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Topological analysis of chaos in the optically pumped laser
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A topological analysis has been carried out on time series generated from a Doppler broadened three-level
model, which has been proposed to describe optically pumped lasers, in particular the far-infrared ammonia
laser. In certain parameter ranges it is known that the experimental findings and the predictions from the
Doppler broadened optically pumped laser model closely agree and show features that follow the dynamics of
the Lorenz model. By means of a suitable symmetry adapted differential phase space embedding, the present
analysis shows that, in fact, the embedded data sets are topologically equivalent to the Lorenz attractor. This
equivalence essentially remains upon variation of a laser control parameter within a certain range.
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[. INTRODUCTION ficult to verify independently11]. Metric analysis provides
little information on the mechanisms or the equations gener-
Chaotic dynamics of a large variety of systems has beeating chaotic processes. Thus the problem of the comparison
studied in recent years, often motivated by the wish to unbetween the DOPL modébr the experimentalchaotic dy-
derstand this “unpredictable” deterministic behavior in par- namics and that of the Lorenz model can be considered as
ticular systems. Optics with its ready control of the degreesot fully satisfactory yet.
of freedom of a system has proved to be a fertile field for the In recent years it has been shown that a topological analy-
study of low-dimensional chaotic dynamics. It has proven sis of chaotic time series can yield more information on the
to be also a fortunate field after the recognitid®j that a  mechanisms generating such behavior in a given system,
model describing a single-mode homogeneously broadendtius leading to a very deep characterization of its dynamics
resonantly tuned ring laser is isomorphic to the Lorenz12-21]. In the present paper a topological analysis of the
model[3], the simplest and most paradigmatic model, whichchaotic time series generated by the DOPL model is per-
exhibits chaos in an autonomous system. formed, with a twofold aim(i) to provide a definitive evalu-
However, the experimental observation in a laser systemation of the degree of equivalence between the dynamics of
of the dynamics predicted by the Lorenz-Haken modethe complex DOPL model and that of the simple Lorenz
turned out to be a long standing and challenging problem. Umnodel; (ii) to study the influence of laser parameter varia-
to now this type of dynamics has been observed only on ations on this equivalence. In particular, it is known that an
optically pumped far-infrared ammonia lagdr5]. This fact increase or a decrease of the cavity losses from an optimum
originated a controvers6], since such a laser device is a value leads to some differences between the DOPL chaotic
relatively complex physical system involving factors such aspulsing (or the experimentally observed grend the typical
coherent pumping and Doppler broadening, which make th&orenz model chaotic pulsind,8]. A double-peaked cusp in
number of degrees of freedom much larger than in the Lothe peak-intensity return map appears, and several general-
renz model. In fact, a realistic laser model taking into ac-ized dimensions take slightly larger values. We wish to know
count these two physical factof®oppler broadened opti- whether these changes represent a large or a small deviation
cally pumped laser model, DOP[6-8]) has shown, in from the Lorenz-model dynamics.
certain parameter ranges, results in remarkable agreement This topological analysis will be performed on several
with the experimental findings and, at the same time, withtime series representing the field amplitude, accurately cal-
Lorenz-model predictions. culated from the DOPL model. They will correspond to dif-
Comparisons with the Lorenz model, however, have beefferent operating conditions, in particular, to different values
performed so far only by visual and metric analysis: qualita-of the cavity losses, in order to be able to investigate the
tive comparison of time series and bifurcation diagrams andlifferences with respect to the Lorenz model just pointed out
calculation of spectra of generalized dimensions, entropyabove.
and return maps of the laser intensity peak vdke8]. As indicated, the objective of a topological analysis is to
Metric analysis(in particular, the determination of geo- determine the mechanism that is responsible for generating
metric quantities such as fractal dimensions, entropy, anthe chaotic time series. A chaotic time series is generated by
Lyapunov exponent$9,10]), however, does not provide a two competing processes. On the one hand, most initial con-
full understanding or description of the system dynamicsditions diverge from each other. This phenomenon is usually
Such analysis requires long, low noise data sets and generalled “sensitive dependence on initial conditions,” and is
ates real numbers, usually without error bars, which are difcaused by the stretching of phase space in some direction.
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On the other hand, if the motion is constrained to a bounded
region in phase space, two initially nearby points cannot con-
tinue to separate from each other indefinitely. There must be
some mechanism that takes distant regions in phase space |
and “squeezes” them together. The objective of topological

analysis is to determine the stretching and squeezing mechas
nisms that operate in the appropriate phase spbzd3. L

