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Statistical mechanics of quartic oscillators
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We study statistical mechanics of quartic oscillator with two degrees of freedom, which is known to be
chaotic almost everywhere except in a few regions of the parameter range. We obtain exact expressions for
temperature, entropy, and distribution functions. Temperature is also obtained numerically by time averaging
the kinetic energy and using equipartition theorem and agrees with our expressions when the system is almost
chaotic. We further generalize our model to quartic oscillators Withegrees of freedom, and exact expres-
sions for thermodynamic quantities are obtained.NAs «, standard statistical mechanics results are recov-
ered. We also discuss pressure, density, and equation of state of this 4y&t€68-651X97)09803-4

PACS numbegps): 05.45+b, 02.50-r, 05.70.Ce

I. INTRODUCTION lytically derive thermodynamic quantities and distribution
functions. From the expressions we can explicitly see that
Statistical mechanickSM) [1] is normally used to study a the definition of entropy used for a finité system and that
system with a large number of particlegegrees of freedom used in SM matches fol—ce. Similarly, the particle mo-
in thermal equilibrium. In recent years, however, manymentum distribution goes from a flat distribution to a Gauss-
Hamiltonian systemée.g., the Henon-Heiles oscillajowith  ian asN goes from 2 to. We also derive the equation of
a few (N=2,3) degrees of freedom have been found that arétate for a chaotic quartic oscillator with=2.
almost chaoti¢2] in nature. Further, it has been shown that, In Sec. Il we describe the quartic oscillator with=2 and
just as for systems with many degrees of freedom, one ca@valuate it's thermodynamic functions. A discussion of the
define “macroscopic” variables such as temperature, engquartic oscillator withN degrees of freedom follows in Sec.
tropy, and distribution function, for these chaotic systemdll. The distribution functions and the equation of state are
with N=2,3. The “macroscopic”(thermodynamics or SM  derived in Sec. IV. Summary and conclusions are given in
quantities characterize the “macroscopic” state of theSec. V.
N=2,3 chaotic systems. It is therefore natural to expect that
in these cases the macroscopic quantities may enabléene
in thermodynamics and SM of large systertts learn about
many aspects of the system without explicitly carrying out The Hamiltonian of this model is
detailed calculations involving the orbits of the particles.
A large number of studies in the thermodynamics of the (P5+p3) 47 O «a
Henon-HeileHH) oscillator have been carried out but they H=———"+ 2+ —+-0q3, (1)
have some limitations. First, the HH oscillator is almost cha- 2 2 2 2
otic only for energye=1/6 and second, due to resonance
coupling between the two oscillators the role of chaotic bewhereq’s andp’s are generalized coordinates and momenta,
havior in the determination of thermodynamics of such arespectively, andr is a parameter. Some of the classical and
system is not clear. In view of this, we consider a quarticquantum mechanical properties were studie@i3in5]. Here
oscillator (QO) model, which does not have the difficulties we investigate the statistical mechanics and thermodynamics
associated with the HH oscillator mentioned above. Anothepf this system when it is almost chaotic. It was shown by
major advantage of the quartic oscillator is that we are abl@erdichevsky and Albertj2] that one can apply SM to a
to derive analytic expressions for temperature, entropy, andhaotic system, even though it has a few degrees of freedom,
distribution function for the system. with a slight modification of the definition of entropy and
For theN=2 quartic oscillator we also estimate numeri- distribution function from that of usual SM. More precisely,
cally the time average of kinetic energies of each degree dhey studied the SM of the HH oscillator. Here we study the
freedom. We find thermalization of energy and estimate thejuartic oscillator model because it does not have problems of
temperature from equipartition theorem, which matches théesonance coupling between oscillators and is almost chaotic
temperature obtained analytically. In this model, the temfor a wide range of energy and parameter valugn>6). It
perature has a very simple linear variation with the total enis fully integrable fora=0,2.
ergy. The equipartition of energy takes place because of the Following Berdichevsky and Alberf] for a system with
nonlinear interaction so that system as whole is almost chaa few degrees of freedom entropy is defined as
otic. Further, we are able to generalize the model from two-S(E) =InI'(E), wherel is the phase-space volume bounded
degrees of freedom thl degrees of freedom and again ana-by the constant energye surface. Thus,

II. N=2 QUARTIC OSCILLATOR
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FIG. 1. Poincaresection {,,p,) of 2 QO for E=2.5 and

a=500, where, andp, are coordinate and momentum of particle ~ FIG. 2. Time averaged momentum square of particlesdlid
2, respectively. curve), particle 2,(dash-dotted curyeand Ty (dotted curve plots

for N=2 quartic oscillatorg2 QO) for E=2.5 anda=500.

