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Dynamical crossover in the clock model with a conserved order parameter
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We present comprehensive numerical results for phase ordering dynamics in the clock model with a con-
served order parameter. Our study is based on a dynamical model for a coarse-grained complex order param-
eter. We find that there is a dynamical crossover from vortex-driven growth at early times to interface-driven
growth at later times. The crossover time is later for higher values of the ground-state degeneracy of the clock
model.@S1063-651X~97!01303-2#

PACS number~s!: 64.60.Cn, 05.70.Fh, 64.60,My
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I. INTRODUCTION

The problem of phase ordering dynamics has emerge
a paradigm for nonequilibrium statistical mechanics. Inter
in this area focuses on the growth of order in a disorde
system which has been suddenly quenched to a region o
phase diagram where the equilibrium state is ordered@1#.
Such problems have been extensively studied in the con
of two-phase mixtures. For example, a ferromagnet is dis
dered at high temperatures. When this system is quenc
below the critical temperature, it tends to be spontaneou
magnetized~or ordered! and domains rich in ‘‘up’’ or
‘‘down’’ spins are formed. These domains correspond
equivalent ground states of the system at the lower temp
ture. They coarsen with the passage of time and are cha
terized by a time-dependent length scaleL(t). Thus the mor-
phology of the evolving pattern is unchanged in time oth
than the growth of the characteristic length scale.

The absence of change in the morphology is reflected
the dynamical scaling of the correlation functio

G(rW,t)5*dRW c(RW ,t)c(RW 1rW,t), wherec(RW ,t) is the order
parameter~i.e., spontaneous magnetization! of the system at
point RW at time t. For isotropic phase ordering systems, t
correlation function has the simple dynamical scaling fo
G(rW,t)5g„r /L(t)…, whereg(x) is a time-independent maste
function @2#. Experimentally, a more interesting quantity
the time-dependent structure factorS(kW ,t), which is the Fou-
rier transform ofG(rW,t) with wave vectorkW . For the struc-
ture factor, the dynamical scaling property takes the fo
S(kW ,t)5L(t)dF„kL(t)…, whered is the dimensionality; and
F(x) is another master scaling function.

As there is no conservation constraint on the order par
eter in the ordering of a ferromagnet, this problem is said
be characterized by a nonconserved order param
~NCOP!. A related problem is that of phase separation
binary (AB) mixtures. Homogeneous binary mixtures can
rendered thermodynamically unstable by quenching be
the critical temperature. The homogeneous mixture t
separates out intoA- and B-rich domains, which are also
characterized by a time-dependent length scale and an in
ant morphology. However, the dynamics of phase separa
is described in terms of a conserved order parameter~COP!
551063-651X/97/55~3!/2345~8!/$10.00
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because of the constraint that total numbers ofA andB at-
oms must be unchanged during the coarsening process.

There have been extensive experimental, numerical,
analytical investigations of phase ordering dynamics in tw
phase mixtures with a scalar Ising-type order parameter@1#.
In this paper we focus on pure and isotropic systems so
only quote results therefrom. For the NCOP case, it is w
established that the asymptotic domain growth law
L(t);t1/2, which is referred to as the Lifshitz-Cahn-Allen o
LCA law. Furthermore, there is a reasonable analytical
derstanding of the functional form of the master functi
F(x) corresponding to the scaled structure factor@3#. For the
COP case also, it is well established that the asymptotic
main growth law isL(t);t1/3, which is referred to as the
Lifshitz-Slyozov or LS growth law. However, to the best
our knowledge, there is still no complete theoretical und
standing of the functional form of the structure factor ev
though there have been a number of detailed studies@4#.

There have also been some investigations of phase or
ing dynamics in systems with multiply degenerate grou
states~e.g., clock and Potts models!; and systems with vecto
order parameters, where the ground state has a contin
symmetry. In the clock and Potts models, the ‘‘spin’’ at ea
site can take any of~say! q equivalent values. These equiva
lent states can be conveniently pictured as lying eve
spaced on the perimeter of a circle, i.e., the states fo
q-state model areS52pn/q, wheren ranges from 1 toq.
The microscopic Hamiltonian for the clock model on a la
tice takes the form@5#

H52J(̂
i j &

cos~Si2Sj !, ~1!

whereJ is an exchange interaction,Si denotes the state a
lattice sitei , and^ i j & denotes a sum over nearest-neighbo
pairs. The corresponding Hamiltonian for the Potts mode
@5#

H52J(̂
i j &

dSi ,Sj , ~2!

whered i , j is the Kronecker delta. The Hamiltonians in bo
Eqs.~1! and~2! reduce to the usual Ising model for the ca
q52. The clock and Potts models have found extensive
2345 © 1997 The American Physical Society
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plication in the context of adsorption on surfaces, ordering
multicomponent mixtures, branched polymers, soap fro
and the growth of metallic grains@5#.

