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High-accuracy discrete path integral solutions for stochastic processes
with noninvertible diffusion matrices
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The derivation of the discrete path integral solution for the propagator is known to present a special problem
for those stochastic processes whose diffusion matrices are noninvertible. In this paper two methods for
formulating the stochastic dynamics in terms of path integrals are developed that are applicable whether or not
the diffusion matrix is invertible. One of the methods is an extension of the standard technique available for the
derivation of the functional formalism from Langevin equations. An accurate discretization scheme is used to
replace these equations by finite-difference equations and a short time approximation for the propagator is then
derived in terms of known statistical properties of noise terms. An alternative derivation of the discrete path
integral is presented in terms of the Fokker-Planck formulation without the necessity of introducing discreti-
zation schemes into the discussion. This is achieved by making use of the cumulant generating function which
is different in this realm. The mutual correspondence of the methods is established and their possible exten-
sions are discussed. Both methods are indeed rigorous and allow fysteenatiaerivation of the short time
propagator valid to any desired precision in a time incremeiits use in a path integral means a significant
reduction of the number of time steps that are required to achieve a given level of accuracy for a given net
incrementt= N7, and, therefore, significantly increasing the feasibility of path integral calculations. Another
attractive feature of the present techniques is that they permit the efficient treatment of equations with singular
diffusion matrices, two of which, a Kramers equation and a colored-noise problem, are considered.
[S1063-651%97)08403-1
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I. INTRODUCTION tween the Fokker-Planck coefficien® andD and those of

The analysis and understanding of dynamical phenomen_'szlq' (2). It depends upon the interpretation of the stochastic

remains one of the fundamental goals of physics. In particu'—ntegral
lar, considerable effort has been recently devoted to studying
realistic systems driven by noise and friction. It is known

that the statistical dynamics of such systems can be described

in a formally equivalent way by following either the Fokker-
Planck equation

dP(a,)=LP(q,t)=[ ~3,G;(q) + 37 Di;(a) IP(q,1)

t
fods B[q(s)]F(s), (4)

but this point will be discussed at greater length in Sec. Il.

The Fokker-Planck and Langevin equations, firstly ap-
(1) plied to investigate Brownian motiofl] and the diffusion
model of chemical reaction§2,3], are now largely em-

or a set of Langevin equations, ployed, in various generalized forms, in many fields involv-
ing stochastic processes. General reviews have recently been
q(t)=G[q(t)]+Bla(t) IF(1), (2)  given by Gardinef4] and Risker(5]. As it is generally not
possible to obtain closed form analytical solutions of second-
with FT(t)={F,(t), ... Fn(t)} being Gaussian white noise order partial differential equations, many successful numeri-
normalized to cal schemes have been developed during the last decade,
which integrate the Fokker-Planck equation on a {@id] or
(Fi(t))=0, (Fi(t)Fj(s))=5j(t—s), (3) in a basis sef8]. Their utility, however, is strongly limited

by the storage requirements and execution time that grow
wherein the standard summation convention over repeategery rapidly with the dimensionality of the system under
indexes is implied, while the dot denotes the time derivativestudy. With present day computers, exact schemes are fea-

Although the systematic variableg ={q,, ... .0m' of Eq.  sible in practice for systems of a few degrees of freedom,
(1) are generally different from the stochastic variableswhile truly multidimensional systems are usually dealt with
a'(t)={qg.(t), . .. am(t)} governed by Eq(2), we do not using approximate techniques. Computer simulation of

distinguish them notationally to keep the presentationLangevin equations is not so restrictive with respect to the

simple. One also notes here that there is a connection belimensionality and could be very accurate with intensive
computational effort§9,10]. The numerical schemes avail-

able for the integration of these equations are computation-

*Permanent address: Institute for High Temperatures, 13/1@lly efficient in terms of storage requirements; but they be-

Izhorskaya Street, 127412 Moscow, Russia. come ineffective and may even give false results when
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dealing with systems with more than one stable state, for thit thg

which simulations over very long-time lengths are usually an—qn:J ds G[Q(S)]+J ds B[a(s)]F(s),

required[11]. The various approximate methods could also fn n )

be employed for analytically treating Fokker-Planck and

Langevin equations, provided that their specific assumptiongith q"=q(t,) andt,=nr. For simplicity, we restrict our-

are satisfied. selves in this section to state-independent matriBgs
Among the rest of the methods substantial attention haghen, theresultof the functional representation of the prob-

been given to the path integral representation of statisticadpility P(q,t) is independent of the discretization scheme for

dynamics. This arises very naturally from the context of stothe stochastic integral, E¢4). That is, the Langevin equa-

chastic processes, and was first studied in detail by Wienefon (2) is equivalent to the Fokker-Planck equatidn with

for Brownian motion[12]. Ever since Feynman proposed g diffusion matrixD;; = B;Bjx, and no problems of the type

path integration as an alternative formulation of nonrelativ-of the Stratonovich versus Ito interpretation arise in this case

istic quantum mechanid4 3], the path integral method has [4].

been successfully applied to almost all branches of theoreti- The common procedure relies on the primitive integration

cal physicq 14]. The reason for this seems to be the fact thalscheme(see, e.g.[15,22))

path integrals are often beautiful and elegant answers to

physical problems. They are more than solutions of appro-  q"*'—q"—fxG(q"* 1)+ (1-x)G(g")]=Bf"*1, (8)

priate Schrdinger, Fokker-Planck, or Langevin equations. ) ) _ )

