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Continuous time random walk model for standard map dynamics

R. Balescti
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In standard map dynamics, the time sengsare analyzed for chaotic orbits bounded by Kolmogorov-
Arnold-Moser barriers, for subcritical values of the stochasticity parameter. They can be described as a
succession of rather regular oscillations of bounded amplitude in basins located near island chains, and of
jumps between basins, at “random” times. This motion can be adequately modeled by a continuous time
random walk, using values of the parameters taken from the numerical data. The resulting theory describes a
subdiffusive motion, for which the mean square displacement tends towards a saturation value.
[S1063-651%97)06003-7

PACS numbgs): 05.40:+j, 05.45+b, 05.60+w

[. INTRODUCTION tem should start from the equations of motion. It is, however,
known that these are, generically, nonintegrable. They must
The problem ofanomalous transportan be defined quite therefore be solved numerically. But even this is usually im-
generally, but vaguely, as transpéof matter or energyina  possible, because a minimal degree of precision requires
medium that isstrongly disorderedThe cause of this disor- constraints that are not realizable even with the most power-
der may be structurdbuch as in a porous matepiabr may  ful modern computers. A widely used method consists then
be due to the presence of strong and irregular collective flucef replacing the differential equations of motion byreap
tuations(as in a turbulent fluid or plasmaThe name “dis- i.e., replacing the continuous time description by a discrete
ordered” rightly suggests that such systems are too compleane.
for a detailed deterministic study: we are compelled to resort In the present work we shall consider the famatizn-
to statistical or probabilistic methodfor the study of such dard mapintroduced by Chiriko{2—4]. This map has been
problems. used for modeling many physical phenomena. A problem
When the “degree of disorder” is very large, the systemthat reduces locally to the standard map is the diffusion of
considered appears almost homogeneous on a macroscopiagnetic lines in a tokamak or a stellarafst6] (although
scale. This makes the statistical treatment very efficient. Ithe model is not quite faithfUl7]).
an extremely disordered system, when a characteristic “sto- In the limit of very large stochasticity parametr the
chasticity parameter” is very large, the transport processestandard map has been extensively studied. In a pioneering
behave almost classically, although the transport coefficientwork, Rechester and Whi{&] showed that the behavior of
depend on the stochasticity parameeence on the degree test particles obeying standard map dynamics becdalifies
of disordej, and the driving mechanism is not collisional. sive. They calculated the corresponding anomalous diffusion
Such processes are calldiffusive, but anomalous. coefficient, which was refined in subsequent wojs11]
Real disordered systems are not “ideally disordered” in(see alsqd3]). It was also shown that in the same domain of
the sense discussed above. Most often, there exist orderlsirge stochasticity parameter, the behavior may become
structures immersed irregularly in a ““chaotic sea.” Sueh  ‘“strange,” i.e. superdiffusivefor certain valuesof K [12—
landshave a deep influence on the transport processes. THes|. The latter behavior, due to the presence of “accelerator
latter are no longer classical; these phenomena will be callethodes,” is very interesting, but not generic: it is a specific
“strange diffusion processes[l]. They may result in trans- feature of the standard model.

port that is slower than the expected diffusive dgebdiffu- The dynamics of chaotic orbits in the standard map in a
sive regimg, or faster than the diffusive onsuperdiffusive  domain of moderately large, subcritical values of the sto-
regime. chasticity parameter has been much less studied. It is, how-

Strange transport is a very important problem, havingever, a very important regime in practical applications. For
many practical applications. It is also an extremely difficultinstance, in the tokamak problem, we must be sure that the
problem, because it occurs in systems that are neither idealipagnetic field linegand, hopefully, the plasmaemain con-
ordered, nor ideally disordered. There are extremely few exfined in the toroidal chamber. In this regime the particles can
act analytical results available. In the majority of cases, on@nly be dispersed in a limited region of space, because of the
has to resort to numerical simulations, which may suggespresence of impermeable KAM barriers. It appears that in
approximate mathematical models, which in turn, may posthis case the process ssibdiffusive As will be seen in Sec.
sibly be treated analyticallyor semianalytically. I, the motion of the particles is strongly suggestingan-

In principle, the study of the evolution of a material sys-tinuous time random walkCTRW) [16—19. This analogy

was previously noted by Whitet al. [20]. Their model and
its implementation are, however, very different from ours: it
*Electronic address: rbalescu@resulb.ulb.ac.be will be briefly discussed in Sec. Il.
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Our approach is semianalytical. An analysis of a long
time series(Sec. Il) reveals a number ofstatistically
simple features of the standard map dynamics. The latter can
be described as a rather regular motion of the particle within
a “basin,” followed by a jump to another basin, where the
motion is again rather regular, etc. Based on this picture, we X
simplify the present problem of deterministic chaos by con- oes
sidering that its only random features are the transition prob-
abilities between basins and the duration of the sojourn in a
given basin. These are precisely the ingredients necessary for
the definition of a CTRW. The latter is defined and solved ! |
analytically in Sec. lll. In a simple case, the problem can be °% 03 04 06 y !
made quite explicit, by using numbers determined from the 8,
numerical calculationgSec. V). In Sec. V the explicit solu-
tion of this simple case is obtained and analyzed: the running
diffusion coefficient tells us how the final asymptotic state is
reached.