In this paper we focus on phase ordering dynamics in
clock model with a conserved order parameter. Therefore
would like to briefly summarize extant numerical results
systems with multiply degenerate ground states. For
NCOP case, it is numerically well established that asym
totic domain growth in both the clock and Potts models
characterized by the LCA growth law@6,7#, regardless of the
ground-state degeneracyq. At late times, the structure facto
exhibits dynamical scaling, and analytical studies indic
that the functional form of the scaled structure factor isq
dependent@8,9#.

Theq-state clock model is of considerable theoretical
terest as it interpolates between the Ising model~where
q52) and the continuous-symmetryXY model ~where
q5`). Domain growth in the Ising model is driven by th
annealing of interfacial defects, whereas the correspond
defects in theXY model are vortices. In the clock mode
domain growth occurs via the annihilation of both interfac
and vortices. It is our expectation that phase ordering in
q-state clock model will initially exhibit anXY-like behavior
before crossing over to the asymptotic forms discus
above. The physical origin of this crossover can be und
stood as follows. The typical angle between spins on ne
boring sites of the lattice at timet is u(t);1/L(t), where the
characteristic domain sizeL(t) measures the spacing b
tween defects. At early times,u(t) is much larger than the
clock quantization angleuq52p/q. Therefore, at early
times, the local spin variable is effectively ‘‘continuous’’ an
the system behaves like anXY model. The underlying dis-
crete spin structure is felt whenu(t);uq , i.e.,
L(t); const3q, and this corresponds to a crossover fro
XY-like behavior to the true asymptotic behavior. Of cour
as the domain growth law isL(t);t1/2 for both the Ising and
XY models@10# in the NCOP case, the domain growth la
will not exhibit a crossover. Unfortunately, the quality
numerical data available@6# is not good enough to distin
guish whether or not there is such a crossover in the struc
factor.

The COP case with multiply degenerate ground states
received far less attention in the literature, partly becaus
the lack of experimental realizations. The COP clock mo
with q53 has been studied by Enomotoet al. @11#, who find
an asymptotic domain growth law consistent w
L(t);t1/3, which is the LS growth law for the Ising cas
There have also been some preliminary Monte Carlo~MC!
studies of the COP Potts model@12#, but these are not con
clusive as regards the nature of dynamical scaling and
asymptotic domain growth law.

In this paper we present results from a comprehens
numerical study of phase ordering dynamics in the C
clock model in both two- and three-dimensional space. Th
are two primary goals of this study. First, unlike in th
NCOP case, we expect a dynamical crossover in the dom
growth law from L(t);t1/4 in d52 or L(t);(t lnt)1/4 in
d53 ~which characterizes COP domain growth driven
vortices@13–15#! to the asymptotic formL(t);t1/3 ~i.e., the
usual LS growth law!. We would like to elucidate the detail
of this crossover. We have already clarified the physical
f
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gins of this crossover in the context of the NCOP clo
model. If we ignore the logarithmic correction to theXY
growth law ind53, we can incorporate both early- and lat
time behaviors into the simple crossover scaling fo
L(t)5t1/4F(t1/4/q), whereF(0) is a constant. To recover th
asymptotic LS growth law, we must haveF(x);x1/3 for
largex, so thatL(t);q21/3t1/3 for large t. Thus the ampli-
tude of the asymptotic LS growth law decreases withq as
q21/3, though there may be some anomalous cases, as
will see later. The second goal of this study is to examine
nature of the dynamical crossover in the scaled structure
tor. As we have mentioned earlier, there is still no go
theoretical understanding of the functional form of the sca
structure factor for phase separation in binary mixtur
which is characterized by a scalar order parameter. For
COP case with vector order parameter, it is possible t
approximations based on Gaussian closure schemes ma
more successful@15# though it is somewhat premature t
make such a claim. Comprehensive numerical results s
as an important guide to analytical investigations. In t
paper we would like to provide detailed numerical results
the dynamical behavior of the structure factor in the ph
ordering dynamics of the COP clock model and hope t
these may be of relevance to theorists.