This analysis is facilitated by an observation due to Bir-
man and Williamg14]. Their theorem states that a strange -
attractor inR® can be compressed along the stable direction
without altering the topological organization of the unstable
periodic orbits in the flow. After compression, the strange
attractor and all the periodic orbits in it exist on a branched
two-dimensional manifold. This branched manifold provides e
a caricature for the strange attractor. Moreover, the topologi- fime -
cal organization of all periodic orbits in the strange attractor
i_s completely defined by thi_s branche(_j manif(_)ld. The 0bje<_:- FIG. 1. Time series for a portion of data d&t(real laser field
tlvg of a topological analy5|_s of chaotic data '.S the determl'amplitude vs timg The time separation between consecutive peaks,
nation of the branched manifoldr templat¢ which charac- in absolute units, is of the order of a few microseconds
terizes the attractdrl5]. ' '

A branched manifold provides an important starting point
for the description of physical systems that behave chaotifIe
cally. As experimental parameters, or model control paramg
eters, are varied, it is useful to regard the phase-space flow use from the experimental point of view field-intensity
being restricted to different parts of the branched manifoldmeaSurements are much easier to perform than field-
This smooth variation of the restriction then accounts for theamplitude measurement4]
bifurcations that occur as parameters are changed. For any '
parameter values, the spectrum of periodic orbits that exists
in a chaotic flow, up to any period, can be specified by a Il. VISUAL INSPECTION OF THE DATA

“basis_of unstable periodic orbits[’22}. This basis provides Even before a topological analysis is begun, useful infor-
an estimate of the system’s topological entropy. mation can be gleaned by visual inspection of the chaotic

_ The analysis procedure has been reduced to a series fine series. A portion of the time series from data Bet
simple stepg12,13. These are as followsi) Embed the \yhich corresponds to the real laser field amplitude), is
data.(ii) Extract the unstable “periodic orbits.liii) Com-  shown in Fig. 1. This variable can take positive and negative
pute the topological invarian@inking numbers. (iv) Iden-  \ajyes, since the laser is assumed to operate on resonance
tify the branched manifold(v) Verify this identification.  petween the molecular transition and cavity frequencies.

This topological analysis procedure has successfully been There appear to be two fixed points &k, about which
applied to a number of experimental data 44%,16-20. | nstable oscillations take place. The observatfly oscil-

We now carry out a topological analysis on three specifiqates around one of these fixed points with exponentially
DOPL data sets, which will be denotedl B, andC and  jycreasing amplitude until it crosses the threshatel 0.
correspond to the operation conditions also denoteas Then oscillations begin about the other unstable fixed point.
B, and C in Ref. [6]. In caseB the cavity losses take an Tpg |arger the value ofx(t)| just before the threshold is
optimum value, namelyg=1.85 (value normalized to the crgssed, the closer the next series of exponentially growing
transverse relaxation rate of the molecular amplifying megcillations begins around the other fixed point. We should
dium), for which there is a maximum coincidence, with re- gpserve here that the Lorenz system behaves in exactly this
spect to metric properties, with the Lorenz-model predicyyay. |n fact, we will show below that the behavior of this
tions. In casesA and C, the cavity losses are smaller system is essentially identical to the behavior of the Lorenz

(fT: 1.15) and_ larger c(-:7)_, respectively, so that the pos- system. That is, this data set, appropriately embedded, can be

pointed out above show up. In the three data sets the variable
recorded is the redlpositive or negativeamplitude of the
laser field[ x(t)]. We first carry out the analysis of data set
B, which is described in detail in Secs. II-VII. After com-  There are many ways to create @atlimensional embed-
pleting this task, we describe more briefly the results of theling from scalar time series date(i), i=1,2,...,T of
analysis of data sets andC (Sec. VIII). Finally, in Sec. IX lengthT. The default is the delay embedding method,
the main conclusions are summarized. As described in detalil

below, the results of these analyses show that the equations x(D =y =), x(i—7), ... x[i—(d=1)7]), (1)
generate a flow topologically equivalent to the flow gener-

ated by the Lorenz equations. A definite difference betweenvhose principle virtues are that it is valid for ady and all
caseB and case# andC is identified, but it does not affect components of the embedded vectgfﬁ) have the same
the topology of the chaotic attractor. signal-to-noise ratio.