FIG. 1. A chaotic orbit forK=1.15, represented in the phase
space &, 6;) (7500 iterations, starting fromg=0.4,6,=0.75).

the number of “large” islands is specified at the beginning.
There are also, of course, secondary islands around each
We consider the well-known dynamical system known as'‘large” island: these will be, by convention, included into
Chirikov's standard mag2-4], defined by the following the main island chaifthe term “included” will be defined
equations describing the instantaneous valie®, of the  more precisely beloy
two coordinates of a “particle” § being an angle measured Our main interest lies in the chaotic orbits. We shall study
in radians divided by ) at the regular times (wheret is  the way in which a set of particles starting with an arbitrary
an integer. initial distribution in a certain region, bounded by two suc-
cessive KAM barriers, is eventually dispersed and fills the
K entire phase space region included between the limiting
Xip1= X ZSIHZW@- KAM barriers and the island boundari¢as in Fig. 3. Al-
ternatively, assuming the validity gsome kind of an er-
godic property, one may follow a single chaotic trajectory
for a long time(i.e., by calculating many iterations of the
standard map Keeping in mind the application to the prob-
lem of magnetic field line diffusion in a tokamak, the main
interest lies in a reduced problem, viz., th#ffusion” in the
radial direction, which corresponds to the direction in the
standard map. The complete solution of this problem would
involve the determination of théensity profile iix;t); this
antity is, however, not easily accessible, either analytically
numerically. A goodand usual indicator of the disper-
sion is themean square deviatiofMSD): { 5x%(t)). This is
easily measured numerically; our purpose here will be to
devise an analytical model for its determination.

II. TIME SERIES IN THE STANDARD MAP

6+ 1= 6y Xy 1(ModD). 1)

The real numbeK=0 is thestochasticity parametett is
well known that, forK >0, a variety of types of orbits are
possible:cycles (periodic orbit$, island chains(encircling
the cycles, KAM barriers, andchaotic orbits For smallK,
the latter are limited to finite regions of phase space
bounded by island chains and KAM barriers. lRgncreases,
the barriers are progressively destroyed by the appearance g)b"
“holes” which transform them into permeableantori.
There exists a critical valueK=K., when the last
(“golden”) KAM barrier is destroyed, and the chaotic orbits

can reach arbitrary values &f[21]; the value of the critical It is pretty cleara priori thatthe evolution process in the

KisK.=0.9716%.... e
. . . < -
We are interested in the dynamics of these systems forooo K=K, cannot be diffusiveindeed, because of the pres

K<K,. The regime under discussion corresponds to a situ‘5nce of the KAM bariers, the MSD will necessariatu-

i ¢ partially chaotic d icsA tvpical chaoti bit rate asymptotically, ag— 0. The final value will be essen-
iilgﬁo(\jvnpﬁ: :gigyf aotic dynamicsA typical chaotic orbi tially the square of the width of the region. This is in contrast

The golden KAM is an absolute barrier in this cas with a diffusive process, in which the MSD exhibits an un-

e. . : . .
Moreover, depending on the value kf there may be addi- bounded growth, proportional to time. The effective diffu-

. . _ ; . ion coefficient(defined more precisely belgvis thus nec-
tional barriers defining regions in phase space whose bound- ( P y belo

aries cannot be crossed by any chaotic orbit. In Fig. 1 theressarlly zero:
are two clearly visible regions differing by the density of the

phase points: the boundary between them égauatorus The

orbit starting in the upper part had to wait for a relatively

long time before finding its way through a hole in the latter.

In the situation represented in Fig. 1 there appear cléadsy

“main” island chains that are clearly identifiable by the We are thus in presence of a strongiybdiffusive behavior.
“large” size of the islands. Clearly, the distinction between The interesting problem is to study the dynamics of the
“large” and “small” islands is arbitrary. The forthcoming approach to the saturated steady state. A useful tool for this
treatment does not depend on where the limit is set, providedurpose is the graph of the coordinate as a function of

D= Zlim —(54(1)=0. %)

t—o



55 CONTINUOUS TIME RANDOM WALK MODEL FOR ... 2467

available phase space for a chaotic orbit can be subdivided
into basins connected to the islands. On the other Haad
will be seen beloy a basin is not defined merely as the
L SEELERL FTFIRy 4 whole neighborhood of an island.