This paper is organized as follows. In Sec. II we pres
our phenomenological model for phase ordering dynamic
the clock model with a conserved order parameter. Sect
III and IV present numerical details and results for the tw
dimensional~2D! and 3D cases, respectively. Section V en
this paper with a brief summary and discussion.

II. DYNAMICAL MODEL

The starting point for the simulations we report here is
phenomenological dynamical model obtained as the c
served counterpart of the time-dependent Ginzburg-Lan
~TDGL! model @11,8#, viz.,

]c~rW,t !

]t
5¹2FdH@c~rW,t !#

dc~rW,t !*
G , ~3!

wherec(rW,t) is a complex order parameter which charact
izes the state of the system at pointrW and time t, and *
denotes complex conjugation. The dimensionless free en
for the continuumq-state clock model below the critical tem
perature@11,8# is

H@c~rW,t !#5E drW[ u¹W c~rW,t !u22uc~rW,t !u21
1

2
uc~rW,t !u4

2
a

q
@c~rW,t !q1c~rW,t !* q22uc~rW,t !uq#], ~4!

wherea(.0) is a parameter. Replacing Eq.~4! in Eq. ~3!,
we get the dynamical equation

]c~rW,t !

]t
52¹2$c~rW,t !@12uc~rW,t !u2#1ac~rW,t !* ~q21!

2ac~rW,t !* ~q/2 21!c~rW,t !q/21¹2c~rW,t !%. ~5!
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55 2347DYNAMICAL CROSSOVER IN THE CLOCK MODEL WITH . . .
The static solutionscs(rW) of Eq. ~5! arise from

cs~rW !@12ucs~rW !u2#1a@cs~rW !* ~q21!

2cs~rW !* ~q/221!cs~rW !q/2#1¹2cs~rW !50, ~6!

and the homogeneous fixed points arec05eiS, where
S52pn/q, with n ranging from 1 toq. These correspond to

FIG. 1. ~a! Data for the scaled structure factorS(k,t)^k&2 vs
k/^k&, obtained from a 2D simulation of phase ordering dynam
in the q53 clock model with a conserved order parameter. T
structure factor data are obtained on a 2562 lattice with periodic
boundary conditions and are averaged over 80 independent
The initial condition for each run consists of small-amplitude ra
dom fluctuations about a zero background. The order param
field is hardened before computing the structure factor. Results
sented here are for the spherically averaged structure fa
S(k,t). The quantitŷ k& is the first moment of the structure facto
and is calculated as described in the text. The structure factor
in this figure correspond to dimensionless times 2100, 6300,
10 500. For purposes of comparison, we have also superposed
from dimensionless time 10 500, obtained from similar simulatio
of the CH model~solid line! and theXY model ~dashed line!. ~b!
Data from ~a!, plotted on a log-log scale. The long-dashed lin
have slopes23 and24, as indicated, and refer to the Porod tail f
the CH model and the generalized Porod tail@10# for theXYmodel,
respectively.
theq equivalent ground states of the clock model and dis
dered initial conditions evolve into domains which are rich
one of these states.„Our earlier arguments regarding a d
namical crossover in the clock model were in the context
a lattice model with a hard spin constraint. In the continuu
model we use here, the defect core size constitutes a m
scopic length scale similar to the lattice spacing. Howeve
the constraint in the continuum model is reasonably h
@i.e., a;O(1)#, we can expect the previous arguments
apply here also.… The overall conservation constraint impos
the restriction that*drWc(rW,t) is fixed during the evolution.
The limiting casesq52 andq5` for Eqs.~3! and ~4! cor-
respond to the usual Cahn-Hilliard~CH! and XY models,
respectively.

In this paper we numerically simulate Eq.~5! using the
simple Euler discretization scheme on a square lattice w
periodic boundary conditions. For the numerical scheme
be useful, it must mimic the physics of the continuum equ
tion @16#. Thus the homogeneous solutions of Eq.~5!, i.e.,
c(rW,t)5c0, should be stable in the discrete scheme a
This imposes a constraint on the discretization mesh si
which can be obtained as follows. In Eq.~5!, we consider
small fluctuationsf(rW,t) around the homogeneous solutio
c051 asc(rW,t)511f(rW,t). ~Identical results will arise for
fluctuations around any of the other homogeneous solutio!

