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Spreading in media with long-time memory
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We study the spreading of an agent in a medium whose susceptibility changes irreversibly at the first
encounter with the agent. This can model epidemics with partial immunization or population growth with
incomplete replenishment of fodh both cases the susceptibility for growth decreases after the first atiack
epidemics in which the resistance is weakened by the first infe@ticneased susceptibilityln such models
one can have no growth at all, compact growth, or annular growth. We delineate the phase diagram and study
the scaling behavior at the phase boundaries. Our arguments are supported by simulations in one and two
dimensions. Although our model does not involve multiple absorbing states, we claim that our results explain
the “nonuniversal” behavior seen in models with such statg€4063-651X97)07703-9

PACS numbds): 05.50+q, 05.70.Ln, 02.50-r

I. INTRODUCTION invade new regions than to survive in regions it has already
visited.

Despite much effort and considerable recent progress, un- The main finding of this paper is that the critical suscep-
derstanding the phase transitions in models for the spreadirtiility for sustained survival is strictly independent of the
of a nonconserved agent in nonequilibrium systems remainsusceptibility to the first attack. This holds true for both
an interesting challenge. Such models can describe theases, i.e., for increasing or decreasing susceptibility. On the
spreading of epidemics or forest firgs—4], the growth of  other hand, scaling laws typically change. This is very simi-
populations, the activity of catalyzefs,6], and maybe even lar to the behavior of spin systems in the presence of sur-
the formation of stars and galaxi¢]. In all cases, it is faces. While the critical temperature is still given by the
assumed that the agent cannot pop up spontaneously, but cBilk, there exist new surface critical exponefit8]. In this
multiply itself arbitrarily by local offspring production. analogy(which should not be taken too seriously, of colyse

In the simplest case, a medium is considered to be withodpP resembles the “special point” in a surface critical phe-
memory (i.e., without permanent consumption of resources'©mMeénon. - , _ o
or immunization and without quenched randomness. One Anot_her Interesting connection of our model is with gen-
can then have an epidemic surviviing loco, provided the eralizations of DP |nV(,),Ivmg mu!t|ple absorblng St?‘(@—
susceptibility to new infections is sufficiently high and the 20]. In DP, the “dead” state with no agent is unique and

recovery rate is sufficiently low. The transition from the sur- non-fluctuating. It isabsorbingin the sense that a region in
; y . ylow. 1 - ._this state can leave it only by invasion at its boundaries. One
vival of the agent to its extinction is a critical phenomenon in

f th hypoth in this field is that all inu-
the universality class of Reggeon field thedi§,9], the of the best tested hypotheses in this field is that all continu

. . ) X ous phase transitions in models with a unique absorbing state
contact process’[3,4], or directed percolatiotDP) [10]. are in the DP universality clag@2,23. But this leaves the

Nearly as simple is the case of perfect immunizafiti® o ,estion open for models with multiple absorbing states.
“general epidemic process{GEP) [2]]. Here the epidemic There, one must distinguish between models Withtuating
cannot, of course, surviva |OCO, but an infinite epidemiC is absorbing Statee/vhere ergodicity is not broken in the dead
nevertheless possible in the form of a solitary wave of aCtiV-Sector of phase Spax;@nd models withfrozen absorbing
ity. When starting from a punctual seed, this leads to annulastates. In the former, there is indeed only a single absorbing
growth, as seen, e.g., in the growth pattefffairy rings”)  macrostate and it is not surprising that they are also in the
of some mushrooms. Again the transition between survivaDP clasg18,20.
and extinction is a critical phenomenon, this time in the uni- In models with multiple frozen absorbing states, a dead
versality class of ordinaryundirected percolation[11,12. configuration can change only if a new wave of activity

