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Forecasting chaotic time series with genetic algorithms
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This paper proposes the use of genetic algorithms—search procedures, modeled on the Darwinian theories of
natural selection and survival of the fittest—to find equations that describe the behavior of a time series. The
method permits global forecasts of such series. Very little data are sufficient to utilize the method and, as a
byproduct, these algorithms sometimes indicate the functional form of the dynamic that underlies the data. The
algorithms are tested with clean as well as with noisy chaotic data, and with the sunspot series.
[S1063-651%97)12403-5

PACS numbe(s): 02.50-r, 02.60.Gf, 96.60.Qc

[. INTRODUCTION generated by the process—startingaay point in time. Lo-
cal approximation schemes, on the other hand, deal only with

Whether the data of a time seriég, ,x,,X3,... X7} were  data that lie in a close neighborhood in embedding space,
created by a deterministic or by a random process is ofteand require separate computations for forecasts in different
decided indirectly, by estimating the fractal dimension of theregions_ Obviously, a conventional search for the actual
time series in successively higher embedding dimensions ugquation of the data generating process is hopeless, since the
ing, for example, the Grassberger-Procagti] algorithm.  dynamics underlying most data, especially chaotic series, are
If the dimension estimates converge as the embedding dfar too complicated. Classical regression analysis is also all
mension increases it may be concluded that a deterministigut useless. During the past decade various nonlinear tech-
dynamic underlies the time serie(§ignificant drawbacks of niques have been deve|oped to accomp“sh the task of fore-
this method are, however, that massive amounts of data aggsting. Chaos theory suggested the method of “nearest
needed and that it depends on the visual inspection dfeighbors” [7,8] and of radial basis function predictors
graphs) Another tool for the assessment of the deterministiq[9,10], artificial intelligence led to the use of neural nets
origin of a time series consists, for example, in the applicaf11,12,13,14 and recently waveletsl5,16 have been em-
tion of noise-reduction method8], which attempt to ascer- ployed to predict chaotic time series. The nearest neighbor
tain the deterministic origin of the data by measuring thetechnique(which, again, requires massive amounts of Hata
level of noise in the seriggl]. Once it is established with a embeds the time series in a space of sufficiently high dimen-
sufficient level of confidence that the series has been genegion, and then seeks vectors in the historical series that are
ated by a deterministic process, prediction of the time seriessimilar to the one that is to be predicted. Neural nets also use
future behavior, based on its past values, can, in principle, bg historical series, and the backpropagation of errors, to fine
attempted(Actually, successful prediction may be the mosttune a set of parameters, and thereby build a forecasting
stringent proof of the data’s deterministic origiithe scalar  function that links past values of the time series with future
values of a series can be forecast either by selecting a modghlues. Predictions based on radial basis functions use global
based on the observed d4f, or by expressing them as a interpolation techniques and have proven useful in practice
function of the coordinates of points that are spatially closeyhen only sparse data was available. Finally, wavelet
in embedding space, or by relating them to the time seriesanalysis—like the Fourier transform—decomposes a time se-

values in the immediate past: ries into its basic components, thus allowing insight into its
fine structure, and then uses a weighted sum of these wave-
Xe=F(Xe—1: X2, X)), LHISEST, (1) lets for forecasting purposes.

This paper proposes genetic algorithms, a technique bor-
wherelL, the number of previous values that may appear inrowed from evolutionary biology, to accomplish the task. It
the equation, is a parameter that needs to be specified at thsually requires only a few dozen data points to give depend-
outset[6]. able results, and frequently offers the additional benefit of