Their formulations incorporate global properties of the sys-Wherew is an arbitrary number from the intervd, 1], while

tem and they can give answers which are not obvious ihe notationf "** stands for

terms of partial(or stochastig differential equations. As a ti1

result, the p_ath ir)tegral meth_od provides a povyerful tool for f n+l:f "ds F(s). 9
formal manipulations, for doing both perturbative and non- th

perturbative, systematic treatmenfis3—19. Numerical ap- i _ 1 N
plications have also become increasingly important durindzq“atl'on(& rﬁlates the two sets of variableg( ... ,q")
the last decade and have often led to new physical results ngf'd € - - - f 7). The corresponding probabilities of the dis-
obtainable by other mearf49,20. From a computational cretlzgd realizationP and R are therefore related by the
point of view, the most appealing feature of the method i€guation

perhaps that it avoids explicit reference to distribution func- N 1| 40y — N 1 N 0

tions whose storage requirements grow exponentially with P ) =R(AET, . I, .. 4, (10
the number of coupled degrees of freedom. Instead, all dywith J being the Jacobian of the transformation[éétsq],
namical characteristics are included in a discrete path inte-

gral representation of the conditional probabiligropaga- af}

tor), which expresses the distribution function for any J=de %R

(arbitrary) time t ]

=D N2def 8, ;8 k— 61 jOn—1x— 1Tk Gi(")

N—-1
P(q,t)zf Ho dq"P ("2, 7/g" P(q°,0) + O(t* " 1/NK) = (1= u) 78— 1xd;Gi(a"" D], (11)

(5) whereD=det(DiJ-)=de12(Bij). The Jacobian can be evalu-
ated by using the matrix identity for the determinfb5]

in terms of the known short time propagator. Hereby, we set det | = M) = Trin(l =M
qV=q, 7=t/N, and introduced the short time propagator el J=exdTr In( )]
Puo(a"" 1, 719" which is an approximation for the true =exg Tr(—M—3iM2—...)], (12

propagatoP(q"**,7q"),
which gives to orderr

P(qn+1,7_|qn):P<k>(qn+l,7.|qn)+o(7k+l), (6)

N
3=]1 D~Yexd - ura,Gi(q"]. (13
valid at least to first order im,(k=1). In practice, though, n=1

one would like for the short time propagators to be accuratel.he multivariate probability of the variablds” is readily

for an order inT as high as possible, in order to keep thed ined i f the k istical : fth
number of integration variables in E¢p) as small as pos- etermined in terms of the known statistical properties of the
random noiseF(t), Eq. (3), to yield

sible (for a given net time incremert).
As there exists no unique way to determine the short time N 1

propagator, many different path integrals corresponding to  R(f N, ... =[] (27rr)m’2exp< - —|f ”|2). (14)

various different approximate schemes have resulted. An ex- n=1 27

tensive review on this subject can be found in R21]. The .

most obvious derivation utilizes the usual limiting procedure' €. Writing the propagator of the procegs) as

in which the time intervaJ 0,t] is divided intoN equal sub- N—1

intervals[O,tl],['_tl,tz], ..., Of c_iuration 7, and Eq.(2) is P(q,t|q0)=J I1 dg"P(qV=q, . .. atq®, (15

replaced by a difference equation n=1
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one immediately obtains the discrete path integral represen- o N 1 T 1 o
tation P(q.t|a)=[(27t)"D]"*%exp — 5+ (d-0q°) "D *(a—q")

N-1 +tka(q1q0)} ' (18)
P(q,t)~f 11 dqn[(Zw)mD]‘l’zexp{—TMaGi(CI””)
"= where the index of summation varies from O<to Integral
1 e+l i1 recursive relations are obtained for the expansion coefficients
Lo s ek AC (G U Wi which can beanalyticallyevaluated in many situations of
practical interest. Any finite truncation of the series in Eq.
(18) at k>0 was shown to be much more accurate than the
—T(l—M)Gi(qn)][]j] P(q°,0), (16)  standard short time approximatidf?7), allowing for much
larger time increments in a path integral. In a recent series of
B papers[ 25,26, this formalism has been substantially modi-
where D" is the element of the inverse diffusion matrix fied and improved, so that we have managed to deal very
D1, while [1; means the same bracket as in front of it butefficiently with general Fokker-Planck Schiiager pro-
with the indexj instead ofi. It is not hard to see that the cesses, and their dynamics can now be calculatedrately
right-hand side of Eq(16) is a product of the short time, or with any number of degrees of freedom farbitrarily large
single step propagators times using solely thsingle steppropagator.
Two disadvantages of the above mentioned formalism are
as follows. The power series expansion for the propagator is
Nl - 1/2 nil efficient if and only if the coefficients of the Fokker-Planck
Pw(@""71q") =[(277)™D]” “exp — 7udiGi(q" ") equationG;(q) andD;;(q) are simple enougkpolynomials
or a finite sum of exponentiglso that the various integrals
ironel i involved inW,(q,q°) are doable analytically. Otherwise, the
- Z-D [ai "—di—7uGi(q"" ") calculations rapidly become very arduous especially for
curved manifolds when the curvature tensor associated with
DY does not vanish. In the latter case we have failed to go
- T(l_M)Gi(qn)][]j]a (17 beyondk=1 [21]. Another disadvantage of the power series
expansions formalism, which is also inherent to ELy), is
that its utility is restricted to processes with invertible diffu-
each one propagating the system for timeOne notes that sion matrices. But the invertibility oD;; is not a generic
analogous results can also be obtained in terms of thease. There is a wide class of physically meaningful stochas-
Fokker-Planck description, e.g., by using the Trotter splittingtic models whose diffusion matrices are noninvertible. The
of the time evolution operator exh) based on partitioning latter property implies that the integration measure for the
the Fokker-Planck operatdr into drift and diffusion terms  standard path integral representations available in the litera-
[23]. ture for multidimensional stochastic procespsse, e.g., Eq.
From a purely formal point of view, the existing path (16)] becomes a singulars¢function-like) quantity. This
integral representations are all equivalent to each other, amakes impossible the numerical evaluation of the path inte-
they become an equality in the linfit— oo (whateveru). In gral and hinders considerably obtaining explicit solutions or
practice, only a few path integrals can be evaluated exactlgpproximations of the WKB type.
in this limit, and the approximate evaluation of E§) with The above observations inspire the quest for other path
finite N seems useful and sometimes necessary. Thereformtegral representations free of these two drawbacks. One
there can be practical advantages to choosing one path interight at first believe that this issue should have been settled
gral representation over the others. When treating path intdeng ago, namely, because of its continuous usefulness in
grals numerically, the obvious criteria for their selection aremany problems ranging from chemical physics to biology.
the ease of implementation and convergence properties. TI&ill, a look at textbooks on path integratipb4] as well as
higher the rate of convergence of a path integral, the smallesome recent attempf45,17,1§ in this direction manifestly
the number of time step&nd therefore the execution tilne show that this isot the case. To the best of our knowledge,
that are required to evaluate it to a given level of accuracythere are no general discrete path integral solutions of such
Until recently, however, the only requirement usually madeequations other than those derived recently by the present
on the short time propagator was that it satisfies @gto  author in terms of an operator decoupling technifRé].
orderO(7). These representations, however, are valid to omder
The problem of importance is thus to develop a systemsolely. Thus, a satisfactory solution to the above-posed prob-
atic theoretical formalism for constructing path integral rep-lem is effectivelystill lacking.
resentationgsingle step propagatgrwvalid to any desired Our aim is to try to remedy this disappointing situation.
order in 1N (in 7) which is rigorous and also simple to The remainder of the paper is organized as follows. In Sec. Il
implement. This problem has been resolved in our earliewe present a straightforward method for gystematiaeri-
paperd 21,24 in terms of the Fokker-Planck formulation by vation of better short time propagators from the Langevin
expanding the exponent of the propagator in a power seriesquations(2). By better we mean analytically obtainable,
int, easily evaluateable approximations for the single step propa-
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gator accurate for an order inas high as possible. An al-
ternative derivation of the discrete path integral is presented Y(Xn,7) =X+ 7Gp+ EGnGﬁ' (23
in Sec. llIl. It relies on the Fokker-Planck description of the

