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Many natural systems, such as social insects, perform complex computations collectively. In these groups,
large numbers of individuals communicate in a local way and send information to its nearest neighbors.
Interestingly, a general observation of these societies reveals that the cognitive capabilities of individuals are
fairly limited, suggesting that the complex dynamics observed inside the collective is induced by the interac-
tions among elements and is not defined at the individual level. In this paper we use globally coupled maps, as
a generic theoretical model of a distributed system, and Crutchfield’s statistical complexity, as our theoretical
definition of complexity, to study the relation between the complexity the collective is able to induce on the
individual and the complexity of the latter. It is conjectured that the observed patterns could be a generic
property of complex dynamical nonlinear networks.@S1063-651X~97!00203-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The topic this paper addresses is easy to state:The more
complex a society, the more simple the individual@1#. This
sentence, of course, concerns social insects, among whic
will take ants as a main example. It is a well-known fact th
all living species of ants are eusocial~i.e., all species have
the following properties: cooperation in caring for the youn
overlap of at least two generations capable of contributing
colony labor, and reproductive division of labor@2#!; never-
theless, there exist large differences among species with
spect to the number of ants that compose the colony, t
collective capabilities, and the cognitive skills of individua
A specific example is that of recruitement strategies: Ther
a clear correlation between the size of the colony and
behavioral sophistication of individual members@3#. In one
extreme we find the more advanced evolutionary grade: m
communication~information that can be transmitted on
from one group of individuals to another group of individ
als, according to@2#, p. 271!. Mass communication is the
recruitement strategy used by army ants~e.g.,Eciton burch-
elli!, whose colonies are composed of a huge numbe
individuals, who are, nevertheless, almost blind and
tremely simple in behavior when isolated. The other extre
is occupied by those ants using individual foraging strateg
~e.g., the desert antCataglyphis bicolor!, who displays very
complex solitary behavior.

Our interest here is not as much to study this remarka
feature of eusocial insects as to see if this could be a gen
trait of collectives of agents. That is, is there a trade-
between individual complexity and collective behavior
such a way that complex emergent properties cannot ap
if individuals are too much complex?

In order to continue with our work, let us start consideri
the concept of emergence. According to Haken@4#, the emer-
gent properties of a system can be studied with the notio
order parameterand its associated slaving principle. As w
can see in Fig. 1, we can look for an answer in two dir
551063-651X/97/55~3!/2338~7!/$10.00
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tions: from the individual to the collective and vice vers
Immediately we can discard the former because the simp
individuals are those who display collectively the most co
plex behavior. So we can ask now a more concrete ques
What kind of behavior does the collective induce on t
otherwise simple individual to attain emergent functional c
pabilities? Of course we can answer it from an evolution
point of view, arguing that adaptation to the environment
the ultimate reason of those diverse features of ant colon
This is not the unique answer we can provide@5# because we
can also look for relations between the order parameter
the individuals in such a way that, perhaps, complex solit
behavior imposes severe constraints on the behavior th
collective would induce on individuals. This would be
structural solution of our problem and it will be the answ
we are seeking.

Although we will not provide a complete solution, we wi
make an initial move towards a theoretical account of
problem. First of all, we review in Secs. II and III the the
retical framework we use: Kaneko’s globally coupled ma
~GCMs! @6# and Crutchfield’s statistical complexity an
e-machine reconstruction@7#. Furthermore, in Sec. II we
characterize the phase space of GCMs with informati
theoretic measures. In Sec. IV we detail our work w

FIG. 1. Emergence in collective behavior. Individual ants int
act either by physical contact or by laying pheromones. Coordina
collective actions emerge from these patterns of interaction, wh
in turn affects individual behavior. This causal circularity pervad
complex systems.
2338 © 1997 The American Physical Society
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FIG. 2. Information-theoretic measures a
able to discriminate among the different phas
of GCM dynamical behavior. Right: joint entrop
for 0<e<0.4, 1.4<m<2.0, andN5100. Left:
GCM phase space~after @6#!. The joint entropy is
largest at the turbulent phase when all the bina
pairs are equally explored. It is ln(2) for the o
dered and coherent phase and it takes interme
ate values at the glassy phase.e andm are dimen-
sionless parameters of the GCM.
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e-machine reconstruction and we see how the complexity
a theoretical individual can be an obstacle to the collective
order to modify its behavior. Finally, we discuss our resu
and their possible implications in Sec. V.