In the present paper, a generalization of these two cases fgsses through it. Ergodicity in the dead sector is broken and
studied. More precisely, we shall discuss a process where thhe universality with DP is much more subtle. [It5,18,19
susceptibility changes after the first infection and remainst was found that scaling properties depend on the observ-
constant thereafter. If it changes to zero, we have the GEP; dbles and on the initial states considered. In all cases, uni-
it is not changed at all, we have DP. In intermediate casesjersality was found for thetationarybehavior in the active
we can still observe either annular or compact growth, or nghase and for the spreading behavior if the initial state coin-
growth at all. The situation is different if the susceptibility is cided (statistically with the dead state left after all activity
increasedby the first infection: in this case, annular growth had died out. If, however, the initial inactive state was
is not possible. Instead, a tendency to even more compatatypical,” then the spreading behavior was changed. More-
growth is then observed since the epidemic finds it harder tover, it was claimed if19] that the critical point changes as
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well and that one finds scaling behavior with nonuniversallndeed, assume that the process is supercritical and that the
critical exponents. epidemic does in fact survivim loco. Then, obviously, the
We contend that the latter is not fully correct and has todensity of debris will increase beyond any limit and the fur-
be interpreted as a slow cross-over effect. We argue that thier evolution will depend only op.,. On the other hand, if
multiplicity of absorbing states is not essenfifdr a related the process is subcritical, the decay is controllechby) at
discussion, seg21]). What is important is that the spreading some ¢<<. But, as we pass through the critical point, the
into an atypical initial state is characterized by a differentfinal value of ¢ for surviving epidemics must diverge, thus
effective susceptibility, whence we have precisely the behavproving our statement. Notice that this dasst imply that
ior described in the first part of the Introduction. the critical behavioris also governed by., alone. In con-
In the next section we discuss an effective-field theory fortrast, the critical behavior will in general be controlled by the
this process. This will lead to a qualitative phase diagramapproach to., .
after the presentation of a lattice model in Sec. Ill. Numerical Let us now assume thalp/d¢<0. In this case, the
simulations for two spatial dimensions are reported in Secspreading at the border of the activity region is easier than in
IV A. They confirm the phase diagram and describe in morets bulk. Thus the spreading of the border will be supercriti-
detail the behavior at the phase boundaries. The situation sl if the bulk is critical, while the bulk is subcritical if the
slightly different in d=1. Simulations for this case are edge is critical. As was shown {i24,25, the above model
shown in Sec. IV B. The paper ends with a discussion in Sealescribes the critical spreading of the GEP in the latter case.
V. Between these two cases, one has annular growth: the epi-
demic can survive in a propagating solitary waya
Il. FIELD THEORY “front” ), but it dies out in its wake. Ip..=p., the critical
value forin loco survival, the density of activity at a fixed
The field theory discussed here is essentially the same gpsition in the bulk will decay with some power of time,
for the spreading of the GEP presented24,25,2]. In this  which isnotthe same as for the decay of activity in DiFe.,
model we have just two fields, one for the spreading agerny the critical process with constapt=p.). More precisely,
() and one for the “debris” left by the ageni#). After e expect the decay to t®owerthan in DP(here we as-
being produced by the agent, the debris is completely inert: iume that the epidemic had started in a finite region; the case
neither diffuses, decays, nor reproduces itself. But it can acif infinite “seeds” will be discussed below
on the agent by modifying its reproduction rateits spon- For dp/d¢>0, spreading is more difficult than survival.
taneous death rate, and any other parameter influencing its Thus there is no annular growth and we have a unique criti-
spreading. For simplicity of discussigand without restric- ¢g| point. Again, this is attained when.=p,, but this time
tion of the generality of the modelwe shall assume that the critical spreading will be slower than in DP and the decay

only p depends significantly ogb. of the activity at the critical point will be faster.
Thus we model the spreading by a Langevin equation for