This paper deals with the latter method: we attempt to findndicating the underlying process’ functional form. As we
a formula, such as Eq1), that links present and future val- use them here, genetic algorithms actually attempt to search
ues of the series to their previous entries. Ideally, the formuldor a formula that determines the dynamic, i.e., for an equa-
is identical to the true data-generating process; at the least, tibn in symbolic form which fits the data globally. But they
should mimic its behavior such that forecasts can be madelo this in a far more sophisticated way than by trying to
The technique is global, in the sense that a single formula iexhaustively enumerate all possible equations. Another ap-
sought that allows forecasts of future entriesainy series  proach to forecasting complex dynamics with genetic algo-
rithms has been report¢d7], and efforts have been made to
combine the nearest neighbor technique with genetic algo-
*Permanent address: P.O. Box 6278, Jerusalem 91060, Israel. rithms[18], wavelets with neural nefd 9], or to merge the
Electronic address: george@netvision.net.il three methodgnearest neighbors, neural networks, and ge-
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netic algorithms for prediction purpose$20]. There have A

been some attempts to utilize such methods for investment A+-B= : (©)
M .001/B B

purposeg21,22. ax(0.001{B[)sgr(B)

Genetic algorithms were pioneered by Hollgi®®], and  other mathematical constructs are conceivable, for instance,
have been used in such diverse areas as engine#g the log and exp functiongwith one argument “if-then-
chemistry{ 25], optimization[26], acoustic$27], patternrec-  glse” statementgwith three argumenjsor Boolean opera-
ognition[28], and economic§29], to mention just a few. A tors. In this paper we limit ourselves to the four arithmetic
formal analysis of genetic algorithms can be made, using thgperators.
tools of mechanical statistic$30]. The closely related (b) Computing the fitnessVe now define a criterion that
method of evolutionary programming has been employed toneasures how well the equation strings perform on the train-
elicit some basic physical laws from real-life data, for €Xing set,{X_ ;1,X_ +2....X7}. For each agen} the equation

ample, Kepler's third law and Ohm'’s lajf1]. string is used to compute estimates of xllin the training

set, as a functions of the previous values of the time series,
Il. THE GENETIC ALGORITHM

J—f. i
The basic idea in this paper is to break up mathematicaft fi(ke-1 X2, X)), LHISEIST, 1<j<N-(4)

equations into their building blocks, and to use these block x| denotes agerits estimate, and;( ) represents the equa-
in the same way that nature uses genetic material and chrg ; ! y

mosomes to evolve ever fitter individuals. The Darwinian

on string of agent]. The squared errors are summed for
. ) ; gach agent,
processes of natural selection and survival of the fittest ten

to make suitable blocks of the equations combine with other T '
useful blocks, while the use_less parts eventually disappear. Ajzz 2 (Xt —xp)2. (5)
Let us assume a scalar time sef&$,X,,X3,... X7} We t=L+1

want to determine the dependence of the valwes(L
+1=<t=<T) on their previous values,_, (1=<A<L, whereL
is the maximum lag that we allowThe algorithm starts out
with a population ofN initial “equation strings.” These are

The lower the sum of squared errors, the fitter is the agent.
The percentage of the training set's total variance that is
explained by the equation string, denoted by the syrﬁtfol

sequences of randomly chosen symbols that conform to a A2

simple grammar of mathematical equations: two arguments R2P=1— ' (6)
are combined by an arithmetic operator, and the resulting ) T

expression is enclosed in parentheses. The arguments are ei- E (X—X)?

ther real numbers, or values from the time series, or are t=L+1

themselves self-contained expressions enclosed in a pair

parentheses. The resulting expressions, super-expressions, ° allx, in the training se). However, in order to

and compounded expressions form the building blocks of th%Iiscourage the genetic algorithm from overfitting, by creat-

equation strmgs on which the DarW”.“a” processes operatc,lang ever longer strings through the combination of more and
(In the remainder of the paper we will sometimes call such

equation-strings “agents)’Genetic algorithms consist of a more parts of equations, we perform a modification to the

few, quite simple routines, which are described, step by Ste%zlrlfe?;rfh in the following mannetwe drop the subscrigt
in what follows: '

