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Dynamical crossover in the clock model with a conserved order parameter
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We present comprehensive numerical results for phase ordering dynamics in the clock model with a con-
served order parameter. Our study is based on a dynamical model for a coarse-grained complex order param-
eter. We find that there is a dynamical crossover from vortex-driven growth at early times to interface-driven
growth at later times. The crossover time is later for higher values of the ground-state degeneracy of the clock
model.[S1063-651X97)01303-3

PACS numbgs): 64.60.Cn, 05.70.Fh, 64.60,My

I. INTRODUCTION because of the constraint that total numberf\cdnd B at-
oms must be unchanged during the coarsening process.
The problem of phase ordering dynamics has emerged as There have been extensive experimental, numerical, and
a paradigm for nonequilibrium statistical mechanics. Interes@nalytical investigations of phase ordering dynamics in two-
in this area focuses on the growth of order in a disorderedPhase mixtures with a scalar Ising-type order paraniéfer
system which has been suddenly quenched to a region of it§ this paper we focus on pure and isotropic systems so we
phase diagram where the equilibrium state is orddfgd only quote results therefrom. For the NCQP case, it is WQII
Such problems have been extensively studied in the conteﬁStab“Slt‘zed that the asymptotic domain growth law is
of two-phase mixtures. For example, a ferromagnet is disort (1)~ which is referred to as the Lifshitz-Cahn-Allen or
dered at high temperatures. When this system is quench@:A law. Furthermore, there is a reasonable analytical un-
I

below the critical temperature, it tends to be spontaneous erstanding of t_he functional form of the master function
magnetized (or ordered and domains rich in “up” or (x) corresponding to the scaled structure fa¢8jr For the

“ v oeni : COP case also, it is well established that the asymptotic do-
down” spins are formed. These domains correspond tomain growth law isL(t)~t¥2 which is referred to as the

i Th ith th f i d h i'ifshitz-SIyozov or LS growth law. However, to the best of
ure. 1hey coarsen wi € passage of ime and are charagy, knowledge, there is still no complete theoretical under-

terized by a time-dependent length sda(g). Thus the mor-  giahding of the functional form of the structure factor even

phology of the evolving pattern is _unchanged in time Otherthough there have been a number of detailed studibs

than the growth of the characteristic length scale. ~ There have also been some investigations of phase order-
The absence of change in the morphology is reflected ifhg dynamics in systems with multiply degenerate ground

the dynamical scaling of the correlation function stateqe.g., clock and Potts modglaind systems with vector

G(r,t)=fdRy(R,t) (R+1,t), where (R,t) is the order order parameters, where the ground state has a continuous

parametefi.e., spontaneous magnetizatiaf the system at symmetry. In the clock and Potts models, the “spin” at each

point R at timet. For isotropic phase ordering systems, theSite can take any dfay g equivalent values. These equiva-
correlation function has the simple dynamical scaling formlent states can be conveniently pictured as lying evenly

G(F,t)zg(r/L(t)),whereg(x) is a time-independent master spaced on the perimeter of a circle, i.e., the states for a

function [2]. Experimentally, a more interesting quantity is q-state model ‘?‘“52277”’9' wheren ranges from 1 ia.
. - L The microscopic Hamiltonian for the clock model on a lat-
the time-dependent structure facg(k,t), which is the Fou- tice takes the forni5]

rier transform ofG(F ,t) with wave vectork. For the struc-

ture factor, the dynamical scaling property takes the form

SR D) =L (1) :  nsionality: H=-32 cosS-S), D
(k,t) =L (t)°®(kL(t)), whered is the dimensionality; and i ]

®(x) is another master scaling function.

