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Monomer adsorption on a square lattice with first- and second-neighbor interactions

Alain J. Phares and Francis J. Wunderlich
Department of Physics, Mendel Hall, Villanova University, Villanova, Pennsylvania 19085-1699
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We obtain the low-temperature phases and phase transitions of monomer adsorption on a semi-infinite
square lattice of widthM, with first- and second-neighbor interactions. With first-neighbor interactions as-
sumed to be repulsive, and allowing second-neighbor interactions to be attractive or repulsive, six sets of
surface adsorption phases have been identified. Most of the numerical results conductbtuf2tare found
to fit exact closed-form expressions M, thus allowing exact analytic extrapolations to the infinite two-
dimensional caséM =x). [S1063-651X97)03103-4

PACS numbd(s): 02.50-r, 05.50:+q, 05.70--a, 64.60.Cn

I. INTRODUCTION The numbers of monomers, first-neighbor monomer-
monomer interactions, and second-neighbor monomer-
A year ago, we reported a number of crystallization pat-monomer interactions per site afg, 6, andg, respectively.
terns (phases of monomers with nearestfirst-) neighbor In the limit (N—), these quantities are related to the largest
interaction on a multilayered semi-infinite square latfite  eigenvaluer of T, according to
This article goes a step further, analyzing the more realistic
model of monomer surface adsorption including nearest- and xR ¥y R 2z R
next-nearesttsecond) neighbor interactions. Lattice models °"MR dx’ = MRy’ P=WR 3z’
have been used for a very long time; a brief summary of
lattice calculations done by others can be found in REf. 1
and the notation used here is very similar to that of IREF. S= i INR= o Inx— 6 Iny— Inz, 3
The surface is a semi-infinitd X N square latticéN —o)
in the presence of a gas containing one molecular species aghere S is the entropy per site divided bl . For finite
the adsorbed molecules occupy one site. For this reason, wengthN, all the eigenvalues contribute to the expressions of
refer to them as monomers. The system is at thermal equigol 6, B, andS in a manner discussed in R¢2]. For given
librium and the chemical potential energyof a monomer monomer-monomer interactiodsandW and with the tem-

depends on the external gas pressure. The interaction engjerature of the system set to be below a certain value as
gies of an adsorbed monomer afgwith the lattice,V with dictated by the relation

any first-neighbor monomer at a distareceandW with any

second-neighbor monomer at a distaace2. The activities \ (=V)
associated with these three interactions are < —10=T< , (4)
kgT 10kg
ut+Vo \% W adsorption patterns are observed to occur sequentially with
X=ex keT | y=¢ex KT’ Z=6ex KT | (1) increasing external chemical potentjal The Cray C90 su-

percomputer of the Pittsburgh Supercomputing Center was
used witheispAck for the numerical computations.

In one dimension(M =1), next-nearest-neighbor mono-
mers are at a distancea2and their interaction is neglected,
leaving only first-neighbor interactions. This case has an ex-
act analytic solution and has been fully discussed in Réf.

1 pl The caseM =2 is the only other case for which an exact
T1 :( M-t XFm-1 ) analytic solution can be derived including first- and second-
MT\ T xyPy_)’ neighbor interactions, since the eigenvaluesTgf are the
solutions of the secular equation

wherekg is Boltzmann’s constant an@l the absolute tem-
perature. Here the transfer mati, for a lattice of width
M is of rankD(M)=2M. It is recursively constructed as in
Ref.[1], and we find

Th_ . xzPy_
T§A=<T2" ! Xyzgﬁ_ 1) with T3=T2=1; {R=x(y—2)HR®*=R[1+x(y+2) +x?y°7Z’]
M-1 M- 1
) +RX (y+2-2)(1+x%y%2%) +xy(y?z°~1)]
pl_ Tw-1  XYPu_s +x%y(yz—1)(yz+1)(y+2)—4y2)}=0, (5
MUz, xyPZPy )

where one root is immediately identified agy—z). The

first-neighbor interaction is repulsiveé/<0) and, conse-
) with F’é: P§= 1. quently, the second-neighbor interactddhmust be algebra-

ically greater whether it is repulsive or attractivé<{W).

p2 _ TlM—l Xyzprlw—1
M ZTf/lfl Xyzzzpszl
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TABLE I. Characteristics of the phase adsorptions on square lattices of finite MigtB. The quantityfM/2] refers to the integer part
of M/2 and the question mark stands for the lack of a closed-form expression for the entropy.

