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Dynamic response of an Ising system to a pulsed field
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The dynamical response to a pulsed magnetic field has been studied here both using Monte Carlo simulation
and by solving numerically the mean-field dynamical equation of motion for the Ising model. The ratioRp of
the response magnetization half-width to the width of the external field pulse has been observed to diverge and
pulse susceptibilityxp ~ratio of the response magnetization peak height and the pulse height! gives a peak near
the order-disorder transition temperatureTc ~for the unperturbed system!. The Monte Carlo results for the Ising
system on a square lattice show thatRp diverges atTc , with the exponentnz>2.0, whilexp shows a peak at
Tc
e , which is a function of the field pulse widthdt. A finite-size ~in time! scaling analysis shows that

Tc
e5Tc1C(dt)21/x, with x5nz>2.0. The mean-field results show that both the divergence ofR and the peak

in xp occur at the mean-field transition temperature, while the peak height inxp;(dt)y, y>1 for small values
of dt. These results also compare well with an approximate analytical solution of the mean-field equation of
motion. @S1063-651X~97!02903-6#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

The dynamic response of the Ising systems has rece
been studied extensively by employing computer simulati
@1#. In particular, the study of dynamical response of Isi
systems to an oscillating magnetic field@2,3# has led to many
intriguing dynamic phenomena, such as dynamic hyster
and the fluctuation-induced dynamic symmetry-break
transitions in~low, e.g., one-, two-, or three-dimensional! the
Ising system in the presence of an oscillating field. Achary
and Chakrabarti also noted@3,4# some anomalous behavio
in the growth of pulse susceptibility, in Ising systems und
pulsed magnetic fields of finite durations.

Usually, when a cooperatively interacting thermodynam
system in equilibrium is perturbed~with the perturbation
having a step-function-like variation with time!, the relax-
ation of the system~to the equilibrium appropiate to the pe
turbed state! is observed to follow the common Debye-typ
form with a single relaxation time. The standard~Debye!
form for any response function~say magnetization of the
Ising system! m(t) is

m~ t !;m~`!1A exp~2t/t!, ~1.1!

wheret is the relaxation time,m(`) denotes the new equi
librium value, andA is a constant. As the critical temperatu
is approachedt shows a critical slowing down;t diverges at
the critical temperatureTc :

t;jz;~T2Tc!
2nz, ~1.2!

wherej is the correlation length,z is the dynamic exponent
andn is the correlation length exponent@1#.

*Electronic address: muktish@physics.iisc.ernet.in
551063-651X/97/55~3!/2392~5!/$10.00
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Here we have investigated in detail the response of p
Ising systems to pulsed magnetic fields of finite duratio
using Monte Carlo simulations for two-dimensional Isin
systems and solving numerically the mean-field equation
motion. We have studied the response behavior for ‘‘po
tive’’ pulses, where the pulsed field is in the direction of t
spontaneous magnetization in the ordered phase. In the
ordered phase, of course, this notion is immaterial. One
also study the effect of ‘‘negative’’ pulses on the spontan
ous order, where the field direction is opposite the sponta
ous magnetization. Although many intriguing features of t
domain growth, etc., are expected for such negative pu
problem, we restrict the study here to positive pulses on
We have measured the ratioRp of the response magnetiza
tion ~pulse! half width (Dt) to that (dt) of the pulsed exter-
nal field and the ratioxp of the response magnetization pe
height (mp) to the field pulse height (hp) giving the pulse
susceptibility. The temperature variation of these two qu
tities for various pulse width durations and heights of t
external field have been investigated.

We find that for weak pulses, while the width ratioRp
diverges at the order-disorder transition pointTc of the un-
perturbed Ising system, the pulse susceptibilityxp does not
diverge and for low dimensions, e.g., in the two dimensio
studied here, a smeared peak inxp occurs at an effective
Tc
e , which approachesTc as the field pulse widthdt in-

creases (xp diverges atTc asdt→`). A mean-field analysis
for the absence of the divergence ofxp for finite dt has been
developed. Also, a finite-time scaling analysis, similar
Fisher’s finite-size~length! scaling @5#, has been develope
and compared with the observation of the effective transit
temperatureTc

e with the external field pulse widthdt.
We have organized this paper as follows. In Sec. II,

model and the simulation techniques have been describe
Sec. III, the results are given. The paper ends with concl
ing remarks in Sec. IV.
2392 © 1997 The American Physical Society
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II. MODEL AND SIMULATION

A ferromagnetically interacting~nearest-neighbor! Ising
system in the presence of a time-dependent magnetic
can be described by the Hamiltonian

H52(
i , j

si
zsj
z2h~ t !(

i
si
z , ~2.1!

where thesi
z’s are spin variable having their value61 and

h(t) is the time-varying longitudinal magnetic field. Here w
have considered the time variation ofh(t) as

h~ t !5H hp for t0,t,t01dt

0 otherwise,
~2.2!

wherehp is the amplitude of the field anddt is the duration
or the active period of the external field.