X o L This type of evolution immediately suggests the picture of
- o1 : ! ? a continuous time random wallCTRW) [16—19. The idea
02 e S of representing the evolution in a standard map by a random
03 A S — walk was already used in a work by Whigt al. [20]: they
s T B : ‘ use the suggestive description of the motion'step-pause-

03 T 55 9 135 180 235 270 315 360 205 450 step-pause. . . .” Their model is, however, different and the
(a) t results cannot be compared to ours. A typical application of
our model is the "diffusion” of magnetic field lines in a

03 [ | I tokamak. The “particles” represented by the coordinates
04 . ¢ T . . . . . .
03 _ Lalef (x¢,0;) are the intercepts of a given magnetic field line with
0.2 |HER- i i 1 : a plane perpendicular to the magnetic axis. The work of
01 ; : : White et al. aims at modeling the motion of physical charged

% 0 T | particles moving in a stochastic magnetic fi¢tdpresented

= 0.1 by a standard mamnd undergoing collisions. The latter are
;‘j‘f % : represented by an additional noise superimposed on the stan-
ﬂ:j ‘ " | 8 prand ; dard map. This additional stochasticity combined with the
0.5 L N bl deterministic chaos changes rather radically the nature of the

430 495 540 385 630 675 720 765 810 855 900 problem.
(b) t The motion of the particles as illustrated in Figéa)2and

2(b) also suggests a possible analogy with the phenomenon
FIG. 2. (a) Time series foix, of a chaotic orbit in the standard Of intermittenceas observed in turbulent flows. The underly-

map.K=1.2 (x,=0.18, ,=0.51), for 0<t=<450. (b) Same orbit ing physics in the latter problem is, however, very different

as in(a), for 450<t<900. and we cannot tell at present whether the analogy is more
than superficial.
(discrete time t: it provides us with a very different view of In the present work, the motion is idealized as follows. At

the evolution processOne may, of course, also plot the fime t=0, a large number of particles is distributed in the
angle 6 as a function of time; for the reasons explainedPhase space. The particles can be subdivided into two
above, this information is less interesting for the applica-classes. The‘jailed particles” are those whose initial posi-
tions) The complete graph o, vst for a long trajectory  tOn lies inside an island chain. For all subsequent times they
requires, of course, @ery longsheet of paper. The analysis perform a strictly periodic motion, remaining inside the is-

can be done, however, by using successive short sections §nd chain where they started. The particles in the comple-
this graph, as in Figs.(2) and 2b). mentary set, whose initial coordinates are located outside the

This type of evolution is very peculiar. We see a first island chains, are callegktive particles:for t—oo they tend

period [Fig. 2(&)] roughly betweert=0 andt=450 where to fill in all the space between the islands, bounded by two
the particle oscillates fairly regularly between two limits Successive KAM barriers. These will be the main object of

(0.1<x<0.4); att~480 there is a sudden jump down to interestin the forthcoming work. For brevity we agree to call
x~—0.35: betweert~540 and 560 there is an oscillation SIMPly “particles” the active particles, unless explicitly
between 0.28 and 0.48; between600 and 780 there is an Stated to the contrary.

oscillation between 0.38 and-0.38, etc. The situation is W€ consider the evolution in time of the coordinate
adequately described in terms of a set of bashbasinis Any given (active particle remains in a basin for some time,

defined as a region, bounded above and below; in which ~ th€n jumps abruptly to another basin, etc. We shall not be
a particle remains trapped for at least two oscillationsin INterested in the details of the motion within a given basin.
between the bounds, before it jumps to another basin. Dif Rather, we assume that the process, starting at a given initial
ferent basins may overlap i A particle moving on a cha- value, is describedstatistically: the motion is then com-
otic orbit starts at time zero in a basin, and remains confine&le,ter defined by the spe.C|f|c.at|on of three featureee lo- .

in it for some time; at some instant, it jumps suddenly tocation of the relevant basins in phase space, the probability

another basin and starts oscillating for some time in the Iat9f E;)SEJIC.’“"*; of length t 'B a.g|v}?_n bgsmnd'the ]:[ransmon
ter, after which another sudden jump brings it into anothefroPability between two basinshis picture is, of course, a

basin, etc. The duration of the sojourn in a basin is extremel§€10US Simplification of the exact motion. It amounts to de-
variable: it may be as short as 10 iterations or as long a laring that the whole “randomness” associated with the