Pe]:nds itself as an initial fitness measufg. represents the

(a) Initialization. The agents of the populations are ini- T-L-1
tially endowed with simple equation strings of the form r’=1—(1—R?) Tk’ (7
S;=((A®B)®(C®D)), 1<j=<N 2

where T—L is the length of the training set, ardis the

X,_, (1=A<L). In the following routines these variables will P& negative |ﬂ§j is close to zero, confers an advantage on
be identified with values in the time-series: for eacL ~ Short stringsr© is inspired by, but not the same as, the ad-
+1=<t=<T), x,_, is a previous, or “lagged”, value af,. ® justedR?, as is known from multiple linear regression: since
stands for one of the four arithmetic operators, addition, suptultiple occurrences of the same variable are counted sepa-
traction, multiplication, or division. At this stage the opera- fately, compositions like_,X;_3/;—4 increasek by 3, and

tors and arguments are assigned at random: numerical valu¥s-5/Xt—s OF Xi—4—X;_4 increasek by 2, even though in the
are chosen from a finite set of real numbers, uniformly dislatter cases there are no new variables. We nfses the

tributed in [~ Z,+Z], and the integek is uniformly distrib- fit2r1ess measure in the_ algorithm, but report thelmore familiar

uted in k\<L. (One of the algorithm’s parameters that R” value, which we will call the “explained variance.”

must be specified at the outset is the probability for the ar- (¢) Ranking the agentsThe agents are ranked in de-

gument to be a number, or a variable representing a previougending order of their fitness.

value of the time series. (d) Choice of matesln this routine the members of the
In order to avoid division by zero, or by very small num- population are organized into pairs. The fittest agent is the

bers, we use a “protected” division which is defined as thefirst to choose a mate. It makes its choice from among the

division by Max(0.001,|B|), while preserving the sign, i.e., remaining agents, the probability of any one of them becom-
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ing a partner being proportional to its fitneg®e do not is reinitialized, when they are shorter, the remaining slots are
allow agents to mate with copies of themselyéghen the filled with null symbolg, and training sets with length 100.
next fittest chooses, etc., unhil’2 agents have formed pairs. Whenever an operator needs to be chosen at random—at
The remaining agents disappear. Thus, a totaNgf pairs initialization or at mutation—the probabilities of getting ei-
are formed. ther a number or a lagged datum, are 25% and 75%, respec-
(e) Reproduction and crossoverhis routine is the heart tively. The maximal lagl, is 10, and numbers are uniformly
of the algorithm. Each of th&l/4 pairs has four offspring. distributed in [-Z,+Z], with Z=10 and a precision of one
(Hence, the population size stays consyae choose the decimal. In each generation 240 mutations occur. The top-
following method of passing “genetic information” to the ranked 10% of the population are exempted from mutation.
next generation. The first two offspring are identical to their(Multiple mutations can occur in the same equation string.
parents. The equation strings of the two other offspring ar®©n average, two-thirds of the 360 lower-ranked agents un-
formed as recombinations of their parents’ equation stringsdergo one mutation in each generatjoim general, we let
randomly chosen, self-contained parts of the parents’ equdhe algorithm continue for 200 generations, but for high-
tion strings(either a randomly chosen datum or real numberdimensional and for noisy series up to 1200 generations were
or a randomly chosen opening parenthesis, and all the comun.
tents of the equation string until the corresponding closing Other evolutionary schemes are, of course, also possible.
parenthesisare interchanged. For example, let us assume thEor example, the procedure for the choice of a mate, or the

parents’ equation strings are as follows: method of passing “genetic information” from one genera-
tion to the next may be varied, and obviously the numerical
Parent 1: (A*B)/C, values of the parameters can be changed as well. Or, for
Parent 2: (D—(E/F)), (8)  example, one could envisage, say, formk pairs in each

generation, with 6 offspring each. It is interesting to note,
whereA, B, C, D, E, andF are, again, either equal tg_,  though, that the algorithm is quite robust to such changes.
(1<\<L), or to real numbers. The equation strings of off- The most efficient algorithm is found through experimenta-
spring 1 and offspring 2 are identical to their parents.tion.
Then—by crossover of the building block and E/F)—

