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Cumulant expansions and the spin-boson problem
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The dynamics of the dissipative two-level system at zero temperature is studied using three different cumu-
lant expansion techniques. The relative merits and drawbacks of each technique are discussed. It is found that
the noncrossing cumulant expansion technique appears to embody the virtues of the more standard cumulant
methods[S1063-651%97)15302-9

PACS numbegps): 05.30—-d, 05.40+j, 72.15.Qm

I. INTRODUCTION The usual approach to finding reduced equations for the
spin variables of interest involves the use of the functional
The standard spin-boson problem, described by théntegral formulation of quantum dynamid4,2]. Formally

Hamiltonian[1,2] exact equations may be found for the variables
A P} of, S | P(t)=(0(t)) (@
H_on+§j: 2_mj+§mjwj XJ_WUZ (1)
and
has served as a paradigm for the description of dissipative N
effects in condensed phases. Some experimental realizations C(t)=2({o(0),0,()})g. ()

of such a Hamiltonian include, e.g., the detection of macro- ) ]
scopic quantum coherence in superconducting quantum if¥here(- - -); refers to an average with respect to the canoni-
terference devicek8,4], tunneling effects in metallic and in- €@l ensemble of Eq(1). The quantityP(t) describes the
sulating glassegS], electron transfer reactiof§], and the ~Population difference in the localized spin states of the
diffusion of light interstitial particles in metalg’]. In each ~ Hamiltonian(1), given that the particle is initially localized
situation, the physical realization of the parameters in thd one well and in thermal equilibrium with the bath. Itis the
Hamiltonian(1) is different. For instance, in metallic glasses Variable of interest in certain physical situations, for ex-
at low temperatures the electron-hole pairs at the Fermi levémple, the electron transfer problef6]. The quantity
constitute the bosonic bath, while for insulating glasses, tun©(t), the symmetrized equilibrium correlation function of
neling effects are damped by localized and delocalized vibrathe tunneling coordinate, is related to the structure factor for
tional modes. Thus, the Hamiltoniah) embodies a wealth neutron scattering off the tunneling particle, and is of great
of physical situations and has been studied in great detaflignificance in various problems, including the antiferromag-
(see, for instance[1,2] and references quoted therein, or Netic Kondo problenj11]. For C(t) the long-time behavior
more recently8—10). at zero temperature is known f_rom the generalized Shiba
In order to study the dynamics of the two-level systemrelation, which predicts algebraic dec&y(t)t 2 [2,12].
coupled to a harmonic bath as in Hd), we need a method For P(t) the situation is less clear, however, some studies
of “tracing out” the bath or spin degrees of freedom. The have predicted exponential decaytase [2,13]. Despite the
bath degrees of freedom can be specified by the spectréinportance ofC(t), we will focus on the variabl®(t) in the

density function, following.
The formal path integral expression fB(t) is extremely
T cj2 cumbersome, and a suitable approximation must be imple-
Jw)= 52 o, o(o—w)), (20 mented to obtain useful information. The so-called “nonin-

teracting blip approximation,” or NIBA[1,2], is the most

which gives the bath density of states weighted by the squarg?™monly used approximation. In this schem) is en-
of the coupling strength between the two-level system andi'ely determined byC(1), i.e., C(t)=P(t). The NIBA may
the bath. In most studies of the spin-boson problem, th®€ obtained from the exact expressionfgt) by invoking a

spectral density takes the Ohmic fofth2] series of physically base_d ap_proximations. For very low tem-
peratures, these approximations often break down, urless
Jw)=27awexp — ol wg), (3) is very small and only short times are considered. At zero

temperature, the NIBA is not justified in the antiferromag-
where is a measure of the coupling strength, andis a  netic Kondo regime;<a<1. The NIBA also incorrectly
frequency cutoff for the bath. We note that in many casespredicts asymptotically algebraic, rather than exponential,
such as the coupling of a spin degree of freedom to a threedecay for the variabld>(t). Lastly, NIBA incorrectly pre-
dimensional phonon bath in the deformation potential apdicts that at zero temperatur@(t) ~t= 2~ ),
proximation, the spectral densitg) is not realistic, and must Despite these flaws, the NIBA is useful for obtaining
involve higher powers ob. quantitative results foP(t) for high temperatures, when the
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tunneling dynamics is incoherent, and in predicting the quali- II. MOMENT EXPANSION

tative behavior of(t) for low temperatures. For instance, at
zero temperature, the NIBA correctly predicts a crossovef
from damped oscillations to incoherent decay for the vari

inty= 1
ableP(t) at the pointa=3. we believe that the method used in this section most clearly
“As shown by Aslanguet al. [14], the NIBA may be ob-  ghqys the connection to the stochastic methods upon which
tained by first applying a small polaron transformation to theihe cumulant expansions are based. In effect, our method