¢ similar to that of Reggeon field theofy8], but with p

replaced byp(¢), Ill. LATTICE MODEL
We have made no attempt to compute the critical behav-
‘9_‘/’: DV2y— i+ p( ) 2+ n(x.t) 1) ior(s) in the above field theory analytically. Instead, we have
at P K simulated a lattice model that we believe to be in the same
universality class.
whereD is a diffusion coefficient andy(x,t) is a Gaussian In 2+ 1 dimensions, this model is a generalization of di-
noise whose variance is proportional o rected bond percolation on the bcc latti@6—-28. Stated

differently, it is the spreading on a square lattice with dis-
(p(x, ) p(x",t"))=S8(x—x")S(t—t") h(x,1). 2 crete time such that each site stays active for only one unit of
time after having been activatdihfected. Each bond can

The equation forp is simply transmit the agent with a certain prescribed but annealed
probability. The generalization consists in allowing two dif-
d¢p ferent states for each site. Initially, all sites are in Hirgin
ot 94. 3 statev. After an agent has passed through them, they go over

into the usedstateu in which they remain thereafter. The

If we want to model a deterioratingnhancinginfluence ~ Probability of transmission through a bond depends on the
of the debris, we should taldp/d¢<0 (dp/d¢p>0). Actu-  State qf thg site on the other side: nqéq bonds connecting
ally, with this ansatz, the susceptibility for spreading wouldto virgin sites andp for bonds connecting to used sites. For
in general change atach infection, in contrast to our as- d=Pp, this model reduces to directed bond percolation as
sumption that it changes only at the first. The latter coulddescribed iN26—28. For p=0, on the other hand, it coin-
eas”y be taken into account by mod|fy|ng E(@.), but we cides with the Spreading of Ordinary bond perCOIation on the

believe that the difference is irrelevant in any case. square lattice treated as a GER2,29.
The critical point of marginain loco survival can depend ~ According to the discussion of Sec. Il, we expect the
only on theasymptoticvalue ofp, phase diagram to look qualitatively as in Fig. 1. For
p>p.=0.287 34[28], we have a finite probability for com-
pe=lim p(¢). (4) pact infinite growth of an epidemic starting from a single

oo seed. Fop<p. andq<p., the epidemic dies with probabil-
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FIG. 1. Phase diagram for the model. All along the curved line, FIG. 2. log-log plot of the average numbi(t) of active sites
one has the critical behavior of the GEP, while DP behavior is onlyat the no-growth—annular-growth boundary. Each curve corre-
observed at the point where the straight and curved lines meet. sponds to one of the ten points indicated in Fig. 1.

ity 1. The same is still true to the left of a curge=q.(p), tually saturate in strip geomedrand/or with size. This calls
which connects the DP poiat=p= p, with the critical point ~ for a cautious interpretation of the simulations with respect
g=0.5,p=0 for bond percolation on the square latt[dd]. to finite-time or finite-size effects.

To the right of this line we have annular growth. All along

the lineq=q.(p)<p., the critical behavior should be that IV. SIMULATIONS
of the GEP(i.e., of the spreading of ordinary percolatjon '
Most simulations were done according to the single-seed A.D=2

spreading paradigifB1]. We started from a single infected |, 5 first set of runs we determined precisely the GEP line
site and stopped if the epidemic died out or if a preset maxi- onnecting the DP point with the poinp&0,g=1/2) and
mum time was reached. This time was always chosen suqfyifieq that all along this line we do indeed see a crossover
that the boundary of the lattice was never reached, whenG® sEp behavior. For this we measured the average size
the simulations are free of finite-sizbut, alas, not of finite- N(t) of the epiderﬁic(number of infected sites at tint®, the
t'mte) effechts, with ftfhetpoterg)tlalll difficulties, though, of Ki- g, Vival probabilityP(t), and the squared spatial extension
ne+%gougorﬁn;](gt-er()e\fn€r?—e§nni%\?f rowth border is muCth(t). The latter is defined as the average oxferthe aver-
harder to stEd g means of sirgulations starting from a29¢ being taken over all active sites in surviving epidemics.
y by 9 ®rhese results are shown in Figs. 2—4. Each figure contains

single active site. Very large Iqttllces would be ne.e.ded SINCeen curves, each corresponding to one of the points indicated
the active region grows at a finite speed. In addition, since

we have to simulate theupercritical annular growth, the n f'g' E The two 'exyreme pomtﬁqr P=d=Pc qnd for