]ngmnNo other offspring’s equation strings could be of the IIl. REFINEMENTS AND IMPROVEMENTS
The genetic algorithm proposed in this paper searches for
Offspring 3: (A*(E/F))/C, equations that mimic the dynamic that underlies a time se-
Offspring 4: (D—B). 9) ries. However, the equation string that is the top scorer after

many generations is not necessarily a well-adapted agent,

(The operators are left untouched in this routirieo sum- ~ €V€N if the explained Vagiance is good: over-fitting may pro-
marize, with the first two offspring, fitness is preserved,duce misleadingly highk®. To ascertain that the genetic al-

while provisions for improvement are made with the second?©'ithm bred an equation string that is fit—in a meaningful
pair of offspring. sense of the word—the top-ranked equation must always be

(f) Mutation. A small percentage of the equation strings’ applied to a test set and its predictive power must be re-
?Qecked with these new data.

most basic elements, single operators and arguments, a It should b ted that th tic algorithm d i
mutated at random. An element is randomly selected and shou € note at the genetic aigorithm 0oes no

depending on whether it us a number, a variable, or an o rlecessarily find the simplest version of an expression. For

. . instance, the number 1.0 could be stateckas/x,_s, zero
erator, a new number, variable, or operator is chosen at rary,

. . ) . Xi—a—Xi—a, 2X¢_ Xi—3(Xi—5+X_5)/X;_5, €tc. Also,
dom as in routinga) abo"?‘- The top ranked equatpn_strmgs eZuéti?)ns tntged r;otsbaese;pst(asts,esd int tégr)r/nst 05f tﬁeC mo:'? recent
are gxempted from mutation, howeVef, so that their mformalag& they could be recursively defined in terms of previous
tion is not lost inadvertently. Mutation ensures that thej5,q
agents do not converge prematurely to a stable, but relatively “after the genetic algorithm has evolved an equation
low, level of fitnesq32]. The number of mutations in each string, the result can sometimes be enhanced by applying the
generation, and the percentage of strings that are exempteghethod to the series of residuals. The latter is defined as the
are parameters that have to be specified at the outset.  series of values, that remain after the results of the fittest

Parts(b)—(f) of the algorithm are rerun for a certain num- equation string have been deducted from the original series:
ber of generations, or until some stopping criterion is satis-
fied, for example, when fithess no longer increases. Then =X~ ¥ (X_1,X—2,... %), L+1I<t<T, (10
editing operations are performed on the top-ranked equation

string, which cancel, concatenate, and simplify the variablewheref*() is the top-scoring equation string at the end of

and numbers that appear in the equation string, and break e algorithm’s run. If some parts of the data-generating for-

down into a concise formula. mula dominate the other parts, an improvement of the result
For our numerical experiments, the algorithm is imple-may be brought about by running the algorithm with the new

mented with the following parameter values: a populationtime seriese, ;1,6 4 2,...,&1} [33].

size of 400, a maximal string length, including parentheses, In the numerical experiments described below, we first

of 600 (if equation strings become longer than that, the stringoreed formulas that give forecasts xafas functions of the



2560 GEORGE G. SZPIRO 55

immediately preceding;_, (L+1<t<T and I=A<L). To  ously difficult to predict from historical data. In Sec. V we
express values in the time series that are further ahead in tltdmpare our results to those obtained in other studies.
future, the formulas could be iterated, (a) Rassler attractor (without noise)We simulate the

. e . Rossler attractof34] as
Xign=f¥of*oreof* (X, _1,X_2,... %), h=1 (11

: X(t+0)=x(t)—[y(t) +z(t)]6,
But one cannot expect very good results: in the examples
that follow in the next section we use chaotic processes, y(t+8)=y(t) +[x(t) +ay(t)]s,
whose sensitive dependence on initial conditions is well zZ(t+ 8)=z(t)+[b+x(t)z(t) —cz(t)]4, (12)
known. Hence, even a slight error in the forecasts,ofill
lead to rapidly increasing errors in the forecastsof, if the ~ with a=0.2, b=0.2, ¢=5.7, initial valuesx,=—1, y;=0,
latter are computed according to E§1). However, by sim-  Z,=0, and 6=0.02. The results of this equation system for
ply modifying one parameter, genetic algorithms can be diinteger values ot (i.e., for every 50th stepform the time
rected to specifically breea-period forecasts: if the integer seriesx;, y;, andz,. We first apply the genetic algorithm to
\ is required to be uniformly distributed im[K] instead of  the time series of the variable. After 200 generations of a
[1,L] in the initialization and mutation stages of the algo-typical run, the top-ranked equation string Was]
rithm, the strings that givex] [Eq. (4)] will be expressed

specifically in terms ok;_, , with n=A<K. Thus the new Ao=((((((((0.4+ (AG+A8))* (((((A3

equation string allows the forecast xf in periodt-n. The —A2)*(A3+*4.5))/4.4)+ A3)/4.5))/8.4) — A3)
fitness for n-period forecasts is generally lower than for