Hamiltonian (1), followed by a second order application of offers another route to the formal expression of REfs2).

the usual Nakijima-Zwanzig projection operator technique. It e begin with the Hamiltoniaiil) in the form
has been known for some time that this projection technique,

which leads to a master equation of the convolution form, is ., A
) : H=H'+ -0y, (6)

an order by order resummation of a particular type of cumu- 2
lants known as “chronologically ordered” cumularfts6— 5
20]. The use of the “chronological ordering prescription,” H = wbibe—0,S gubl+b)+S 9k -
or COP, when truncated at second order thus leads to the = 2 o oz 2, Giby i)+ 2 oy @)
NIBA.

Interestingly, Aslanguét al.[15] earlier applied a convo- The quantity we wish to calculate B(t), which is defined
lutionless master equation technique to the study of the zer8S
tgmperqture spin—boso.n problem.. This t.ype of master equa- P(t)= (o)) =Z T expiHt)o,(0)exp —iHt)
tion, which can be derived by using a different type of pro-
jection operator, involves the summation of a different type X exp—BH") 7 ], (8)
of cumulant, known as “partially(time-) ordered” cumu-
lants[21,17—2Q. This method was probably abandoned for

We begin with an explicit expression fd?(t) through
urth order inA. We could, if we wished, obtain these terms
from the exact path integral expression f(t), however,

where

two reasons. First, it incorrectly describes incoherent relax- Z=Trw exp(—BH")7"],
ation for P(t) for all values ofa. Secondly, it cannot be
obtained in a simple manner from the exact path integral o,=|L)Y{L|=|R)XR],

expression. The second objection is irrelevant, since it is still
possible that such an approximate resummation describes the
exact behavior oP(t) well. The first flaw, however, is quite
serious. Despite this, the expression obtained from the “par-
tial ordering prescription,” or POP, which naturally resums and 8 is the inverse temperature. Hendejs the tunneling
to an exponential formmay be expected to give a better frequency between the leffL)) and right (|R)) localized
description ofP(t) in the incoherent region. In fact, for val- states of a double-well potential. We now diagonalize (By.
ues of a greater tharg, but not too large, this method de- in the spin manifoldwith the use of a transformation em-
scribes weakly stretched exponential relaxation, which mor@loyed by Shore and Sandg26,27 in their study of the
closely approximates the true exponential decap@j than  Self-trapping of an exciton coupled to phonons, namely,
does the algebraic behavior predicted by NIBA. Further-
. . . . 1/1 -1

more, as will be demonstrated in this paper, recent simula- U= _< ) 9)
tions of Egger and Mak22] show that the POP method more N
accurately captures the deep decayP¢f) at zero tempera-
ture for > 1 than does the CORNIBA) method,even be-
fore the algebraic behavior of the NIBA is manifested N

It is well known that by choosing a particular ordering in d=(— 1)2kbkbk=exl{ [ WZK blbk> :
a truncated cumulant expansion, we are implicitly assuming
different statistical properties for the relevant bath operatorsThe operatorp is seen to be the parity operator for the bath
The first purpose of this paper is to specify these statisticainodes. In the transformed picture, we can express
properties for the case of the spin-boson problem at zero _ ~ ~
temperature. Using this “stochastic” type intuition, we then P(t)=—Z"*TrlexpliHt) ox(0)exp( —iH1)
discuss various cumulant ordering schemes and their associ- ~4 AT~
ated descriptions of the behavior®ft) at T=0. This paper Xmexp - pH L (10
is organized as follows: In Sec. Il we first present a deriva-where
tion of the exact expression fd?(t) that allows for clear
specification of the statistical properties of the bath. For this A
purpose, orthogonally to the conventional approach, we first
integrate out the spin degrees of freedom exactly. In Sec. I, o2
we briefly discuss the COP and POP methods. We then turn ~, k
to a recgntly introduced cumulant method, the “noncross- H _Ek “’kblbﬁzk: ak(by+ ka% o (12)
ing” cumulants[23-25. Lastly, in Sec. IV, we compare the
methods to exact simulation results. T=3(1—0y), (13