I'E)= J dp,dp,dag;da,, 2 Ill. N DEGREES OF FREEDOM QUARTIC OSCILLATOR
H<E
ConsiderN coupled quartic oscillators. The Hamiltonian
and on integration over momenta, we get IS
N N
1 1 1
== 24 - ~a2al==p2
re- | dodaE-v), 3 Hog 2Pt g 2, adia=gp" U (@)

wherea;; are parameters. This system reduces to our earlier
N=2 quartic oscillator for a;;=ax=1 and ai,
£ =ay=a/2. In Eq.(7) U is the potential energy. We follow
F(E)=27rf A(e)de. (4  Khinchin's [1] procedure to evaluate the thermodynamic

0 gquantities, assuming that parameters are such that the system
is almost chaotic. The phase space volUM&) is

Here A(e) is the area in thed;,q,) plane, bounded by the
curvesU(0y.q2)=e, le. PE- | dpy-dpday - da-CEM @©
H<E

which on integration by parts gives

Ale)= fuged%d%’ (5 whereC; is a constant. Equatiof8) follows from a simple
scaling argument by noting that has dimension&'* and
p; has dimensiorEY2. The structure functiofi)(E) is given

which on integration over one of the variable gives by
et [ ax? 1 12 oL 3N

A(e):4fo dX(—T'FE (a —4)X4+86 , (6 Q(E)EEIC]-TE(SN/AFD’ (9)
in our QO model. As an example, we tale=2.5, and and the generating function
a=500. For this set of parameter values tde=2 quartic
oscillator is almost chaotic, as can be seen from Fig. 1. From
the expression for entropy we can obtain the temperature
Tgl=aS/aE and by explicit integration we can very easily

get Tg=3E. With the usual definition of entropy in SM, so that

S=In(dl'/édE) we would have got a temperature, say,

Ts=2E. Our numerical result for temperature, which is ob- In®(a)=InC,— ﬂlna (11)
tained by taking time average of momentum square of par- 2 4 '

ticles 1 and 2, is shown in Fig. 2. We can see that asymp-

totically the values approach each other and equal tevhereC, is a constant. Temperature, which is defined by the
Tg=2E/3. relation

d(a)= J:dxe*am(x):cza*“/“, (10)
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IIn® (a) 1 aH 4
-7 =—F, 12 = V= E=
da | . (12) N 2,1 <p, &pi> aNE-T (21)
immediately gives Therefore, even though full thermalization has not taken
place still the average temperature is always related to the
4 total energy whose value & This is true even for that value
T=3§ 3N E. (13 of aj; for which system is integrable and has nothing to do

with chaotic trajectories. So the proper test of thermalization

For theN=2 QO the above relation givék=2E/3, which IS equipartition theorem, which states that time averaged ki-
we obtained earlier using Berdichevsky’s definition of en-netic energy of each oscillator should approach the same
tropy The entropy is g|ven by Value which is equal td- g|Ven by Eq (13)

IV. PROBABILITY DENSITY FUNCTIONS

E 3N
S= = +In®(T)+ const=——InE+const=InI'(E) + const,
T 4 Following either Khinchin or Berdichevsky, the probabil-

(14 jty density function of theth particle is
which is different from the usual SM defintion of entropy, QI(E—e)
viz., f1(0i,pi . E)= 0@ (22)
Si=In E_(3N/4 1)InE + const. (15) where ()(E) is the structure function of full system and

O'(E—¢) is that of system excludingth particle. For
N=2 QO, the probability density function®DF of one of

Note that for largeN, S;—S. the oscillators is obtained as an elliptic function. That is,
We emphasize that for the above results to be true the

parametersy;; should be such that system is almost chaotic. - — [ do.d
In this case, an equipartition of energy between khee- 1(01,P1.E) = P2002
grees of freedom takes place and one has
Amax 2_ 4_ 4 22
< 9H 9H slnr\ 1 =2 o dQZ\/ZE_pl_%_%_Q%%,
B IRt
ap ap- JE (23)
We then obtain where
ginr\~t (3N|? a . 1 112
(ﬁ—E) =(E) =T, (17 qmaxz[—§q§+§¢<a2—4)q1‘+4<2E—pi> . (29

which we find in our numerical results fot=2. Since we the maximum allowed value af,. Once we know the ex-
have self interaction as well as mutual interactions betweeRressions fof’; andI” [Egs.(23) and(8), respectively using
the coupled oscillators, equipartition of energy takes plac&d- (22 for f we get, after some algebra,

not only between kinetic energies but also with interaction K(2)

energy. In other words, one also has f (Q1,p1,E):A[(az B4 E DT (25)
- 1 — M1
IH IH g\ 1 T s o
g, )=\ %25, /= =\ =T (18 where
1
We also notice in theN=2) numerical results that the av- ATt=2 WEl/Zf dyvV—ay?+(a®-4)y*+4, (26
erage value of twice the time averaged kinetic energy of the 0
two oscillators is equal t@, even though for each oscillator >
it is not. This is because of virial theorem, which states that 7= \/}_ aqy/2 27)
N 2 J(a®-4)qi+4(2E—p3)’

N
2 <p, &p|> 2 < <9q.> 4(U), (19 andK(z) is an elliptic function of second kind.