1-period forecasts, but it is usually better than when (&d). +Al)*(A5/4.5))/4.4)— A3)

is applied recursively times. ) ) ) ) o
Finally let it be noted that the genetic algorithm describedwith anR” of 0.878. In edited form, this equation is

here can be modified to handle vector time series, B

X1, Y101Z1) (X2, Y25 e iZo) oo X7, Y0210} By let- X = = X3+ 0.050505%_5(X;—1~X-3)

ting the algorithm choose the lagged variables in the initial- +0.0013664%,_3X;_5(0.977775 X,_»+X;_3)
ization and the mutation routines not only from among the
X,_, but also fromy,_, ,...,z,_, , strings will be bred that X (0.4+X—g+X—g). 13

expressx; as a function ofk;_, , Vi_y,---.Zi—y (1=A<L). ) . )
In order to test the string’s predictive power, a new time

IV. NUMERICAL EVIDENCE series was created with different data. Figure 1 shows how
the equation performs on a set with new data. Rfeof
We apply the genetic algorithm to clean and to noisy datathese forecasts is 0.912.
and to a series of sunspot data. In the numerical experiments For the time series of the variable we got the following
we use chaotic time series whose future values are notorequation after 200 generations, for example,

1222,
4= (104304 2_1)(0.42° 172 ,+7i_27_37,_10)[1.8+49.104,_3+27.2&_5(z_1+Z_4)]’

(14

with explained variance of 91.6%. This particular examplecap on the maximum value for the error for each datum. This
shows, however, how a genetic algorithm can get somewhaeduces the weight of the outliers, putting the emphasis on
thrown off the mark. A test with a new data set results in anthe mainstream data.

R? of only 0.568 for fifty data points. The reason is the (b) Mackey-Glass delay differential equation (without
following: since more than 90% of the values of theeries  noise). The dimension of the time series produced by the
are contained in the intervid, 1.0], while less than 10% of Mackey-Glass procegS6]

the data lie if 1.0, 15.4, the genetic algorithm is fooled. By

getting the outliers approximately right, and setting all other dx ax

H H : t t—7
values close to zero, it performs quite well in termsRt FTERERY —bx; (15
(The results are depicted in Fig. 2 and, in more detail, in Fig. X,

3.) Hence, depending on what the aim of the exercise is, the

fitness measure may need to be adjusted. If the goal is t@vith a=0.2, b=0.1, andc=10) depends on the delay pa-
predict the occurrence of outliers, then it is correct to use theameterr. We will use 7=30, which corresponds to a dimen-
genetic algorithm in the above manner. If, on the other handsion of about 3.5, and=100, which corresponds to a dimen-
the aim is to get as many data points as close to their trusion of about 7.5(The series was created by subdividing
values as possible, then it would be worthwhile to specify aevery time unit into ten subunits, letting transients die out,
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FIG. 1. Ressler attractofx values.

and then observing every tenth subuniEor 7=30 we tions are again trivial and will not be listed here. We inves-
obtain—after not more than a couple of generations—tigate 10-period forecasts. With high-dimensional data the

equation strings of the form algorithm must be rerun with longer training periods, and we
now use training periods of length 500 to breed equation
Ao=((A6*A1)/A6) strings and produce forecasts. Because of the high autocor-

relation of the Mackey-Glass time series, one could justify
“naive” forecasts of the formx,, ;0=X; and, in effect, the