As a complementary detail, we show in Appendixhow
Id-amplitude time serie§x(t)] could be obtained from
ld-intensity time serie§!(t)~x3(t)]. This is made be-

Ill. EMBEDDING
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FIG. 3. Determination of linking numbers by visual inspection
FIG. 2. Projection of the strange attractaft),y(t),z(t)) asso-  of the embedding(a) For the embedding=dy/dt all crossings in
ciated with data seB onto thex-y plane. The coordinatg is the upper half plang>0 are negative, by the left-hand rule. All
defined as the derivative of y=dx/dt. crossing in the lower half plane are positiyb) For the embedding
with z=—y(dy/dt) all crossings in the first and third quadrants,
In this work we use embeddings that depend on derivawhere the only crossings occur, are positive.
tives[12,13. Such embeddings are useful because they ad-
dress questions of dynamics. They are also useful becausetite Lorenz attractor in Fig.(4) shows that all crossings are
is a simple matter to determine linking numbers of periodicPositive. The second difficulty is that the Lorenz system has
orbits simply by inspection. One serious drawback is thaf rotation symmetry. It is invariant under rotation through
differentiation decreases the signal-to-noise ratio. For ther radians about the axis:R,(m) (x,y,2)=(—x,~y,+2). It
data sets at hand this does not pose a prob|em_ is not clear from inspection of Flg 2 that the Strange attractor
In Fig. 2 we plot the projection of the strange attractorthat we are analyzing has any symmetry at all. If it is in fact
x(t)— (x(t),y(t),z(t)) onto thex-y plane. In this embedding symmetric, it may exhibit lack of symmetry by accident of
y(t):dx(t)/dt Since all Crossings are transverse, the emjnmal conditions or by the f|n|te Iength of the .data set plOt-
bedding is sufficient to guarantee that the uniqueness theded. [In Sec. VIl we show convincingly that it is symmetric
rem of ordinary differential equations is satisfied providedunder &y)—(—x,—y)]. However, if there is a symmetry
we take minimal care with the definition of the coordinateunder &,y)—(—x,—Y), it is an inversion symmetry under

z(t). the embedding?2):
One convenient choice fa(t) is dy(t)/dt. With such an
embedding the linking numbers of periodic orbits can be P(X,y,2)=(=Xx,—y,~2) ()

computed very easily. We illustrate this in FigaB At the ) ) . ]
intersection of two orbit segments, the slof® (f either ~ Pbecause of the way in which=dy/dt is defined.

segment is If we wish to show equivalence between the data set un-
der study and the Lorenz system, we must choose a different
dy dy/dt z embedding. Such an embedding should possess the same
il Tialrmar it symmetry as the Lorenz attractpe.g., R,(7)] and should
dx dx/dt vy " . L
generate only positive crossings. Such an embedding is
z=yS 2

(@

Therefore, in the half plang>0, the larger the slope, the
larger thez coordinate. The reverse is true in the half plane d
y<0. In the projection of two periodic orbits onto tkey
plane, each crossing is assigned an integer vatue: The
sign is determined as follows. Rotate the tangent vector to
the upper segment into the tangent vector to the lower seg-
ment through the smallest possible angle. If this is done us-
ing a left-hand rule, the sign is 1. With the right hand rule,
the sign is+ 1. The linking number of two periodic orbits is
then half the sum over all signed crossings.