As there is no conservation constraint on the order paramwhere J is an exchange interactio; denotes the state at
eter in the ordering of a ferromagnet, this problem is said tdattice sitei, and(ij) denotes a sum over nearest-neighbour
be characterized by a nonconserved order parametgrairs. The corresponding Hamiltonian for the Potts model is
(NCOP. A related problem is that of phase separation in[5]
binary (AB) mixtures. Homogeneous binary mixtures can be
rendered thermodynamically unstable by quenching below H=—JE s @
the critical temperature. The homogeneous mixture then i S5y
separates out inté\- and B-rich domains, which are also
characterized by a time-dependent length scale and an invasivhere 6; ; is the Kronecker delta. The Hamiltonians in both
ant morphology. However, the dynamics of phase separatiokgs.(1) and(2) reduce to the usual Ising model for the case
is described in terms of a conserved order param@eP g=2. The clock and Potts models have found extensive ap-
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plication in the context of adsorption on surfaces, ordering ofjins of this crossover in the context of the NCOP clock
multicomponent mixtures, branched polymers, soap frothsnodel. If we ignore the logarithmic correction to they
and the growth of metallic graif®)]. growth law ind= 3, we can incorporate both early- and late-
In this paper we focus on phase ordering dynamics in théime behaviors into the simple crossover scaling form
clock model with a conserved order parameter. Therefore we (t) =tY4F (t¥4q), whereF (0) is a constant. To recover the
would like to briefly summarize extant numerical results forasymptotic LS growth law, we must hawe(x)~x for
systems with multiply degenerate ground states. For théargex, so thatl (t)~q~ Y% for larget. Thus the ampli-
NCOP case, it is numerically well established that asympiude of the asymptotic LS growth law decreases wgths
totic domain growth in both the clock and Potts models isq~ %, though there may be some anomalous cases, as we
characterized by the LCA growth |al@,7], regardless of the will see later. The second goal of this study is to examine the
ground-state degeneragy At late times, the structure factor nature of the dynamical crossover in the scaled structure fac-
exhibits dynamical scaling, and analytical studies indicate¢or. As we have mentioned earlier, there is still no good
that the functional form of the scaled structure factogis theoretical understanding of the functional form of the scaled
dependent8,9]. structure factor for phase separation in binary mixtures,
The g-state clock model is of considerable theoretical in-which is characterized by a scalar order parameter. For the
terest as it interpolates between the Ising mo@ehere COP case with vector order parameter, it is possible that
g=2) and the continuous-symmetr){Y model (where approximations based on Gaussian closure schemes may be
g=). Domain growth in the Ising model is driven by the more successful15] though it is somewhat premature to
annealing of interfacial defects, whereas the correspondingake such a claim. Comprehensive numerical results serve
defects in theXY model are vortices. In the clock model, as an important guide to analytical investigations. In this
domain growth occurs via the annihilation of both interfacespaper we would like to provide detailed numerical results for
and vortices. It is our expectation that phase ordering in théhe dynamical behavior of the structure factor in the phase
g-state clock model will initially exhibit aiX Y-like behavior ~ ordering dynamics of the COP clock model and hope that
before crossing over to the asymptotic forms discussethese may be of relevance to theorists.
above. The physical origin of this crossover can be under- This paper is organized as follows. In Sec. Il we present
stood as follows. The typical angle between spins on neigheur phenomenological model for phase ordering dynamics in
boring sites of the lattice at timeis 6(t)~1/L(t), where the the clock model with a conserved order parameter. Sections
characteristic domain size(t) measures the spacing be- lll and IV present numerical details and results for the two-
tween defects. At early time®(t) is much larger than the dimensional2D) and 3D cases, respectively. Section V ends
clock quantization angled,=2m/q. Therefore, at early this paper with a brief summary and discussion.
times, the local spin variable is effectively “continuous” and
the system behaves like a6Y model. The underlying dis- Il. DYNAMICAL MODEL
crete spin structure is felt whend(t)~6,, ie., , , . . .
L(t)~ const<q, and this corresponds to a crossover from The starting point for th_e simulations we report here is a
X Y-like behavior to the true asymptotic behavior. Of course Phenomenological dynamical model obtained as the con-
as the domain growth law is(t) ~t*2 for both the Ising and served counterpart of _the time-dependent Ginzburg-Landau
XY models[10] in the NCOP case, the domain growth law (TPGL) model[11,8], viz.,
will not exhibit a crossover. Unfortunately, the quality of

numerical data availablgs] is not good enough to distin- ap(r,t) I oH[(r,1)]

: , . =V = @)
guish whether or not there is such a crossover in the structure at SY(r t)*
factor.