. : : . - (p=0,0=1/2)] are indicated by solid lines in Figs. 2—-4.
simulations would involve very large numbers of active S|te$_|.he show the scalina behavior of DP and of GEP. respec-
This would make them very slowWe should mention here y 9 ! P
that we used lists of active sites in order to speed up the
simulations compared to a brute force updating of the entire
lattice) For this reason we have used a different geometry in
this case. Instead of an infinite lattice with a single site seed
leading to annular growth, we used a strip geometry with a
planar growth front in a rectangular lattice of size XL
(Ly>L,) with periodic boundary conditions. The seed con-
sisted of an entire line of active sites. Initially, two fronts
emanated from this seed, but only one of them was followed.
By “cleaning” the lattice ahead of the leading edge of this
front, we ensured that it always invaded virgin territory. This
cleaning of course eventually destroyed the other front, but it
allowed us to follow the evolution for long times during
which the activity looped several times across the lattice.

Irrespective of the geometry used, the critical behavior

near the boundaries of the annular-growth region might . , ,
priori be influenced by the roughness of the interface sepa- ! 10 L tepsy 0 1000
rating the virgin territory ahead from the “used” sites. Typi-

cally, the width of this interface increases with tirfie even- FIG. 3. Similar to Fig. 2, but for the survival probabilif§(t).

P(t) = survival probability of epidemic
e
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FIG. 4. Similar to Fig. 2, but for the rati®?(t)/t, where FIG. 6. Similar to Fig. 5, but for the survival probabilif(t).
R2(t) is the average squared distance of active sites from the seed.

R2(t). Results are shown in Figs. 5-7. In none of these plots
tively. For the other eight curves, the valuemfvas chosen do we see any hint of scaling. If we were looking for scaling
first andg(p) was determined such thB{(t) was parallel to  behavior, we would thus have to choose anotfiBgge)
the GEP curve for large. In all three plots, the expected value ofp. But even then we would have to accept signifi-
crossover is clearly seen: close to the DP point and for smattant deviations from scaling. The fact that the transition is
t we have approximately DP behavior, but for larger timesindeed atp=p.=0.287 34 is most clearly seen from Fig. 5:
and/or for points not close to DP we observe GEP scalingfor all values>p., N(t) first decays, but then turns sharply
This is most easily seen in the behavior RA(t), but it is  to increase at very late times. This is easily understood.
also evident from the other two plots. Of course our methodSince q<p., the cluster at firsiwhen nearly all sites are
to determineg, favored GEP-type scaling fd?(t), but even  virgin) has a very small probability of survival and(t)
for this variable it is far from trivial that we could find any drops much faster than for critical DP. Butpf>p., some
values ofg where such a clear crossover is seen. In fact, welusters will survive nevertheless, and once they have
could not find values ofj for which DP scaling is observed reached a critical size, they will even have a chance to grow

at large times. in the now friendly environment. Figures 6 and 7 support this
Next we tried to verify the prediction that the compact- picture, though much less clearly.
growth—no-growth transition is gt=p.., independent of the A more quantitative argument is as follows. Assume a

value ofg. This seems counterintuitive, as one might expectluster has survived, in a run pt=p.+ €, up to a timet, at

that the critical value op is increased wheng<p, an ex-  which it has reached a siZ(ty)> 1. Inside this cluster we

pectation indeed claimed to be verified i9]. We thus fixed have essentially unmodified DP, hence the density of active

q at 0.25(a value well belowp.) and performed runs at sites is N~¢? and the total number of active sites is

several values gb=p.. Again we measurebl(t),P(t), and ~RY” (we keep the argument general by allowing any di-
mensionalityd). The fluctuations inside are normale are

I0g10 N()

<R%>/t

0.2878 -

[
P
P
p

0.