S

Phases 6y 7 B M odd M even

Po 0 0 0 0 0

Py M—[M/2] 0 0 0 @/2M)In[(M +2)/2]
2M

[ (M+2)/4M 0 1M ?

(M even

P3 (M+2)/4M (M—2)/2Mm?2 2IM? (a/2M)In(M/2)

(M even

P4 (M+2)/4M 1/2M 0 (2/2M)In(M/2)

(M even

Ps 1 0 (M—1)/M 0 0

Pe (M+2)/2M 3M (M—1)/M 0 0

P, : 26+B=(M—1)/M ?

(M even

Ps M—[M/2] 3M—4[M/2]-1 0 0 0
M 2M

Po (M+2)/2M (M+3)/2m 2/M 0

(M even

P1o (M+2)/2M 26+B=(M+5)/M ?

(M even

P11 3 (M—=1)/M (M—1)/M ?

(M even

P12 3 (2M —5)/(2M —4) M2—4M+6 ?

(M evern>4) M(M-2)

P13 2M—[M/2] 3M—2[M/2]-1 2M—2[M/2]-2 0 @/2M)In[(M —2)/2]
2M 2M M

P14 (3M +2)/4M (M+1)/M 1 (2/2M)In(M/2)

(M even

P1s 1 (2M —1)/M (2M —2)/M 0 0

Thusz>y and the rook(y — z) is negative and cannot be the The characteristics of all the phaspsncountered for any
largest root of Eq(4). Indeed, according to the Frobenius- width M of the lattice greater than 2 are found in Table I.
Perron theorem, the eigenvalue of the largest modulus of thEhe phases are ordered by increasing values of the coverage
family of matrices of which the transfer matrices belong g, of the lattice, and distinct phases with the same coverage
must be real and positive. are generally ordered by increasing the number of first neigh-
The energy per site must be continuous across a phasgyrs per site. In most cases, the characterigticsd, 8, and
boundary. Thus, witiAf,, A6, andA being the correspond- g of the phases for a lattice of widt were observed to fit
ing changes oft,, 6, and B across a given boundary, N0 exactly closed-form expressions as reported in Table I. The
change in the energy per site requires quantity[M/2] refers to the integer part &fl/2 and the ques-

(14 Vo)A G+ VA §+WA B=0. (6)  tion marks stands for the lack of a closed-form expression for
_ _ - _ the entropy. For phaseg; and p;y, we obtain an exact
This equation has been verified to hold in all cases. closed-form fit for(26+ ), but not for the separate values of
Section Il provides most of the lattice configurations cor-g and 8. With these two exceptions, the knowledge in a
responding to the possible phases encounteredVfor2. iven phase off,, 6, and 8 analytically in terms ofM

Which phases and phase transitions are observed should dgyoy|d, in principle, allow the construction of all the corre-

pend on the first- and second-neighbor interaction energiegsonding lattice configurations. Samples of these configura-
discusses the it a1 and S6, V is the summary and. LO1, 21€ Provided n Figs. 1 and 2. They exclude phases
. : andp,, for the reason mentioned above and the trivial cases

conclusion. of the empty(py) and the completely filledp,s) lattice. In
these figures, a diagram represents one possible configura-
tion associated with a given phase whose characterigfics
#, and 8 have been determined numerically. A diagram only

With the physical constraintg<0 andV<W, numerical shows the section of the lattice whose configuration repeats
calculations were carried out up to and including=12. throughout the lattice. We were able to enumerate all distinct

Il. LATTICE CONFIGURATIONS
OF THE OBSERVED PHASES
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« |2l 1ol 10| |eje occurring only for lattices of even width. The convention adopted in
olo[e[eojeo[o[e]e] 52

this figure is the same as in Fig. 1.