The COP case with multiply degenerate ground states hggpere (7 1) is a complex order parameter which character-
received far less attention in the literature, partly because a

the lack of experimental realizations. The COP clock model*€S the state of the. systgm at por'ntand't|met, and *
with g=3 has been studied by Enomaibal.[11], who find denotes complex conjugation. The dimensionless free energy

an asymptotic domain growth law consistent Withforthecontlnuumq—stateclockmodel below the critical tem-

L(t)~t3 which is the LS growth law for the Ising case. perature[11.8] is
There have also been some preliminary Monte Cai€) 1
studies of the COP Potts moddl2], but these are not con- H[lﬂ(r,t)]ZJ dr[|V(r,t)]2—|(r, ]2+ g(r,b)]*
clusive as regards the nature of dynamical scaling and the 2
asymptotic domain growth law. o

In th|s paper we present resglts from a comprehenswe — —[(r )%+ (r,0)*9=2|(r,1)|9], (4
numerical study of phase ordering dynamics in the COP a
clock model in both two- and three-dimensional space. There ) ) )
are two primary goals of this study. First, unlike in the Wherea(>0) is a parameter. Replacing E@) in Eq. (3),
NCOP case, we expect a dynamical crossover in the domaiffé get the dynamical equation
growth law from L(t)~t¥* in d=2 or L(t)~(tint)** in »
d=3 (which characterizes COP domain growth driven by d¢(r,t > > - _
vortices[13—15) to the asymptotic fornt(t)~t*2 (i.e., the . ~ VAP O [g(r O]+ ay(r,n* Y
usual LS growth law We would like to elucidate the details
of this crossover. We have already clarified the physical ori- —ay(r,)* Y2 Dy (r )92+ V24(r t)}.  (5)
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the g equivalent ground states of the clock model and disor-
dered initial conditions evolve into domains which are rich in
one of these state¢Our earlier arguments regarding a dy-

namical crossover in the clock model were in the context of
a lattice model with a hard spin constraint. In the continuum

o ’ —— CH (10500}
A\ X (10500) model we use here, the defect core size constitutes a micro-
scopic length scale similar to the lattice spacing. However, if
the constraint in the continuum model is reasonably hard
[i.e., a~0(1)], we can expect the previous arguments to

apply here als9.The overall conservation constraint imposes

the restriction thafdri(r,t) is fixed during the evolution.
The limiting casegj=2 andq=« for Egs.(3) and(4) cor-
respond to the usual Cahn-Hilliar®CH) and XY models,
respectively.

In this paper we numerically simulate E(R) using the
4 simple Euler discretization scheme on a square lattice with
periodic boundary conditions. For the numerical scheme to
be useful, it must mimic the physics of the continuum equa-
tion [16]. Thus the homogeneous solutions of Eg), i.e.,

zp(F,t)=¢o, should be stable in the discrete scheme also.

(b)

© 2100

6300 L . . . . .
1000 This imposes a constraint on the discretization mesh sizes,
At B ((;gggg)) which can be obtained as follows. In E(), we consider

small fluctuationse(r,t) around the homogeneous solution

Yo=1 asw(F,t)z 1+ d;(ﬂt). (Identical results will arise for
fluctuations around any of the other homogeneous solujions.