ax=|L)(R|+[R)L],

7t =3(1+0,),

where

o, +H', (11)
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andZ is now defined with respect td’ and 7. we can show, through fourth order in, the moment expan-
We now perform the trace over the spin degrees of freesion for P(t),
dom in Eq.(10), leaving

t tq
P()=R4G(1)], (19 PO=LY Jodt1J0 dtmy(tal)
h 1 2
where ~ +ftdt1Jt o|t2ft dt3Jtsdt4m4(tl,t2,t3,t4)+-~,
G(t)=Try[exp(iH . t)exp(—iH _t)exp(— BH')]/Tr, o Jo 0 0
- 21
X[exp(—BH")], (15 (@
where the moments; equal
with
- t)=—A%RegB_(t;)B. , 22
Hi=i%¢+H’. my(ty,t2) &B_(t1)B(t2)) (22)

This trace over the bath degrees of freedom is most easily Ma(ty ot ty) = A—4R({(B (t1)B. (t2)B_(t3)B. (1))
l 1 ’ - 4 — + — +

performed in the small polaron representation, defined by the

transformaton +(B_(t2)B,(t)B_(t9)B, (1))
Voewd), (10 H(B_(t;)B, (t)B_(12)B. (1)
=, %(bk_bb- (17) +(B_(t4)B(t1)B_(t2)B(t3))],
ko @k (23)
In this picture, we may expres3(t) as and
. t . t
<exp_,<|fod7'7](7') exp_(lfodrn(r) > , (18 B. (t)=exg = 2&(1)]. (24)
B

Note thatm,,_;=0. In this paper, we shall only use the first
two nonvanishing moments, although it is a simple matter to
A execute the expansion to an arbitrary order. F{@i)—(23)
n(t)= Eex[_‘[—g(t)](ﬁexqg(t)], (199  we conclude thaP(t) is entirely determined by the statisti-
cal properties of the bath operatd@s (t) with respect to the
canonical state of the bath. Note that the operaRyrsal-
ways appear in pairs. In order to specify the statistics obeyed
Ok B ‘L by the operator8.. , we now calculate the second and fourth
§(t)=§ . (be tod—pyel o). (200 moment of theB.'s. It is a simple matter to show that

K
(B_(t)B(tp))=exd —iQq(t;—ty) — Qa(t;—ty)],
(25

where

and

The averaging(denoted by(- - -)g) is over the canonical
ensemble of harmonic oscillators, [i.e.,
pe=exp(— B wbib)/Trexp BZwbib)], and exp,  where

(exp_) denotes a time ordered exponential with latest time to 2

the right(left): From this point on, all averaging will be with Qq(t;—ty)=4> (%) sin wy(t;—1)], (26)
respect to this ensemble, and we will drop the subs®&ipt k| Wk

Since the spin degree of freedom has been removed, our
method allows us to focus on the bath operators that arise A"
the expansion oP(t). Using the following properties of the g\ ?

parity operator, Qz(tl_tz):4§k: (w—k) {1—cod w(t;—ty)]}coth Bwy/2).

pex &(t)]=exd —&(1)]¢ (27)
Furthermore, by using the relatiei " B= e”eBe~12A-B] gnd

(e0'e*By—e~I* for [A,B], k beingc numbers, one can
$°=1, also show that

d

and

B_(t1)B. (to) (B_(t3)B, (t2)WB_(t1)B. (t) }{B_(t,)B.,(t
(6188 (8. (19) = (Z»EBES;BLZ;;EBEtiimét% G
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This property can be extended to an arbitrary number of Yon—1=0,

B.. pairs. This gives a type of “Wick” theorem for the op-

eratorsB.., and demonstrates the underlying reason why Yo(t, 7)) =my(t,7),

only the functionsQ; andQ, appear in the exact path inte-

gral[see Eqs(4)—(17) to (4)—(22) in Ref.[1]]. It can now be Ya(t, 71,72, 73) =My(t, 74,72, 73)

explicitly checked that the expressi@2l) is identical to the

exact path integral expression, at least through the fourth —my(t, 7)My(72,73), . ... (31

moment. Note that the proper{8) is different from the he simol h h hastic Liouvill
statistical properties held by commonly used stochastic pro- FOF the simple case where the stochastic Liouvillian com-
cesses such as Gaussian, two-state-jump, or Gaussian rdRutes with itself for all imes, all of the COP cumulants
dom matrix processes. We will return to this point in the nextVanish forn=3 if the stochastic bath functions have the
section. two-state-jump behavidr20]

