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Many natural systems, such as social insects, perform complex computations collectively. In these groups,
large numbers of individuals communicate in a local way and send information to its nearest neighbors.
Interestingly, a general observation of these societies reveals that the cognitive capabilities of individuals are
fairly limited, suggesting that the complex dynamics observed inside the collective is induced by the interac-
tions among elements and is not defined at the individual level. In this paper we use globally coupled maps, as
a generic theoretical model of a distributed system, and Crutchfield’s statistical complexity, as our theoretical
definition of complexity, to study the relation between the complexity the collective is able to induce on the
individual and the complexity of the latter. It is conjectured that the observed patterns could be a generic
property of complex dynamical nonlinear networkS1063-651X97)00203-1

PACS numbd(s): 05.45+b

[. INTRODUCTION tions: from the individual to the collective and vice versa.
Immediately we can discard the former because the simplest

The topic this paper addresses is easy to stte:more individuals are those who display collectively the most com-
complex a society, the more simple the individiigl This  plex behavior. So we can ask now a more concrete question:
sentence, of course, concerns social insects, among which wghat kind of behavior does the collective induce on the
will take ants as a main example. It is a well-known fact thatotherwise simple individual to attain emergent functional ca-
all living species of ants are eusociak., all species have Ppabilities? Of course we can answer it from an evolutionary
the following properties: cooperation in caring for the young,Point of view, arguing that adaptation to the environment is
overlap of at least two generations capable of contributing téhe ultimate reason of those diverse features of ant colonies.
colony labor, and reproductive division of labid@]); never- ~ This is not the unique answer we can provi¢because we
theless, there exist large differences among species with réan also look for relations between the order parameter and
spect to the number of ants that compose the colony, thethe individuals in such a way that, perhaps, complex solitary
collective capabilities, and the cognitive skills of individuals. behavior imposes severe constraints on the behavior that a
A specific example is that of recruitement strategies: There i§ollective would induce on individuals. This would be a
a clear correlation between the size of the colony and thé&tructural solution of our problem and it will be the answer
behavioral sophistication of individual membg®. In one ~ We are seeking.
extreme we find the more advanced evolutionary grade: mass Although we will not provide a complete solution, we will
communication(information that can be transmitted 0n|y make an initial move towards a theoretical account of the
from one group of individuals to another group of individu- problem. First of all, we review in Secs. Il and Ill the theo-
als, according td2], p. 27). Mass communication is the retical framework we use: Kaneko’s globally coupled maps
recruitement strategy used by army afég.,Eciton burch- (GCMs) [6] and Crutchfield’s statistical complexity and
elli), whose colonies are composed of a huge number of-machine reconstructiofi7]. Furthermore, in Sec. Il we
individuals, who are, nevertheless, almost blind and excharacterize the phase space of GCMs with information-
tremely simple in behavior when isolated. The other extreméheoretic measures. In Sec. IV we detail our work with
is occupied by those ants using individual foraging strategies
(e.g., the desert af@ataglyphis bicoloy, who displays very ’
complex solitary behavior.

Our interest here is not as much to study this remarkable
feature of eusocial insects as to see if this could be a general
trait of collectives of agents. That is, is there a trade-off
between individual complexity and collective behavior in
such a way that complex emergent properties cannot appear
if individuals are too much complex?

In order to continue with our work, let us start considering  FiG. 1. Emergence in collective behavior. Individual ants inter-
the concept of emergence. According to Hakéhthe emer-  act either by physical contact or by laying pheromones. Coordinated
gent properties of a system can be studied with the notion ofollective actions emerge from these patterns of interaction, which
order parameterand its associated slaving principle. As we in turn affects individual behavior. This causal circularity pervades
can see in Fig. 1, we can look for an answer in two direc-complex systems.