We think we should say what this paper is not about. T
paper doesnot analyze completely GCMs using statistic
complexity. Of course this research deserves to be done
the objectives of this paper are far more modest. We sim
use those theoretical constructs to show a theoretical p
erty that resembles a natural one.

II. GCM: PHASES AND INFORMATION

Globally coupled maps are usually defined by a set
nonlinear discrete equations

xn11~ i !5~12e! f m„xn~ i !…1
e

N(
j51

N

f m„xn~ j !… ~1!

wheren is a discrete time step andi51, . . . ,N. The function
fm(x) is assumed to have a bifurcation scenario leading
chaos. Here we use the logistic map

f m~x!512mx2, ~2!

which is known to have a period-doubling route to cha
GCMs are in fact the simplest approach to a wide class
nonlinear networks, from neural networks to the immu
system@6#. They have been shown to have remarkably r
behavior, partly similar to the mean-field model for the sp
glass by Sherrington and Kirkpatrick@6#. Their behavior in
phase space is very rich, showing clustering among m
These clusters are formed by sets of elements with the s
phase.

The phase space of GCMs exhibits several transiti
among coherent, ordered, intermittent, and turbulent pha
These phases are well characterized in terms of the so-c
cluster distribution functionQ(k) @6# and can also be wel
characterized, as shown in this section, by means
information-theoretic measures@8#.

In each phase, a given number of clustersNr involving
r maps will be observed. Specifically, a cluster is defined
the set of maps such thatxn( i )5xn( j ) for all maps belonging
to the cluster. We can calculate the number of clusters of
r , and for a given phase we have a set$N1 ,N2 , . . . ,Nk% of
integer numbers. Then theQ(k) function is defined as the
fraction of initial conditions that collapse into a give
k-cluster attractor~i.e., the volume of the attraction basin!.
f
n
s

s

ut
ly
p-

f

o

.
f
e
h

s.
e

s
s.
led

of

y

ze

An additional useful measure will be the mean number
clustersRm defined asRm5(kkQ(k).

Here we also consider an information-based character
tion of the different phases by means of the Markov partit

P5$xnP@21,0!⇒Si
j50,xnP@0,1#⇒Si

j51%, ~3!

where S1
i S2

i S3
i
••• will be the sequence of bitsSi

j

PS[$0,1% generated through the dynamics of thei th map,
under the partitionP. We can compute the Boltzmann en
tropy for each map

Hi~S!52 (
Si
j
50,1

P~Si
j !log2P~Si

j !

and the joint entropy for each pair of maps

Hil ~S!52 (
Si
j
50,1

(
Sl
r
50,1

P~Si
j ,Sl

r !log2P~Si
j ,Sl

r !.

From the previous quantities, we can compute the inform
tion transfer between two given units. It will be given by

Mil ~S!5Hi~S!1Hl~S!2Hil ~S!.

These quantities have been widely used in the charac
ization of macroscopic properties of complex systems m
eled by cellular automata and fluid neural networks@9,10#.
As a way of quantifying complexity, it has been shown th
information transfer is an appropiate measure of correlati
@11# and in this context it is maximum near critical poin
@12#. Because our interest is in the computational struct
behind the observed dynamics, we expect to have some w
defined relations between computational complexity and
formation transfer. Using these measures~see Fig. 2!, the
four basic phases exhibited by GCMs are the following.

~i ! Coherent phase. The system is totally synchronou
i.e.,x( i )5x( j ) for all i , j . The motion is then described by
single mapxn115 f m(xn) and the stability of this single at
tractor can be analytically characterized@6#. If l0 is the
Lyapunov exponent for the single map, the Jacobi matrix
simply given by

Jm5] f m /]xnF ~12e!I1
e

N
DG ,
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whereI andD are the identity matrix and a matrix of one
respectively. From the Jacobi matrix we can get the stab
condition

l01 ln~12e!,0.

Here almost all basins of attraction are occupied by the
herent attractor andQ(1)51, so we haveRm51.

In terms of information transfer under the Markov par
tion, we will haveHi(S)5Hl(S) ~both maps are visiting the
same points! andP(Si

j ,Sl
r)5d j r /2, so it is easy to see that i

this phase we haveHil (S)5Hi(S) and the mutual informa-
tion is given byMil5Hi . The information is totally defined
by the entropy of the single maps as long as the correlat
are trivial.