The moment expansion itself is not a very useful scheme B _

. . . . t1)B(t,)B(t3)B(ty)- - - y=(B(t1)B(t

for describing dynamics, because an arbitrary truncation of (B(t1)B(t2)B(ta)B(ty)- - -)=(B(t1)B(12))
the expansion leads to secular terms that grow with time. We X (B(t3)B(ty)- - ),
next resort to schemes that provide partaproximate re-

summations of the moment expansion to all orders. Such (32
schemes are the cumulant expansions that will be introduceg@y t,>t,>t,>t,>-- -, whereB(t) is the stochastic bath
in the next section. function responsible for system dissipation. If these bath

functions have different statistics, it may not be a good ap-
proximation to truncate the series at low orders.

We now discuss the various ordering prescriptions that Returning now to the quantum case of interest in this
allow for partial resummation of the expansi¢®l). Each  paper, we find at lowest order, as shown by Aslargjual.
ordering method leads to a unique type of master equatiohl4], the NIBA equation forP(t):

[24]. We note that, when carried out to infinite order, all of dP(t) .

the ordering tec_:h_mques give the safexac) result. Wr_\en :J m,(t—7)P(n)dr, (33
truncated at a finite order, however, the results are different. dt

In simple stochastic situations, when the temperature of the _ ) _ _

bath is infinite and the generator for time evolutithe Where, atT=0, using the Ohmic constrairig), along with
Liouville operatoy commutes with itself for all times, i.e., Ed.(22), we may express
[L(t),L(t")]=0, the use of a particular truncated cumulant

expansion implies a knowledge of the stochastic properties my(t—7)=—AZR : -
of the bath functions. In simple cases, truncation of the cu- Tl+io(t—7)]"

mulant expansion in the “correct” ordering prescription can . .
lead toexactresults that may be obtained in the “incorrect” A.S shown by Grabert and WE."&Z]’ the 50'“"09 to Eq§33)
with the kernel(34) can be given for ale<<1 (in the limit

ordering prescription only at infinite order. In the quantum ) )

case described by the Hamiltoniét), where[L(t),L(t")]  2/@c—0) by the Mittag-Leffler functior33],

#0, truncation of a cumulant expansion at finite order in any _ . 2(1-a)

ordering prescription will never lead to exact results due to Prisay)=Eaq-a (=Y ), @9
the noncommutivity of the Liouvillian at different times \yherey=A 4t and

[28-30. It is precisely this noncommutivity that leads to the

IIl. CUMULANT EXPANSIONS

(34

variety of time orderings of the operatdBs. in the expres- V21w al(l1-a)
sion(23) for m,. Despite this fact, the statistical properties of Aegr=A[cogma)l'(1-2a)] “ o

the bath operators still dictate the choice of ordering pre- ¢ (36)
scription that provides the most rapid convergence of the

cumulant seriesif such convergence exigtg31]. This solution shows damped oscillations fex 3, and inco-

We begin by discussing the chronological ordering pre-herent decay forr= 3. This behavior has been qualitatively
scription, or COP. In this prescription, a master equation otonfirmed by Monte Carlo simulatidr22]. As mentioned in

the form(see, for instancd20,17-19,2% the Introduction, the NIBA cannot give the correct asymp-
4Pt . totic decay of P(t) [yielding the algebraic decay(t)
_():f KCORt, r)P(7)dr (29 «t~2(1=) rather than exponential dedayand is unlable to
dt 0 account for the depth of the decay in the regio® 5 even

before the incorrect algebraic behavior sets in. The NIBA is,
however, known to work quite well for short times and weak
dP(t) & [t _— coupling strengths. The analysis given in the last section pro-
—=> f dry-- J drp_; vides an explanation for this fact. For “short” times and
dt =2 Jo 0 “small” values of « the functionm,(t) is a rather broad,
weakly decaying function of time. When this is the case, the
Xyt o) P(T- ). (30 statistical property28) of the operator® .. is approximately
The COP cumulanty are obtained from the moments by a of the two-state-jump forn{32) as far as the integrations
recusion relatiof24]. In the present case this yields over the cumulants, -5 are concernedThis approximate

is obtained. This equation may be expressed in the form
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equivalence holds in stochasticsense, in that all of the four dP(t)
point correlation functions im, [see Eq.(23)] may be ap- at
proximated bym,(t,,t,)my(t3,t,). For such times and cou-

pling strengths, the NIBA will be essentially exact, as all KP°Rt) may be obtained from the moments