o

100 1001
t (steps) 0.1 L '0 L L
t {steps)
FIG. 5. log-log plot of the average numbi(t) of active sites
for g=0.25, for five values op at or slightly abovep, . FIG. 7. Similar to Fig. 5, but for the rati®2(t)/t.
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FIG. 8. log-log plot of the average number of active sipes FIG. 10. Similar to Fig. 8, but for the ratiB(t)/t.
surviving cluster Nt)/P(t), for p=p.=0.287 34 and for six values
of g below p;.

straight lines for large, suggesting an asymptotic power law

not at the critical pointand thus the rate of extinction by R’(t)~t* The exponent seems to depend weakly op It
spontaneous fluctuations is given 8/dt~—Pe~ YT with ~ increases fronz~0.46 forq=0.1 to z~0.65 for q=0.22.
a characteristic timd@ ~exp(N). If the cluster does not be- All these numbers should of course be taken with some cau-
come extinct, on the other hand, its radius will increase lin{ion. Since the density inside a surviving cluster should de-
early. Even if this increase is arbitrarily slow, the limit crease with time, we must have<z, which is just verified
INP(:2) =InP(to)— /7dte T will be finite, hence the cluster for smallq in the above data. We warn the reader that we
0 have no good theoretical argument for power laws to hold
. o and the data might well follow some other law asymptoti-
After having accepted that the critical valueis equal cally. For P(t), indeed, Fig. 9 suggests no power law at all.

to p. for all g=p., we can now study thg dependence of . . . X
the critical behavior. Figures 8—10 display the three quantiyve tried stretched exponentials for this observable, without

tiesN(t), P(t), andR2(t)/t. For ease of interpretation, Fig. 8 much more success and, we should say, with no better theo-

) o retical arguments either. Needless to say, the absence of a
now S.hOWS the ra.t'm(t)/P.(t)' \.Nh'Ch is the number of ac- ower law forP(t) prevents any hyperscaling relation from
tive sites per surviving epidemic. Each curve corresponds t

a different value ofy, while p=p,, for all of them olding.
! —VMc . _ _ s .
The clearest indication of scaling is fot(t)/P(t), for For the annular-growth—compact-growth transition, we

) L2 used the strip geometry. We first checked thatp, is in-
which we get a reasonably good fit with deed the threshold for sustained activity loco for all

N(t)/P(t)~t%, a=0.47. (55  9>Ppc. Forp<p, the density of active sites decays to zero
in the wake of the activity wave, while it tends to a positive
The situation is worse fdR?(t). Here the curves are strongly value forp>p..
bent except for very smaly. But they seem to follow Next, we were interested in the densjyé,t) of active
sites at a distancé behind the leading edge of the wave. At
threshold, we expect this quantity to reach a lim{€) for
t—oo, which scales as

will have a finite chance to survive forever.

0 T T T

o00000
wnwnwuwn g
L0000
==ioivivh
ErR=1M 0N

p(§)~E77, (6)

4t i where 6§=0.451*+0.003[28] is the exponent governing the
‘ decay of the density of active sites in DP in+2 dimen-
sions, starting from an entire active line perpendicular to the
growth direction. Equatiof6) can be understood as follows.
\ N X For g>p=p., the front propagates at a finite speedso
Tt \ - that ¢ is up to a factor I/ equal to the time elapsed between
oo [ A the passage of the front and the measurement of the density.
! On the other hand, the evolution of DP clusters is slow com-
0 . R . pared to a propagation with finite spegd-x??~ x0-566
! 1o 10 stepsy °° 10000 against ~x, whence the passage of the front through a given
point can be considered as instantaneous from the point of
FIG. 9. Similar to Fig. 8, but for the survival probabilif(t). view of an evolving DP cluster. Thys(¢) indeed measures

logyo P()
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FIG. 11. Snapshot of the lattice in the annular-growth regipre @.27,q=0.6). The transverse sizelis = 128. Active, virgin, and used
sites are in black, white and gray, respectively. The front is moving from left to right.