~i i ! Turbulent phase. This corresponds to the other e
treme in the dynamical phases of GCMs. Here we have
the number of clusters is such thatRm'N. A first look at the
dynamics of single maps seems to suggest that they be
independently. Under this hypothesis, the entropies can
easily estimated. If the maps are independent, then we h
again Hi(S)5Hl(S), but the joint probabilities will be
such that P(Si

j ,Sl
r)5P(Si

j )P(Sl
r), and so we have

Hil (S)52Hi(S) and as a consequence the mutual inform
tion will be zero. A close inspection of the numerical valu
for the mutual information shows, however, th
1@Mil.0, so some amount of correlation is still prese
Specifically, we found that typically 1026,Mil,1023. This
result was obtained by Kaneko@13# in a remarkable work
where it was shown that GCMs violate the law of large nu
bers~LLNs!. This hidden order is shown to exist by mea
of the analysis of the local fields, defined
hn[N21( j f m„xn( j )…. The study of the mean-square devi
tion of this quantity, which is expected to decay asO(1/N) if
the units are really independent, was shown to saturate f
givenN>Nc(m) @13#. The analysis of the density distribu
tion for two maps gives a pair of continuous functio
Pi(x) andPj (y) @i.e., *Pi(s)ds51# and a joint distribution
Pi , j (x,y) @with **Pi , j (x,y)dx dy51#, which makes it pos-
sible to define a continuous mutual information

Mi , j52E E log2F Pi , j~x,y!

Pi~x!Pj~y!Gdx dy
and, after averaging over space and time, it also show
saturation whenN gets large. Numerical experiments ga
Mi , j (N→`)5O(1023), consistently with our bounds fo
the binary partition. Such remaining finite correlation is t
origin of the breakdown of the LLNs and will be relevant
our discussion about computation in GCMs.

~i i i ! Ordered phase. Here we have a small number o
clusters with many units. Specifically, we haveQ(k)50 for
k.kc ~wherekc does not depend onN) and

QL~k![ (
k.N/2

Q~k!50

andQ(1)Þ1. We also getRm5b!N. Again, a large num-
ber of elements will share the same state and we can e
estimate the entropies and information transfer. Given
maps, they could belong to the same cluster or two differ
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clusters. In the first case, we get the same result as in
coherent phase and the same occurs if they belong to clu
that are in phase. If the maps belong to two clusters that
not in phase, we haveHi(S)5Hl(S)5 ln(2) and now
P(Si

j ,Sl
r)5(12d j r )/2 so again we getMil5Hi , as in the

coherent phase~see Fig. 2!.
~iv! Glassy phase. Also called intermittent phase, in thi

domain of parameter space we have many clusters, but
have a wide distribution of sizes. We have(k.N/2Q(k).0
and also(k,N/2Q(k).0. SoRm5rN with r,1. Here the
competition of some attractors with different cluster si
leads to frustration@6#. Following our previous arguments,
is not difficult to show that 0,Mil (S), ln(2). So in this
phase the joint entropy has a finite~but not large! value, as
expected from the existence of a decaying distribution
cluster sizes.

We have shown that the use of information-based m
sures involving the previously defined Markov partition pr
vides an accurate characterization of the GCM phases. As
can see, some phases have a high information transfer, w
others have a nearly zero correlation among units. The b
qualitative observation of this phase space is that the gre
the nonlinearity~the parameterm), the more widespread th
disorder, and the greater the averaging effect~parametrized
by e), the more the overall coherence. So each unit in
GCM is subject to two competing forces: the individual te
dency to chaos and the tendency to conformity arising fr
the averaging effect of the system as a whole.

This conflict between order and disorder changes s
denly at the boundaries between the different phases. In
cent studies, it has been suggested that such phase trans
can be very important in sustaining higher computatio
capabilities@7,9,10#. Usually the transition is defined as in
volving the maximum information transfer~and the higher
correlations!, information being lower in both phases. Her
however, each phase is roughly characterized by rather
stant entropies and information so we could ask whethe
not intrinsic computation will reach higher values at the tra
sitions. In the next section we explore this problem by me
of the e-machine reconstruction algorithm.

III. STATISTICAL COMPLEXITY

Statistical complexity is a recent measure of complex
based on a computational view of what an orbit of a dyna
cal system is@7#. Chaotic dynamical systems~with a period
doubling or a quasiperiodic route to chaos! @7,14,16# and
one-dimensional spin systems@21# have been adequatel
characterized using statistical complexity. There is
e-machine reconstruction algorithm (e-MRA @20#! associated
with it. This algorithm has been the basis of much wo
relating dynamical systems and computation. It has been
cessfully applied to characterize computationally the abo
mentioned onset of chaos, to the characterization of cell
automata in terms of domains, attractors and basins of att
tion @17#, and to finding out the mechanisms by which
evolved cellular automata can compute~particle-based com-
putation@18#!.

