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Dynamic response of an Ising system to a pulsed field
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The dynamical response to a pulsed magnetic field has been studied here both using Monte Carlo simulation
and by solving numerically the mean-field dynamical equation of motion for the Ising model. Th&gatio
the response magnetization half-width to the width of the external field pulse has been observed to diverge and
pulse susceptibility, (ratio of the response magnetization peak height and the pulse hgigis a peak near
the order-disorder transition temperatiig(for the unperturbed systenirhe Monte Carlo results for the Ising
system on a square lattice show tRatdiverges afl ., with the exponenbz=2.0, while x,, shows a peak at
Te, which is a function of the field pulse widtht. A finite-size (in time) scaling analysis shows that
Te=T.+ C(6t) ¥, with x=»z=2.0. The mean-field results show that both the divergend® ariid the peak
in xp occur at the mean-field transition temperature, while the peak height{st)¥, y=1 for small values
of &t. These results also compare well with an approximate analytical solution of the mean-field equation of
motion.[S1063-651X97)02903-4

PACS numbeps): 05.50+q

[. INTRODUCTION Here we have investigated in detail the response of pure
Ising systems to pulsed magnetic fields of finite duration,
The dynamic response of the Ising systems has recentlysing Monte Carlo simulations for two-dimensional Ising
been studied extensively by employing computer simulation§ystems and solving numerically the mean-field equation of
[1]. In particular, the study of dynamical response of Isingmotion. We have studied the response behavior for “posi-
systems to an oscillating magnetic f|ém3] has led to many tive” pulses, where the pulsed field is in the direction of the
intriguing dynamic phenomena, such as dynamic hysteresigPontaneous magnetization in the ordered phase. In the dis-
and the fluctuation-induced dynamic symmetry-breakingordered phase, of course, this notion is immaterial. One can
transitions in(low, e.g., one-, two-, or three-dimensiondle ~ also study the effect of “negative” pulses on the spontane-
Ising system in the presence of an oscillating field. Acharyyaus order, where the field direction is opposite the spontane-
and Chakrabarti also notd@,4] some anomalous behavior 0Us magnetization. Although many intriguing features of the
in the growth of pulse susceptibility, in Ising systems underdomain growth, etc., are expected for such negative pulse
pulsed magnetic fields of finite durations. problem, we restrict the study here to positive pulses only.
Usually, when a cooperatively interacting thermodynamicWWe have measured the ratiy, of the response magnetiza-

system in equilibrium is perturbedwith the perturbation tion (pulse half width (At) to that (5t) of the pulsed exter-
having a step-function-like variation with timethe relax-  nal field and the ratigy, of the response magnetization peak
ation of the systen(to the equilibrium appropiate to the per- height (m,) to the field pulse heighth() giving the pulse
turbed stateis observed to follow the common Debye-type susceptibility. The temperature variation of these two quan-
form with a single relaxation time. The standa(idebye tities for various pulse width durations and heights of the
form for any response functiofsay magnetization of the external field have been investigated.

Ising system m(t) is We find that for weak pulses, while the width raty,
diverges at the order-disorder transition politof the un-
m(t)~m(e)+Aexp —t/7), (1.2 perturbed Ising system, the pulse susceptibilitydoes not

diverge and for low dimensions, e.g., in the two dimensions
where 7 is the relaxation timem(e) denotes the new equi- studied here, a smeared peakxp occurs at an effective
librium value, andA is a constant. As the critical temperature T¢, which approached . as the field pulse widthst in-
is approached shows a critical slowing down; diverges at  creases X, diverges afl; as ét—x). A mean-field analysis

the critical temperatur@.: for the absence of the divergencexgf for finite ot has been
developed. Also, a finite-time scaling analysis, similar to
T~E~(T-T,) "%, (1.2 Fisher’s finite-size(length scaling[5], has been developed

and compared with the observation of the effective transition
where¢ is the correlation lengtly, is the dynamic exponent, temperaturél¢ with the external field pulse widtht.
andv is the correlation length exponefit]. We have organized this paper as follows. In Sec. Il, the
model and the simulation techniques have been described. In
Sec. lll, the results are given. The paper ends with conclud-
*Electronic address: muktish@physics.iisc.ernet.in ing remarks in Sec. IV.
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II. MODEL AND SIMULATION 1 -
A ferromagnetically interactingnearest-neighbdrising I, b IO YA P B A,
system in the presence of a time-dependent magnetic field 08 L m(Y

can be described by the Hamiltonian
H=-2 sisi—h()> s, 2.0 06
1) i

where thes/’s are spin variable having their valuel and 0.4
h(t) is the time-varying longitudinal magnetic field. Here we
have considered the time variation loft) as