Ao=((A1*A3)/A4), equation string A&A10 usually results in explained vari-
ances of up to 0.500. However, genetic algorithms perform

with R? values of 0.990 and 0.997, respectively. Since thesignificantly better. Three examples are

series is very highly autocorrelated, excellent one-period

forecasts are not surprisifg7], and it will be more instruc-

tive to inspect longer-term predictions. We breed 40-period Ap=(A10+((A17—Al15)—(A13—-A10))),

forecasts, as explained at the end of Sec. Ill, by setting the

first lag equal to 40. One such run gave the equation Ao=(AL7+((A12-6.1* (A12-A10)),

Ap=((A15*(A19+ (A10— (6.4~ (A13

— A10/((A10% A19) + A10),

or

Ap=(A40—((A40« A40)—0.9)),
with 0.631 explained variance, another resulted in

Ap=(0.8—((A40* Ad4) — (A46+ (A45—A49)))), ) 5 ) )
with R“ of 0.705, 0.770, and 0.776, respectively. Applying

with R? of 0.642. Using these equations and new data setdhese equation strings to different realizations of the Mackey-
40-period forecasts typically produc&d values of between Glass time series with=100, we typically geR?® values of

0.400 and 0.650 in both casg§ome test-series did have between 0.450 and 0.800.
much lowerR? values, howevey. (c) Belousov-Zhabotinskii simulation (with nois&yow

Let us now turn to a series of higher dimension by settinget us use a simulation of the behavior of the Belousov-
the parameter in Eq. (12) equal to 100. One-period predic- Zhabotinskii reaction in chemistry, with noise add&@],

—(0.125-%,_1) 3+ 0.50607357 exp-x;_1)+& for x,_;=<0.125
(X—1—0.125Y%+0.50607357 exp-x;_;)+&  for 0.125<x,_;=<0.3
10 19
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The noise terne is uniformly distributed in[0, 0.05. As before, our training period consists of 100 data points. After 200
generations of one typical run the edited version of the top-ranked equation string had the form

3.1x,_1+46.982 |

= .
X 2318778 X o(B 1+ Xyt X(_at Xi_5+2847.71630¢° 150 1X(_a) + 2284.14721X° 1+ X* X_2)) 7
|
The explained variance for the training set is 0.923. In order y;=1- 1'4yt2—1+0'3yt—2!
to test the predictive power of this equation, we apply it to a
new data set. Starting with a completely new series of the X =Y+ W (19)

form (16) we use Eg.(17) to estimate fifty one-period-

forward predictions. The fit between the predicted values an¢onvergence to well-adaptééit) equation strings was sig-
the series is very good: in the example presented in Fig?4, nificantly slower for the noisy time series, and in the follow-
equals 0.933. Furthermore, it is especially interesting to noténg examples, the runs included up to 1200 generations. Data
that the genetically evolved equation predicted the peaks corequirements were not increased, however, and the training
rectly, in every instance, whether they occurred after fouperiod was held constant at 100 data points. For adre
periods (t=5, 21, and 28 or after three periods. Two- attractor, with dynamic noisé distributed as a normal, with
dimensional phase portraits of the simulated Belousovmean 0, and standard deviation 0.Qfuncated at 0.01, so
Zhabotinskii reaction, according to E€L6), and of the re- that the time series does not always explodee received,
construction bred by the algorithfiEq. (17)] are depicted in  for example,

Fig. 5. The similarity between the two is apparent.

(d) Henon attractor (with noise) As another example, let Ao=((1.5-(A1*A1))/2.0),
us investigate the Hen attractor{39], with noise added. Ao=((0.2—((A1*0.4*A1))*4.0),
The time series that we examine have either dynamic noise
5, Ao=(0.8—(A1*Al)).