COP cumulants fon=3 will vanish when integrated. We "

shall not provide precise meaning to the terms *“short” or POR 1y t 1 Tn-1

“small,” although their meaning should be clear in the con- K (t)_z‘l fodﬁfo drp--- fo dry

text of the present discussion, and could be quantified with-

out undue laborfin fact “short” and “small” will be XOnsa(t, 7y, oo y70), (38
coupled in the sense that the effective time scale of OSCiIIa\?vhere
tion or decay, 0.4 !, depends om]. Note that the statis-

fOtKPOP(T)dT> P(t). (37

tical property(28) trivially gives two-state-jump behavior for 05,-1=0,
a=0, which leads to the correct behavid(t) =cos(t).
While this is obvious, other cumulant techniquesich as 0o(t, 71) =my(t,71),

those discussed belgwio not embody this type of statistics

for «=0, and cannot give the correct, freely oscillating so- 04t 71,72, 73) = Ma(t, 71,72, 75) = Ma(t, 71)My( 72, 73)

lution for zero coupling strength upon truncation at second —my(t, 7)) My( 71, 73)
order. The statemergbften given in the literatur§34]) that
NIBA works for weak coupling because it is a perturbative —My(t, 73)Ma(7y,72), ... . (39

scheme is thus not strictly correct.

The (somewhat heuristicallydemonstrated fact that the The POP resummation is exact at second order for the
property (28) can resemble two-state-jump behavior undersimple case of a classical Gaussian stochastic process. We
certain circumstances leads one to believe that extending theote that the statistical propert28) appears to be very dif-
COP scheme to fourth order would not be useful, since thigerent from the standard Wick theorem for Gaussian pro-
property is reflected in the vanishing of all COP cumulantscesses. We may still expect that the POP method is better
higher than the second. Extending the COP method to fourtbuited for the incoherent regime=3 for the following rea-
orderdoes not give a method for computing “interblip” in- sons. First, the POP technique resums to an exponential
teractionsin the language of Refl]. form, which is expected to better capture the long time be-

We now turn to the partial ordering prescription, or POP.havior of P(t), which is expected to be exponential. In gen-
At second order, this method was applied by Aslarefudl.  eral, the POP method suniigfinitely) more terms than the
[15] to the spin-boson problem dt=0. The POP master COP method does. For example, expansion of the second
equation has a convolutionleg20,24 form order truncation in the COP gives to fourth order

t t t t t t
P(t):1+f dtlf 1dt2m2(t1.t2)+f dtlf 1dt2f zdtsf 3dt4mz(t1,tz)mz(t3,t4)+ R
0 0 0 0 0 0
whereas the POP gives
t ty t ty t tg
P(t):l‘Ff dt1J dtzmz(tl,t2)+J dt1J dtzj dtgf dt4m2(tl,t2)m2(t3,t4)+mz(tl,tg)mz(tz,t4)
0 0 0 0 0 0

+my(ty,t)My(ty,tg)+ - .

Clearly, the extra terms do not ensure a more accurate result. A2 1

For example, for weak coupling strengths, the POP must be P(t)=ex;{m m

carried out to infinite order to obtain coherent behavior. ¢

However, in the incoherent regime, the effective time scale, cog2(1— a)tan twgt)

defined by Eq.(36) is very long, while the decay of the ( - (1+ wlt2)e 1 ” (40
C

function my(t) is “slow” (algebraig. In this case, we may
expect that we must include terms such as
my(t1,t4) my(t,,t3) that extend over large portions of the Note that Eq.(40) describes astretched exponentiakther
integration region. As we will show in the next section, thethan exponential decay. For values @fthat are not too
POP method seems to capture the behavioP¢t) better much larger than;, however, the POP expression should
than the COP method in the incoherent regime, even beforgive a better representation of the asymptotic exponential
the full asymptotic behavior is displayed. decay of P(t) than the COP(NIBA) expression, which
At second ordef KPOR(t, 7)=m,(t— )] the POP equa- vyields algebraic decay asymptotically.
tion (38) may be solved15]: We have now given some motivation for the belief that
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the COP methodat lowest order should give a better de- Before concluding this section, we would like to apply all
scription of P(t) in the regiona< 3 while the POP method three ordering prescriptions to the c&&e 0, a= 3. Here, it
should be better in the incoherent regiors 3. We now ask is known that the “exact’(in the sense specified in R¢L])
whether there is a summation method that is a “hybrid” of result for P(t) is