If we linearize Eq.~5! in f(rW,t), we obtain

]f~rW,t !

]t
52¹2F2S 11

aq

2 Df~rW,t !2S 12
aq

2 Df~rW,t !*

1¹2f~rW,t !G . ~7!

Writing f(rW,t)5a(rW,t)1 ib(rW,t), we obtain

]a~rW,t !

]t
52¹2@22a~rW,t !1¹2a~rW,t !#,

]b~rW,t !

]t
52¹2@2aqb~rW,t !1¹2b~rW,t !#. ~8!

We can Fourier transform these equations and obtain t
discrete equivalents in Fourier space as follows:

a~kD ,t1Dt !5@12DtkD
2 ~21kD

2 !#a~kD ,t !,

b~kD ,t1Dt !5@12DtkD
2 ~aq1kD

2 !#b~kD ,t !. ~9!

In Eq. ~9!, the discretization mesh sizes in time and space
Dt andDx, respectively. Furthermore, the magnitude of t
wave vectorkD

2 5(2/Dx2)@d2( i51
d cos(kiDx)#. To avoid

unphysical subharmonic fluctuations@16#, the mesh sizes
must satisfy the stronger of the two constraints

Dx4

2d~2Dx214d!
.Dt,

Dx4

2d~aqDx214d!
.Dt. ~10!
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In the CH andXY limits, only the first of these constraint
applies.

III. NUMERICAL RESULTS FOR d52

We have simulated an Euler-discretized version of Eq.~5!
on a 2D square lattice of sizeN3N. Periodic boundary con
ditions were applied in both directions. We fixed the para
eter valuea50.4 and obtained results forq53, 4, 5, and 7.
For purposes of comparison, we also obtained results for
CH (q52) and theXY (q5`) cases. Our discretizatio
mesh sizes wereDt50.15 andDx51.7.

The statistically relevant quantity is the time-depend
structure factorS(kW ,t)5^c(kW ,t)c(kW ,t)* &, which we have
defined earlier in the scalar context. All structure factor d
presented below are obtained forN5256 as an average ove
80 independent runs. The initial condition for each run co
sisted of uniformly distributed random fluctuations abou
zero background, mimicking the high-temperature dis
dered state prior to the quench. On the discrete lattice,
wave vector kW takes discrete valueskW5(2p/N)(kx ,ky),
wherekx and ky range from2N/2 to N/221. To improve

FIG. 2. ~a! Analogous to Fig. 1~a!, but for q54. ~b! Data from
~a!, plotted on a log-log scale. The long-dashed lines have the s
meaning as in Fig. 1~a!.
-

he
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the quality of our data, we spherically averagedS(kW ,t) to
obtain the scalarized structure factorS(k,t), which we
present subsequently. Apart from the structure factor, we
also interested in the characteristic length scaleL(t). There
are a variety of equivalent definitions for this quantity. He
we define the length scale as the reciprocal of the first m
ment of the scalarized structure factor, i.e.,L(t)5^k&21,
where

^k&5

E
0

km
dkkS~k,t !

E
0

km
dkS~k,t !

. ~11!

In Eq. ~11!, the upper cutoffkm is taken to be half the mag
nitude of the largest wave vector lying in the Brillouin zon
of the discrete lattice. We have confirmed that the struct
factor has decayed sufficiently up tokm so that the measure
value of ^k& is unaffected by an increase inkm .

Figure 1~a! plots data for the scaled structure fact
S(k,t)^k&2 vs the scaled wave vectork/^k& from dimension-
less times 2100, 6300, and 10 500 for the three-state c
model. For purposes of comparison, we have also su

e

FIG. 3. ~a! Analogous to Fig. 1~a!, but for q57. ~b! Data from
~a!, plotted on a log-log scale.
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55 2349DYNAMICAL CROSSOVER IN THE CLOCK MODEL WITH . . .
posed the scaled structure factor for the CH model~solid
line! and theXYmodel~dashed line!. Clearly, the three-state
clock model does not exhibit dynamical scaling over the
tire time range considered. Rather, the scaled structure fa
shows a crossover from an early-time behavior, which
intermediate between the CH andXY models, to a late-time
behavior, which is reminiscent of the CH model. Figure 1~b!
plots the data from Fig. 1~a! on a log-log scale so as th
clarify the nature of the tail behavior. In all cases here,
structure factor data have been obtained after hardening
order parameter field, i.e., setting the absolute value of
order parameter to unity. This is done so as to clearly ext
the tail behavior. The CH structure factor exhibits the us
Porod tail @S(k);k2(d11) for large k#, whereas theXY
structure factor shows the generalized Porod
@S(k);k2(d12) for largek @10# #. The structure factor data