For theN degrees quartic oscillator system the calculation
involves complicated angular integration to get one degree of
freedom PDF. However, we can evaluate one degree of free-

JH 1 JH dom momentum distributic_m by integrating out the position
< >_Z > < > (200  of one particle PDF. That is,

and hence the total energy

or f(p):f fl(p!qlE)dQv (28)
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FIG. 3. One particle momentum distributigli=f(p)] of N
degrees quartic oscillator fdl=2 (dotted curvg N=5 (dash-
dotted curvg, N=20 (dashed curvye and GaussiamlN=c (solid
curve.

which after some algebra gives

p2/(2T)
- 3N/4
~ [3NT (3N—2 1)’

(3N-6)/4

f(p) (29)

2

4 2
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1

_ /
P(Q)_ HOZN 2Q(E)

f(E,q). (34)

On integrating the one particle probability density function
[Eqg. (22)] over momentum we get

n(q)= 6,22 (35

NO(E) o8 (B9

From Egs.(34) and (35) we eliminate()(E) to get EOS,

1
P(a)=—

£|nf

n(q)=Tes(q)N(Q), (36)

wheren(q)=Nn is the density and ;= (dInf/dE) ! is a
position-dependent effective thermodynamic temperature.
Note thatP, n, andT; all depend on position in the case of
a finite N system. For our special case af;=1 and

aij :a{ji = a/2 y

f(E,q)=f dN—lafqodq/N—Z
0

1 N/2

X|E-Sat- Sq%a 2= ()| . (37)

whereq’ and 6 are the radial and angular coordinates in

whereB(x,y) is the beta function. Here we made use of Eq.(N—1) dimensional spacd.,(6) is a function of angles. It

(13) to relate energy and temperature. The plotf @) is

given in Fig. 3 forE=2.5 and forN=2, 5, 20, and a Gauss-
ian (N==). We can see that d¥ increases the distribution

may be also written as

f(E,q)=E®N"Y,(q), (39

changes from a flat distribution to a Gaussian. This can als%herefl is the above integral after factoring ofifs and

be seen from Eq29). As N— oo,

Sl

f(p)— (30

VenT

the Maxwellian distribution.

q=q/EY* Therefore,

Next let us derive other thermodynamics quantities such

as pressure, density, and equation of s(&®S. For theN
QO system pressure is given [/

N
1 )
P=> @f dpip?Q(E-e), (3D

=1

whereQ)' is the structure function of the system except the
ith particle ande; is the energy of théth particle. On ex-

. 3N-11 q 1 4f,
L= == = (39)
eff = 4 E 4E f, dq
From the above equations, in the region whereEY*,
T —4E = —3N T 40
eff~3N_1_3N_1 ’ ( )

and forN—oo (again, the second term i#inf/oE is negli-
gible) Tos— T. Hence thermodynamic temperature of a fi-
nite N system goes to that of SM fod—-oo. In Fig. 4, we
have plotted EOS for alN=2 QO system fole=2.5 and
a=500. T, the slope of the curve at large(smallq) is
~1.7 close to E/3 and asymptoticallyd— 0) it approaches

plicitly summing and evaluating the above integral we get , [see Eq(40)].

1
P(q)=002N’2mf dq; ...dgy(E—U)N2 (32

V. SUMMARY AND CONCLUSIONS

We have studied some aspects of statistical mechanics

whered, is a constant an® is a function of one coordinate and thermodynamics of quartic oscillators. Exact expressions

g. Defining
f(E,Q):f dg, . ..doy(E-U)N?, (33

the pressure is given by

for temperature, entropy, and one particle momentum distri-
bution for N-degrees quartic oscillators are obtained analyti-
cally. These results approach standard statistical mechanics
results asN—oo. The one particle probability function for
N=2 case is obtained analytically and is an elliptic function
of second kind. We have verified numerically that when the
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P reaches average kinetic energy separately, determined by
their initial separate energies. Each oscillator exchanges en-
ergy with its potential and comes to some kind of equiparti-
tion of energy and twice the average kinetic energy is again
given by Eq.(13) for N=1. It can also be seen that the mean
value of the average temperature of oscillators matches very
closely with 4£/3N both for chaotic as well as integrable
case. This result has nothing to do with chaos and follows
from virial theorem.

In conclusion, the quartic oscillator is a useful model with
chaotic or ergodic properties for a wide range of parameters.
There is no resonance effect, which one has in the case of the

0 0.5 1 15 - HH model. Statistical mechanics of this model is studied
analytically. Various other thermodynamic quantities, trans-
FIG. 4. Equation of stateR vs n) for the 2 QO system. port coefficients, etc. of a chaotic system may be studied by
using this model, and some work along this line is under

ogress.

system is almost chaotic, equipartition of energy takes placé:?r
The time average and the phase average gives the same result

for the parameters for which the system is almost chaot_lc. ACKNOWLEDGMENT
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