stochastic dynamics. Numerical applications to an activateghile the stochastic portion is given after rearranging by
rate process in a double well given in Sec. IV show the new

single step propagator to be a dramatic improvement over the , 1 ., ("

standard short time approximation. Its use in a path integrabn+1=BaWo(7) +BnGaWy(7) + EBnano ds W(s)
means that a given level of accuracy is easily achieved with-
out any increaséor even with a smaller valj@f the number

of time stepsN just due to increasing the order of approxi-
mationk. Both approaches are rather general and allow for
equations with singular diffusion matrices, two of which, a (7 (7

Kramers equation and a colored-noise problem, are consid- +Banf0dS F(s)ll(s)+Bnan0ds H(s)Wy(s)
ered. Section V concludes with some general remarks.

+B, Bn|1(7)+anOds F(s)s+ BnGr’,Zfods l1(s)

1 ” 2 2 T

Il. DISCRETIZATION OF THE LANGEVIN EQUATION * EB”[B’JZ(TH B"fo ds F(s)lo(s)

The key idea of the method we present below is the same T
as in the formal path integral derivation outlined in the In- +ZBnan ds F(s)W(s)s
troduction. It consists of two steps. The first step is to obtain 0
an approximate solution, for a short timeof the stochastic r
procesg)(t). The second step is the construction of the short + ZBﬁBéf ds F(s)Wy(s)l4(s)
time propagator in terms of the known statistical properties 0
of the noiseF(t). The method is combinatorial and does not (24
depend on the dimensionality of the considered process. . ) o .
Therefore we shall illustrate it in the simplest possible situ-Hereby, the prime denotes differentiation with respecxto
ation, that is, a one-dimensional stochastic equation. At th@nd the notation8V; and|; stand for
end we shall indicate the obvious steps to adapt the method ,
to nontrivial cases. I‘(T):f ds F(s)WiO(s),

More explicitly, the stochastic equation is 0

m

1 3
+ 5BBAIs(7).

tht7 th+7 T ti t2 !
x(tn+r)=xn+f ds G[x(s)]+f ds B x(s)]F(s), Wi(T):jodtijo dti—q - fo dtlfo dtgF(to). (29
t|’1 tl'l
(19 , _
Equation(22) relates the two sets of variables,(, . . . x;)
with and Uy, . . . ,uq). As the functions involved in Eq22) are
all evaluated at the prepoirt,, the Jacobian of the transfor-
(F(1))=0, (F(t)F(s))=6(t—s). (200  mation is equal to unity in this case. Therefore, the short time

propagator of the discretizedrealization reads
The common method of approximately solving equations of
such the type relies on the expansion of their coefficients in Pio(Xn+1,71%n) =Rt (Un+1,7), (26)
a Taylor series about the prepoigi=x(t,) (see, e.g., Refs.
[10] and[28]). The resulting equation is then solved itera-
tively by using the recurrence relation

whereR is the probability distribution of the fluctuating term
n+1-
The second step of the present method is thus the deriva-
k-1 ~ (i) tion of the statistical properties of the noise term. The result
X0 (tn+ 7) =X, + E Gn tn+Tds[x (s)—x,]' of this derivation depends on the interpretation of the various
(% n " i ® . stochastic integrals involved in E(R4). Two different inter-
pretations are commonly used. In Ito’s interpretation, the in-
tegralsl, are determined by

2k

+2

i=o It Jy,

Bﬁ_li) tht+7

ds K(S)[X((S) ~%al',
1 . i (7 .
(21) h(r)=me”(r)—'5fods Wis). (@7

) —rqgi i - I L .

where Zy=[d'Z(x)dx']y , Z=G,B. In order to keep the \yhjle in the Stratonovich interpretation these read

presentation simple, we will not go, in this section, beyond

second order inr. Neglecting terms of an order higher than 1

72, one obtains li(m) =57 Wo (7). (28)

Xnt1—Y(Xn,T)=Uns1, (22 For simplicity we will follow, without loss of generality,

Ito’s interpretation, in which case a stochastic process obey-

where the deterministic portion of(t) reads ing Eq.(2) is equivalent to a diffusion process defined by Eq.
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(1) with a diffusion matrixD(q)=B(q)B'(q) [4]. With this

choice just a few terms of E§24) contribute to the averages

(U, ,), the first two of which take the form
(Un+1)=37°B7G],

(Ufs 1) =Mj(Xy,7)
7_2
= B2+ E(zsﬁeﬁ 2G,B,B/+B2B!*+B3B").