the density of active sites at time=¢/v after all sites had to takel | —«, since otherwise the front will die with prob-
been infected simultaneously and decays according to Ebility 1. We have used typically | = 1024, {<L =2048,
(6). and t<2x10°. With this value ofL, =1024 and for the
Measuringp(§,t) is not easy. Figure 11 shows a typical values ofg studied (0.5<q=<1), the roughness of the front
snapshot of the activity wave in the annular-growth regimewas typically<50. This is indeed much smaller thap, but
near threshold and Fig. 12 the correspondeneragegiden- it induces an inherent uncertainty in the definition &f
sity profiles. In such a regime, i.e., for not too close to  which renders difficult the estimation of critical exponents.
p., the leading edge of activity is almost identical to theIn practice, the absolute position of the activity wave can be
virgin-used interface. Its profile, which is close to Gaussianmeasured in several ways. For the regimes of interest here,
provides a measure of its roughness, which is simply theve used the positiox,,, of the leading edgdwhich ad-
width w. For q=1, the interface is flat w=0). For vances regularly with velocity). However, to check the
p.<g<1,w initially grows with time and then saturates at a expected scaling6), we need to set an “effective zero” for
valuew(p,q,L,). On general grounds, we expect the inter-¢£. In view of this, we have adopted a rather empirical pro-
face to be in the universality class of the Kardar-Parisi-cedure. We have definefl= X .,— A(q) —x, whereA(q) is
Zhang mode[30] and thusw?~L, . For (9,p)— (P¢.Pe), a positive constant determined such th#¢£) showed the
the situation is much more complex, as we have:0, best scalindi.e., produced the straightest lines for lagen
w—, even at fixed transverse size. This intricate limit isa log-log plo}. Not surprisingly, we find thaA (q) is of the
left for future work, together with the study of the interface same order and behaves exactiwd®..,q,L ). The results
along the annular-growth—no-growth boundary. of this procedure are shown in Fig. 13. We indeed see nice
At any rate, the study of the annular-growth—compact-scaling with an exponent close #~0.45, independent of
growth boundary, even fog not too close top., already q.
involves a rather delicate limit in whicld, L, , andt all

have to go to infinity, but not in an arbitrary order. We have - ' '
0.20 T T T T 4
0.20 T T T
0.15
0.15
0.10 -
w
0.05 v,
0.10 - <
0.00 L .
-30 -20 -10 0 10
X -
0.05 -
0.00 - L -
-250 -200 -150 —1)20 -50 0 50

1 10 100 1000
& (lattice constants)

FIG. 12. Averagednormalized density profile of active sites
(main graph and distribution of thex location of the sites of the FIG. 13. log-log plots of the density(&) of active sites a dis-
virgin-nonvirgin interface(inse). Same parameters as in Fig. 11. tance¢ behind the progressing front of activity. The normalization
The quantityx plotted horizontally is the distance from the leading is set top(1)=1 for all curves. See the text for the precise defini-
edgeXmax- tion of £&. All curves are forp=p..
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FIG. 14. log-log plot of the average number of active sites per FIG. 16. Similar to Fig. 14, but for the ratig?(t)/t.

surviving clusterN(t)/P(t), for spreading in one dimension at
p=p.=0.6447 and for 13 values af. Of these, three are above decrease oP(t) that is faster than any power offor all
pc and nine are below. gq<p., while it seems to follow a nonuniversal power for
g>p.. More surprising than this is the behavior of
B.D=1 N(t)/P(t) and of R(t)?/t: after marked deviations from any

The above arguments should be slightly modified in thePower laws for smalt, they both seem to scale for-,
case of one spatial dimension. In this case there is no undWith the critical exponents of DP. Thus the nonuniversal be-
rected percolation spreadifithe critical point is ag=1), so  havior seems in this case to affect oftyt) and the correc-
there can be no annular growth either. Thus the phase didlons to scaling, but not the asymptotic behavior of
gram shown in Fig. 1 has to be modified such that the curve®(t)/P(t) andR(t)?/t. This is in very strong contrast to the
boundary is horizontal. As a result, only transitions betweerPehavior ford=2, whereR(t) clearly does not show DP
no growth and compact growth are possible. These transpcaling forq<p..
tions are different depending on whettwis below, at, or The most likely explanation for this surprising difference
abovep,. is that an epidemic in one dimension must create a compact