The embedding represented byx,Y,z)=(x,dx/dt,

d?x/dt?) presents two difficulties. Crossings in the upper g, 4. (a) Schematic representation of the Lorenz attractor. Al
half plane are negative while those in the lower half planeossings are positivéb) Schematic representation of the attractor
are pOSitiVe. Therefore, the I|nk|ng numbers of two periodiCConstructed from data thusing the embeddmgl) (C) When the
orbits is half the difference between the number of crossingattractor shown inb) is deformed by rotating the right-hand lobe
in the lower half plane and the number of crossings in thehrough = radians, top into the page, it is easily recognizable as
upper half plane. Inspection of the standard representation afpologically equivalent to the Lorenz attractor.
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5(=y, (a) LR |(b) LLR
yy=-z (@) %
izf(x,y,z).
The crossing convention is shown in FighB By the pre- © R |(d) LR
vious argument, at a crossing 2
z=(-y*)S, (5)

whereS is againdy/dx. Fory+#0, the larger the slope, the
more negative the coordinate As a result, all crossings are
positive. In addition, if the strange attractor exhibits a sym- (e LLRR ((f) LR¢
metry, it is of the correct type:

R(m)(X,y,2) = (=X, ~Y,+2). (6)

For this embedding, determining the dynamics becomes a
problem of determining the single functidiix,y,z).

@ LR¢ |(h) RRLRLR

IV. PRELIMINARY IDENTIFICATION
OF BRANCHED MANIFOLDS

Before proceeding with the topological analysis, we
present a simple argument to show that the strange attractor
generated by data sBt using the embeddin@}), should be X >
equivalent to the Lorenz attractor. In Figb4we provide a
schematic representation of the strange attractor. The flow
from the left lobe to the right lobe in the upper half plane
(y>0) exhibits a half twist with a clockwise rotation in the
direction of the flow. This branch of the flow is joined to the ] ] -~
circular flow in the right-hand lobe from the top. The same istime series can be identified by the method of close returns.

true, byR,(7) symmetry, for the flow from the right-hand We_ ha_ve used this method_ to Io_cate many unstapl_e periodic
lobe to the left-hand lobe in the lower half plane. If the Orbits in data seB. To period six, we have identified the
right-hand lobe is given a rotation by radians about the followw;g 15 ozrb|ts,3 name%i by2tr12e|r iymbollc4 dyr;arplcs:
positivex axis, with the top into ©) the x-y plane and the LR L R,5 LR 5'— '} 2LR2' 4'- R L'R, LR, L°R%
bottom out (), as shown, then Fig.(@) is a caricature of LRLF% L°R, LR® L*R? L?R*, LRLR’. In addition, the

the flow. This is easily seen to be equivalent to the LorenZixed points at ¢-x,,0,0) are effectively the period-one un-

flow, shown in Fig. 4a). stable periodic orbitg,R.
Several of these orbits are shown in Fig. 5. None of these

orbits actually closes. However, to the resolution shown,
they all appear closed.

The next step in the topological analysis involves extrac-
tion of unstable periodic orbits from the chaotic time series
data. Unstable periodic orbits exist in abundance in a strange
attractor. In fact, they are dense in a hyperbolic strange at- The template, or branched manifold, that characterizes a
tractor. strange attractor can be described in an invariant way by a

When the point representing the state of a system fallsopological index. This is simply a set of integers. These
into the neighborhood of an unstable periodic orbit of suffi-integers are determined from the period-one and period-two
ciently low period, it may evolve in the neighborhood of that orbits (L,R,LR). The properties of these orbits determine a
orbit until it returns to the neighborhood of its starting point. 2X2 template matrix and a*2 reconnection array. The
It then evolves along a path in phase space very close to aemplate matrix consists of the self-linking and linking num-
earlier part of its trajectory. This recursion of evolution in bers of the period-one orbits. Since these orbits are points,
phase space provides a tool by means of which segments tifey do not link and their self-linking numbers are zero. The
the trajectory that shadow unstable periodic orbits may beemplate matrix is
recognized12,13,11.

There are in fact no segments of the time series data that
are unstable periodic orbits. However, many segments of the
data track unstable periodic orbits sufficiently closely for
sufficiently long that they can be recognized and then used as
surrogates for these orbits. These segments of the chaotic [+1-1]. 7)

FIG. 5. A selection of unstable periodic orbits extracted from
data seBB by the method of close returns.