(29
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equation is the same as the Ito stochastic differential equa-
tion but with the drift vectorG; replaced byG;+ %BkjakBij
[4].

Finally, we note that the method outlined above can be
modified to cover non-Markovian processes with an arbitrary
correlation function. These equations occur in many
branches of physics and chemistry, but their solution is a far
from simple task. We are going to consider this point in a
future publication.

lll. THE RELATION WITH THE CUMULANT
GENERATING FUNCTION FORMALISM

Moreover, it is a simple matter to show that all cumulants of

higher order than 2 vanish. The latter property implies that

Within the context of the Fokker-Planck description, the

the stochastic processremains Gaussian up to and includ- starting point for the derivation of a discrete path integral is

ing terms of orderr. This immediately yields

P 2)(Xn+1,71X0) =[277M (X, ,7)] Y2

< expl — [Xn+1_M1(Xan)]2
€ 2M (X, 7) '
(30

where

M1(Xn,T) =Y (X, :7')+<un+l>
7_2
:Xn+TGn+E(GnGr’1+%B§GQ)- (31

andM,(x,,7) is defined by Eq(29). The above derivation

is fairly straightforward and can always be continued to any

the fact that the propagator for a finite tirhean be factored
into a product ofN propagators, each one of which propa-
gates the system for a shorter time intervalt/N:

N—-1
P(q,t)=f nﬂo da"P(q"" %, 7|q"P(q%0. (34

The only advantage of breaking up the propagator according
to Eq.(34), is that we can thus use, in the right-hand side of
this equation, instead of the exact propagd®¢q"**,7|q")

its short time approximatiof®,(q"**,7/q") leading us to

Eg. (5). The most common procedure of approximating the
propagator by a discrete path integral relies on the operator
representation

TL)N. (35)

P(a.tjg®)=e"8(q—q%, e*=(e

desired order* k>2. One notes, however, that the stochas-

tic processu is not generally Gaussian fé>2, and non-

The Trotter splitting can then be used which is based on

Gaussian corrections are to be included in higher-ordepartitioning the Fokker-Planck operatbrinto a linear con-

propagatorsP ..,y . A way of doing this properly will be

tribution Ly and an anharmonic correctidny, and approxi-

discussed in Sec. lll. It may also be noted here that the stamating each short time evolution operator exg(by a prod-

dard first-order propagatoR ;)(Xn+1,7/X,), follows from
Eq. (29) if one neglects itM (x,,,7) andM,(x,,,7) terms of
order 72.

For completeness we also present the generalization of

uct of exponential$27],

exp(7L) =exp( 7L ,/2)exp( rLo)exp( 7L 1/2) + O( 7).
(36)

Eq. (30) to systems with more than one degree of freedom. It

reads
P(z)(anrl, 7_|qn) :{(27r)mde(M i (qn, 7_)]}—1/2
xexp(—zM(a" D[
-Mi(@", ][]} (32

where

2

pe
Mi: qi+TGi+?

1
GjajGi+§BjkBrkaﬁGi” ,
qn
7_2

TBirBjr+ -

i Bir By kGj+ Bjr By dkGi + G, 9, B Bj

1 2
+ _BrkBpkarpBiijv

5 (33

qn

The disadvantage of this approach is that its utility is gener-
ally restricted tok=2. Although formally possible to con-
struct, any higher-order approximants involve either polyno-
mials of orderk of the operatord. o andL [29] or negative
coefficients[30], making these approximants rather imprac-
tical for stochastic processes.

An alternative method of approximating the propagator
for short timer can be developed in terms of the character-
istic function formalism without the necessity of introducing
noncommuting operators into the discussion. The key point
of this approach is the observation that the stochastic dynam-
ics can be studied in a formally equivalent way by following
either the distribution function or the average of dynamical
variables defined by

<a(t)>=f dq P(q,t)a(q). (37

The propagator corresponding to the Stratonovich interpretdt is a simple matter to show that E7) can be cast into the
tion of Eq.(2) is then obtained from the observation that thisform
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<a(t)>=f dqg P(q,0A(q,t), (398

where the functionA(qg,t) obeys the backward Fokker-

Planck equation

A, =LTA(,)=[Gi(a)+3Djj(a) 75 1A(aLY),

(39

supplemented by the initial conditioh(g,0)=a(q). With a
S-function initial condition

P(9,00°) =8(q—q°), (40
the formal solution of the above problem reads
(a(t))=[exp(tL ")a(a)]qp- (41)

2501

Fortunately, this is not the case for the cumulant generat-
ing function defined by

d(2)=Ing(2). (46)

It is also expandable in a power series that can be written as

r

@ (2)

> (ot

T

q;m>>5( r,jzl Vi ) ZIl. . .Z:qm’
(47)

where the quantitie§(q;*---q™) are called the cumulants

of the variableqy. The notation chosen should not be taken
to mean that the cumulants are functions of the particular
product of powers of theg. It rather indicates the moment of
highest order which occurs in their expression in terms of
moments. The cumulants can be evaluated in terms of mo-

Our aim is to develop aystematistrategy for generating ments by inserting Eqg43) and(47) into Eq. (46), expand-
short time propagators in terms of the known averages ong the logarithm in a power series and equating like powers
dynamical variables. A straightforward way for achievingin z. This gives the following expressions for the first few

this is to make use of the characteristic function. The latter isumulants:

defined by

¢(Z)=f da P(q,t)exp(1q"2) (42

{a)=M;=(a;),

(gig;)=M;;=(qiq;) —(a;){(a;),

and can be evaluated in terms of moments by expanding it as {{id;dk))=Mijk = {9k — (9id;){ak) — {q){d; k)

a power series

E<q

Vl.-. Vm
XZl Zo

rl m
#(2)= T )

14
q m
m j:l

(43

where the index of summationvaries from 1 toe. When
the momentgIl;q.") are all determined, e.g., by E@1), the
Fourier inversion formula

P(q,t)=(27-r)‘mf dz e(z)exp(—1q'z) (44)

— (i) (a;) + 2(ai){d;){Ak) (48)
which are valid for any number of equalj,k. An explicit
general formula for converting moments into cumulants can
be found in Ref[4].