In our simulation, we have considered a 5003500 square
lattice in two dimensions. At each site of the lattice there i
spin variablesi

z561. We update the lattice by stepping s
quentially over it, following the Glauber single-spin-flip dy
namics. One such full scan over the lattice is a unit time s
@Monte Carlo step~MCS!# here. First, we allowed the syste
to reach equilibrium~at any temperatureT) and only after
that was the magnetic fieldh(t) switched on (t0 is thus much
larger than the relaxation time of the system!. One can also
use random updating sequences. However, it takes more
~MCS! to stabilize the system. We expect all the features
the response studied here to remain qualitatively unchan
for random updating sequences, and we give the results
for sequential updating only. We have measured the m
mum height~above the equilibrium value! mp and half-width
Dt of the response magnetization. Here, as mentioned
fore, the following two quantities have been defined to ch
acterize the response of the system: the pulse width r
Rp5Dt/dt and the pulse susceptibilityxp5mp /hp . It may
be noted thatxp reduces to normal static susceptibility
hp→0 and dt→`. At each temperature for fixedhp and
dt, the numerical values ofRp andxp are obtained by aver
aging over 20 random Monte Carlo realizations~initial seed!.
We have studied the temperature variation of these
quantities. The results are given and discussed in Sec
The observation of a finite peak inxp at an effective transi-
tion temperatureTc

e ~which converges toTc as dt→`! is
analyzed in view of the finite-time scaling behavior, as me
tioned before.

To study the similar response in the case where the fl
tuations are absent, we have considered the following me
field dynamical equation of motion for the kinetic Ising sy
tem:

t0
dm

dt
52m1tanhSm1h~ t !

T D . ~2.3!

Heret0 is the microscopic relaxation time,m is the average
magnetization~in the mean-field approximation!, h(t) is the
time-varying pulse field having the same time variation d
scribed in Eq.~2.1!, andT denotes the temperature. We ha
solved numerically the above equations using the fou
order Runge-Kutta method. We have evaluated the p
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width ratio Rp and pulse susceptibilityxp at various tem-
peratures for fixed pulse widthdt and heighthp . The nu-
merical results are given in the next section, where we h
compared the results for finite peak height inxp ~at Tc51!
with an approximate analytic estimate ofxp in such cases.

III. RESULTS

A. Monte Carlo studies

As mentioned before, our results here are for a tw
dimensional Ising system on a square lattice of size 5
3500. We applied an external field of amplitudehp for a
durationdt after bringing the system into a steady state. F
this, the typical number of Monte Carlo steps required
this size of the lattice chosen here is observed to be of
order of 106. The response magnetization has amplitudemp
~measured from the equilibrium value! and a half-widthDt.
Figure 1 shows a typical time variation of magnetic fie
h(t) and the corresponding response magnetizationm(t).
The dynamical response is characterized by two quantit
the width ratioRp and the pulse susceptibilityxp . The tem-
perature variation of these two quantities has been stud
Figure 2 shows the temperature variations ofRp and xp
for fixed values ofhp ~50.5! and for three values ofdt
~55,10,25 MCS!.

Sincemp is bounded from above, a largehp would satu-
ratemp and hencexp becomes small~due to the saturation!.
Also, for extremely smallhp , it becomes difficult to identify
mp from the noise and hence the estimate ofxp becomes
erroneous. We foundhp>0.5 to be well within the above
optimal range. From the figure it is clear thatRp has a sharp
divergence atTR ~>2.30, somewhat larger thanTc , the On-
sager transition temperature, due to the small size of
system! almost irrespective of the values of the pulse wid
dt. But xp shows a peak at different points~significantly
aboveTc;2.27) depending upon the of the field pulse wid
dt. As the value ofdt increases, it is observed that the pe
shifts towardsTc from above ~and also the peak heigh
grows!.

FIG. 1. Time variation of magnetic fieldh(t) and the response
magnetizationm(t) in the Monte Carlo case, forhp50.5 anddt5
50.
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Let us try to understand why the width ratioRp diverges
atTc , while the height ratio or pulse susceptibilityxp shows
a peak at some higher valueTc

e(dt) depending upon the
value ofdt: Tc

e(dt)→Tc asdt→`. The pulselike perturba
tion probes the response of the system at finite frequenc
Consequently, thexp ~5mp /hp) cannot diverge as the re
sponse magnetization heightmp is not an equilibrium value
corresponding to the pulse heighthp ; rather, themp results
are bounded by the time window of widthdt. On the other
hand, the response will take its own relaxation time to co
to its equilibrium value~irrespective of the value ofdt),
when the field is switched off~at t01dt). This leads to the
divergence ofDt, due to a critical slowing down, asT ap-
proachesTc .