FIG. 4. ~a! Characteristic length scaleL(t) vs t, obtained from
2D simulations of the conserved clock model. The characteri
length scale is defined as the inverse of the first moment of
scalarized structure factor. We present data forq53, 4, 5, and 7;
and also for the CH andXYmodels.~b! Data from~a!, plotted on a
log-log scale. We exclude the data for the CH model, for which
growth law is well understood. The dashed line with slope
refers to the Lifshitz-Slyozov growth law, which characterizes
ymptotic domain growth in the CH model. The dashed line w
slope 1/4 refers to the slower domain growth law@i.e., L(t);t1/4#
for the conservedXY model in two dimensions@13–15#.
-
tor
s

e
he
e
ct
l

il

for the three-state clock model follow the CH tail over a
small range but deviate from it at very large values ofk. This
is probably a crossover effect as there is a systematic rise
the tail towards the CH tail. This is in accordance with ou
belief that late-stage domain growth in the clock model i
driven by the annihilation of interfacial defects.

Figures 2~a! and 2~b! are analogous to Figs. 1~a! and 1~b!,
but for the caseq54. The four-state clock model is some-
what unusual in that it is isomorphic to a pair of noninteract
ing Ising models@17#. As a matter of fact, the analytic form

ic
e

e

-

FIG. 5. Log-log plot of data for the scaled structure facto
S(k,t)^k&3 vs k/^k&, obtained from a 3D simulation of phase order-
ing dynamics in theq53 clock model with a conserved order pa-
rameter. The structure factor data presented here are obtained o
643 lattice as an average over 50 independent runs. For our 3D da
the order parameter field is not hardened before computing t
structure factor. The data presented are from dimensionless tim
980, 2940, and 4900. For reference, we also include data obtain
from a similar simulation of the 3D CH model~at t52100, denoted
by a solid line!, and the 3DXY model ~at t54900, denoted by a
dashed line!. The long-dashed lines have the same meaning as
Fig. 1~b!, except they refer to the 3D versions of the Porod law an
generalized Porod law@10#.

FIG. 6. Analogous to Fig. 5, but forq57.
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FIG. 7. ~a! Characteristic length scaleL(t) vs t, obtained from
3D simulations of the conserved clock model. We present data
q53, 5, 7, and 10; and also for the CH andXY models.~b! Data
from ~a!, plotted on a log-log scale. Again, we have excluded t
data from the CH model. The dashed lines have the same mea
as in Fig. 4~b!. Notice that domain growth in the 3D conserve
XY model is characterized by the lawL(t);(t lnt)1/4 ~denoted by a
solid line superposed on the data for theXY model! @14,15# rather
thanL(t);t1/4, as in the 2D case.~c! Late-time window of~b!, so
as to enable the reader to clearly distinguish between the differ
data sets.
of the scaled structure factor for the NCOP four-state clo
model is identical to that for the Ising model@8#. This
equivalence does not appear to have strong consequence
the form of the scaled structure factor in the COP ca
though it does reflect in the growth law, as we will s
shortly. As far as the scaled structure factor is concerned,
broad features are the same as those discussed forq53. For
completeness, we also show the scaled structure factor
the seven-state clock model in Figs. 3~a! and 3~b!.