Although both representations are formally equivalent,
the cumulant expansiori47) presents the more natural
choice for our purpose. The advantage of this representation
is that just the first two cumulants, namely, the meén$
and covariancesq; ,q;) mainly contribute to Eq(47) for 7
going to zero; while higher-order cumulants contain informa-
tion of decreasing significance, unlike higher-order mo-
ments. This becomes more evident if one considers for a

_ o _ _ _ moment a one-dimensional stochastic process with a con-
gives us the distribution functioR(q,t) for an arbitrary time  stant diffusion coefficient. In this case, E@5) gives
t. As, however, we are interested in the short time dynamics,

a truncated power series representation for the moments,

(i+ DA 1) =[LFA{(Q) g, AO(Q):LIl q’
(45)

O =x!+i(i—1)x 2D +ix! 1G]+ 0(), (49

m

II q

(rL™ )J K . from which follows that we cannot set all moments higher
:;0 Ai(@h 7, than a certain order to zero, sin¢e”)=(x')? and thus, all
moments contain information about lower moments. For cu-

mulants, however, we have

Z

(X)) =M1(Xn,7) =X +O(7),

((x*))=Ma(x,,7)=7D+0(7),
could be used to determine the short time propagator
P(k)(q”+1,r|q“) via Egs.(43) and(44). The disadvantage of
this approach, however, is that the moment expansion, Eq.
(43), does not correspond to any systematic expansion in a (XY =M (X, 7)=0(7)
parameter of the system. As a result, one has to determine
and sum infinitely many terms in the serig&3) whatever This means that in constructing the short time propagator
small 7 we chose. Otherwise it may diverge even thoughP, in terms of the cumulant generating function we can
7=0. consistently set in Eq47) ((x**1))=0, i.e.,

((x3))=M3(x,,7)=7°D2G+ O(7),

(k>3). (50)
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o ate than, say, E(q53), but it should not be so dramatic in
P(k)(xn+1,r|xn)=(27-r)*1f dzexp —1X,412 practical applications. The integral in E¢52) could be
- evaluated approximately having regard to the smallness of
koo non-Gaussian corrections(1/6)Mj;, z;z;z,— - - -. One notes,

. k>1. (51 hovyever, that an approximate evaluation of such a kind
spoils the normalization

|
+2 _Mr(xan)Zr
f=1I!

The cumulants involved in Eq51) are to be evaluated to
order 7%, e.g., in terms of Eq(45). Although another much f dg" Py (9" 7l =1, (55)
more accurate power series expansion for moments can be
used for the present purpof#6,31], we will not do so here
to keep the presentation simple. Recall also that the conve
tional first-order propagator is obtained by retainingFip,
terms of orderr.

The generalization of Eq51) to multidimensional sys-
tems is straightforward

|¥\_/hich is automatically preserved in E®2). From this point
of view, numerical evaluation of the integral in E(p2)
seems preferable. It can easily be accomplished if one takes
advantage of fast Fourier transformi82]. The favorable
scaling of the fast Fourier transforms, which is almost linear
with the total number of grid points, allows one to evaluate
P« to any desired order im with a mild increase of com-
P(k)(q“+1,r|q”)=(27r)‘mJ dz exp{ —1zgqM*? putational efforts.
Before closing this section a few remarks are in order.
1 First we note that Eqg53) and (54) exactly coincide with
+IM;(g",7)z,— EMij(q”,r)zizj our previous result, given by Eq¥32) and (33), for
D(q)=B(q)B"(q). This is not surprising if one notices that
cumulants of higher order than 1 of the systematic variables
, k>1 g do not contain the deterministic solution, being thus ex-
actly the same as cumulants of the stochastic portion of
(52 g(t) in the corresponding Langevin description. Next we
) , . would like to emphasize the exceptional ease with which this
If one neglects, m_the ab_ove equat_lon, cumulants of h'gheéeneral result, Eq¢53) and (54), has been obtained. It is in
order than 2, one immediately obtains drastic contrast to the power series expansion formalism
n+1 ™ m n 12 whose utility seems rather doubtful for general stochastic
P(a""" 7la" ={(2m)"defM;;(d". 7)1} processe$21]. Noteworthy also is the structure of EG3).

I
- gMijr(qn,T)ZiZer_ e

xexp{— iMi(q", 7) The exponent of this short time propagator is a rational func-
i1 tion of 7, being thus different from a polynomial representa-
X[a™ " =Mi(@",nD][];}.  (53)  tion inherent to the power series expansion formalfsee

] ] ] Eqg. (18)]. Finally, we note that the method outlined above
The above short time propagator is generally valid to ordegan be modified to cover truly nonlinear Fokker-Planck

72 with M; andM;; given by equations whose coefficients exhibit a functional dependence
- 2 1 on the distribution functionP(q,t) [31]. These equations

Mi(q",7)=| g+ 7G; + —(G,-(?jGi+ —ijﬁﬁ-Gi” arise very naturally in many branches of physics and chem-

I 2 2 ! o istry such as plasma physics, nonlinear optics, and theory of

3 nucleation, but their solution, either analytical or numerical,
+0(7), presents a sufficiently difficult and often impossible task.