10 000. The times at which the jumps occur do not seem t ete‘rmin_ist.ic chaos qf the standard map is”concentrated in
exhibit any regularity. When looking at a long trajectory, thethe .Stat'St'C.S of the jumps between basmg. The s_h'ape O.f
effect is particularly striking. The basins are clearly located€ time series such as those shown in Fig. 2 justifies this
in the (externa) neighborhood of the island chains. The pe-Statement.
culiar type of motion is thus a consequence of stieking

propertyof the island chains and of the cantf22—26. Our

results show that the influence of a given island can extend The first point mentioned above, i.e., the location of the
far in phase spacéor K<K¢), to the point that the whole relevantbasins, depends on the value of the stochasticity

lll. THE STANDARD MAP CTRW
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0.5 T Having identified the relevant basins, we construct a
CTRW model describing approximately this dynamicA.
similar, but not identical problem is treated in the monograph
[18] under the name of “multistate CTRW)'We recall that
we are only considering here the distribution of active par-
ticles among the relevant basins. The latter will be labeled by
a Latin subscript, e.gm=1,2,. .. ,M, whereM is the num-
05 o7 08 08 1 ber of relevant basins in the problem. In our example,

6, M=3; the labels are choseftonventionally as follows:

m=1, whole island basinm=2, upper half island basin;

m=3, lower half island basin.

The random walk(i.e., the “dynamics’) is completely
determined by the quantities,(t): the probability of finding
parameter and on the initial condition. We develop here @ particle in basin m at time fThese quantities can be con-
general analytical formalism which is illustrated by a very sidered as the components of Ercomponent vecton(t).
simple particular case. In this example, the stochasticity pat our example,
rameter is chosen to be well below the critical threshold, but
not too small(in order to produce sufficiently large chaotic n(t) =[na(t),nz(t),na(t)]. (€
regions; specifically, we choosé&=0.7. The portion of ) ,
phase space under consideration is taken as the region W& @lso use the abbreviated note.m'(nﬁzn(O). [or
bounded by the main island around (0,0) and the neare§m="m(0) for the componenisfor the initial condition.
undestroyed KAM barriers abovec® 0) and below k<0) Next, we define thevaiting time d|str|bu't|on(vyTD). In th.e
this island; a typical chaotic orbit is shown in Fig. 3. classical CTRW probleril7-19, there is a single function

One can recognize near the boundary of the main island #(t) characterizing completely this quantity. Here, the wait-
number of small secondary islands. In the time series, the{pd time distribution can be different in the various basins.
do not, however, appear as a distinct enfiith a well- e thus defing,(t) as theprobability that a particle, en-
defined attached basirThey are therefore not counted sepa-tering the basin mmakes a transition to another basin after
rately, but rather are supposed to belong to the chaotic red time t It appears that these quantities must be considered
gion. as components of a diagon® XM matrix, P(t). In our

We now consider a time series, as in Fig. 2. It clearlyexample this matrix is
appears that the coordinate sojourns successively in three

FIG. 3. A chaotic orbit folK =0.7(<K_), represented in phase
space ¥,=0.25,0,=0).

regions: these are thelevant basingor K=0.7 and for the Pa(t) 0 0
present configuratiofFig. 3) of the phase space. The three P(t)= 0 po(t) 0o |. (4)
basins appear very clearly in the section of a chaotic orbit 0 0 pat)

shown in Fig. 4.(Specifically, this figure represents the sec-

tion 270)O<t<3700 of the orbit starting atxy=0.2, Thus, in general, the matrix elementsRft) are
0,=0.88

This situation clarifies our previous remark: the basins are (M[P(t)|n)=pra(t) Sran- (5)
not necessarily related, one to one, to the island chains. In
the present case thereassingle island centered on (0,0) The last ingredient necessary for the definition of the

but there arehree basinsThe latter correspond to the whole CTRw is thetransition probability f,,, from basin n to ba-
respectively. Thus, the basins do not represent a geometrical

feature of the phase space, but rathelyaamical property (m|F|n)=fmp. (6)
related to the way in which the orbit is covered in the course
of time. By definition, the diagonal elements are identically zero.
Thus, in our example we have
0.5 -
| :
04 ; : i O flz f13
03 5 e
02 TaThen sty i8¢ F=| faa 0 fa3]. (7)
0.1 !
Xt 0 - fag fs2 O
- 0.1 !
-0.2 1 I We now start the solution of the problem. We note that
o ] Sealianie i . .
03 ] ; the probability that at least one jump has occurred out of the
o ! ’ basinm during the interval[0t] is the integral ofp,(7)
2700 2900 3100 3300 3500 3700 from O tot; hence, the probability that a particle, entering
t basinm at time zero, is still there at timeis
t
FIG. 4. Section of time series fox, of a chaotic orbit X, ro(t :1_f dr r 8
0.2, 8—0.88). m(t) . Pm(T) ®



or, performing a Laplace transformation,

” 1 -
rm(5)=g[1—pm(3)]-

These quantities are grouped into a diagonal mabicause
of Eq.(5)]:

N 1 N
R(S)=5[I—P(S)]- 9)

Let nowq,(t) be the probability that a particle arrives in

basinm just after a jumpThen, the probabilityn,(t) is
obtained by considering the probability,(7) of landing in
basinm just at time7, multiplied by the probability that it is

still in m at timet, and summed over all intermediate times

T
t
()= [ 07 it an(),
or, in matrix notation and in Laplace representation:
n(s)=

1 . .
SHI=PG)]-als). (10

In order to calculate the quantity,(t) we consider suc-

cessively the cases where the particle that started in fasi

att=0 lands inm at timet in j steps. Foij =1, the particle
remains in basik for a timet and makes a jump tm at that
time; thus

q$&><t>=§ fnPi(t)Ng .

For j=2, the particle waits in basik fromt=0 to 7, jumps
to basinl, then waits there tilt, when it jumps tom:

t
qﬁﬁ)(t)zg, deTfm|p|(t_ ) F P 7)NK

t
:EI deTfm|p|(t— gt (7).

This argument is easily generalized for arbitrgyyielding a
recurrence relation:

. t .
qi#(t>=§ fodrfmkpka— Nl V(n, 1D

which must be solved with the condition
g (1) =ngs(7). (12)

It is easily checked, using the fornt4) and(7) that Eq.
(12) is written in matrix form as follows:

qP(t)= fotdf F-P(t—7)-qi=Y(7). (13
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quantitiesp,(t) as components of diagonal matrix rather
than a vectol. In the Laplace representation, E{.3) be-
comes an algebraic equation:

q(s)=F-P(s)-g17"(s),
which is easily solved, yielding
q(s)=[F-P(s)]-n°.

We now sum this result ovgrin order to obtain the total
probability vectorq(s):

q(s)=[1-F-P(s)]~*-n°. (14)

Finally, we substitute this result in E¢LO) and obtain

. 1 . .
ﬂ(3)=g[l—P(S)]'[l—F-P(S)]_l'no- (15

This equation provides us with the complete solution of the
initial value problem for our CTRW. It is very similar to the
well-known Montroll-Weiss equatiohl6—19 adapted to our
problem. It expresses the Laplace transform of the probabil-

ity of the distribution of particles among basins, in terms of
the initial conditionn® and of the input information ex-

rlpressed by the waiting time distributid¥(s) and the transi-
tion probabilitiesF. For our simple example, a straightfor-
ward calculation yields the following form for solutidid5)
in the Laplace representation:

~ 1_61
n.y(s)=—=
! SA

[(4—poPa)NS+(2+ p3)pons
+(2+p2)pan3l,

. 1-p,
n,(s)=—=
2 SA

[(2+p3)psnS+(4—pyps)ng

+(2+p1)psn],

. 1-p A . A .
Na(s) = ?3[(2+ P2)pnS+(2+ p1) pond

+(4- f)lf)z)ng], (16)

with

A:4_f3152_6163_ 52[33_;316263 (17)

(all symbols with a caret denote functions )t

An equation of evolution foﬁ(s) is easily derived from
Eq. (15) (see[17-19):

sn(s)—n°=—(1—F)-Q(s)-n(s), (18)

where

[At this point it clearly appears that the remarkable factor-

ization appearing in Eq13) is ensured by our defining the

Q(s)=sP(s)-[1-P(s)] ™. (19
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By inverse Laplace transformation of Ed.8), we obtain These numbers are calculated for each of the four orbits:

a non-Markovian equation of evolutiofor the distribution  the values obtained in this way are slightly different for each
vector: orbit, because of the limited statisti¢ty/pically, one finds
. the following values for f;_, for our four orbits:
07tn(t)=—(|—|:)'f dr Q(7)-n(t—7), (20) 20/36=0.555, 16/36-0.533, 17/4(:_):_0.425, 11/_2__&0.440).

0 Next, we note that the exact transition probabilities must also

satisfy the following independent normalization, expressing

which is to be solved with the initial condition(0)=n°.  that the particles entering basincan only originate from
These equations are quite generally valid, for an arbitraryyne of the two other basins:

CTRW, with an arbitrary number of basins.