Collective Behavior —‘
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N ORDERED GCM phase spacg@fter[6]). The joint entropy is

3 0.1 largest at the turbulent phase when all the binary
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dered and coherent phase and it takes intermedi-
ate values at the glassy phasandy are dimen-
K sionless parameters of the GCM.
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e-machine reconstruction and we see how the complexity oAn additional useful measure will be the mean number of
a theoretical individual can be an obstacle to the collective irclustersR,, defined aR,, ==, kQ(k).
order to modify its behavior. Finally, we discuss our results Here we also consider an information-based characteriza-

and their possible implications in Sec. V. tion of the different phases by means of the Markov partition
We think we should say what this paper is not about. This

paper doesot analyze completely GCMs using statistical H={x e[~ 1,0):>Sii =0,Xp € [0,1]35{ =1}, 3

complexity. Of course this research deserves to be done, but

the objectives of this paper are far more modest. We S'mph&vhere 5'13'25'3 .. will be the sequence of bitsS{

use those theoretical constructs to show a theoretical prop-

erty that resembles a natural one. 3,={0,1} generated through the dynamics of ilie map,

under the partitiorII. We can compute the Boltzmann en-

tropy for each map
Il. GCM: PHASES AND INFORMATION

Globally coupled maps are usually defined by a set of sy - j
nonlinear discrete equations H'(2) g;) 1 P(S)log;P(S)

N
Xn+1(1)=(1— e)fﬂ(xn(i))+§2 f,(Xa(})) (1)  and the joint entropy for each pair of maps
=1

wheren is a discrete time step aneF 1, . . . N. The function H'(S)=— > > P(g.,9)log,P(S.S).
f,.(x) is assumed to have a bifurcation scenario leading to s=015=01
chaos. Here we use the logistic map
From the previous quantities, we can compute the informa-
fL(x)=1-ux?, (2 tion transfer between two given units. It will be given by

which is known to have a period-doubling route to chaos. iy — i [ il

) : : MI(Z)=H(2)+H'(Z)-H" (D).
GCMs are in fact the simplest approach to a wide class of (2) (2) (2) (2)
nonlinear networks, from neural networks to the immune - . .
system[6]. They have been shown to have remarkably rich, These quantities h_ave been. widely used in the character-
behavior, partly similar to the mean-field model for the spinIzatlon of macroscopic properties of complex systems mod-

glass by Sherrington and Kirkpatri¢k]. Their behavior in eled by cellular automata and fluid neural networ8sL0].

phase space is very rich, showing clustering among mapﬁo‘S a way of quantifying complexity, it has been shown that

These clusters are formed by sets of elements with the sanE formatlo_n ”a!”Sfer IS an appropiate measure o_f_correla_\tlons
phase. 1] and in this context it is maximum near critical points

The phase space of GCMs exhibits several transition 12&: getﬁausbe our ljntjerest IS In the com;t)Ltjtart:onal structurﬁ
among coherent, ordered, intermittent, and turbulent phase _ef'm d el Ot' servt()e " ynamics, Wf ?.XpeT 0 alve 'fomedvx{e )
These phases are well characterized in terms of the so-call In€d relations between computational complexity and in-

. ; tion transfer. Using these measu(ese Fig. 2, the
cluster distribution functiorQ(k) [6] and can also be well ormatior . .
characterized, as shown in this section, by means oflDur basic phases exhibited by GCMs are the following.

information-theoretic measurég] (i) Coherent phaseThe system is totally synchronous,
In each phase, a given number of clustiksinvolving i._e.,x(i)=x(j) for alli,j. The motion i§_then de_scri_bed by a

r maps will be observed. Specifically, a cluster is defined b)f'ngtle mapx,glzfﬂfxtr?) a”nd tﬁe St?b'!'ty of }?'i S'T‘g'fh at-

the set of maps such that(i) =x,(j) for all maps belonging ractor can be ana}[)f/ 'C?hy c a:ac enzéﬁl. 3 Ob'.s S. .