[ 2
T
Mij(qn,T): TDij + ? Dik&ij + DjkakGi+ Gk&kDij IV. APPLICATIONS

The aim of this section is twofold. First, we would like to
+0O(7). (54) illustrate the power qf the various ap_proxima_ltions discussed
o above for the short time propagator in path integral calcula-
tions. To this end, a model system is chosen which is simple
But what is especially pleasing is that for multidimensionalenough to enable comparison with exact results obtained by
systems the cumulant expansion may converge even bettether means. Yet another goal is to show the utility of the
than in one dimension, in the sense that the leading term afumulant expansion formalism in treating processes with sin-
M may be of order® rather thanr® as in Eq.(50). In this  gular diffusion matrices. For this purpose, the idea intro-
case, the short time propagatBy,, remains Gaussian for duced here is directly applied to two of the most extensively
k<4, and can be evaluated in terms of E§3) if one in-  studied models, namely, the so-called Kramers and colored-
cludes inM; andM;; terms up to order*. Two physically noise models. The corresponding short time propagators are
meaningful systems of such a kind will be considered Secdetermined explicitly to order”*. Our selection is not ex-
\A haustive with respect to methodology, but the essentials of
If this is not the case, non-Gaussian corrections are to bthe present technique are thought to be well illustrated by
taken into account in E¢(52) to obtainP.,). Of course, these cases. It may also be noted that the models we are
these more accurate propagators are more difficult to evaligoing to discuss are commonly used in studies of superionic

1 2
+ zDrkﬁrkDij
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conductors, Josephson tunneling junctions, nonlinear optics, 37
nucleation and escape rate theofi#83]. The essential fea-
tures of many of these processes mimic the dynamics of
potential barrier crossing, a problem which was first treated
in a landmark paper by Kramefg].

A. Path integral calculations

We first illustrate the use of the propagator, present tech-
nigue by calculating the propagator of a one-dimensional
stochastic process. A benchmark model repeatedly studied
by many authors, within this context, is

x=x—x3+ DF(1), (56)

where the noisé&(t) is the same as in E¢19). The dynam-
ics is that of an overdamped Brownian particle moving in the
symmetric bistable potenti&) (x) =x*/4— x2/2 with minima
atx.==*1. The process is governed by the Fokker-Planck
equation

D
P (X, t|Xg) =] I (x3—x) + Eaix P(x,t|xg), (57

for which numerically exact resuli§.e., can be made arbi-
trarily accurat¢ are easily obtained by a finite-difference
method described earli¢?]. As Eq. (56) is nonlinear inx,

the process is not Gaussian and, therefore, infinitely many
terms are generally to be included in E§1) to accurately
evaluate the propagator for arbitrarily large

Figure 1 shows the accuracy achieved when employing
P (X,t[xo) asa single time step propagatarompared to
the exact solution for different values ofand fork=1,2,
and 3. The calculation is performed fox,=x_ and
D=0.1. The algorithm we wused in evaluating
P«=2)(X,t|Xo) to carry out the fast Fourier transform can be
found in Ref.[32]. As expected, the various approximations
are not very different from the exact solution when the time
incrementt is small enough. With increasirtg however, the
accuracy of the standard first-order propagdgyr, deterio-
rates very rapidly, and it becomes inadequate f00.1. The
second-order propagatd?,), though more accurate than
P, also fails to produce correct results for0.2. The
reason is that its range of validity is generally restricted by
the inequalityM2=Dt[1+t(1—3x§)]>0. The same fortu-
nately is not true for higher-order propagators. A consider-
able reduction of the error over a broad rangé of seen to
be already achieved with just the first non-Gaussian correc-
tion taken into accourfiseeP 3(X,t[Xo)].

Next, we apply the various approximations discussed FIG. 1. Probability distributiorP(x,t|x,) for the model(57) for
above for the short time propagator to the path integraP=0.1 andx,=—1. Circles, exact results; dashed lines, first-order
evaluation of the same conditional probabiliB(x,t|x_). propagator; dot-dashed lines, second-order propagator; solid lines,
The calculation is again performed fBr=0.1. The integrals third-order propagatora) t=0.2, (b) t=0.3, and(c) t=0.4.
in Eq. (5) are evaluated iteratively using the primitive rect-

angular rule Xi=X;+(i—1)h, i=1,... 3, h=(x—x)/(J—1).
Pi(t+7)=P;(1)P;(Hh; Pi(t)=P(x;,1); A grid of 64 points in the interval —1.6,1.6 was found to
be sufficient for the quadrature. One might expect that for
Pii () =P (X, 7l%)), (58) fixed t and N this discretization procedure would produce,

with increasingk, much more accurate results than obtained
where a uniformly spacex lattice of J points is introduced with the conventional first-order propagator. We have found,
reading however, that the use of the mati; defined by Eq(58),
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regardless of the numbé&r leads to a trivial long-time limit
solution, P(x,t—|xy) =0, instead of the exact one

-1

Po(x)={ J:dx exd —2U(x)/D]; exd—2U(x)/D].
(59

ine|

This is because the matrR;; does not preserve the norm of
the distribution function

J
__21 P/(t)h=1 (60)

or, equivalently, satisfy the condition

J @)
Zl Pij(nh=1 Vj,x. (62) 2

We have found that a dramatic reduction of the discretizaton | e
error is achieved by a simple procedure of renormalizing the Perada

transition matrix elements so that the norm is conserved. .
Specifically, we enforce Eq61) by the following modifica-
tion of Pj; :

Inlg|
7
A

J -1
Pij: 2 Pk]h P” . (62) \. ,'
k=1 .

The relative efficacy of differen®,, is demonstrated by
calculating the second cumulah,(x_,t) and the matrix
elementP(x_ ,t|x,). The former characterizes the width of
the probability distribution. While the latter is closely related (b)
to the first nonzero eigenvalue of the Fokker-Planck opera-
tor, N4, whose inverse is the largest relaxation time in a
double well. ForD=0.1 the numerically exact result is
A;=0.002 776 140 8. Figure 2 shows the relative error

FIG. 2. Logarithm of the relative error |&] [Eq. (63)] in the
path integral evaluation, withr=0.1, of (a) the second cumulant
M,(x_,t), and(b) the matrix elemenP(x. ,t|x_) for the model
(57) for D=0.1 andx.==*1. The dashed, dot-dashed, and solid
lines are, respectively, for the results obtained ustpg with k=1,

2, and 3. In the abscissa; is the first nonzero eigenvalue of the
Fokker-Planck operator.

