ising-like transitions of CML’s. In fact, weak
universality is systematically tested by finite-size scali
methods. For systems whose finite-size correlation len
jL scales withL at criticality,

jL;g→g
c
`L, ~59!

the scaling laws for finite-size quantities,

ML;L2b/n,

xL;Lg/n, ~60!

closely parallel Eqs.~57!. Finite-size scaling estimates o
critical exponentsb andg depend on an independent me
sure ofn @32#. Furthermore, the ratiof̂ can be expressed a
equilibrium as

f̂5~2b1g!/n ~61!

by taking advantage of the scaling relationa12b1g52.
Even though a proper definition of exponenta still lacks in
far-from-equilibrium CML’s, it is tempting to link the valid-
ity of the hyperscaling relation~56! to an hypothetical rela-
tion ~58!, which may relate the behavior of some coars
grained free energy to the correlation length at criticality.

More importantly, the control parameters we consid
coupling strengthg and noise intensityD, are defined at the
microscopic level of evolution rules. They were chosen
an ad hoc basis, without particular theoretical groundin
attempts to define a meaningful, macroscopic ‘‘temperatu
for extensively chaotic dynamical systems remain in th
infancy @10,11#. We explicitly chose to define the continuou
transition of a CML as a point in parameter space where
~well-defined, macroscopic! correlation lengthjL diverges in
the thermodynamic limit. These remarks justify the choice
the inverse correlation lengthj21 as a more natural quanti
fier of departure from criticality than, say, the reduced co
pling constant (g2gc)/gc . In a renormalization-group con
text, we tentatively introduced in@5# a distinction between
scaling exponentsyB and yT @cf. Eq. ~12!#, where
yB5(b1g)/n is ‘‘superuniversal,’’ whileyT51/n depends
on the type of update. This statement can now be rephra
in somewhat more appropriate terms as follows: while s
chronous update defines a new~‘‘strong’’ ! universality class,
all Ising-like transitions of CML’s belong to the weak un
versality class of the two-dimensional Ising model, for bo
synchronous and asynchronous updates.

Quantities independent of the choice of a control para
eter remain universal within a given weak universality cla
@40#. Indeed, our analysis shows that Binder’s cumula
U* , a quantity measuredat criticality, is update independen
We conjecture that the critical exponenth, which governs
the algebraic decay of the spatial correlation function at
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transition point, retains its Ising value for transitions of sy
chronously updated models:h5h Ising5

1
4. The same remark

also applies to a so far hypothetical exponentd5d Ising515,
once appropriately defined from the response of the CM
order parameter to an external field. Estimatingh andd from
numerical simulations may provide a direct test of our we
universality hypothesis. This is left for future study.

To conclude, we would like to briefly discuss a number
open questions raised by the present work. First of all,
existence of a nontrivial universality class of transitions
synchronously updated models represents a challen
theoretical puzzle, since it questions the applicability of t
well-established tools—nonlinear Langevin equations a
dynamic renormalization-group methods—to a new a
largely unexplored context. One possible interpretation
this discrepancy is that asynchronously updated stocha
equations may not adequately describe the large-scale p
erties of extensively chaotic dynamical systems close to c
cal points, i.e., nongeneric points where the synchronous
ture of update is felt up to macroscopic length scales,
shown by the anomalous value of exponentn. Generalizing
spin-block renormalization methods to extended dynam
systems may help building an appropriate, synchronou
updated, coarse-grained description of CML’s close to cr
cality.

While the scope of our investigations was deliberat
limited to static exponents, one would of course like to co
front the theoretical predictions of@26,27# and preliminary
results of@3# concerning the dynamical critical exponentz
with extensive numerical simulations. Deviation from Isin
universality for transitions of synchronously updated syste
may here be expected on the basis of equilibrium resu
where the exponentz is known to depend sharply on the typ
of update@38#. One would also like to learn more about th
critical properties, both static and dynamic, of phase tra
tions of other extensively chaotic dynamical systems. Gen
alization to Ising-like transitions of higher-dimensional la
tices is straightforward, and may lead to a numerical estim
of their upper critical dimension. Arguably, phase transitio
-
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of extended dynamical systems generically involve a bro
temporal symmetry. Of particular interest is the case
period-doubling continuous phase transitions, whereby
macroscopic activity of lattices of, e.g., coupled logis
maps undergoes a sequence of subharmonic bifurcations@1#.
Preliminary results indicate that such transitions also belo
for static critical exponents, to the universality class of Isin
like transitions of synchronously updated models@18#. The
critical behavior of collective, forward Hopf bifurcation
@1,43# may also yield non-mean-field critical exponents f
small enough space dimensions.

Finally, we would like to make contact with real exper
ments, where themethodsexposed here may be applied frui
fully, in spite of the somewhat remote nature of the mod
considered. Many large, homogeneous, far-from-equilibri
systems exhibit transitions between distinct spatiotempor
chaotic regimes@7,8,44#, or between a~dynamically! ordered
state and a spatiotemporally chaotic regime@45–47#, where
order parameters can be defined, and critical exponents m
sured. Provided that spatial coherence scales diverg
threshold, such transitions may qualify as ‘‘continuous ph
transitions,’’ as defined in Sec. II A. In this case, finite-si
scaling forms are expected to apply to order parameters,
vided that the sizeL is redefined as an aspect rat
R5L/ l 0 counted in units of the system’s natural length sc
l 0, as obtained from the relevant instability mechanis
When the effective system sizeR depends directly on one o
the available control parameters, finite-size scaling may p
vide a feasible alternative to the~direct! measurement meth
ods used up to now, and lead to reliable, quantitative e
mates of critical exponents.
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