to the cluster. We can calculate the number of clusters of Sizlg_yapluno_v expt))onen or the singie map, the Jacobl matrix 1S

r, and for a given phase we have a &8t ,N,, ... ,N,} of Simply given by

integer numbers. Then th@(k) function is defined as the

fraction of initial conditions that collapse into a given 3 =af 1o

u= 0T l0Xq

k-cluster attractol(i.e., the volume of the attraction basin N

(1—e)I+ED},
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wherel andD are the identity matrix and a matrix of ones, clusters. In the first case, we get the same result as in the
respectively. From the Jacobi matrix we can get the stabilitycoherent phase and the same occurs if they belong to clusters
condition that are in phase. If the maps belong to two clusters that are
not in phase, we haved'(2)=H'(Z)=In(2) and now

Ao+In(1—€)<0. P(S,S))=(1-6;,)/2 so again we geM"'=H', as in the

) ) ) coherent phasésee Fig. 2
Here almost all basins of attraction are occupied by the co- (iv) Glassy phaseAlso called intermittent phase, in this
herent attractor an@(1)=1, so we have®,,=1. ~ domain of parameter space we have many clusters, but they
' In terms of mforimatlgn Itransfer under the Ma}rl'«')v parti- have a wide distribution of sizes. We ha¥g- y,Q(k)>0
tion, we WI|| haveH'(X)=H'(X) (both maps are visiting thg and also,-y,Q(k)>0. SoR,=rN with r<1. Here the
same pointsandP (S} ,§)) = §;;/2, so it is easy to see that in competition of some attractors with different cluster size
this phase we hav" (2)=H'(2) and the mutual informa-  |eads to frustratiofi6]. Following our previous arguments, it
tion is given byM!'=H'. The information is totally defined is not difficult to show that &M (3)<In(2). So inthis
by the entropy of the single maps as long as the correlationghase the joint entropy has a finifieut not large value, as
are trivial. expected from the existence of a decaying distribution of

(ii) Turbulent phaseThis corresponds to the other ex- cjuster sizes.

treme in the dynamical phases of GCMs. Here we have that \we have shown that the use of information-based mea-
the number of clusters is such tff~N. A first look at the  sures involving the previously defined Markov partition pro-
dynamics of single maps seems to suggest that they behavgies an accurate characterization of the GCM phases. As we
independently. Under this hypothesis, the entropies can bgan see, some phases have a high information transfer, while
easily estimated. If the maps are independent, then we havghers have a nearly zero correlation among units. The basic
again H'(X)=H'(Z), but the joint probabilities will be qualitative observation of this phase space is that the greater
such that P(8,5)=P(S)P(S), and so we have the nonlinearity(the parameter), the more widespread the
H'(3)=2H'(Z) and as a consequence the mutual informadisorder, and the greater the averaging effparametrized
tion will be zero. A close inspection of the numerical valuesby ¢), the more the overall coherence. So each unit in the
for the mutual information shows, however, that GCM is subject to two competing forces: the individual ten-
1>M">0, so some amount of correlation is still present.dency to chaos and the tendency to conformity arising from
Specifically, we found that typically T6<M" <1073 This  the averaging effect of the system as a whole.
result was obtained by KaneKd3] in a remarkable work This conflict between order and disorder changes sud-
where it was shown that GCMs violate the law of large num-denly at the boundaries between the different phases. In re-
bers(LLNs). This hidden order is shown to exist by meanscent studies, it has been suggested that such phase transitions
of the analysis of the local fields, defined ascan be very important in sustaining higher computational
hnENflEij(xn(j)). The study of the mean-square devia- capabilities[7,9,10. Usually the transition is defined as in-
tion of this quantity, which is expected to decay@&l/N) if  volving the maximum information transféand the higher
the units are really independent, was shown to saturate for @orrelations, information being lower in both phases. Here,
given N=N_(u) [13]. The analysis of the density distribu- however, each phase is roughly characterized by rather con-
tion for two maps gives a pair of continuous functions stant entropies and information so we could ask whether or
Pi(x) andP;(y) [i.e., f[Pi(s)ds=1] and a joint distribution  not intrinsic computation will reach higher values at the tran-
Pii(x,y) [with [[P;;(x,y)dx dy=1], which makes it pos- sitions. In the next section we explore this problem by means
sible to define a continuous mutual information of the e-machine reconstruction algorithm.