&= (approximate—exac)/exact, (63

in the path integral evaluation ofM,(x_,t) and
P(x_,t|x;) made by usingP, with k=1, 2, and 3 as a
function of t. The calculation is performed with fixed Eq.(59), is shown in Fig. 4 and compared with that obtained
7=0.1. As evidenced by Fig. 2, the error, being usuallyby usingP ;) andP 3, with 7=0.2, and 0.4 foh;t=10. Itis
maximal att= r, reaches zero fox;t~2.5 and then slowly seen that an adequate description is achieved even though
increases witht going to infinity until a stationary value is 7=0.4. This is in drastic contrast to the finite-difference
achieved. It is also seen that the error made by the standagthemes currently used to solve Fokker-Planck equations nu-
first-order propagatoP 4 is large compared to that of the merically. These schemes do not provide automatically the
cumulant expansion. Although no non-Gaussian correctiopositivity of the solution, thus restricting the size of the time
appears irP,y in the present treatment, the effect of retain-incrementr and requiring very fine time slicing. With in-
ing terms of order? is the reduction of the error roughly by creasingr they very rapidly become unstable and may fail

a factor of 4. The non-Gaussian third-order propagator igrossly.

seen to further reduce the error again by a factor of 4. The Before closing we note that the accuracy of an iterative
treatment is fairly straightforward and can be carried out syspath integral method is typically determined by the accuracy
tematically until a given level of accuracy is reached. Next,of the space and time discretizations. The standard way to
we present in Fig. 3 results obtained wit, for different  control it is thus by increasing the number of grid poidts
values of . A comparison of Figs. 2 and 3 shows that theand time sliceN. In practice, however, one would like these
errors made by usin@,y and P(;y with 7=0.1 are almost numbers to be as small as possible, in order to achieve com-
the same as those &3, obtained with7=0.2 and 0.3, re- putational economy. The accuracy of the space discretization
spectively. This means that results to a given level of accuean be substantially improved if one uses, instead of the
racy are obtained with a smaller value Nf Finally, we  primitive histogram representation of the probability distri-
illustrate the efficacy of the present technique in giving pre-bution, a more accurate quadrature scheme. While taking ad-
cise long-time limit results. The exact stationary solution,vantage of the present technique allows one to achieve a
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o ) FIG. 4. Stationary distribution for the modé&7) for D=0.1.
FIG. 3. Same as in Fig. 2, but for the third-order propagator.tne solid line is the exact result, E¢69). The dot-dashed and
The solid, dot-dashed, and dotted lines are#e0.1, 0.2, and 0.3,  yashed lines show, respectively, the path integral evaluation with
respectively. r=0.2 and 0.4.(a) First-order propagator, an¢b) third-order

propagator.
given level of accuracy with a slowor even without

increase of the number of time steps solely due to increasing 5,p(x,v,t)=[ —vdy— G(X)d, + yd,(v +ed,) IP(X,v,t).
k.

(66)

B. Kramers model It is not hard to see that the diffusion matrix of E§6) does

not possess an inverse.
The Kramers model is described by two coupled Lange-

vin equations which read in dimensionless variables

X=v, v+yv—G(X)=+2veF(1), (64)

The continuous time path integral solution for the above
process is easily obtained by using E6¢@) to transform the
probability density functional for the noise, which is given
by

with F(t) being Gaussian white noise defined by E2). In PLF(1)]=C exp{ B iftdst(S)
the abovey is the friction coefficient, and is a measure of 4dye o

the noise intensity. The dynamics described by the model is
that of a Brownian particle moving in a potential

: (67)

with C being a normalization constant, to the probability
density functional for the coordinate

1 [t .
P[x(t)]zCJ[x(t)]exp{ — —f dgx+ 'yX—G(X)]Z],
4vyeJo
This process is governed by the following Fokker-Planck

(68)
equation(also called the Klein-Kramers equatjofor the  where J[x(t)] denotes the Jacobian of the transformation
probability density of finding the particle at timheat position  from theF(t) realizations to the(t) realizations. One sees,
X with velocity v

however, that this solution is purely formal and, therefore, no

U= f "dyG(y). (65
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simpler to implement numerically than the original Fokker- this case. While fok=5, higher-order cumulants of the vari-
Planck or Langevin equations. ables &,v) are no longer equal to zero and non-Gaussian

By contrast, the formalism developed here offers a concorrections are needed. Substitution of E£) into Eq. (5)
venient tool for the systematic treatment of the Kramersyields the discrete path integral representation of the Kram-
problem both analytically and numerically. Keeping termsers problem we are looking for. This representation is as
up toO(7%) in Eq. (45), one obtains that the first cumulants powerful in formal manipulations as the continuous time in-
of the variables X,v) are given by the expressions tegral solution, Eq(68), and still permits one to devise very
efficient algorithms for numerical simulations which cannot
be developed in terms of partigkqg. (66)] or stochasti¢Eq.
(64)] differential equations.

7_2 7_3
My =X+ 10, + ?(Gn_ Yon)+ E[yzvn_ 'yGn+anr,1]

4

r L

n Q[VZGH_ y3vn+Gr’](Gn—2yvn)+vﬁGﬁ , C. C?Iored noise probletm -
Another example is a process subjected to external noise

with a finite correlation time, so-called colored noise. It is

governed by a one-dimensional non-Markovian Langevin

equation of the form

2
-
M,=vn+7(G,—yv,)+ E['yzvn_ 7Gn+UnGr’1]

3

T , " x=G(x)+v(1), (71
+ E[Yan_ 73vn+ Gn(Gn—Zyvn)—i-vﬁGn

where the fluctuating force(t) is assumed to be a nonwhite
Gaussian process with statistical properties

(v(1))=0, (v(tv(s))=ea(t—s). (72)

An important situation repeatedly studied by many authors is
the case ob(t) being an Ornstein-Uhlenbeck process, i.e.,