The sharp divergence of the width ratioRp is identified as
the consequence of a critical slowing down and the poin
divergence is the critical temperatureTc for the ferro-para
transition. In fact, since the relaxation after the withdrawal
the pulse is unrestricted by the pulse width, we can ass
thatDt;t;uT2Tcu2nz. We therefore plot in Fig. 3Rp

21/nz

versusT and find a straight-line plot withnz>2.0 in the
two-dimensional case. This compares well with the previo

FIG. 2. Temperature variations of~a! Rp and~b! xp for different
values ofdt in the Monte Carlo case. The symbol circle is f
dt55, the square is fordt510, and the cross is fordt525.
s.

e

f

f
e

s

estimates of the value ofnz @6#.
As the growth of the height of the magnetization respon

~and its maximum valuemp) is very much bounded by the
time window dt of the applied field pulse, the anomalou
behavior ofxp @having a finite peak at a shifted temperatu
Tc
e(dt)# may be considered to be due to the finite-size~in

time! effect. Similar to the finite-size~in length! scaling
theory of Fisher@5#, where a finite-size system shows a
effective~nonsingular or nondivergent! pseudocritical behav-
ior at Tc

e(L) when the correlation lengthj becomes of the
order of the system sizeL, we suggest a finite-time (dt)
scaling behavior here forxp . If the relaxation time
t;jz;uT2Tcu2nz, wheren is the correlation length expo
nent andz is the dynamic exponent, thenxp would show a
peak at the temperatureTc

e , here when t(Tc
e);dt,

uTc
e(dt)2Tcu2nz;dt, or

Tc
e~dt !;Tc1C~dt !21/nz, ~3.1!

FIG. 4. Variation ofTc
e with respect to 1/dt in the Monte Carlo

case. The inset shows the variation ofTc
e with respect to (dt)21/x,

x52.

FIG. 3. Variation ofRp
21/nz againstT, with nz52.
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whereC is some constant. In fact, Fig. 4 shows that t
effective peak positionTc

e indeed approachesTc asdt→`.
The inset shows the plot ofTc

e with (dt)21/x, which gives a
straight line forx5nz>2.0. This again suggestsnz>2.0 and
also the extrapolated value ofTc becomes about 2.29, whic
compares well with the Onsager value, comparable to
previous estimate.

B. Mean-field results

We have solved the mean-field equation for the respo
magnetization ~2.3! using the fourth-order Runge-Kutt
method. Figure 1 shows the typical variation of the respo
magnetization and field. Here also we have measured
width ratio and the pulse susceptibility and studied the te
perature variation of these two quantities.

Figure 5 shows the temperature variation ofRp andxp for
different values ofdt. Rp diverges andxp peaks at the sam
order-disorder transition point (Tc51 here!. We have also
studied the variation of the maximum value ofxp (xp

max at
T5Tc) with respect to the duration of the pulsed field.

FIG. 5. Temperature variation of~a! Rp and~b! xp for different
values ofdt in the mean-field case: the triangle is fordt 5 8, the
plus is fordt 5 16, and the cross is fordt 5 32.
e
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may also be mentioned that the peak height was found
increase with increasing pulse widthdt, andxp diverges as
dt→`: xp

max;(dt)y, y>1.0. Figure 6 shows the variation o
xp
max with dt.
In order to comprehend these observations, we solve

~2.3! in a linearized limit~largeT and smallhp ; specifically
T.1, hp→0). In such a limit, the equation of motion be
comes

t0
dm

dt
52em1h~ t !/T, e5~T21!/T. ~3.2!

One can solve Eq.~3.2! using the formm(t)5m0e
2t/t,

which gives

t0
dm0

dt
e2t/t2

t0
t
m0e

2t/t52em0e
2t/t1

h~ t !

T
, ~3.3!

giving t/t05e21 and

t0
dm0

dt
e2t/t5h~ t !/T. ~3.4!

Integrating Eq.~3.4! for h(t)5hp for a finite time widthdt
and h(t)50 otherwise, one getsmp;hpdt/Tct0 at
T5Tc51(whent→`). This gives

xp
max5xp~Tc!5mp~Tc!/hp;dt/Tct0;dt/t0 . ~3.5!

We have checked the above linear relationship ofxp
max with

dt for extremely small values of the pulse field amplitu
hp ~see Fig. 6!.

IV. SUMMARY

We have studied the Glauber~order-parameter-
nonconserving! dynamics of an Ising system under a tim
varying external magnetic field when the field is applied a
pulse of finite time width, after the system reaches equi
rium. The time variation of the response magnetization
studied as a function of pulse widthdt, heighthp , and tem-

FIG. 6. Variation ofxp
max with respect todt in the mean-field

case.
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peratureT of the system. We have measured specifica
Rp5Dt/dt andxp5mp /hp , whereDt is the time width of
the response magnetization andmp is the maximum height of
the response magnetization above its equilibrium value.

Our computer simulation results for the square latt
show Rp;uTc2Tu2nz, with Tc>2.30, the Onsagar value
andxp has a peakxp

max at Tc
e.Tc , such that a finite-size~in

time! scaling behavior is observed:Tc
e5Tc1C(dt)21/nz,

with nz>2.0. The numerical solutions of the mean-field E
~2.3! showedRp;1/(T21) and the pulse susceptibility pea
s

y

e

.

valuexp
max;dt, occurring atT5Tc51. Theoretical analyses

of the finite-size~in time! scaling behavior~of Tc
e in the

Monte Carlo case! and of the peakxp
max(dt) ~in the mean-

field case! are also made.
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