V. PERIODIC ORBITS

VI. IDENTIFICATION OF THE TEMPLATE

0 0
0 0)
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TABLE I. Linking numbers for all orbits up to period six extracted from dataBsey the method of close
returns. All linking numbers were computed from the data and from the Lorenz template. The self-linking
numbers(on diagonagl were computed from the Lorenz template but not from the data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LR 1 1 1 1 1 2 1 1 2 2 1 1 2 2 2
LR 1 2 1 2 1 2 2 1 3 2 2 1 3 2 2
LR? 1 1 2 1 2 2 1 2 2 3 1 2 2 3 4
L3R 1 2 1 3 1 2 3 1 3 2 3 1 4 2 2
LR 1 1 2 1 3 2 1 3 2 3 1 3 2 4 4
L2?R? 2 2 2 2 2 3 2 2 3 4 2 2 3 3 4
L‘R 1 2 1 3 1 2 4 1 3 2 4 1 4 2 2
LR 1 1 2 1 3 2 1 4 2 3 1 4 2 4 4
L3R? 2 3 2 3 2 3 3 2 4 4 3 2 4 3 4
LRLR? 2 2 3 2 3 4 2 3 4 6 2 3 4 5 6
LSR 1 2 1 3 1 2 4 1 3 2 5 1 4 2 2
LRS 1 1 2 1 3 2 1 4 2 3 1 5 2 4 4
L*R? 2 3 2 4 2 3 4 2 4 4 4 2 5 3 4
L?R* 2 2 3 2 4 3 2 4 3 5 2 4 3 5 6
LRLR 2 2 4 2 4 4 2 4 4 6 2 4 4 6 7

The reconnection array determines whether the branches are We have compared all unstable periodic orbits extracted
connected from above or below, in the projection used. Thérom the data that should be related by symmetry. These
larger the integer, the further behind the branch is when thénclude

connection occurs. Since the right-hand branch joins the left-

hand branch from the togFig. 4(c)], the array is LR=RL (self),
[+1,—1]. The topological characterization of the Lorenz ) 5
template is given by Eq7) [12,13,15. L*R—RL,

In order to verify this identification, we have computed 3 3
the linking numbers for all pairs of unstable periodic orbits L"R—RL,

(p=<6) extracted from the chaotic time series. This was eas-

ily done by superposing the orbits and counting the total LR?—R2L®  (self), ©
number of crossings. This even number is twice the linking 4 2

number of the orbit paif21]. The results are presented in L"R-REL,

Table I. These linking numbers were also computed for the 5 5

corresponding orbits in the Lorenz template. The linking L*R=ROL,

numbers computed from the data, and calculated for the Lo- L4R%, RAL2

renz template, were identical.

In every case, the rotated image of one orbit was identical to
VIl. SYMMETRY its counterparfsee, for instance, Figs(& and §d)]. In two
cases [R,L?R?) the rotated image was identical to the

We now return to the question of whether the strangeoriginal. We therefore feel safe in concluding that the strange
attractor possesses a symmetry. Figure 2 presents a projedtiractor generated by data Stwith embedding4), exhib-
tion of a segment of the time series data ontoxheplane. its the topological structure of the Lorenz attractor and is
This projection does not convincingly suggest the presencgvariant undeR,(7)(X,y,z)—(—X,—Yy,+2).
of symmetry underX,y)—(—x,—y). This may be because
there is in fact no symmetry. Or it may be because we have VIIl. DATA SETS A AND C
not plotted a sufficiently long segment of chaotic data.

To unambiguously resolve this question, it is sufficient to  An identical analysis has been carried out on datafset
compare the unstable periodic orbits extracted from the datdVe will not review the entire analysis. Rather, we will point
Under rotation symmetry out where slight differences exist.