the two methods, in the sense that it can incorporate at low A2
order features of the COP and POP methods. In the theory of p(t):exp{ — ch<_)
stochastic processes, such a technique has recently been de- 2 W
veloped[23—-29. This method is based on the summation of, . i o
“noncrossing” (NC) cumulants(for a precise definition see in the limit A/w.—0. Note that in this limit, the second
Refs.[23—29). For simple stochastic situations, if the cou- Moment becomes correlated (=0)

pling is not too strong, the NC technigeeacluding terms up A2

to fourth ordey has been shown to interpolate between the my(t)—
two-state-jump behavior and the Gaussian behdgddt.

~ The NC description leads toronlinearequation of mo-  ging the fact thaP(0)=1, it is clear thagll three ordering

tion for P(t) [24], which at second order, may be eXpresse%rescriptions give the same resgiiven by Eq.(45) at sec-

as ond order. Hence, the value= 3 corresponds to thvhite
dP(t) noiselimit of the bath operator8..(t).

—ar M(1),

(45

o(t).

2w,

(41)
IV. RESULTS AND CONCLUSIONS

where Before comparing the results of the three ordering meth-
ods, we make some comments on the methods discussed in

t Sec. lll. We have shown how three different cumulant meth-

M(t)_fodtlg'é‘(t_tl)P(t_tl)P(tl)' (42) ods give rise to different master equations with different

properties. We have tried to physically motivate when each
approach should have success when applied to the spin-
boson problem at zero temperature. Note that in general, the
discussion of convergence of each cumulant series is a diffi-

cult task. This task is made more difficult by the fact that, at

To fourth order the master equation féx(t) in the NC
scheme reads

dP(t) t ty tp
S TE M(t)+ f dtlf dtzj dtzs(t,ty,t5,t3) zero temperature, the algebraic decays of the bath correlation
o Jo 0 functions leave us with no clearly defined relaxation time for
XP(t—t1)P(t;—to) P(t,—t3) P(ts). (43) the bath. This means that we will rely almost exclusively on

physical considerations and comparison with accepted re-
sults to determine the success or failure of the methods em-
ployed. The case of finite temperature, which can be studied
by the same methods employed here, is often easier in this
respect. If an exponential correlation timgcan be assigned

As in the previous two case, the NC cumulagtsnay be
obtained from the moments by a recursion rela{i28,25.
In the present case this yields up to fourth order

Lon-1=0, to the decaying bath correlation functions, then it is possible
to consider a systematic expansionAgr, provided that
Lot t) =mo(t,ty), this dimensionless parameter is small. When this is the case,
the POP provides the most facile way of systematically sum-
Caltity b ta) =My(t g, to, ts) — My(t,t)My(ty, ts) ming terms in the paramete¥., [21]. In case of Ohmic
dissipation and finite temperatufe the characteristic corre-
—my(t,ts)my(ty,ts), ... . (44)  lation time of theB.. (t) is given byry,~ (2maT) 1 [1]. This

point of view provides an explanation for the familiar state-
It is clear that in appearance, the NC cumulants are a “comment that the NIBA works well in the incoherent tunneling
promise” between the COP and POP cumulants. We note inegime A47,<1. In a stochastic language, this parameter
passing two interesting facts. First, in the stochastic realmregion corresponds to thearrowing or Markov limit of the
the NC ordering prescription truncated at second order i8.’s. Similarly to the white noise limit mentioned above,
exact for the case of a stochastic bath modeled by symmetrigne finds that all three cumulants schemes work well already
(NXN) Gaussian random matrices for the commutator ofat second order and provide essentially the same behavior,
n(t)’s. In this case, the “crossing contraction” P(t)~exg—AZ(T)rt] with Ae(T)ocTe [1].
m,(t,t,)my(tq,t3) vanishes by means of aNL/argument for Since we expect the NIBA to be accurate for very weak
N—oo. This leads naturally to the equatigh2) and its sys- coupling strengths, we first turn to the case of weak to inter-
tematic generalizatio®3) through the NC cumulants. Equa- mediate coupling strengtly=0.3. For coupling strengths in
tion (42) has first been derived by Kraichng®6—-39 in the  this range, simulations at low temperatures have shown that
fields of turbulence and fluid dynamics. Our motivation for the NIBA is qualitatively correct in predicting damped oscil-
the application of this method isot based on a stochastic lations, but may fail in predicting the damping strength. An
type of reasoning, but on the fact that in simple situationsexample of this is given by the simulations of Makarov and
this ordering prescription may combine the benefits of theMakri [13], which show that for intermediate coupling,
COP and POP methods. NIBA may fail by slightly underestimating the number of
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FIG. 1. Zero temperature plot oP(y)
(y=Agt) for «=0.3 andw./A=6. The dotted
line is the second order POP result, the dashed
line is the second order noncrossing cumulant re-
sult, the dash-dotted line is the NIBfsecond
order COP result, and the solid line is the fourth
order noncrossing cumulant result.