If we linearize Eq.(5) in ¢(r,t), we obtain

In(S(k,t)<i>")

oY) ag) - ag) -
a1 pm \Y [ 1+ 5 o(r,t) (1 2)¢(r,t)
5, >
oz * . : . . +Vegp(r,t)|. @)
In(ld/<k=)
Writing &(r,t)=a(r,t) +ib(r,t), we obtain
FIG. 1. (a) Data for the scaled structure facts(k,t)(k)? vs

k/(k), obtained from a 2D simulation of phase ordering dynamics aa(F t)
in the g=3 clock model with a conserved order parameter. The = —Vz[—2a(F,t)+V2a(F,t)],
structure factor data are obtained on a 2Hétice with periodic ot
boundary conditions and are averaged over 80 independent runs.
The initial condition for each run consists of small-amplitude ran- ab(F,t) ) - o >
dom fluctuations about a zero background. The order parameter at ==VI=aqgb(r,t)+Vb(r,t)]. (8)

field is hardened before computing the structure factor. Results pre-

sented here are for the spherically averaged structure factqfyie can Fourier transform these equations and obtain their
S(k,t). The quantity(k) is the first moment of the structure factor discrete equivalents in Fourier space as follows:
and is calculated as described in the text. The structure factor data '

in this figure correspond to dimensionless times 2100, 6300, and
10 500. For purposes of comparison, we have also superposed data
from dimensionless time 10 500, obtained from similar simulations
of the CH model(solid line) and theXY model (dashed ling (b)
Data from (a), plotted on a log-log scale. The long-dashed lines
have slopes-3 and—4, as indicated, and refer to the Porod tail for
the CH model and the generalized Porod [tadl] for the XY model,
respectively.

a(kp t+At)=[1-Atk3(2+k3)]a(kp 1),

b(kp ,t+At)=[1—Atk3(aq+k3)]b(kp,t).  (9)
In Eqg.(9), the discretization mesh sizes in time and space are
At andAx, respectively. Furthermore, the magnitude of the
wave vectork§,=(2/Ax2)[d—2id:1 cosk;Ax)]. To avoid
unphysical subharmonic fluctuatioi46], the mesh sizes

The static solutiong/*(r) of Eq. (5) arise from must satisfy the stronger of the two constraints

YOIL= 5071+ al yo(r)* O A
> - - 2d(2Ax*+ 4d '
— (O VYN V2Y(r)=0,  (§) ( :
and the homogeneous fixed points agg=e'S, where Ax* .y 10
S=2mn/q, with n ranging from 1 taq. These correspond to 2d(aqAX2+4d) '
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q=4(d=2) the quality of our data, we spherically averags(k,t) to
al ' ‘ @ | obtain the scalarized structure fact®(k,t), which we
02100 present subsequently. Apart from the structure factor, we are
o also interested in the characteristic length s¢a8. There
~ CH10s00) are a variety of equivalent definitions for this quantity. Here,
3r by (10500 we define the length scale as the reciprocal of the first mo-
b ment of the scalarized structure factor, i.e(t)=(k) 1,
E S where
@ & Km
! f dkkSKk,t)
' 0
Pl % (k)= " - (1D
/ o f dkgk,t)
o/ 0
_ 5 . “og, In Eq. (12), the upper cutofk,, is taken to be half the mag-
05" 1 2 3 4 nitude of the largest wave vector lying in the Brillouin zone
K> of the discrete lattice. We have confirmed that the structure
q=4(d=2) factor has decayed sufficiently up kg, so that the measured
' ‘ o) value of(k) is unaffected by an increase kg,.
1} o 2100 1 Figure Xa) plots data for the scaled structure factor
& 6300 S(k,t){k)? vs the scaled wave vect&r(k) from dimension-
L Roson) less times 2100, 6300, and 10 500 for the three-state clock
T s XY (10800) ] model. For purposes of comparison, we have also super-
ﬁ sl ° q=7(d=2)
5 ol | @ ]
£ 02100
Sr 016300
! © 10500
' —— CH (10500}
7l al & s XY (10500)
9 : : : : ! < Y
-2 -1 0 1 2 3 <2t
In(k/<k>) & % <>
FIG. 2. (a) Analogous to Fig. (a), but forq=4. (b) Data from 8
(a), plotted on a log-log scale. The long-dashed lines have the same | % )
meaning as in Fig. (&). g ‘ﬁp
In the CH andXY limits, only the first of these constraints o gg” _
applies. 0 1 2 3 4
ki<k>
q=7(d=2)
Ill. NUMERICAL RESULTS FOR d=2 .
®)
We have simulated an Euler-discretized version of (&Y. H 02100 1
on a 2D square lattice of si2¢x N. Periodic boundary con- e
ditions were applied in both directions. We fixed the param- | CH (10500)
eter valuea=0.4 and obtained results for=3, 4, 5,and 7. | 7 %/ % 7 XY (10500)
For purposes of comparison, we also obtained results for the~ .
CH (g=2) and theXY (q==) cases. Our discretization ﬁ A .
mesh sizes werdt=0.15 andAx=1.7. &
The statistically relevant quantity is the time-dependent < |
structure factorS(k,t) = (i(K,t) (K,t)*), which we have
defined earlier in the scalar context. All structure factor data
presented below are obtained fde= 256 as an average over Tr
80 independent runs. The initial condition for each run con-
sisted of uniformly distributed random fluctuations about a