Data setA corresponds to a small value of the cavity
losses ¢=1.15), for which the “bad cavity” condition
o<b+1 is no longer verified l§=0.28 for the NH; lase}.
This implies that the steady state remains stable for any
Thus, the rotated image df?R will be indistinguishable pumping strengtlithe subcritical Hopf bifurcation affecting
from R2L if the attractor isR,(7) symmetric. If the attractor it at a finite value of the pump strength in case B has now
lacks rotational symmetry, these orbits will be distinguish-shifted toward an infinite value of the pumping strength
able. The chaotic dynamics can nevertheless be obtained by hard-

R,(m): L—R, R—L (8
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FIG. 6. Time series for a portion of data get Arrows indicate
where monotonicity is lost.

mode excitation(i.e., by a finite-amplitude perturbation of Period 1

the steady staje - [Ifi[:fnti?ble

Visual inspection of data sé& (Fig. 6) reveals two ways Cycle
in which it differs from data seB. First, there do not appear
oo o ponis 1 he dta et Rather, e Smales o i . rgnion ofh tang et 10 () a5
left (x<0) and right &=0) lobes. We might therefore ex- C|at_ed with data s_eA_onto the x-y plane_. The_ co_ordlnatq is

. defined as the derivative of y=dx/dt. This projection shows an

pect to be able to extract real period one o.rblisF{) from extra twist not observed in Fig. 2. This twist can be unwound
the data by the method of close returts. Fig. 8 below.  gyqothiy without disorganizing any of the unstable periodic orbits.
Second, on transition through the threshakd 0, monoto-
nicity is lost. That is, it is no longer true that the larger the ]
amplitude|x| just before transition fronx<0 to x>0 (or  attractor, can then be applied to data Aet
vice versy, the smaller the amplitude of oscillation around ~We have extracted unstable periodic orbits from data set
the new limit cycle. A few such instances are indicated byA by the method of close returns. To period 6, the 19 un-
arrows in Fig. 6. In fact, the mone overshoots on the tran- stable periodic orbits we have extracted ate:R; LR;
sition, the smaller the amplitude on the next oscillation, and-°R, LR?; L°R, LR?, L°R? LR, LR* L?RLR R2LRL,
the nearer it gets to the unstable limit cycle. These féiats L®R? L°R? L°R, LR® L°RLR, R’LRL, L?R?LR. Several
particular, the fact that the first peak in each growing spiralof these orbits are shown in Fig. 8. We could not find the
sequence can be slightly larger than the next pea& re-  orbitsL*R? andR*L? to the precision used to find the other
lated to the appearance of a double-peaked cusp in the peaibits. The linking numbers for all orbit pairs were com-

Unstable manifold

intensity return magp7,8]. puted, and all agreed with the linking numbers for corre-
In Fig. 7(a) we present a projection of the strange attractorsponding orbits for the standard Lorenz template.
onto thex-y plane, where as beforg=dx/dt. This sche- To determine whether the strange attractor for data set

matic representation indicates the extra twist introduced inté\ is symmetric, we compared mirror image orbit pairs. Ten
the flow by the nonmonotonicity. In Fig.(®) we show the such comparisons were made on the 19 unstable periodic
limit cycle, its stable manifoldvertica), and unstable mani- orbits extracted from data sét. In each case, the rotated
fold (horizontal annulus When a point overshoots, it ap- image of one orbit was indistinguishable from the mirror
proaches the limit cycle along the stable manifold and thednmage orbit[see, for instance, Figs(@ and 8&d)].

spirals away from it along the unstable manifold. A point We therefore conclude that the strange attractor generated
that does not overshoot settles into the unstable manifold, bdty data sefA with the embedding4) exhibits the topological

not as close to the limit cycle, and then spirals away. Thestructure of the Lorenz attractor. It is also invariant under
nonmonotonicity in the data is due entirely to the outwardR,(m)(X.,y,z)—(—X,—Yy,+2z). The two strange attractors,
leaning structure of the unstable manifold. If this is deformedfrom data set® andA, can be deformed into each other. The
to lean inward, the nonmonotonicity disappears. Crossings ideformation is smooth except for the Hopf bifurcation,
the projection to thex-y plane are pushed from the second which separates one from the other. This bifurcation replaces
and fourth quadrants into the third and first quadrants withthe unstable fixed points, which are present in dat®seith

out changing their sign. The topological organization of allthe unstable period-one limit cycles, which appear in data set
unstable periodic orbits remains unchanged. The dynamics &.