Pii(x,y)
M.,== | s PX)P;(y)

Statistical complexity is a recent measure of complexity
and, after averaging over space and time, it also shows lBased on a computational view of what an orbit of a dynami-
saturation wherN gets large. Numerical experiments gave cal system i§7]. Chaotic dynamical systeniwith a period
M; j(N—»)=0(10"3), consistently with our bounds for doubling or a quasiperiodic route to chad,14,16 and
the binary partition. Such remaining finite correlation is theone-dimensional spin systenj2l] have been adequately
origin of the breakdown of the LLNs and will be relevant in characterized using statistical complexity. There is the
our discussion about computation in GCMs. e-machine reconstruction algorithne-{RA [20]) associated

(iii) Ordered phaseHere we have a small number of with it. This algorithm has been the basis of much work
clusters with many units. Specifically, we ha@¢k)=0 for  relating dynamical systems and computation. It has been suc-
k>k. (wherek. does not depend oN) and cessfully applied to characterize computationally the above-
mentioned onset of chaos, to the characterization of cellular
automata in terms of domains, attractors and basins of attrac-
tion [17], and to finding out the mechanisms by which an
evolved cellular automata can compyparticle-based com-
andQ(1)#1. We also geR,=b<N. Again, a large num- putation[18]).
ber of elements will share the same state and we can easily Here we will use the-MRA to ascertain théntrinsic com-
estimate the entropies and information transfer. Given twgutation[16] of the individual logistic maps in the GCM. In
maps, they could belong to the same cluster or two differengeneral, in order to apply-MRA, we need to know the orbit

dxdy lll. STATISTICAL COMPLEXITY

Quk)= X Q(k)=0
k>N/2
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of a dynamical system. .. X; 5, Xi—1,XtsXte1:Xt42s « - -
(which we assume to be stationargnd we also need to
specify an instrument to observe the above-mentioned orbit.
This instrument will have some resolutien The instrument
used in this paper is precisely the Markov partitidn(3).

IT will define a generating partitiofi.e., where there is a
finite to one correspondence between infinite bit strings and
initial conditiong for the logistic maf(2), so it isclearly the
best choice for a logistic map in a GCM. Applying the in-
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strument to the orbit will provide us with a bit string, which, =
in practice, will have finite lengtiM, that will be used to mTomn
construct a deterministic finite automat@@FA) (see[19])
with probabilistic labels. This automaton, if found, will be a
minimal model describing the intrinsic computation of the
observed proces@ynamical system plus instrumenfThe
€-MRA proceeds, very briefly, as

(a)

11

0/0.33
1/05%@ 0/05 3)
on
1/0.664.~(0/05 11
(b)
105 O
()

{...01110100. . .}=tregL)=e-machingD),

whereL will be used to scan the entire bit string extracting
bit strings of lengthL to build a parse tree an® (the
“morph depth,” in practicg L/2]) will be used to construct
the states of the-machine. Here we will not go into the FIG. 3. DFA with probabilistic labelings resulting from the
details of thee-MRA (see[7,14,19 and[17], Chap. 3. We  e-MRra applied to(a) logistic map (2) withu=1.4, (b) logistic map
just say that if the stationarity assumption is violated, the(2) with w=2, and(c) logistic map (2) withu=1.75. These are
e-MRA will fail in reconstructing any DFA. This will be the the individuals over which we will check if the collective can in-
case when we have GCMs with supertransients or when @uce more complex behavior. As is obvious from the autontala,
high-dimensional attractor is reached. Once we have thi& much more complex thafb) and(c) (see the text In all cases
e-machine, the statistical complexity will be defined as thethe e-MRA parameters arél =10", L=32, andD=16. In (a—(c)
logarithm of the number ofrecurrent e-machine statekL6]. state_l is the initial state, all other statgs are accepting sjates.
Measuring the intrinsic computation provides us with anth® dimensionless parameter of the logistic map.