FIG. 1. Lattice configurations for phasps, s, Ps. Ps. Ps. P, tion changed without creating additional first or second
P13s andp14_ A lattice site is represented by a square cell of size neighbors. This is done by Shifting horizontally one mono-
which is left blank when unoccupied and has a dot in the middlemer at a time by one cell, an operation that could not be done
when occupied. for M odd. For any two consecutive rows, the number of

such restricted horizontal shifts (§1/2), leading to a total of
phase configurations and derive the entropy of all but the tway=(M +2)/2 distinct configurations. Since there af§/2)
phases mentioned above and four othgxs, p;, p;;, and  sections of two consecutive rows, there a& distinct con-
P12, presented separately in Fig. 2. figurations in each of the previously identifiédconfigura-

As a sample of the manner in which we analytically com-tions. Thus the final numbeZ of all possible configurations
puted the entropy of the adsorbed system in the phases &f phasep; with M even is
Fig. 1, we consider phagg,. For M odd, the configuration
shown is the one for which every other column of the lattice C=syN2, (8
of width M is unoccupied, while the remainingM +1)/2
columns have every other site occupied. The remaining corfhe value ofS follows as
figurations having the same values &f, 6, and 8 are ob-

tained from this one by vertically shifting by one lattice site 1 1 1

the monomers of one or more of thedé+1)/2 columns. In S= lim (W)Inc= lim ((W)In&r m)lny]

this manner, we derive that the numlgrof all the distinct N—o N—e

configurations of thg, phase iss=2M*1Y2 The value ofS

follows by dividing the logarithm oC by the number I M) =(— Iny. (9)
of sites(N is the length of the lattigeand then taking the 2M

limit N—oo, or
Equationq7) and(8) are easily generalized for other phases,
1 M+1 and the corresponding valuespfnd é are indicated in Fig.
(—) IN2M+ 2= |im [ ( )lnz} =0. (7)

S= lim

N— oo

NM ONM 1, accordingly. The theoretical values 8fobtained in this
manner are listed in Table | and have been numerically veri-
fied to hold within the accuracy of the Cray C90 supercom-
In the even case, the number of columns having every othguter.
site occupied by a monomer (i§1/2). Thus there is a total of For the phases of Fig. 2, a number of configurations can
5=2""2 distinct configurations generated by shifting verti- easily be constructed from those presented in this figure. We
cally by one site the monomers of one or more of thesecould not find the total numbe€ that reproduces the ob-
(M/2) columns. In addition, any two consecutive lattice rowsserved numerical values. However, we list in Table | the
of each of theseS configurations may have their configura- closed-form expression of the entropy forpg,

N— oo
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(1/2M)In(M/2), which fits exactly the numerical results for ~ Set (b) This set is observed only fov odd and corre-

evenM up to and includingM =12. sponds to—3<a<—f(M). The phases encountered sequen-

The configurations provided for phagesandp,, require  tially arepg, p1, Ps, Ps. Ps, P13 andp;sand, as predicted by
some explanation. Phagg exists for lattices of even width Eq. (6), the transitions occur exactly at
M. The configuration shown exhibits highlighted sections of

the lattice that are %4, 6x6, etc., up toM X M. This indi- Po—P1, m+Ve=0;

cates that the section of the lattice that repeats throughout the _

lattice is the highlighted %4 for the lattice of widthM =4, P1—Ps, ptVo=—4W,

6X6 for the lattice of width 6, and so on. Phgsg appears _ )
only for lattices of even widtiM =6. Figure 2 exhibits one Ps—Pg,  ptVo=—V(M+1)+2W(M-1);
possible configuration for each =6 and 8, which is then . _ ey AN
easily generalized for higher even valueshbf Ps—Ps, p+Vo=+V(M=5-2WM—1);

Pe— P13, M+Vo=—4V,
Ill. ENERGY REGIONS, SETS OF PHASES,

AND PHASE TRANSITIONS Pis— P15, p+Vo=—4V—4W.