Here we will use thee-MRA to ascertain theintrinsic com-
putation@16# of the individual logistic maps in the GCM. In
general, in order to applye-MRA, we need to know the orbi
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55 2341COLLECTIVE-INDUCED COMPUTATION
of a dynamical system. . . ,xt22 ,xt21 ,xt ,xt11 ,xt12 , . . .
~which we assume to be stationary! and we also need to
specify an instrument to observe the above-mentioned o
This instrument will have some resolutione. The instrument
used in this paper is precisely the Markov partitionP (3).

P will define a generating partition~i.e., where there is a
finite to one correspondence between infinite bit strings
initial conditions! for the logistic map(2), so it isclearly the
best choice for a logistic map in a GCM. Applying the i
strument to the orbit will provide us with a bit string, whic
in practice, will have finite lengthM , that will be used to
construct a deterministic finite automaton~DFA! ~see@19#!
with probabilistic labels. This automaton, if found, will be
minimal model describing the intrinsic computation of t
observed process~dynamical system plus instrument!. The
e-MRA proceeds, very briefly, as

$ . . . 011101010 . . .%⇒tree~L !⇒e-machine~D !,

whereL will be used to scan the entire bit string extracti
bit strings of lengthL to build a parse tree andD ~the
‘‘morph depth,’’ in practicebL/2c) will be used to construc
the states of thee-machine. Here we will not go into the
details of thee-MRA ~see@7,14,15# and @17#, Chap. 5!. We
just say that if the stationarity assumption is violated,
e-MRA will fail in reconstructing any DFA. This will be the
case when we have GCMs with supertransients or whe
high-dimensional attractor is reached. Once we have
e-machine, the statistical complexity will be defined as t
logarithm of the number of~recurrent! e-machine states@16#.

Measuring the intrinsic computation provides us with
upper bound to usable computation@16#. Of course it does
not make much sense to talk about the usable computatio
a logistic map, but, in real systems, it would be quite int
esting to have a good description of their intrinsic compu
tion in order to be compared with the intrinsic computati
of the dynamical systems modeling them. Furthermore, if
could find the intrinsic computation of, say, a real ant,
could know what the maximum computational capability
that ant would be. This would allow a deeper understand
of the problem stated in the Introduction.

IV. COLLECTIVE-INDUCED COMPUTATION

In this paper the collective system we are working on i
globally coupled map, i.e.,N logistic maps (2) interacting a
has been described in Sec. II, and our individual will be
randomly chosen logistic map of the system. This appro
has a clear advantage: The statistical complexity of the
gistic map is well known@7,14#, so our individuals have a
well-defined intrinsic computation. Our purpose is to s
how the collective is~or is not! able to induce more comple
behavior than the individual is able to show.

A. Complex individuals

Given a logistic map~our individual! a high statistical
complexity is observed form close tom` , i.e., the onset of
chaos. There we need a large number of states to mode
high periodicity of the orbits. We have chosenm51.4,
whose statistical complexity isC1.4.4. As we can see in
Fig. 3~a!, this automaton has a large number of states.
it.
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The next step is to define a GCM, such as that of Eq.~1!,
with m51.4, and look at the statistical complexity of a
individual ~all are, in principle, equal! chosen at random, say
i , as the degree of interaction increases, i.e., we exam
C1.4
i as the parametere goes from 0 to 0.4.
The result is simply that there are no changes~as can be

seen in Fig. 4!. The intrinsic computation of the individua
remains the same,C1.4

i .4, no matter how large the interac
tion is with the rest of the system. So the collective has
been able to induce any kind of added complexity to
individual. In this case there is no emergent behavior. T
collective behavior can be reduced to that of the individua

B. Simple individuals

If we takem52 the logistic map has completely chaot
dynamics. It is, in statistical complexity terms, the same a
fair coin toss. So its automaton hasC250 with just one state
@Fig. 3~b!#. Now, we can apply thee-MRA to the symbolic
dynamics~i.e., the bit string of lengthM ) of an individual
chosen at random among theN that compose the GCM. The
e-MRA failed to reconstruct any automaton in the turbule
phase~either form52 or for m51.75, in Sec. IV C!. This
could be because of high-dimensional chaos and the e
ence of supertransients@22#. In any case, it seems that th
stationarity assumption was not fulfilled, causing the no
convergence of thee-MRA ~see@17#, Chap. 5!. There are also
some values ofe in the ordered and the glassy phase wh
no finite automaton was obtained. The reason here is the
structure of those phases@22#.