P(y)

oscillations inP(t). We note, however, that these simula- simulations of Makarov and Makfil3]. Although this ex-
tions were carried out for values df/ w. that are not very ample represents only one valueafsimilar results may be
small. In Fig. 1, we plot the NIBAsecond order COPso-  obtained for all moderately strong values @fup to a=3.
lution for P(t) against the solutions obtained from secondThus, it appears that the noncrossing scheme works well in
and fourth order truncations of the noncrossing cumulanincorporating(and perhaps improvingthe qualities of the
method, and the second order POP. Note that, as expectedOP method for moderate values @fwhen a< 3.

the second order POP solution fB(t) fails to produce any We now turn to the relaxation d?(t) in the incoherent
oscillations. We expect that far< 1 the POP will always be regimea= 3. Here, the beautiful path integral simulations of
inaccurate at low orders. The second order noncrossing clegger and Mak22] provide a means of comparing the cu-
mulant solution forP(t), obtained from the Kraichnan-type mulant expansion methods with exact results. In this region,
equation(41)—(42) is similar to the NIBA solution, although we expect the POP to be most successful, while the NIBA
the oscillation inP(t) is much weaker. The fourth order (second order COHs expected to be worse. Based on expe-
noncrossing cumulant solution gives a first oscillation that isience with simple stochastic situations, we hope, as in the
very similar in magnitude to the NIBA solution, however, it coherent portion of the coupling space, that the noncrossing
describes one extra weak remnant of an oscillation. This bescheme can capture the essence of the POP in this regime. In
havior is very similar to the behavior displayed in the exactFig. 2, we show the decay d?(t) calculated by different

1 T T T T T T T
0.9 1
0.8f i
o]
o7k ©\ ]
o}
o6k ° | FIG. 2. Zero temperature plot oP(y)
' o (y=Aeqt) for «a=0.6 andw./A=6. The dash-
Sosl %\ | dotted line is the NIBA(second order COPre-
' % N\ sult, the dashed line is the second order POP re-
%\ sult, the solid line is the second order noncrossing
0.4 (o] ~ T .
% S cumulant result, and the open circles are the
03k S | simulation result of Egger and MdR2].
01 N
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0.9 .
08 © 4
(o]
07 % %, .
o %
[CRRH
0.6- 9 s 1 FIG. 3. Zero temperature plot oP(y)
_ N (y=Aqt) for «=0.7 andw,/A=6. The dash-
Fos5r e 1 dotted line is the NIBA(second order COPre-
RN sult, the dotted line is the second order POP re-
0.45 R _ T sult, the solid line is the second order noncrossing
e cumulant result, and the open circles are the
o Nommypee.. T = simulation result of Egger and MdR2].
0.2
01r ]
0 1 1 Il 1 1 1 1 Il 1
0 02 04 06 08 1 12 14 16 1.8 2

ordering prescriptions foor=0.6. It must be noted that the Again, the POP seems to perform the best, while the second
simulations were carried out for long times, but not longorder noncrossing scheme overestimates the decay. As in the
enough to show the asymptotic algebraic decay of the NIBAcase of weaker coupling, we see if truncation after fourth
(second order COPsolution of P(t), or the asymptotic ex- order in the noncrossing cumulants can properly correct the
ponential decay of the exact solution. Due to this fact, it issecond order result. This test is shown in Fig. 4. While the
somewhat difficult to see that the POP solution is to be preresults appear to show that the noncrossing scheme is con-
ferred over the NIBA solution in the incoherent regime. Inverging to a POP-like description d#(t), we again must
support of this claim we note two facts. First, the POP solu-exercise caution due to the lack of further concrete evidence
tion better manifests the deep decay of the exact result in thier this belief. For such a large value af it is quite possible
nonasymptotic regime. Secondly, near the peirt1/2, the that the cumulant methods break down.