zero background, mimicking the high-temperature disor-
dered state prior to the quench. On the discrete lattice, the

wave vectork takes discrete value&=(2m/N)(Ky,k,),

-9

-2 -1 0 1 2 3
In(k/<k>)

FIG. 3. (a) Analogous to Fig. (@), but forq=7. (b) Data from

wherek, andk, range from—N/2 to N/2—1. To improve (a), plotted on a log-log scale.
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7 ' q=38(d=3)
© 980
6t 1t 0 2940 .
© 4900
—— CH (2100)
5| s Yy XY (4900)
o~ 4 o
ge 1 i
<
@
3r _ =
9| 4
2+ 4
1 . .
0 5000 10000 14 \ ! . 1
t 2 -1 0 1 2 3
In(k/<k>)
2.0 T T T T

FIG. 5. Log-log plot of data for the scaled structure factor
S(k,t)(k)® vs k/(k), obtained from a 3D simulation of phase order-
ing dynamics in they=3 clock model with a conserved order pa-
rameter. The structure factor data presented here are obtained on a
64° lattice as an average over 50 independent runs. For our 3D data,
the order parameter field is not hardened before computing the
structure factor. The data presented are from dimensionless times
980, 2940, and 4900. For reference, we also include data obtained
from a similar simulation of the 3D CH modé&tt=2100, denoted
by a solid ling, and the 3DXY model (at t=4900, denoted by a
dashed ling The long-dashed lines have the same meaning as in
Fig. 1(b), except they refer to the 3D versions of the Porod law and
generalized Porod lapl0].

In(L®)

10 ]
b4

0.5

5 6 = 8 o for the three-state clock model follow the CH tail over a
In(t) small range but deviate from it at very large value& ot his
FIG. 4. (a) Characteristic length scalg(t) vst, obtained from IS Probably a crossover effect as there is a systematic rise in
2D simulations of the conserved clock model. The characteristidh€ tail towards the CH tail. This is in accordance with our

length scale is defined as the inverse of the first moment of th&€lief that late-stage domain growth in the clock model is
scalarized structure factor. We present datagfer3, 4, 5, and 7;  driven by the annihilation of interfacial defects.