upper bound to usable computatipt6]. Of course it does . i
ngtpmake much sense to talkpabout the usable computation of, The next step is to define a GCM, such as that of @.

a logistic map, but, in real systems, it would be quite inter—W'th =14, and look at the staiistical complexity of an

esting to have a good description of their intrinsic computa-!nd'V'duaI (all are, in p'rlnmplez eqqabhosen afc random, say,
tion in order to be compared with the intrinsic computation"ias the degree of interaction increases, i.e., we examine
of the dynamical systems modeling them. Furthermore, if wé-1.4 @S the parameter goes from 0 to 0.4.

could find the intrinsic computation of, say, a real ant, we The result is simply that there are no changes can be
could know what the maximum computational capability of SE€n i Fig. # The intrinsic computation of the individual

that ant would be. This would allow a deeper understandingemains the same; ,~4, no matter how large the interac-
of the problem stated in the Introduction. tion is with the rest of the system. So the collective has not

been able to induce any kind of added complexity to the
individual. In this case there is no emergent behavior. The
collective behavior can be reduced to that of the individuals.

In this paper the collective system we are working on is a
globally coupled map, i.eN logistic maps (2) interacting as
has been described in Sec. Il, and our individual will be a
randomly chosen logistic map of the system. This approac
has a clear advantage: The statistical complexity of the lo
gistic map is well knowr{7,14], so our individuals have a
well-defined intrinsic computation. Our purpose is to se
how the collective igor is noy able to induce more complex
behavior than the individual is able to show.

IV. COLLECTIVE-INDUCED COMPUTATION

B. Simple individuals

If we take u=2 the logistic map has completely chaotic
dynamics. It is, in statistical complexity terms, the same as a
fair coin toss. So its automaton h@s=0 with just one state
e[Fig. 3(b)]. Now, we can apply the&-MRA to the symbolic
dynamics(i.e., the bit string of lengtiv) of an individual
chosen at random among thiethat compose the GCM. The
e-MRA failed to reconstruct any automaton in the turbulent
phase(either for w=2 or for u=1.75, in Sec. IV Q. This
could be because of high-dimensional chaos and the exist-

Given a logistic map(our individua) a high statistical ence of supertransienf2]. In any case, it seems that the
complexity is observed for close tou.,, i.e., the onset of stationarity assumption was not fulfilled, causing the non-
chaos. There we need a large number of states to model tlw®nvergence of the-MRA (se€[17], Chap. 5. There are also
high periodicity of the orbits. We have chosen=1.4, some values o€ in the ordered and the glassy phase where
whose statistical complexity i€, ,~4. As we can see in no finite automaton was obtained. The reason here is the fine
Fig. 3(@), this automaton has a large number of states. structure of those phasgg2).

A. Complex individuals
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FIG. 4. If we have a complex individual, no
matter how much interaction it receives, its be-
havior will not change. The collective cannot in-
duce on the individual any kind of added behav-
ior. In the figure, the individual possesses the

same statistical complexity for a#l. The param-
e T ® eters of thee-MrRA are M=10", L=32, and
D=16. All the automata have 1 as the initial

state and all other states are accepting statés.
a dimensionless parameter of the GQbke the
text). N=500.