The explained variances for the training sets were 0.442,
=1—1.4xt2,1+ 0.X;_»+ 6, (18 0.620, and 0.839, respectively. The structure of these equa-
tion strings shows distinct similarity to the structure of the
clean dynamic that generated the time-series—in fact they
or measurement noise, represent the logistic equation, which can be considered as a
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FIG. 5. B-Z series with noise, phase portraits. Top: simulafin. (16)]; bottom: forecast$Eq. (17)].

one-dimensional version of the Hen process—and th? (e) SunspotsAs a final example we apply the genetic
values for new data sets were the same as for the traininglgorithm to a time series whose underlying dynamic is as
sets.(The series that exploded were excludd@].) For 6  yet unknown, the series of sunspots from 1700 until 1992, as
uniformly distributed in[0, 0.1] we received similar results. registered in the Sunspot Index Data Cefitdl]. We divide
Turning to measurement noise, we investigated time sethe series into a training set, which runs from 1700 to 1899,
ries, whose noise term is normally distributed with stan- tq which the algorithm is applied, and a test $£900 to
dard deviation 0.20. As can be seen from Figit&), the 1992 which represents the test series. After only about a
structure of the dynamic is hardly recognizable with thatygzen generations the algorithm settles down to an equation
amount of noise. Nevertheless, after 500 generations one "Wring like A5<AL/A5 or similar, with R? of 0.621. This

of the genetic algorithm produced the equation string again, is not surprising, because of the high degree of auto-

Ao=((((1.4— A3)+((A7—(A3—A8)) correlation in the series. As mentioned in Sec. Ill, we can
refine the results. Since we know thgt=f(x,_;) +&;, we
—((AL+A1)*Al)))+A2)/4.5), determine the best linear fit, by minimizing the sum of

. . . uared residual&s?, and receive
with R?=0.443. In tests with new data sets, the explamedSq el

variance of this equation string was typically between 0.250
and 0.450, Wh|ch is surpnsmg!y good,. con&dgrmg. th(_a X, = 7.7762+0.820%, 1+ &, (22)
amount of noise present. The edited version of this string is

— _ 2
X=0.311-0.444G,+0.22% with R? of 0.673. Now we take the series of residuals,

+0.222 — 2%, 3+ X_ 7+ X_g), (200  and let the algorithm breed equations in termsof, , with
lags I=\=<20. (Hence the training set actually consists of the
and some similarity to the “true” dynamic is apparent. Fig- years 1720 to 1900, the first 20 observations being used as
ure 6 (bottom plots forecasts against actual values, and thdags for the beginning of the serig$tive separate runs re-
correlation between them is evident—even if it is much lesssulted in the following equation strings after about 200 gen-
than perfect. erations:
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FIG. 6. Haon attractor with measurement noise. Top: phase portrait; bottom: actual values vs forecasts.

Ao=((A9—A3)/((A9/(4.0:A1))+4.0),

Ap=(((A9—A3)*A1)/(A13+((A9+A2)+(9.4+A2)))),

Ay=((A9—A3)/(4.8+(A9/(9.5:A1)))),
Ao=((A9—A3)/(3.9+(A11/AL))),
Ao=((A9—A3)/((A13/A1)+3.9),

tively. TheseR? values refer to the variance that remained
after the algorithm in the first stage already helped explain
67.3% of the total variance. Hence, the combination of both

stages explains between 0.814 and 0.849 of the training se-
ries’ variance, e.g.,

0.673+0.538 1—0.673 =0.849. (22)

with R? of 0.468, 0.538, 0.440, 0.462, and 0.457, respecit is particularly interesting to note that the edited versions of
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FIG. 7. Sunspots.

theses strings are very similar, with the expressiorployed as benchmarks to test for the quality of different
Xi—1(Xi_g—X;_3) appearing in every single case: methods. The normalized, root-mean-square dg,owhich
relates to ouR? as
 X—1(Xt—9— X¢—3) Xt—1(Xt—9— X¢—3)

&= y Et= _
U A gt ix Y04+ 2%, X9+ X¢—_13 E=V1-R? (25)

is frequently used as a measure for the goodness of fit.