First- and second-neighbor adsorbate-adsorbate interac- set (§). This set is observed only favl even and cor-
tion energies/ andW depend on the molecular properties of responds tax=—1. The phases encountered sequentially are
the monomers and the lattice spaciagWe were able 0 . "o 'n. b pio, Pio Puss andpys and, as predicted by
identify numerically six interaction energy regions. In eachggq (6), the transitions occur exactly at
region, only a certain number or set of the phases are ob-

served. In a given set, a phase transition occurs at a certain Po—P1, m+Ve=0;

external gas pressure, or chemical potentighs required by

Eqg. (6). For convenience, we introduce the quantities p1—pP3, pt+tVe=-V,;

a=—(W/V), f(M)=3(M-2)/(M-1), (10 P3—P7, wptVo=—2V;

wherea is negative for the repulsive second-neighbor inter- P7—P10, m+Vo=—3V;

action and positive otherwise, with>—1. The six sets of

phases are ordered by increasing values.of P10— P12, mtVo=—4V;
Set (@) This set corresponds tel<a<-—3 for M odd

and —1<a<-3 for M even. For odaV, the order in which Pi2— P14, m+TVo=—3Y,;

the phases appear with increasja@re py, p1, Psg, P13 and

p1s. The transitions have been verified to occur exactly as P14—P1s, wtVo=—6V.

predicted by Eq(6), namely, Set (c) This set corresponds tef(M)<a<0 for M

Po—p w+Vo=0; odd and—3<a<O0 for M even. For oddV, the phases are,
o THL o= sequentially,pg, P1, Ps, Ps» P13, andp;s. As predicted by
pi—p Vo= —2V: Eq. (6), the transitions occur exactly at
1—Ms, 0= T &V,

kT Vo=0; . utVo=—4W;
Pg— P13, M+Vo=—2V—4W, Po—P1, utVp P1—Ps,  ptVo

Ps—Ps; M+Vo=—3V; pg—Piz, ut+Vo=—4V;
P1z— P15, Mt Vo=—4V—4W.
, P1z— P15, M+ Vo=—4V—4W.
For evenM, the phases encountered sequentiallypyep,,
P4, Ps: Pg, P13, P14, @andp;s and the transitions occur ex- For evenM, the phases encountered sequentiallyggiep;,
actly as predicted: P2, Ps, Pg, P11, P14, and py5 and the transitions occur ex-
actly as predicted
Po—P1, m+Ve=0;
Po—P1, mtVo=0;
P1—Ps, u+Vo=—V;
P1—P2, wtVo=—2W,
—Pg, +Vy=—-2V; ;
Pa—Pe, 7Y Pa—Ps,  w+Vo=—4W,

Ps=Ps.  ptVo=—2V—2W, Ps—Pg, mt+Vo=—3V;

PoPaz,  ptVo=—2V—aW, Pg—P11, M+Vo=—4V,

P13—~ P14, ptVe=—3V—4W, P11— P14, M+ Vo=—4V—2W,

P1s— P15, m+Vo=—4V—-4W. P1a— P15, mt+Vo=—4V—4W.
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TABLE Il. Characteristics of the phase adsorptions on the infi-  Sets (a) and (b’) merge into a single sei@) made of

nite two-dimensional square lattice. phasespg, p;, P3, P4, andps. We predict se{a) to occur
when —1<a<-—3%, with phase transitions at

Phases & 0 B S -

, +V,=0;
B 0 0 0 0 Po—P1, MTVo
P 3 0 0 0 Pi—Pa,  m+Vo=—2V;
P2 2 0 1 0
Ps 3 3 0 0 P3—Pa, m+Vo=—2V—4W;
P4 : 1 1 0 —
Ps 1 2 2 0 Ps—Ps, pm+Vo=—4V—4W.