FIG. 3. DFA with probabilistic labelings resulting from th
e-MRA applied to~a! logistic map (2) withm51.4, ~b! logistic map
(2) with m52, and~c! logistic map (2) withm51.75. These are
the individuals over which we will check if the collective can in
duce more complex behavior. As is obvious from the automata,~a!
is much more complex than~b! and ~c! ~see the text!. In all cases
the e-MRA parameters areM5107, L532, andD516. In ~a!–~c!
state 1 is the initial state, all other states are accepting states.m is
the dimensionless parameter of the logistic map.
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FIG. 4. If we have a complex individual, no
matter how much interaction it receives, its b
havior will not change. The collective cannot in
duce on the individual any kind of added beha
ior. In the figure, the individual possesses t
same statistical complexity for alle. The param-
eters of thee-MRA are M5107, L532, and
D516. All the automata have 1 as the initia
state and all other states are accepting states.e is
a dimensionless parameter of the GCM~see the
text!. N5500.
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Our result is somewhat surprising~Fig. 5!. If we exclude
the automaton ate50.26 and the gaps ate50.27 and
e50.28 ~which indicates some kind of irregular behavior
the regions, although according to the phase space of F
we should have ordered behavior! our individual reaches
high complexity,C2

i .3, near the boundary of the turbule
phase. Beyond this point we find the same automaton aro
e.0.295, perhaps pointing out another boundary~that of the
above-mentioned irregular behavior!. After that the complex-
ity decreases withe while going deeply into the ordere
phase: FirstC2

i 52 at e50.31 and then it goes down t
C2
i 51 at e50.32, e50.325, ande50.33, to end up in

C2
i 50 at e50.34 ande50.35. The complexity increase

slightly again at the glassy phase:C2
i .1.585 ate50.375 and

e50.39. The more complex behavior is displayed near ph
. 2

nd

se

boundaries, as has been observed also in other systems@12#.
If we compare this case with the previous one, we see

simple individual behavior allows the interaction to crea
more sophisticated behavior in the individual, inducing a c
tain amount of statistical complexity that was not presen
the individual level. So a coordinated behavior, which t
individual is unable to show, emerges from the collecti
through interactions.

C. Intermediate individuals

Here we havem51.75 with an individual of complexity
C1.75.1.585@Fig. 3~c!# and we take a logistic map random
from a GCM with the samem value. In this case, as in th
previous one, we find a maximum intrinsic computation
the boundary between the turbulent phase and the ord
e
g

-

n
.

l
c-

.

FIG. 5. With a simple indi-
vidual like that of e50 ~in this
figure!, the collective is able to
impose additional behavior on th
individual. We have a decreasin
complexity from the turbulent
phase boundary onward with in
creasinge, except in the region of
0.27 ~see the text!. We can ob-
serve also a slight increase i
complexity at the glassy phase
The parameters of thee-MRA are
M5107, L532, andD516. All
the automata have 1 as the initia
state and all other states are a
cepting states.e is a dimension-
less parameter of the GCM
N5500.
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FIG. 6. Here we see interme
diate behavior between the cas
shown in Figs. 4 and 5. Just fo
e50.16 we found much greate
complexity than that of the indi-
vidual. We also bear in mind tha
the individual statistical complex-
ity is C1.75.1.585, so that the in-
crement is not as large as in th
m52 case~see the text!. The pa-
rameters of the e-MRA are
M5107, L532, andD516. All
the automata have 1 as the initia
state and all other states are a
cepting states.e andm are the di-
mensionless parameters of th
GCM. N5500.
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phase. In fact, the automaton in this boundary is the sa
one we found at the same boundary form52. Although the
individual is more complex than that ofm52, we can ob-
serve the same behavior of the automata with growine
~Fig. 6!: at e51.6 we get a statistical complexity o
C1.75
i .3, at e50.2, e50.22, e50.24, e50.25, and

e50.26 statistical complexity decreases toC1.75
i .2, then

statistical complexity keeps decreasing down to a value
C1.75
i .1 (e50.26 ande50.28), and finally it reaches th

zero value at the boundary of the glassy phase. However,
picture fails ate51.8, perhaps due to a small window lo
cated in the region of thate. Again, at the glassy phase, the
is a slight increase of complexity, i.e.,C1.75

i .1.585, which is
precisely its individual value. The individual keeps this co
plexity value untile50.4, although there is another boun
ary, separating glassy and coherent phases.