and also for the CH and Y models.(b) Data from(a), plotted on a Figures 2a) and 2b) are analogous to Figs(d and Xb),
log-log scale. We exclude the data for the CH model, for which thebut for the cas&j=4. The four-state clock model is some-
growth law is well understood. The dashed line with slope 1/3what unusual in that it is isomorphic to a pair of noninteract-
refers to the Lifshitz-Slyozov growth law, which characterizes as-ing Ising modeld17]. As a matter of fact, the analytic form
ymptotic domain growth in the CH model. The dashed line with

slope 1/4 refers to the slower domain growth Ifive., L(t)~t%*]

for the conserveck Y model in two dimensionf13—15. ' 9=7(d=3)

0980
02940 1
© 4900
—— CH (2100)
~~~~~~~~~~~~ XY (4900)

posed the scaled structure factor for the CH mo@elid
line) and theXY model(dashed ling Clearly, the three-state
clock model does not exhibit dynamical scaling over the en-
tire time range considered. Rather, the scaled structure factor °
shows a crossover from an early-time behavior, which is
intermediate between the CH aXdl models, to a late-time
behavior, which is reminiscent of the CH model. Figutb)1
plots the data from Fig. (&) on a log-log scale so as the
clarify the nature of the tail behavior. In all cases here, the 9
structure factor data have been obtained after hardening the
order parameter field, i.e., setting the absolute value of the
order parameter to unity. This is done so as to clearly extract
the tail behavior. The CH structure factor exhibits the usual ~ -14_ - : : ‘
Porod tail [S(k)~k~(@*Y) for large k], whereas theXY In(k/<k>)

structure factor shows the generalized Porod tail

[S(k)~k~ (@2 for largek [10] ]. The structure factor data FIG. 6. Analogous to Fig. 5, but fay=7.

In(S(k.t)<k>")
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of the scaled structure factor for the NCOP four-state clock

@ model is identical to that for the Ising modg8]. This
0200007 equivalence does not appear to have strong consequences for
‘ Ooooooooo a2 the form of the scaled structure factor in the COP case,
Ooooo°° ggggegiﬁifAAMA though it does reflect in the growth law, as we will see
51 oooogggggiiiw‘“ 1 shortly. As far as the scaled structure factor is concerned, the
O@Eﬁ.igg“& broad features are the same as those discussep=f8r For
s ' completeness, we also show the scaled structure factors for
- the seven-state clock model in FiggaBand 3b).
Figure 4a) plots the characteristic length scalét) vst
i ‘;g:g | for the cases withg=3, 4, 5, and 7, and the CH ardY
oq=7 models. It is interesting to note that the length scale for the
£9=10 q=4 case grows faster than the length scalegfer3. This is
------------ XY in contrast to the general trend that higleclock models
; . . } . exhibit slower growth as a consequence of the slower anneal-
0 1000 2000 3000 4000 %000 ing of vortexlike defects. The reason for this deviation from

the general trend is that tlie=4 clock model is isomorphic
to two decoupled Ising models and domain growth in this
case is presumably driven only by interfacial motion. It is
clear from Fig. 4a) that the data set fog=4 is in close
proximity to that for the CH case. Figureéb} plots the data
from Fig. 4a) (except those for the CH cgsen a log-log
scale. The length scale data for the CH atd cases are
consistent with the well-known growth laws(t)~t*® and
L(t)~tY4[13,14), respectively. The length scale data for the
g=4 case also exhibit a clear Lifshitz-Slyozov behavior
from the earliest times, without even a hint of the slower
growth law. For other values af, the length scale data ap-
pear to be in a crossover regime between an initially slower
growth consistent with.(t)~t'* to a faster growth regime.
Presumably, the asymptotic growth behavior is the LS law
035 55 65 75 85 but our data have not accessed this regime ag@é&tourse,
Int) it should be kept in mind that the log-log plot tends to un-
derestimate the growth exponent somewhat, except at very
late times)

18 -

-
w
T

In{L(tp

08 |

IV. NUMERICAL RESULTS FOR d=3

We have also simulated an Euler-discretized version of
Eq. (5) on a 3D square lattice of siZd X NXN, with peri-
odic boundary conditions in all directions. The details of the