4
T
+ ﬂ[ 74Un_ 736n+Gr,1(3’)’2Un_2')’Gn+anr,1)

+Gl(2ye+30,Gp—4y02) +v3G],

Mxx:%787'3(1_4§177)1

) e o=y —v+2eF(1)], (73
My, =vem[1l—yr+ (7Y +4G))],

XU * " with y~ 1 being the correlation time of the noise. The white
M =2 1— vr+ 122424+ G/ noise termF(t) and the quantitye appearing in the above
w=2yeTl 1= yTH5T(2y n) equations are exactly the same as in &4). SinceF(t) is

—57(4y3+5yG)—3v,Gn)], (69)  Gaussian and has a zero mean, the no{$g is also Gauss-

ian with the correlation function
while all cumulants of higher order than 2 vanish. The latter
property implies that the Gaussian approximation for the (v(Dv(s))=ey exp—y|t—s]). (74)
short time propagator, Ed53), remains correct up to and

) . v . X When oes to infinity(short correlation times one can
including terms of order*. This immediately yields v 9 y( 95

completely neglect the term in Eq. (73), thus reducing the
problem to that already studied in the previous sections. For
finite y's the Fokker-Planck equation describing the pair sto-
chastic proceséx(t),v(t)) reads

P(4)(Xn+1yvn+li7'|xn Un)

MUU
=(4m*M )l’zexr{ — o Knr1” M,)?
dP(X,v,t)={—= [ G(X) +v]+ yd,(v+eyd,)}P(X,v,t).
(75

My,
+ —(Xpr1— My (v -M
e M@na1—M,) As is the case with Eq(66), the diffusion matrix of the

above equation is singular. Moreover, the Fokker-Planck dy-

— %(v —M,)? (7o) namics for the pail(x(t),v(t)) does not obey detailed bal-
IV ance.
5 Following the line outlined in the preceding section, it is
where M =M,,M,,—M;j,. Recall that the cumulant¥l,,  not hard to show that the short time propagator valid to order

My, My, My,, M, involved in Eq.(70) are functions of  7* for the above process has the same form as in(Eg),

7 and of the prepointx, ,v,) [see Eq(69)], but to keep the but cumulants are now given by
notation simple we do not indicate this explicitly.

As evidenced by Eq(69), the range of validity of the
above single step propagator is rather sensitive to the friction
coefficient. The time increment should always be taken
small enough in the high friction limiy— so that to keep
the integration measure positive, and may be taken large
enough otherwise. We also emphasize that its utility is re-
stricted to 3<k<4. For lowerk the matrix elemeni,,
becomes equal to zero and the singularity problem is met in

2
r
M,=Xp+ (G +v,) + ?[(Gn"_vn)Gr,]_ YUnl

3
r
+ E[Un( 7’2_ ')’Gr,1)+(Gn+vn)Gr,12+(Gn+Un)2Gﬁ

4
,
22l (Gntvn) (Gi¥=3y0nGh) = yun(Gy*+ 72



=Gy +267°Gy+ 4(Gy +v0) G, Gy
+(Gp+v,)3Gy ],
M,=vn(1=y7+ 3927 57+ 5277,
M= 36 y2 71+ 7(Ga= 7)1,
My, =26 Y2r( 1= yr+ E27— §5359)

7 ’ 72 2 ! 12
1+ g(Gn—3y)+ 1—2(77/ —4yG,+ G,

My 8’)/27'2

+3G,G"+30,G } (76)

It may be noted here that the remarks made below(EQ).
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accuracy and, therefore, significantly increasing the feasibil-
ity of path integral calculations. In view of this it is difficult
to overstate the usefulness of the path integral formulation in
treating numerically multidimensional systems. This will be
the subject of our future publications, but let us briefly men-
tion here the methods available.

Two general approaches are possible: one can integrate
Eq. (5) iteratively or use global integratioMonte Carlg
techniques. Each approach has its own advantages and draw-
backs. In studying one-, two-, or three-dimensional systems,
when storage requirements are not so dramatic yet, the itera-
tive evaluation of thenN integral in Eq.(5) is preferable.
Efforts along this line has been quite successful, and a num-
ber of iterative schemes have been developed that are com-
putationally efficient in terms of spe¢#0]. High proficiency
is achieved by using fast Fourier transforf@4]. The latter
becomes particularly important N is large, as is the case

are all valid in this case as well. Finally, we would like to when a few coupled degrees of freedom are involved and/or
emphasize that aside from the two aforementioned modelsimylations over very long times are required. If the number
that are currently investigated by the present author, this forys coupled degrees of freedom is too large, thl integral
malism can also be applied to many other fields involvingin Eq. (16) must be evaluated by Monte Carlo techniques
Fokker-Planck and Langevin equations. [35]. The most appealing feature of this approach is that it
avoids storing large dimensional matrices. Instead,nti¢
integral in Eq.(5) is evaluated by moving repeatedly from
point to point on the space-time lattice, at each point propos-

In this work, the cumulant expansion formalism is pre'ing a change in the coordinates, and accepting the change via

sented which permits one to generate a high-accuracy dig Metropolis algorithni35]. The use of this procedure al-
crete path integral representation of stochastic dynamics. quws for the efficient treatment of truly multidimensional

method is rather simple to implement, but also general and’

. o Systems without introducing uncontrolled approximations.
rigorous and allows for theystematiaerivation of the short . i
. . ; CL T Moreover, it is often the case that computational effort nec-
time propagator valid to any desired precision in time incre- - . .

. .~ ~ essary for obtaining the numerically exact solution grows
ment 7. Another attractive feature of the present techmqueI v with sub ial di ionality i d .
when compared to the others known in the literature, is thag owly with su stantlla |me|r_15|ona Ey_mcreases ue to im-
it is applicable, whether the diffusion matrix is invertible or ortance Monte Carlo sampling techniqyas].
singular. Numerical applications to the conditional probabil-
ity in a double well shows this approach to be a dramatic
improvement over the standard first-order propagator. Its use )
in a path integral means a significant reduction of the number Financial support of the DirecainGeneral de Investiga-

of time steps that are required to achieve a given level otion Cientfica y Tecnica of Spain is greatly appreciated.

V. CONCLUSIONS
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