clearly Lorenz-like. The only difference is that the unstable At variance with data sef\, data setC corresponds to
fixed points are replaced by unstable periodic orbits of periodarge cavity lossesdo=7), for which the system is well in-

1. The sequence of deformations shown in Fig. 4, whictside the “bad cavity” limit. In these conditions, we have
takes the strange attractor for data 8etinto the Lorenz  found that the subcritical Hopf bifurcation affecting the
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FIG. 9. Maximum amplitude of the laser field,,) as a func-
(2 LRe | (h) LR’LR tion of the pump field amplitud@. For 8<0.7293 the laser field

f\\\\ emission is stable. AB=0.7293 a supercritical Hopf bifurcation
@ ,@ occurs, so that fo3>0.7293 the emission is modulated in time.

2« and 28 represent the Rabi frequencies of the laser and pump
fields, respectively, in units of the molecular transverse relaxation
rate.

namical system. With appropriate phase-space embedding
the dynamics is seen to be topologically equivalent to that of
the Lorenz system.

In each case the analysis involved several stépEm-
. o bed the data(ii) Extract the unstable periodic orbit6ii)
steady state in the case of data Bedr in the Lorenz model Compute the topological invariantiinking numbers. (iv)

now becomes supercritical, as shown in Fig. 9. A stable limifye ity the branched manifoldy) Verify this identification.
cycle appears in phase space, which by further increasing \jany embeddings are possible. To show the similarity
pumping strength soon becomes unstable and chaos G, the Lorenz system we used the differential phase-space
reached. Figure 10 shows the phase-space plokaft ver-  gmpedding4), which respects the rotation symmetry under
susx(t) for data setC. These phase-space plots are esseng () (3) of the Lorenz system. The unstable periodic orbits
tially “indistinguishable from the phase-space plots cOonyyere exiracted by the method of close returns. For each of

structed from data sef. The two phase-space plots are yhe gata sets analyzed we were able to extract more than a
topologically identical. We have extracted 16 unstable perigyo,en unstable periodic orbits. The topological invariants
OC(?ICLC,”E;[SErlg;mLt?;,ﬁengL?rtglgg,d?_%lgt?c;\éir;eijgmqu‘ﬁa S€llinking numbers were computed simply by “counting
L?RLR R2LRL, L3R? L°R, R?L?RL, R3LRL. The attrac-
tor obtained from data s& is symmetric by the usual tests
on symmetry related orbits.

Data setsB, A, and C represent laser field amplitudes
X(t), which can take positive and negative values. However,
experimentally it is much easier to obtain laser field intensi-
ties I (t) ~x3(t) [4]. In the Appendix we show how a field
amplitude time series could be extracted from a recorded
field intensity time series, when necessdaegy topological
analysis to recover the underlying dynamics cannot be car-
ried out directly onx?(t) datd.

FIG. 8. A selection of unstable periodic orbits extracted from
data setA by the method of close returns.

IX. CONCLUSIONS

We have carried out a topological analysis on several data X
sets generated by the Doppler broadened optically pumped
laser model, which involves six parameters and up to several FIG. 10. Phase-space plok/dt vs x(t). This phase-space plot
hundred first-order differential equations. For each data se$ topologically equivalent to that constructed from the amplitude
the dynamics is reducible to that of a three-dimensional dydata in data seA.
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topologically equivalent to the Lorenz attractor. This defi-
nitely confirms the predictions of previous metric analyses,
in the sense that an optically pumped far-infrared gas laser
T behaves, in spite of its larger complexity, as the Lorenz
model. This occurs especially for a certain domain of param-
1 eter valuegthat associated to data $8}. Decreasingdata
setA) or increasing(data setC) laser cavity losses intro-
duces some small definite changes in the phase-space struc-
ture (trajectories approach a limit cycle instead of a fixed
point; supercritical Hopf bifurcation in casg). The first of
(b) these changes could also be found in the Lorenz model by
T scanning its three parametarso, andb (although the sen-
sitivity to these parameter variations is not the same in both
o) | | ‘ modelg, but the second change probably could not be found
(the Lorenz equations do not provide a complete unfolding
of the most general dynamics that could appear in a phase
space with two saddle foci separated by an unstable regular
saddle. However, from the point of view of the branched
manifold associated to the chaotic attractor, this does not
represent any topological difference.
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APPENDIX

To show how a field amplitude time series could be ex-
tracted from a recorded field intensity time series, we have
recalculated data s€&€ recording only the field intensityFig.
11(a)]. From it, the field amplitude time series has been re-
obtained in the following way.