It is clear that now the individual is complex enough
have nonzero statistical complexity and it is simple enou
to let the collective induce some amount of complexity.
course the complexity growth is not as large as in the pre
ous case because here the maximum complexity reache
the boundaries is the same that was reached with individ
of zero complexity. Furthermore, we have not detected
similar growth of complexity for any othere value. To sum
up, what has been observed is an intermediate behavio
tween the two cases previously studied. There is an indu
complexity, although smaller than them52 case because o
the difference between the individual complexity and the
duced complexity and because complexity is not high exc
at the boundary between turbulent and ordered phases.

V. DISCUSSION

In this paper we have analyzed some computational p
erties of GCMs. Our interest was to explore the existence
collective-induced computation in some natural syste
e
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~such as ant colonies! where the single units behave ve
simply in isolation and in a complex way when forming pa
of the entire system. More precisely, we should ask how
colonies formed by rather simple individuals~when isolated!
are able to induce them to perform complex computation
observed.

The information-theoretic characterization of the pha
space has shown that the Markov partition defined on
logistic map provides an adequate characterization. Infor
tion transfer, in particular, shows three different types of b
havior: It is high at the coherent and ordered phases, clos
zero at the turbulent regime, and takes intermediate va
for glassy dynamics.

These quantities change rather sharply at the bounda
between different phases. This makes some difference in
lation to previous studies, where information transfer b
comes maximum at the phase transition~where correlations
diverge! @12#. GCMs do not show this type of maximum
because of the globally coupled nature of the interactio
But for the same reason we expect to find some gene
common properties~in terms of both computation and dy
namical properties! at each phase.

The e-machine reconstruction of single maps close to
onset of chaos gives us a finite automaton with many st
~here 31). So at this point we have a complex object in ter
of computation. Interestingly, the coupling with other un
via GCMs does not modify this complexity. So entities th
are computationally complex in isolation do not change
the presence of coupling: Nothing new is induced by
collective. This observation matches the behavior of wea
evolved, primitive ants, where individuals are compl
enough to work in isolation and the interactions among th
are irrelevant.

However, if we start with random, computationally trivia
maps and then couple them, the situation ends up being
different. At m52.0 a fully chaotic map is obtained. Th
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Markov partition of this chaotic~nonfractal! attractor defines
a Bernouilli sequence and so we have aC50 complexity.
Starting from low couplings, at the turbulent domain, t
reconstruction algorithm does not converge, as expe
given the disordered, high-dimensional nature of the attr
tors. In spite of the remaining coherence~as discussed in Sec
II ! no finite machines are obtained.

But as we reach the boundary between the turbulent
the ordered phases, the situation changes radically. Now
coherent motion and the spontaneous emergence of clu
ing also gives rise to well-definede-machines. Suddenly, th
coupling starts to control the dynamics of individuals a
they behave in a computationally complex way. Nothing e
cept the coupling has been introduced, but it is enough
generate complexity. As in the real ant colonies discusse
the Introduction, simple isolated individuals can behave i
complex way inside the collective. This is precisely what
have observed. A very important suggestion emerging fr
this result is that in insect societies complex behavior is o
defined at the level of individualsinside the colony and not
as isolated entities. In this sense, the observed behavior i
result of an emergent property. An interesting observatio
that thee-machine reconstruction captures the fine scale
plicit in each phase~these phases have internal, fine-sc
structure!.

Several extensions of this work can be made. One ob
vation in our study was that there is some dependence on
h-
lity
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system’s size. For some parameter combinations, we fo
that the automata reconstructed were different as a func
of N. This is also interesting insofar as it is well known th
social insect colonies use different ways of communicat
as a function of the number of individuals engaged. O
preliminary results suggest that these transitions could
also present in the GCM models. Another extension is
finer-scale analysis of the transition points in terms of sta
tical complexity: Is there a systematic trend? A third exte
sion could be the effects of noise in the reconstruction. As
as noise is an intrinsic part of real systems, we should
how noise can modify the present results. Finally, one of
remarkable results of Kaneko’s study was the presence
coding by means of attractors. The present results imm
ately suggest a possible connection between such co
mechanism and the underlying finite automaton.
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