We have simulated essentially the same model as in Seget of used sites on which it survives, while a two-
lIl. The threshold for directed percolation is now at dimensional epidemic can survive on a fractal set of used
p.=0.644 701[32]. We show only the results from simula- sites. Thus the bulk region in a surviving one-dimensional
tions atp=p.. For allp>p,, one has compact growth, and €pidemic never undergoes the anomalous influence of virgin
for all p<p. andqg<1, the process dies out exponentially Sites, while it is permanently exposed to it in two dimen-
fast. sions. Unfortunately, we see no way to deduce quantitative

In Figs. 14—16 we show the by-now familiar quantities results from this heuristic argument.

N(t)/P(t),P(t), andR(t)?/t. As expected, we again find a
V. DISCUSSION AND CONCLUSIONS

We have given heuristic—but we believe convincing—
theoretical arguments for the conjecture that the threshold for
7 critical spreading in the case of infinite memory effects is
T only given by the susceptibility after repeated infection, in-

dependent of the susceptibility of the initial virgin medium.
The latter will, however, influence the detailed critical be-
havior. This is strikingly similar to surface critical phenom-
ena in lattice spin systems, with DP being analogous to the
“special” point [13].

We have supported this conjecture by simulations of
spreading in one- and two-dimensional lattice models. In
. these models we have found very clear evidence that critical

behavior for spreading is indeed changed with respect to DP.
- - But while all critical exponents seemed to be affected in
. . L K " d=2, it seems that only one of the two exponents governing
1 1 0 stepsy 10000 100000 the behavior exactly gi=p. is changed. We have not stud-
ied the critical behavior governing the approaciptep, .

FIG. 15. Similar to Fig. 14, but for the survival probability We have argued that these results apply also to models

P(t). with multiple absorbing states. Indeed, the main effect of the
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multiplicity of absorbing states in these models is to creatavhether they have been visited before or not. This is some-
an effectivememory-dependent susceptibilif.his assumes what awkward to handle in two and more dimensions, thus
that the “static” behavior of these models is in the DP uni- the authors studied only one-dimensional systems. They
versality class, as claimed {15,18,19. This might not be found that their results could not explain the phenomena seen
strictly true, and there might be very small differences everin [15,18,19. We believe that this is a consequence of their
in the static behavior. In that case, the effect of the multiplic-specific assumptions that make the mode[28] very dif-

ity of absorbing states would be much more subtle. But wederent from ours and, we believe, less natural.

have no reason to suspect such problermbus we claim We should finally point out that different results are ex-
that the initial state dependence of the critical péaatations  pected in the case of slowly decaying memory effects. If the
found in[19] is a crossover effect. On the other hand, thesusceptibility relaxes after an infection to its original values
nonuniversality of criticalexponentsfound there and in with a power law, we expect both the location of the critical
[15,18 is real, though the actual values of the exponentgoint and the critical exponents to be modified.

should again be strongly influenced by crossover effects that
were not correctly taken into account.

In [33], a different model was introduced for simulating
the changed effective susceptibility at active region bound- We are very much indebted to Antonio Politi and Roberto
aries in systems with multiple absorbing states. But in conLivi for discussions that led to this investigation and helped
trast to the model treated in the present paper, the medium at during its course. This work was done during a workshop
site x, in this model, “forgot” whenever the epidemic re- sponsored by the European Community. We want to thank
ceded beyond: Only the active sites at theurrentbound-  the Fondazione ISI, Torino, for its kind hospitality and sup-
ary of the epidemic “feel” the modified susceptibility, port during this workshop.
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