027 028 029 0.30 0.33 034 035 0.36 0.38 039 040

Our result is somewhat surprisirigig. 5). If we exclude boundaries, as has been observed also in other sy$ighs
the automaton at=0.26 and the gaps a¢=0.27 and If we compare this case with the previous one, we see that
€=0.28 (which indicates some kind of irregular behavior in simple individual behavior allows the interaction to create
the regions, although according to the phase space of Fig. rhore sophisticated behavior in the individual, inducing a cer-
we should have ordered behaviasur individual reaches tain amount of statistical complexity that was not present at
high complexity,C‘ =3, near the boundary of the turbulent the individual level. So a coordinated behavior, which the
phase. Beyond this point we find the same automaton arourifidividual is unable to show, emerges from the collective
€=0.295, perhaps pointing out another boundainat of the ~ through interactions.
above-mentioned irregular behaviohfter that the complex-
ity decreases withe while going deeply into the ordered

phase: FirstC;=2 at e=0.31 and then it goes down t0  ere we havew=1.75 with an individual of complexity
C>=1 at €=0.32, €=0.325, ande=0.33, to end up in ¢, 1 585[Fig. 3c)] and we take a logistic map randomly
C,=0 at €e=0.34 ande=0.35. The complexity increases from a GCM with the same: value. In this case, as in the
slightly again at the glassy phastE2 1.585ate=0.375and previous one, we find a maximum intrinsic computation at
€=0.39. The more complex behavior is displayed near phasthe boundary between the turbulent phase and the ordered

0/066— V1 0/05 ~ V1

A==
V1
®

C. Intermediate individuals

FIG. 5. With a simple indi-
vidual like that of e=0 (in this
figure), the collective is able to
impose additional behavior on the
o3 individual. We have a decreasing

complexity from the turbulent
phase boundary onward with in-
creasinge, except in the region of
0.27 (see the text We can ob-

1/0. 0/0.5
. serve also a slight increase in

. complexity at the glassy phase.
.;7 0'28 029 0.30 0‘.32 C:.33 0.34 0‘.35 0‘.36 (;37 0.38 0.39 0,«|10 The parameters Of the-MRA are
M=10", L=32, andD=16. All
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Turbulent Phase

the automata have 1 as the initial
state and all other states are ac-
cepting statese is a dimension-
105 less parameter of the GCM.
v N=500.
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FIG. 6. Here we see interme-
diate behavior between the cases
shown in Figs. 4 and 5. Just for
€=0.16 we found much greater
complexity than that of the indi-
vidual. We also bear in mind that
the individual statistical complex-
ity is C4 75=1.585, so that the in-
| ¥ | crement is not as large as in the
00 032 40 u=2 case(see the tejt The pa-

rameters of the e-MRA are
M=10", L=32, andD=16. All
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phase. In fact, the automaton in this boundary is the samésuch as ant colonigsvhere the single units behave very
one we found at the same boundary for 2. Although the  simply in isolation and in a complex way when forming part
individual is more complex than that gf=2, we can ob- of the entire system. More precisely, we should ask how ant
serve the same behavior of the automata with growéng colonies formed by rather simple individudishen isolatey
(Fig. 6: at e=1.6 we get a statistical complexity of are able to induce them to perform complex computation, as
17=3, at €=0.2, €=0.22, €¢=0.24, €=0.25, and observed.
€=0.26 statistical complexity decreases @) ,==2, then The information-theoretic characterization of the phase
statistical complexity keeps decreasing down to a value ofpace has shown that the Markov partition defined on the
L 7e=1 (€=0.26 ande=0.28), and finally it reaches the logistic map provides an adequate characterization. Informa-
zero value at the boundary of the glassy phase. However, thi#on transfer, in particular, shows three different types of be-
picture fails ate=1.8, perhaps due to a small window lo- havior: It is high at the coherent and ordered phases, close to
cated in the region of that Again, at the glassy phase, there Z€ro at the turbulent regime, and takes intermediate values

is a slight increase of complexity, i.€}, .~1.585, which is for glassy dynamics. _
precisely its individual value. The individual keeps this com- ~ Th€se quantities change rather sharply at the boundaries
plexity value untile=0.4, although there is another bound- between different phases. This makes some difference in re-

ary, separating glassy and coherent phases. lation to previous studies, where information transfer be-
It is clear that now the individual is complex enough to COMes maximum at the phase transitisrhere correlations

have nonzero statistical complexity and it is simple enougtfliverg@ [12]. GCMs do not show this type of maximum
to let the collective induce some amount of complexity. ofbecause of the globally coupled nature o_f the interactions.
course the complexity growth is not as large as in the previBut for the same reason we expect to find some generic,
ous case because here the maximum complexity reached §MMon propertiegin terms of both computation and dy-
the boundaries is the same that was reached with individuaf@Mical propertigsat each phase.