02t h(t)
H h, for to<t<ty+ét
t)= . 2.2
(® 0 otherwise, 22 0 . .
0 500 1000 1500 2000
whereh,, is the amplitude of the field andt is the duration t (MCS)
or the active period of the external field.
In our simulation, we have considered a 50800 square FIG. 1. Time variation of magnetic field(t) and the response

lattice in two dimensions. At each site of the lattice there is anagnetizatiorm(t) in the Monte Carlo case, fdr,=0.5 andét=
spin variables’=+1. We update the lattice by stepping se- 50.
guentially over it, following the Glauber single-spin-flip dy-
namics. One such full scan over the lattice is a unit time stepvidth ratio R, and pulse susceptibility,, at various tem-
[Monte Carlo stegMCS)] here. First, we allowed the system peratures for fixed pulse widtht and heighth,. The nu-
to reach equilibrium(at any temperatur@) and only after ~Mmerical results are given in the next section, where we have
that was the magnetic fieli(t) switched on {, is thus much ~ compared the results for finite peak heightyip (at T.=1)
larger than the relaxation time of the sysbei®ne can also With an approximate analytic estimate gf in such cases.
use random updating sequences. However, it takes more time
(MCYS) to stabilize the system. We expect all the features of Il. RESULTS
the response studied here to remain qualitatively unchanged
for random updating sequences, and we give the results here
for sequential updating only. We have measured the maxi- As mentioned before, our results here are for a two-
mum height(above the equilibrium valyen, and half-width  dimensional Ising system on a square lattice of size 500
At of the response magnetization. Here, as mentioned be<500. We applied an external field of amplitutig for a
fore, the following two quantities have been defined to charduration st after bringing the system into a steady state. For
acterize the response of the system: the pulse width ratithis, the typical number of Monte Carlo steps required for
R,=At/ét and the pulse susceptibility,=mg/h,. It may this size of the lattice chosen here is observed to be of the
be noted thaty, reduces to normal static susceptibility as order of 16. The response magnetization has amplitoge
h,—0 and st—c. At each temperature for fixe, and  (measured from the equilibrium valuend a half-widthAt.
ot, the numerical values d®, and x,, are obtained by aver- Figure 1 shows a typical time variation of magnetic field
aging over 20 random Monte Carlo realizatidirstial seed.  h(t) and the corresponding response magnetizatigh).
We have studied the temperature variation of these twdhe dynamical response is characterized by two quantities:
quantities. The results are given and discussed in Sec. lithe width ratioR, and the pulse susceptibility,. The tem-
The observation of a finite peak jy, at an effective transi- perature variation of these two quantities has been studied.
tion temperaturel; (which converges tdl, as st—«) is  Figure 2 shows the temperature variations Ryf and x,
analyzed in view of the finite-time scaling behavior, as menfor fixed values ofh, (=0.5 and for three values obt
tioned before. (=5,10,25 MCS.

To study the similar response in the case where the fluc- Sincem, is bounded from above, a lardgg, would satu-
tuations are absent, we have considered the following meamatem, and hencey,, becomes smalldue to the saturation
field dynamical equation of motion for the kinetic Ising sys- Also, for extremely smalh,, it becomes difficult to identify

A. Monte Carlo studies

tem: m, from the noise and hence the estimateqf becomes
erroneous. We founth,=0.5 to be well within the above
dm m+h(t i i it
o m+tan (t) . 2.3 optlmal range. Frgm the figure it is clear ttg has a sharp
dt T divergence afg (=2.30, somewhat larger tharn,, the On-

sager transition temperature, due to the small size of the
Here 7, is the microscopic relaxation time; is the average system almost irrespective of the values of the pulse width
magnetizatior(in the mean-field approximationh(t) is the  dt. But x, shows a peak at different pointsignificantly
time-varying pulse field having the same time variation de-aboveT .~2.27) depending upon the of the field pulse width
scribed in Eq(2.1), andT denotes the temperature. We have 6t. As the value ofét increases, it is observed that the peak
solved numerically the above equations using the fourthshifts towardsT. from above (and also the peak height
order Runge-Kutta method. We have evaluated the pulsgrows.
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’ As the growth of the height of the magnetization response
. (and its maximum valuen,) is very much bounded by the
s Lo °° 7 ®oee time window &t of the applied field pulse, the anomalous
o 7 ° behavior ofy, [having a finite peak at a shifted temperature
o Te(st)] may be considered to be due to the finite-siire
° time) effect. Similar to the finite-siz€in length scaling
05 I s theory of Fisher[5], where a finite-size system shows an
x © effective(nonsingular or nondivergenpseudocritical behav-
. ior at T$(L) when the correlation lengtlf becomes of the
°® order of the system sizk, we suggest a finite-timed&)
0 1 I 1 1 . . . .
- 5o o4 56 28 3 scallgg behavlczg here fo_rXp. If the r.elaxatlon time
" - 7~ &~|T—T.| "% wherev is the correlation length expo-

FIG. 2. Temperature variations () R, and(b) x,, for different
values of 6t in the Monte Carlo case. The symbol circle is for
8t=5, the square is fost=10, and the cross is faft=25.