IV. IMPLEMENTATION OF THE CTRW MODEL > from=1. (24)
m

We now specialize the results for our simple three-basin

case. The CTRW model of the standard map dynamics iFhis condition allows us to define an alternative set of ap-
defined by thetransition probability matrixF and by the proximate transition probabilitiedor each orbit:

waiting time distribution matrixP(t). These quantities are
determined from an analysis of several “long” chaotic orbits
generated by the standard map. In the present work we used
four such orbits, fokK=0.7, each obtained by a total bf
iterations from some initial condition. Thearbitrary labels

and their characteristics are as follows: Ni 2

7 _
127 1
Nl<—2+ N1<—3

N2<—l
froo= froo=1—f"
21 N2<_1+ N2<_37 23 21>

f’]{<—3:1_f€[<—2’
orbit A:  xo=0.25, 6,=0.00, N=25 000,

orbit B:  X,=0.00, 6,=0.48, N=25 000, ” Nz y y
0 0 347].: 1 3%2:1_f3<—l' (25)
. N3_1+Ns_»
orbit C:  x,=0.12, 6,=0.40, N=24 000,

These numbers are also calculated for each of the four
orbits. They will be slightly different from the corresponding
i%s (e.g., we findf5_, for our four orbits: 19/35-0.543,

t

orbit D:  Xo=0.20, 6,=0.88, N=24 000. (21

A time series was generated for each orbit and analyze
as described below. The three basins are labeled by an ind /42=0.381, 17/52-0.327, 11/2% 9'440)' We now take
e average as follows: for each pair,n) we add together

m=(1,2,3), defined at the beginning of Sec. lll.

( ) g g the four values off,_, and
A. Transition probabilities divide the result by eight. The result is a matfixwhose
elements are shown here together with the standard devia-

For each orbit, every jump from a basimto a basim is ;s \ve also show the sum of the rows and of the columns,
recorded: the total number of such jumps is denoted an order to check Eqg22) and (24):

N,._m (for instance, in the section of ortit shown in Fig. 4,

we find N,_3=3, N3_»=2, N;_3=1, N3_;=1). These
numbers must be converted to transition frequencies or prob-
abilities f,,_, (for clarity we use in the present section an -1 0 0.47+0.07 0.44+0.07 0091
arrow between the subscripts Bfy,). In order to define the 5 0.46+0.06 0O 0572008 1.03
transition probabilities,._,,, we note that a particle leaving 048-007 056008 0 104
basinm can only jump into one of the two other basins, ' ' ' ' '
hence

and the four values of;_

m=1 2 3 Sofnem

s i 0.94 1.03 1.01

n—m

; foom=1. (22) (26)

Using this normalization condition, we define a first set of We note the following points. The two sum rules are
empirical transition probabilities as follows: pretty well satisfied in spite of the rather small statistics. We
also note that the matrix is very nearly symmetric. Finally,
£ N2y f1 =1 f taking into account the standard deviations, this “empirical”
21Ny 4+Ng_ ' 31 2= matrix is compatible with the simplest choice implying
maximum symmetry:
oo Mo
12 Nl<—2+ N3<—2' 32 12> 1
anm=§, Vm, Vn#m, (27)

’ Nl<—3

3= fa g=1-f1 4. (23
13Ny 3+ Ny g 23 13

or, in expanded form
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FIG. 5. Waiting time distribution for basin 1. Squares: measured FIG. 6. Waiting time distribution for basin 1: same data as in

values(t); solid curve: power lawp(t), given by Eqs(30) and Fig. 5, in a log-log representation.
(3. '

time frequency(29). When additional orbits are considered,

0 050 EqNﬁﬁ) increases rapidly, but the very long tail events remain
F=({ 05 0 0.5, (28)  very rare (of order 1): thus their frequency decreases
05 05 0O strongly, and in a log-log plot the corresponding points are

pushed down.
Given that the three basins are attached to a single island, We thus obtain the following values:
this symmetry appears very reasonable.
y y app y A1=lOO'5, Gfl:OBE o,

B. The waiting time distribution A,= 10°€ a,=0.5= 8,

The successive times of sojourn in a given basin
At,,, were measured sequentially in each of the four orbits As=10P%  a3=0.5=8. (32)
available. For each basim (and for each orbjtthe number
N(@ of occurrences in successive sectors of length 50 com- V. EXPLICIT SOLUTION OF THE CTRW MODEL
prised between=q andt=q+ 49 was determine¢e.g., the
number of sojourns of length<0At;<49, in basin 3, then
the number of sojourns of length 8A\t;<99, etc): these
numbers(for eachm and eachg) were summed for all or-
bits. Dividing these numbers by the total number of succes
sive sojourns in basim, a histogram is obtained, which is an
estimate for the waiting time probability in basin