= Xi-1(Xi-9~Xi-3) , gt:X‘_l(X‘_g Xi-3) , Farmer and Sidorovicf] applied the nearest-neighbor tech-

4.8 1+ — % 3.1 X-11 nique, to forecast 40 periods in the future. Using 100 data
t-17 9579 points they reportedE~1.0, which corresponds to aR?
value of approximately zero. When the training set was in-
Xi—1(Xi—g— X;—3) creased to 5000 observations, the nearest-neighbor technique
T30 1t X 13 (23 allowed 40-period forecasts witR? values of 0.990. La-

pedes and Farber[41] neural networks, using 500 observa-
Applying the combined results of both stages, tions for training purposes, produced one-period forecasts
with goodness of fit of 0.999. The wavelet method reported
(X¢—9— X¢—3) in Caoet al.[43] also gave one-step-ahead predictions, using
X(=7.7762t X;_4| 0.8205+ —a ) (24 300 observations as a training set. In their study the relative

errors were reported, and even though it is difficult to quan-

to the SerieS, 1900 to 1992, Wh@designates any one of t|fy the reSUItS(giVen in their F|g 2, it seems that while the
the divisors on the right-hand sides of E83), we obtain  vast majority of forecast errors is smaller than 0.025, a siz-
R? values of between 0.851 and 0.872. Figure 7 plots th@ble amount is found between 0.025 and 0.05, and a signifi-
series and the forecasts for one of E2@) [42]. cant number is much larger, some being as high as 0.200.
Finally, Meyer and Packardsl7] genetic algorithm allows
400-period forecasts, but only for those observations of the
time series that are located in a very limited part of a seven-
In order to assess the ability to forecast time series, théimensional embedding space.

Mackey-Glass differential equation, with=30, and the se- Let us recall that, using training sets with a length of only
ries of sunspots during the past three centuries are often end00 data points, our genetic algorithm was able to produce

V. DISCUSSION
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one-period forecasts with a goodness of fit of at least 0.99(yy which this goal is reached, may seem a theoretical weak-
and forty-period forecasts witR? values of between 0.400 ness, it actually points to the essence of evolution. Starting in
and 0.650. About 72% of the absolute errors were smallepreambrian times cells, plants, animals, apes and, finally, hu-
than 0.025, another 22% were between 0.025 and 0.05, amdankind evolved from a very meager soup of initial building

even the largest errors were less than 0.130. blocks in such an unmotivated manner. With successive gen-

Turning to sunspots for the years 1921 to 1955, a recalerations nature evolved individuals that were better and bet-
culation of Subba Rao'$44] results gave arR? value of ter adapted to their environment, without any motivating
0.926, while Weigendbt al. [45] predict this part of the se- force. No goal, objective, purpose, or sense of direction was
ries with an accuracy of 0.914. This compares with an extequired. Genetic algorithms emulate nature’s process, and
plained variance of 0.895 of the genetic algorithm. For thetheir significance lies precisely in the fact that a black-box
years 1956 to 1979, Weigeret al. receivedR? of 0.650, method like the one described in this paper produces suc-
while our genetic algorithm gave 0.826. cessful predictions.

In conclusion, it appears that forecasts produced by our The fact that the formulas bred by the genetic algorithm
genetic algorithm are at least comparable, if not superior, tonay be very intricate—their complication sometimes ex-
some of the other techniques. Moreover, the method has theeeding that of the original system—does not spoil the argu-
advantages of giving global estimates, and sometimes indiment. Evolution has to make do with the semifinished, inter-
cating the structure of the underlying dynamic. Finally, it mediate products that are available at any given point in
may be possible to use genetic algorithms as an alternatiiame, without regard to elegance of design or engineering.
method to distinguish chaotic time series from random datal-or example, it is by no means certain that, say, the human

eye is the simplest mechanism that allows vision. Nature’s
VI. CONCLUDING REMARKS and genetic algorithms’ sole aim—if it can be called that—is

) o _ to evolve systems that are well adapted to the current envi-
It may seem nothing less than surprising that an algorithmgnment.

that performs unmotivated operations on an arbitrary choice

of short equations, with a meager choice of parameter \{alues, ACKNOWLEDGMENT

should produce formulas that recreate, or at least mimic, the

dynamics of a process that underlies a data set. While the The author would like to thank Sergiu Hart, Naftali
lack of a goal, and of an appropriate justification for the pathTishby, and Benny Shanon for helpful comments.
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