Let us try to understand why the width ratfR), diverges
atT., while the height ratio or pulse susceptibiliy shows
a peak at some higher valuE(ést) depending upon the
value of 8t: T(8t)— T, as st—. The pulselike perturba-
tion probes the response of the system at finite frequencies.
Consequently, they, (=m,/h) cannot diverge as the re-
sponse magnetization heigint, is not an equilibrium value
corresponding to the pulse heidfg; rather, them, results
are bounded by the time window of widit. On the other
hand, the response will take its own relaxation time to come
to its equilibrium value(irrespective of the value oft),
when the field is switched offat ty+ 6t). This leads to the
divergence ofAt, due to a critical slowing down, aB ap-
proachesT..

The sharp divergence of the width raf is identified as
the consequence of a critical slowing down and the point of
divergence is the critical temperatufe for the ferro-para
transition. In fact, since the relaxation after the withdrawal of
the pulse is unrestricted by the pulse width, we can assume
that At~ 7~|T—Tc| "2 We therefore plot in Fig. R, "
versusT and find a straight-line plot withz=2.0 in the

peak at the temperaturelg,
| TS(8t) =Tl "~ ét, or

nent andz is the dynamic exponent, they), would show a

here when 7(T¢)~ ét,

TE(8t)~T+C(6t)~ W2, (3.2
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FIG. 4. Variation ofT¢ with respect to 13t in the Monte Carlo
case. The inset shows the variationTf with respect to 6t) ~ X,
two-dimensional case. This compares well with the previoux=2.
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4 Xxx may also be mentioned that the peak height was found to
3 increase with increasing pulse widgt, and y,, diverges as
= St—oo: xp@~(8t)Y, y=1.0. Figure 6 shows the variation of
xx max H
3+ X Xp  with ét.
Zp & In order to comprehend these observations, we solve Eg.
(2.3 in a linearized limit(large T and smallh, ; specifically
er R, T>1, h,—0). In such a limit, the equation of motion be-
comes
040045 m
T s, Togy =~ €mTh(V/T, e=(T-1/T. (3.2
08 09 ! R 12 One can solve Eq(3.2 using the formm(t)=mye V",
(b) T which gives
FIG. 5. Temperature variation ¢8 R, and(b) x, for different dmy —tir_T0 —tlr_ —tr h(t)
values ofét in the mean-field case: the triangle is f6r = 8, the ToTqt © 7 Mo€ =~ €Mgk + T 33

plus is for 6t = 16, and the cross is faft = 32.
giving 7/7o=€"* and
where C is some constant. In fact, Fig. 4 shows that the d
effective peak positioT¢ indeed approacheb; as ot— . To—moe_t”=h(t)/T. (3.4)
The inset shows the plot af¢ with (8t) ~Y*, which gives a dt
straight line forx=vz=2.0. This again suggestg=2.0and | .oorating Eq(3.4) for h(t)=h,, for a finite time widthot
Sl)sr(r)] the extrapolated value @ becomes about 2.29, which _ - 4 h(t)=0 otherwise, onep getsmy~h,t/T.r, at
pares well with the Onsager value, comparable to ther:T — 1(whenr—o0). This gives
previous estimate. ¢ '
X?“I Xp(Te)=my(T)/hg~tIT 7o~ tl79. (3.5
B. Mean-field results . . . .
_ _ We have checked the above linear relationshigy B with
We have solved the mean-field equation for the responsg; for extremely small values of the pulse field amplitude
magnetization (2.3) using the fourth-order Runge-Kutta 1, (see Fig. 6
method. Figure 1 shows the typical variation of the response”

magnetization and field. Here also we have measured the V. SUMMARY
width ratio and the pulse susceptibility and studied the tem- '
perature variation of these two quantities. We have studied the Glauber(order-parameter-

Figure 5 shows the temperature variatiorRgfand x, for ~ nonconservingdynamics of an Ising system under a time-
different values ofst. R, diverges andy, peaks at the same varying external magnetic field when the field is applied as a
order-disorder transition pointT¢=1 herg. We have also pulse of finite time width, after the system reaches equilib-
studied the variation of the maximum value xgf ()(?aX at rium. The time variation of the response magnetization is
T=T,) with respect to the duration of the pulsed field. It studied as a function of pulse wid#t, heighth,, and tem-
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peratureT of the system. We have measured specificallyvalue y™~ st, occurring aff = T.=1. Theoretical analyses
. . . p ' c
Rp=At/dt and x,=mj,/h,, whereAt is the time width of  of the finite-size(in time) scaling behavior(of TS in the

the response magneti;atipn angisthe max.imulm height of  \1onte carlo caseand of the pealy™(t) (in the mean-
the response magnetization above its equilibrium value. field case are also made. P

Our computer simulation results for the square lattice
show R,~|T.—T| "%, with T =2.30, the Onsagar value,
and x, has a pealy;™ at Tc>T, such that a finite-sizén
time) scaling behavior is observedié=T.+C(4t) "7,
with vz=2.0. The numerical solutions of the mean-field Eq. M.A. acknowledges JNCASR for financial support and
(2.3) showedR,~ 1/(T—1) and the pulse susceptibility peak SERC, 1ISc Bangalore for computational facilities.
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