We now return to the general solution of the standard map
CTRW, Eq.(15), and apply it to our special three-basin case.
The transition probability matriX was determined in Eq.
(28). The waiting time distributions are compatible with a
power law defined by Eq$30) and(31). The former equa-
tion implies that the Laplace transforms of these functions
are of the following asymptotic form for smait

@__m (29 Pm(S)=[1-Bps™™], s—0. (32)

h der's inf . hat th | Indeed, the inverse Laplace transforms of these functions
(For the reader’s information we note that the total num-_ provided by a Tauberian theoréav,19,27:

ber of sojourns in each of the three basins found for the four

orbits analyzed here N?'=131,N¥'=158,N¥'=156). The am

quantitiesp!? are plotted vay, i.e., vs time. pm(t)_BmF(l—am)
As an example we show in Fig. 5 this plot for basin 1. It

is clearly seen that the most frequent sojourns are relatively hus, choosing

“short,” At;<<1000; there occur, however, rare sojourns of

t~iem  t—oo, (33

very great Iength, sax&t1=5_500 or_8500(t_he latter repre- Bm=AmF(1_ am) , (34)
sents about a third of a typical orbit considered here Om
These data can be pretty well fitted with a power law ) ] ] )
distribution for a continuous time variable: combined with the valueg1), we are in agreement with the
empirically determined Eq(30). Using Egs.(16) and (17)
Pm(t)=Ant 1 om, (300  together with Eqs(28) and (32), expanding the result for

smalls, and performing the inverse Laplace transformation,
The best values for the exponest, and for the constant e find after a lengthy but simple calculation the result, ex-
An are determined by fitting a straight line to the points in apressed as follows. We first introduce the provisional abbre-
log-log plot (Fig. 6). [In fitting a straight line to the log-log viation:
plot we discarded the two or three points corresponding to
the very long(but very rare sojourns. These points show a B,
strong positive deviation from the straight licleut they are C= ra-p
not very deviant in the plot of Fig.)9Actually this deviation
is illusory: it is due to the factor B N in the waiting next, we define the functiorid;; (t):
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FIG. 7. Time evolution of probabilities of presence in basin
vst. Solid, ny(t); dotted,n,(t); dashedns(t). FIG. 8. Time evolution of probabilities of presence in basin

m: same data as in Fig. 7, plotted vs gt

2b
H11(t)=1—mt_(ﬁ_“) Note that this asymptotic solution results from the in-
) . . )

equality e< 8. It is physically rather reasonable that after a
4b? —2p-a) B long time all the particles end up in the basin corresponding
+mt Fra+2Ct, to the entire island. As mentioned before, the evolution to-
wards these values is very slow. The long time behavior is

Hyo(t)=Hq(t)—2Ct 5, 'Er;ys g)etter seen on a semilog plot, showm(t) vs logot

ig. 8).

b Next, we note that the curves representingt) and
Haa(t) = m_—Mt_(ﬁ_C’) ns(t) are indistinguishable, in spite of our very unsymmetric

initial condition. Indeed, as can be seen from E@%), the
2b? Cpa L corresponding functions only differ by the terms proportional
—mt —Ct 7, to t~#, which are the most rapidly decaying ones. Thus, for

sufficiently long times, the two curves coincide. Finally, by
4 considering various values fon? it is found that the
Hoox(t)=H,q(t) + §Ct’ﬁ, asymptotic evolution given by Eg&36) is remarkably insen-
sitive to the initial conditions: after, say= 1000, all curves
5 are practically the same. On the other hand, as for any
Hog(t)=Hyy(t)+ = Ct 7, (35)  asymptotic approximation, the solution cannot be extrapo-
3 lated back tat=0.
i . In order to determine the nature of the “diffusion” pro-
where b=B,/B,. The asymptotic solution of the CTRW ¢egs we now determine the evolution of tmean square

problem is then deviation(MSD) as a function of time. It is naturally defined
as follows:
N1(t)=Hy(t)nd+Hy(H)[nd+n3],
3
Na(t) = Hay()nd+ Hao )+ Hag(H)n, 2= 2, ofni(v), (39
_ 0 0 0
Na(t) =Haa()ng+ Hag(t)nz+ Hap()n3. (36 whereq; is the width of the basirj, which is determined

graphically from the orbits plotted as in Figure 4. Indeed,
during its sojourn in basin, the particle oscillates with an
amplitude of ordew ;. The following values are obtained:

The following conservation law is easily checked:

ny(t)+ny(t) +ng(t)=nf+nJ+nJ. (37)

. . =0.56, =03=0.26. 4
The behavior of the solution is understood from Fig(Ii. 71=0.56, 0,=03=0.26 (40

this and the following figures we take{=0.5, nN9=0.05,  Given the slowness of the process, the funclid) is again
ng=0.45) plotted against logt in Fig. 9.