First, dI(t)/dt is plotted versug(t) [Fig. 11(c)]. The al-

FIG. 11. (&) IntensityI(t) vs timet for part of data seC. The  most degenerate set of crossings near the origin can be ex-
time separation between consecutive peaks, in absolute units, is ghnded by a logarithmic transformation. In fad(logl)/dt
the order of a few microsecond®) Morphology of the minima of  yersus log has the appearance of a $¢er attractor.

(1) vst for the intensity data shown ifa). (c) Phase-space plot | order to recover amplitudes from intensity data, we
di/dt vs 1(1) for this time series. must take the square root of the data, paying careful attention
to sign changes. It is clear that the amplitude can undergo a
crossings.” An underlying template was then identified us-sign change only at an intensity minimum. However, only
ing a subset of the orbits extracted. In each case, the undesome intensity minima are caused by an amplitude zero
lying template was that of the classical Lorenz attractor. This
is defined algebraically by a set of integei®. This alge-
braic characterization was then used to predict the linking
numbers of all other unstable periodic orbits extracted from
the data. In this way we were able to validate our original
template identification. x(H}

The topological analysis procedure was applied directly to
data setd8, A, andC, which measured the field amplitudes.

Data setB exhibits two fixed points in the phase-space -
projection & versusx) at (x,x)=(*Xxq,0). These fixed "l
points are weakly unstable foci. They are separated by al( t)
saddle at the origin. Data sAtdiffers from data seB by a
pair of symmetry related Hopf bifurcations. The fixed points

at (*=xq,0) are inaccessible: they are surrounded by unstable time -
limit cycles, as can be seen in Fig. 7. Data €ehas been
shown to be topologically identical to data s&t with the FIG. 12. Field-amplitude date(t) vst (top) recovered from the

Hopf bifurcation being supercritical instead of subcritical.  intensity databottom of data seC using the algorithm described
Thus, we finally conclude that the embedded data sets aie the text.
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crossing. To separate the two, it is useful to pjbft) versus x3=| \/||_+

t [Fig. 14b)]. If 1, represents a local intensity minimum,

then intensities near that minimum can be represented as

L) =[1(t)—lo]+1y = lo+Al(t). Since x?(t)=I(t), we S1=[(+x3—x2)—(x2—x1)
have

: (A2)

o+ (12yTg)Al (1) for 15#0 S2=|(—x3-x2)— (x2—x1)|.

X(0)] =g+ Al (D) = VAI(t) for 1,=0.

(A1)  After each comparison we cycle the variables according to
x2—x1, x3—x2, and continue. Normall$p1<S2 and the
In the first caselx(t)|=m has a parabolic minimum. In  amplitude does not undergo a sign change. Whenever the
the second case, which involves a zero crossing of the amamplitude does undergo a sign chang§&;>S2. Under this
plitude, |x(t)| approaches and departs linearly from the condition, we make the replacemer®— —x3,1— —1I, and
axis. This morphology can be used to locate zero crossingsontinue. This algorithm very effectively determines the am-
of the field amplitude. plitude zero crossings. In Fig. 12 we plg(ft), recovered
Recovery of the field amplitude from the intensity wasfrom |(t) using this algorithm, versus We have verified
implemented using a slightly more sophisticated procedurethat this result fox(t) coincides with the one that is directly
First, an integel (==*=1) was defined. This integer deter- obtained from direct numerical resolution of the laser equa-
mines which of the two square rootsx(t) tions, with almost no discrepancy along the time se(irs
=+ /I(t)=11(t) should be taken. Then the time deriva- the case of experimental data sets, the presence of noise
tives in two successive time intervdlsith and without sign  could probably introduce some alterations in the sign of the
changeswere compared according to fields at some instants of time
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