POP solution will better approximate the exponential decay One interesting property displayed in Figs. 2 and 3 is the
of P(t) in the asymptotic regime than the NIBA, which pre- close agreement between the POP descriptioP@j and

dicts P(t)~t2(1~ %) The simulations of Egger and Mak end the exact simulation oP(t) for moderately long times. In
just before this regime is reached. As we had hoped, foFig. 3 this behavior occurs foy=2.5, while in Fig. 3, the
a=0.6, the second order noncrossing technique is nearlggreement is less pronounced, but appears to occur for
identical to the POP. Figure 3 shows the resultsder0.7.  y=1.6 (note that there is some scattering in the simulation

1 T T T T T T T T T
0.9r .
0.8- . .
{'<.. FIG. 4. Zero temperature plot oP(y)

0.7f NS, 1 (y=Agt) for «=0.7 andw./A=6. The dotted
2 e, line is the fourth order noncrossing cumulant re-
~ NS sult, the dashed line is the second order POP re-

) N i sult, and the solid line is the second order non-

N crossing cumulant result. Note the change in the
05k St 4 X axis.
0.4} s L"\':--...,—

0.3 1 ! I 1 1 ! 1 1 1
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16 T T T T T T T T T _ s
1.4r- -7 i .
1.2- o7 .
1F P -7 J
= L7 FIG. 5. Relative magnitude of second and
"g’ 0.8f e 7 fourth cumulant effects in the POP far=0.7.
E osl .t | The dashed line showl¥dy’ [} dy"K5y")|
3" , and the solid line shows
' ’ . . .
e |3dy’ % dy’KE9y")|. KPORt) is defined in
04 L7 Eq. (39).
//
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data forae=0.7 neary=2 that slightly obscures the apparent this derivation to discuss the “statistical” properties of the
agreement In order to investigate this, we have computedrelevant bath operators. Using the moment expansion, we
I3y’ [ dy’KEO%y”) and [¥dy’f¥ dy’KEy”) where first discussed the chronological and partial ordering pre-

KPORt) is theznth term in the expansio((§8) If the inte-  SCriptions that involve different types of cumulants. We dis-
n .

grated second order POP cumulant is of order one for a giveﬁ“sseol the merits and drawbacks of each method. In an effort

time interval, while all other POP cumulants are small wherl® ¢0mbine the merits of the COP and the POP, we applied
pe noncrossing scheme. Specializing to the case of zero

integrated over the appropriate time domain, then we expe& : .
the truncation at second order to be a good approximatiorjcMPerature, we tested each method, including fourth order

While we cannot study all the POP cumulants, we have stud€MSs when necessary. Our results show that the noncrossing
ied the second and the fourth. In Fig. 5, we compare thécheme is a promising candidate for combining the virtues of

properties of the second and fourth POP cumulants fo1€ COP and POP, especially for intermediate values of
a=0.7. Fory=1.4 toy=2 (the boundary of the simulation e|th?r side of the coherent-incoherent transition value of
results of Egger and MajR2]), we see that the contribution ¢~ 2 We note th_at more work should be_ done to test the
from the second POP cumulant is at least ten times great&@!idity Of this claim. Lastly, we have provided evidence to
than the contribution from the fourth cumulant. This strongly SUPPOrt the belief that the stretched exponential behavior de-
suggests that the agreement of the second order POP methgiPed by .second ord.er truncation Of, the POP in the inco-
with the exact simulations is no coincidence. In fact, theN€rent portion of coupling space may infact be very accurate
agreement between E¢41) and the simulation occurs pre- [OF intermediate times.
cisely in the interval where the second order cumulant domi-
nates the fourth order cumulant. Since the slopes of the two
curves suggest that this behavior continues for some time, We would like to thank the NSF for partial support of this
we feel there is strong evidence for the somewhat remarkablesearch. D. R. R. would like to thank the Air Force Office of
conclusion that, for significant intermediate times, the decayscientific Research for financial support, F. L. H. B. would
of P(t) is quantitatively described by a stretched exponeniike to thank the NSF for financial support, and P. N. would
tial. For longer times, the decay is most likely purely expo-like to thank the Alexander von Humboldt foundation for
nential. financial support. We would also like to thank Professor C.
We now summarize the results presented in this papeMak for providing the data from his simulation results, and
We first carried out a derivation of the moment expansion forProfessor R. Silbey and Professor R. Speicher for useful dis-
the variableP(t) in the spin-boson problem. We then used cussions.
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