Figure 4~a! plots the characteristic length scaleL(t) vs t
for the cases withq53, 4, 5, and 7, and the CH andXY
models. It is interesting to note that the length scale for
q54 case grows faster than the length scale forq53. This is
in contrast to the general trend that higher-q clock models
exhibit slower growth as a consequence of the slower ann
ing of vortexlike defects. The reason for this deviation fro
the general trend is that theq54 clock model is isomorphic
to two decoupled Ising models and domain growth in t
case is presumably driven only by interfacial motion. It
clear from Fig. 4~a! that the data set forq54 is in close
proximity to that for the CH case. Figure 4~b! plots the data
from Fig. 4~a! ~except those for the CH case! on a log-log
scale. The length scale data for the CH andXY cases are
consistent with the well-known growth lawsL(t);t1/3 and
L(t);t1/4 @13,14#, respectively. The length scale data for t
q54 case also exhibit a clear Lifshitz-Slyozov behav
from the earliest times, without even a hint of the slow
growth law. For other values ofq, the length scale data ap
pear to be in a crossover regime between an initially slow
growth consistent withL(t);t1/4 to a faster growth regime
Presumably, the asymptotic growth behavior is the LS l
but our data have not accessed this regime as yet.~Of course,
it should be kept in mind that the log-log plot tends to u
derestimate the growth exponent somewhat, except at
late times.!

IV. NUMERICAL RESULTS FOR d53

We have also simulated an Euler-discretized version
Eq. ~5! on a 3D square lattice of sizeN3N3N, with peri-
odic boundary conditions in all directions. The details of t
simulation~e.g., parameter values, initial conditions, quan
ties calculated, etc.! are the same as in the preceding secti
The discretization mesh sizes for our 3D simulation we
Dt50.07 andDx51.7. Structure factor and length scale da
are obtained forN564 as an average over 50 independe
runs. For the present set of results, we do not harden
order parameter field before computing the structure fact

Figure 5 plots~on a log-log scale! data for the scaled
structure factorS(k,t)^k&3 vs k/^k& from dimensionless
times 980, 2940, and 4900 for the three-state clock mo
Again, for purposes of comparison, we superpose data
the CH model~solid line! and theXY model ~dashed line!.
With the passage of time, the scaled structure factor ag
drifts from anXY-like form to a CH-like behavior. Figure 6
shows the corresponding plot for the seven-state cl
model.

Figure 7~a! plots the length scale dataL(t) vs t for the
casesq53, 5, 7, and 10; and also for the CH andXYmodels.
The domain growth in the CH model is much faster than t
for the other cases. Figure 7~b! plots data from Fig. 7~a!
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55 2351DYNAMICAL CROSSOVER IN THE CLOCK MODEL WITH . . .
~except for the CH case! on a log-log scale. The data fo
q53 exhibit slower growth for a small initial period an
then rapidly cross over to LS growth. The data forq55 and
7 exhibit slow crossovers from a slower growth law~consis-
tent withXY-like growth! to a faster growth which has no
yet accessed the asymptotic LS regime. The data forq510
are almost indistinguishable from those for theXY model,
which is fitted very well by the functional form
L(t);(t lnt)1/4 @15# ~denoted by the solid line!. This unusual
growth law for the 3D COPXY model is consistent with the
theoretical predictions of Bray and Rutenberg@14#. Figure
7~c! is a late-time window of Fig. 7~b!, which helps to
clearly distinguish the various data sets.

V. SUMMARY AND CONCLUSION

In this paper we have presented comprehensive res
from numerical simulations of the conserved clock mode
two and three dimensions. Our dynamical model is a p
nomenological one, formulated in terms of a complex or
parameter@11#. It is difficult to motivate this model from
microscopic considerations. Nevertheless, as far as phas
dering dynamics is concerned, it is reasonable to assume
our model is in the same dynamical universality class as
microscopic model, because it explicitly contains the corr
local dynamics.

Numerical simulations of our model were performed u
ing Euler-discretized equivalents of the continuum equati
hn
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@18#. The broad picture that emerges is as follows. The
namics of coarsening in theq-state conserved clock model
intermediate to that in the CH and conservedXY models.
Thus the conserved clock model orders by the annealing
both vortices and interfaces. In the early stages, the dom
growth is slower and is consistent with the growth law f
the correspondingXY model. However, there is a crossov
to faster growth~consistent with the LS law!, which occurs
at progressively later times for larger values of the grou
state degeneracyq. There are also dynamical crossovers
the scaled structure factor but these are harder to classif
we expect aq dependence of the asymptotic structure fact
In particular, we expect the data for all values ofq to exhibit
a Porod tailS(k,t);k2(d11) @8# but the amplitude of this tail
diminishes at larger values ofq.

It is not our thesis that the results in this paper have str
experimental relevance. Rather, the motivation for this stu
was to guide theorists by clarifying the nature of the dynam
cal crossover resulting from the presence of both vorti
and interfaces in a phase ordering system.
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