As noted in Sec. lll, ad increases, ifw is initially in the
Set (d) This set corresponds tovr<f(M) and is the range for which theb) set of phases occurs, then, whien

same forM odd and even. The phases encountered sequefXceeds the valukl,, a is in the range of théc) set. Thus,
t|a||y arepg, Ps, P> andpls and, as predicted by E(ﬁ), the whenea is in the range—%<a<0,_vve predict that théC) set
transitions occur exactly at of phases will reach the limitb), which is made of the

phase9y, P1, P2, P4, andps, with phase transitions at

Po—Ps, mt+Vo=—2W(M—1)/M;
Po—P1, mtVo=0;
Ps—Ps, mtVo=—3V;

Po— P, p+Vo=—4V—2W(M—1)/(M—2). P1=Pa, putVo=—2W,
Set () This set corresponds th(M)<a« for both M Pr—Ps, mt+Vo=—4V;
odd and even. The phases encountered sequentiallgyare
ps, andp;s and, as predicted by E¢f), the transitions occur Pa—Par  p+Vo=—4V—A4W.
exactly at
The (d) and(e) sets correspond to second-neighbor attraction
O<a. In the infinite limit, they merge into &) set contain-
ing phase9,, p,, andps, with phase transitions at

Po—Ps, mtVe=—-2W(M-1)/M;

Ps— P15, m+Vo=—-2V(2M—-1)/M-2W(M—1)/M.
Sets(b), (c), (d), and(e) each have a boundary depending Po— P2, ptVo=—2W,
M o . . . . . o

onM, namely,|a|=f(M). Solving this equation foM gives 57Dz, et Vo— —AV—2W.

Mo=(2—-2|a|)/(1-2|a|). 11
_ _ V. SUMMARY AND CONCLUSION

Itis therefore possible that, for a given molecular species and ) ) ]

a given lattice substrate, a different set of phases may be All low-temperature adsorption phases of a single species

observed depending on the width of the lattice. For exampledf monomers on a square lattice infinite in length and of

the (b) set of phases occurs fov odd and for—i<a<  finite width M have been identified. Six sets of possible

—f(M), for as long asv <M. On increasing the odd value phases are observed. These sets depend on the relative value

of the lattice width, one observes the change from(Heset of the ;econd— to the first-neighbor interaction energy, while

to the (c) set. Similarly, the(d) set occurs if 8sa<f(M)<  assuming the first-neighbor interaction to be repulsive and

1 and will be observed foM=M,>2; on decreasing the allowing the second-neighbor interaction to be either repul-

lattice width, it is possible to observe the change from(the ~ Sive or attractive, as is often the case experimen{allyThe

set to the(e) set whenM reaches the rangd,>M>2. As absence of a second-neighbor interaction discussed in Ref.

expected, ther=0 case with no second-neighbor interaction[1] is recovered as a special case. Since most numerical re-

reproduces the set of phases reported in Réf. sults fit exact analytic expressions in termshf it is pos-
sible to predict the behavior of monomer adsorption on the
IV. THE INFINITE TWO-DIMENSIONAL LATTICE infinite two-dimensional lattice by taking the limit & goes

to infinity. Finite width lattices are a representation of crystal

We gradually increase the lattice wid to reach the surfaces with terraces having a finite width. A particularly
infinite two-dimensional limit. In this limit, one observes the interesting feature of this lattice model is to exhibit different
merging of the following phase9;, p,, p3, andp, into  adsorption phases depending on the lattice width. Indeed, it
phasep,; ps and pg into phasep,; p;, Ps, Py, andppinto  has been observed experimentally that adsorption patterns on
phaseps; and, finally,py;, P12, P13, andpy, into phasep,.  terraces vary with the width of the terraf@]. Another fea-
The full coveragep,s phase reaches the limit;. With the  ture of the model is to show that a connection exists between
exception of phasgs; andp,,, all other mergers are evident the series of phases observed at different external gas pres-
from the list of Table | and the lattice configurations of sures and the relative value of the second- to the first-
Figs. 1 and 2. The phases predicted to exist on the infiniteeighbor interaction energy. Experimentally, from the
two-dimensional lattice are listed in Table II. knowledge of the external gas pressure and the heat of ad-
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sorption of a given molecular species on a given crystal surgies is possible by identifying adsorption phases and the con-
face, one determines the values of the chemical poteatial ditions under which a transition occurs between phases.
and the lattice interaction enerdy§y. This model shows that
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