of zero complexity. Furthermore, we have not detected any 1h€ €-machine reconstruction of single maps close to the
similar growth of complexity for any other value. To sum onset of chaos gives us a finite automaton with many states
up, what has been observed is an intermediate behavior bg2ere 31). So at this point we have a complex object in terms
tween the two cases previously studied. There is an induce®f computation. Interestingly, the coupling with other units
complexity, although smaller than the=2 case because of Vid2 GCMs does not modify this complexity. So entities that
the difference between the individual complexity and the in-2r€ computationally complex in isolation do not change in
duced complexity and because complexity is not high excepf’® Presence of coupling: Nothing new is induced by the

at the boundary between turbulent and ordered phases. collective. This observation matches the behavior of weakly
evolved, primitive ants, where individuals are complex

enough to work in isolation and the interactions among them
are irrelevant.

In this paper we have analyzed some computational prop- However, if we start with random, computationally trivial
erties of GCMs. Our interest was to explore the existence ofnaps and then couple them, the situation ends up being very
collective-induced computation in some natural systemglifferent. At u=2.0 a fully chaotic map is obtained. The

V. DISCUSSION
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Markov partition of this chaoti¢énonfracta) attractor defines system’s size. For some parameter combinations, we found
a Bernouilli sequence and so we hav&€a0 complexity. that the automata reconstructed were different as a function
Starting from low couplings, at the turbulent domain, theof N. This is also interesting insofar as it is well known that
reconstruction algorithm does not converge, as expectesocial insect colonies use different ways of communicating
given the disordered, high-dimensional nature of the attracas a function of the number of individuals engaged. Our
tors. In spite of the remaining coherenes discussed in Sec. preliminary results suggest that these transitions could be
II) no finite machines are obtained. also present in the GCM models. Another extension is the
But as we reach the boundary between the turbulent anfiner-scale analysis of the transition points in terms of statis-
the ordered phases, the situation changes radically. Now thtecal complexity: Is there a systematic trend? A third exten-
coherent motion and the spontaneous emergence of clustesion could be the effects of noise in the reconstruction. As far
ing also gives rise to well-definedmachines. Suddenly, the as noise is an intrinsic part of real systems, we should ask
coupling starts to control the dynamics of individuals andhow noise can modify the present results. Finally, one of the
they behave in a computationally complex way. Nothing ex-remarkable results of Kaneko’s study was the presence of
cept the coupling has been introduced, but it is enough teoding by means of attractors. The present results immedi-
generate complexity. As in the real ant colonies discussed iately suggest a possible connection between such coding
the Introduction, simple isolated individuals can behave in anechanism and the underlying finite automaton.
complex way inside the collective. This is precisely what we
have observed. A very important suggestion emerging from
this result is that in insect societies complex behavior is only
defined at the level of individualsiside the colony and not This work was done during a research visit at the Santa Fe
as isolated entities. In this sense, the observed behavior is ttestitute. The authors thank Jim Crutchfield and Brian Good-
result of an emergent property. An interesting observation isvin for several useful discussions and Kunihiko Kaneko for
that thee-machine reconstruction captures the fine scale imvery useful comments. We also thank Susanna C. Manrubia,
plicit in each phasdthese phases have internal, fine-scaleBartolo Luque, and Jordi Bascompte at the CSRG. This work
structure. has been supported by DGYCIT, Grant No. PB94-1195; the
Several extensions of this work can be made. One obsefzeneralitat de Cataluny&J.D) Grant No. FI 93/3008; and
vation in our study was that there is some dependence on tlibe Santa Fe Institute.
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