For very short times, we see a very rapid evolution; this The initial descending section of the curve is irrelevant,
region is, however, irrelevant. Indeed, in this rangebecause it lies in the unphysical range., the range where
ny(t)>1 andny(t),n3(t)<0 . The asymptotic regime ex- the probabilities lie outside the physical domaihl] and
pressed by Eqs(36) begins to be valid, at least, for the asymptotic approximation is invalidAfter the “ghost
t>200, when all probabilities are in the physical domain. Inminimum” (which corresponds roughly te=250 for all ini-
the latter range, the evolution istrikingly slow It is clear tial conditiong the MSD increases very slowly towards an
from Eqgs.(35) and(36) that the final values of the probabili- asymptotic saturation valu®*, which is easily understood
ties are from Egs.(38) and (39):

ny=1, n;=0, n3=0. (38) 3%=0g5=0.314. (41)
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FIG. 9. Evolution of the mean square deviati&t). ) . .
FIG. 10. The running diffusion coefficied(t).

We now consider theunning diffusion coefficient @),

defined in the usual way: of the standard map is the sticking of the orbits near the
islands. As a result, the “particles” remain trapped for a
D(t)= EEE(t). (42) possibly very long time in a single basin before jumping to

2 dt another basin, where the scenario is repeated. This feature

explains not only the overall subdiffusive nature of the mo-
tion (which is trivial, because of the presence of KAM bar-
riers), but also the very slow evolution of the process. It may
be recalled that the same sticking property produces super-
diffusion when it appears near an island encircling an accel-
erator modg¢ 12—15. This type of behaviofwhich occurs in
some windows of the supercritical domak>K.) is not a

Its graph is given in Fig. 1(plotted again vs logt).
Only the relevant(i.e., positive part of the function is
shown. The running diffusion coefficient is very small at all
times (=10 7); after a maximum, it decays to zero as
{—o,

The asymptotic vanishing of the running diffusion coeffi-

C|_ent and the correspo_ndlng saturation O_f thg mean squargeneric property: accelerator modes are a specific feature of
displacement are the signature of a subdiffusive behavior he standard map

the standard map dynamics in the subcritical domain . g pification introduced in our model consists of

K=K, I.e., In a regime of incomplete Ch’?‘OEh'S kind OT retaining the interbasin transition probability and the waiting
behavior is not unexpected; the less obvious feature is the " jistribution as the only random elements in thha-
em‘?me slownes_s of th? evolution. This shows that_ Fh%tic) standard map motion. This is, of course, an oversimpli-
stlckmes_s of the islands is a very strong factor determlnlng?ication: the motion(of the x variablg inside a basin is not a
the sIowmg dOVY” of the evqlutlpn process. . perfectly regular oscillation; but this aspect will presumably
One might think of investigating other diagnostics of Cha'not strongly affect the evolution of the MSD or the running

otic motion for this strongly nondiffusive process. A possible yit \cion coefficient

candidate, which is very useful in a superdiffusive regime is This work is, of course, only a first step; many more as-

th? concept be'.t tlme[.28.].. In the present case, however, pects have to be studied. The calculations were developed in
this qgantlty IS S|mply infinite, bgcau;e the KAM sur.facesdeta” only for a simple three-basin situation. Our formulas
bounding the region under consideration are strictly IMPer{1g)_(20) are, however, quite general and can be applied to a
meable. many-basin situation. A feature that is definitely lacking at
present is an indication of the dependence of the phenomena
on the stochasticity parameter this aspect will be an object

In the present work we developed a way of simplifying of forthcoming work.
the complex dynamics of an unstable system, such as the We also intend to study other maps by this method: this
standard map. At the same time we derived a simple methodould serve a double purpose. First, it should show how
for studying the “strange diffusion” appearing in this sys- generic the results are of the present study. Next, it should
tem in a subcritical regime. This feature is of interest inallow us to study more realistic models of tokamak or stel-
studies of anomalous diffusion of magnetic field lines in alarator plasmas, in order to end up with a theory of strange
toroidally confined plasma. and anomalous transport in such systems. This is our main,

The feature responsible for the “CTRW:-like” behavior though remote, goal.
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