simulation(e.g., parameter values, initial conditions, quanti-
ties calculated, etcare the same as in the preceding section.
The discretization mesh sizes for our 3D simulation were
At=0.07 andAx=1.7. Structure factor and length scale data
are obtained foN=64 as an average over 50 independent
runs. For the present set of results, we do not harden the
12 , . . order parameter field before computing the structure factor.
0 78 ) 80 85 Figure 5 plots(on a log-log scaledata for the scaled
structure factorS(k,t)(k)3 vs k/(k) from dimensionless
FIG. 7. (a) Characteristic length scale(t) vst, obtained from g\me's 980, 2940, and 4900 for.the three-state clock model.
3D simulations of the conserved clock model. We present data fo gain, for purposes .Of comparison, We sSUperpose .data for
_ . fhe cH model(solid line) and theXY model (dashed ling
g=3, 5, 7, and 10; and also for the CH aXd& models.(b) Data - . .
With the passage of time, the scaled structure factor again

from (a), plotted on a log-log scale. Again, we have excluded the"" . . . .
data from the CH model. The dashed lines have the same meanirﬂ{}'ﬂs from anXY-like form to a CH-like behavior. Figure 6

as in Fig. 4b). Notice that domain growth in the 3D conserved SNOWs the corresponding plot for the seven-state clock
XY model is characterized by the law(t)~ (tInt)# (denoted by a ~ Model.

solid line superposed on the data for & mode) [14,15 rather Figure 7a) plots the length scale data(t) vst for the
thanL(t)~tY as in the 2D casec) Late-time window of(b), so ~ caseg]=3, 5, 7, and 10; and also for the CH ak& models.

as to enable the reader to clearly distinguish between the differenthe domain growth in the CH model is much faster than that
data sets. for the other cases. Figurebj plots data from Fig. @&
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(except for the CH cageon a log-log scale. The data for [18]. The broad picture that emerges is as follows. The dy-
g=3 exhibit slower growth for a small initial period and namics of coarsening in thepstate conserved clock model is
then rapidly cross over to LS growth. The datadet5 and  intermediate to that in the CH and consernéd models.
7 exhibit slow crossovers from a slower growth l&onsis-  Thus the conserved clock model orders by the annealing of
tent with XY-like growth) to a faster growth which has not both vortices and interfaces. In the early stages, the domain
yet accessed the asymptotic LS regime. The datajfol0  growth is slower and is consistent with the growth law for
are almost indistinguishable from those for t& model, the correspondingY model. However, there is a crossover
which is fitted very well by the functional form to faster growth(consistent with the LS lay which occurs
L(t)~ (tInt)*4[15] (denoted by the solid lineThis unusual at progressively later times for larger values of the ground-
growth law for the 3D CORXY model is consistent with the state degeneracy. There are also dynamical crossovers in
theoretical predictions of Bray and Rutenbéfgl]. Figure the scaled structure factor but these are harder to classify as
7(c) is a late-time window of Fig. (B), which helps to we expect aj dependence of the asymptotic structure factor.
clearly distinguish the various data sets. In particular, we expect the data for all valuesgao exhibit

a Porod tailS(k,t) ~k~(@*1) [8] but the amplitude of this tail

V. SUMMARY AND CONCLUSION diminishes at larger values of.

In this paper we have presented comprehensive results It is not our thesis that the results in this paper have strong
from numerical simulations of the conserved clock model inexperimental relevance. Rather, the motivation for this study
two and three dimensions. Our dynamical model is a phewas to guide theorists by clarifying the nature of the dynami-
nomenological one, formulated in terms of a complex ordercal crossover resulting from the presence of both vortices
parametef11]. It is difficult to motivate this model from and interfaces in a phase ordering system.
microscopic considerations. Nevertheless, as far as phase or-
dering dynamics is concerned, it is reasonable to assume that
our model is in the same dynamical universality class as the ACKNOWLEDGMENTS
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