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Large contour lines in a random landscape constitute a continuum percolation problem. We consider directed
walks on these lines at the percolation threshold—self-avoiding by construction—and calculate the density
correlation function using a Monte Carlo simulation. It has a scaling structure where all exponents are related
to the fractal dimensiom,,=7/4 of extended contour lines. The corresponding scaling function, however,
vanishesn the limit «— 0 with a power law giving rise to anotharpriori independent exponeit Our data
indicate a Cole-Cole structure for the quantjiy(w) averaged over extended lines only, which implies
{=2[7, »=0 and an anomaly in the small frequency asymptotics of the diffusion coeffi€égtw)
«w~¢/g?. This anomaly is reminiscent of a similar one in the quantum Hall effect, however, with negative
{qne- We argue that the difference is due to the decay of phase resonances in the latter which come with a
broad distribution of decay timepS1063-651X97)14102-3

PACS numbdps): 64.60.Ak, 71.30+h, 73.40.Hm

I. INTRODUCTION sense that the mean square deviation from the origin in-
creases, like'™? whered=1/7 is positive. HereS can eas-
Contour lines in a random but smooth landscape constilly be traced back to the fractal dimension of the hull. The
tute a typical continuum percolation probldr]. The lines latter describes the relation
are all closed at very low elevation. With increasing altitude g
the mean extension of the contour lines grows until finally RhecL @)

there is a line spanning the entire landscape so that it beo'f the extension of a trajectory to its length. Given that the

comes percolating. o _ average velocity of an ant may be taken as constant, we
One can attribute an orientation and a velocity to an aNfjerive 5= 2/d,—1=1/7

moving on such a contour line: If it walks around an island it 5 vever. to obtain a prediction for the experimentally

moves clockwise, otherwise counterclockwise. Its speed igg|eyant conductivity one actually has to average osiér
proportional to the mountains slope at its position. As con-contour lines. We have demonstrated analytically and by
tour lines never intersect, the ant—from its own point ofmeans of a numerical simulation that one obtains a simple
view—behaves as if performing a particular type of self-diffusion law in this case. All analytical considerations
avoiding random walk. It is in the same universality class aseavily make use of the analogy to the site percolation
the “smart kinetic walk” introduced earlier by Weinrib and theory, by assuming that contour lines have the same statis-
Trugman|2]. tical properies as cluster hulls. This assumption, however, is

This model—extended by the semiclassical quantizatiorestablished very we(l9,10].
condition of integer flux between two neighboring contour In this paper we extend our previous work and analyze the
lines—is an accurate description for the propagation of elecwave number dependence of the density correlation function
trons in the semiclassical, high magnetic field lif8. In by means of a Monte Carlo simulation of ant tracks in ran-
the context of the Integer quantum Hall effect it provides andom mountains. More specifically the object of investigation
intuitive approach to the experimenta| fa@@ iS the structure faCtO‘E(q,w) Wh|Ch iS related to the Spectra|

Its predictions for the critical exponents in actual quantumfunction as x"(,) = ©$(q,®)/2. Averaging all contour
Hall systems are incorrect, howewerg., v,=4/3 instead of lines we find the scaling structure
vghe=2.3+0.1[5]). Nevertheless, in a previous stuid] we s -
have found that the result for the dynamical conductivity at S(qw)=q " "0(w/q?), z=T7/4,1=1/2 ()
criticallity coincides with the numerical results of full quan- ) )
tum mechanical calculatiorid,8]. In particular, we have re- where all exponents can be reIaFed to t.he frac'gal dimension of
covered the supposed to be universal value for the stati’® hull d,=7/4. From the scaling point of view the long
conductivity o= 0.5=0.02%/h and the “long time tail”  time tail anomaly in theg=0 conductivity is a correction to
anomaly. scaling. _ _ _ _

In these calculations we have seen that it is essential to It turns out, that the scaling functiof(x) itself provides
distinguish two different kinds of averages over ant trajecto2nother exponen{=0.28+0.05 because ivanishesin the
ries: one average takes only such paths into account whickmit of small arguments with a power law. As a conse-
do not close within the observation time; whereas anothefluénce the conventional exponentdescribing the wave
procedure counts all orbits regardless if they are closing oumber dependence of the density correlation function in the
not. Ant motion on open trajectories is superdiffusive in thelimit of vanishing frequency and; are not identical and
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instead 7= ;;—gz. Our numerical results suggest that
n=0. This is consistent with a Cole-Cole form gf(w) for

the quantity averaged over extended orbits. The correspond-
ing exponenta=8/7, however, is larger than unity opposed
to the usual casgll] wherea<1. The anomaly in the scal-
ing function leads to a power law for the diffusion coefficient
at small frequencies

D(qw)xw g% w/g*<l.

One can modify the current model by allowing ants to hop
across saddle points with a certain probability. We still ob-
serve an anomalous diffusion coefficient, however, with a
negative exponenf. We discuss the connection to a similar
power law anomaly in the quantum Hall effect.

II. THE CONTINUUM MODEL

1.0 v T
—— q,,;=0.157
_____ qmax=1 '5qmin

0.8 .

F(a.t)

0.0 = L
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t

FIG. 1. Relaxation function averaged over all detected trajecto-

FOT Calc_ulatlng_ t_he ant pa}ths we use a model Wh'_Ch Wa3ies. The unit of time is set by the average time needed to travel one
described in detail in an earlier publicatipl. Here we just correlation length of the random landscape along a trajectory. The

give a brief summary on how it works. dashed line corresponds to the largest of the six equidistant wave
Per definition, our model on ant dynamics can be reprepymbers, the uppermost line to the smallest one.

sented by the equations of motion

The angular brackets indicate an average over ant paths.

X= ﬂ Figures 1 and 2 depict our results for both averages. We
aay restrict our discussion to the total averagég,t) and only
3 mention the analogous featureskf(g,t). We denote open
orbit quantities with an index 0.
y: _ ﬂ The continuum model has a microscopic time seat®n-
X nected with the correlation length of the random potential.

For timest being larger tharr, though small enough to allow

Here (x,y) denotes the ant’s position, whil(r) its eleva- o,
tion in a random landscape. We takér) to be a superpo-
sition of Gaussians placed on a square lattice

—lr—rl?

V(r)=i2’j ai‘jex;{T .

Our procedure for obtaining an ant path) goes as follows:
First we pick the amplitudes; ; at random from the interval
[—1,1]. Then we choose a poinf0) in the landscape such
that V[r(0)]=0 being the critical elevation in our model.
Starting out from here we integrate the equations of motion
(3) numerically.

These equations faithfully describe ant movements on the
microscopic scale. In this context it has been ardué that
the slowing down of the ant near saddle points has substan-
tial influence on its long time dynamics: On an infinitely
extended trajectory it will finally come so close to a saddle
point that it asymptotically stops. However, in our calcula-
tions we did not observe this slowing down. As outlined in
Appendix B, the above mentioned argument neglects how
the probability of coming close to a saddle point increases
with the walking distance. It turns out, that the increase is
much too weak to reduce the average velocity on very long
contour lines substantially.

lll. SIMULATION RESULTS

We discuss the outcome for the relaxation function first.

an expansion of the “cosine” in E(5)

F(a,t)=1—3q%[r(t)—r(0)1?)+- -,

4 the relaxation function is dominated by tlge=0 diffusion
) behavior

([r(t)—r(0)]1?=4Dt
(6)

([r(t)=r(0)]%)g=4Dot**?,

FO(q!t)
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t

FIG. 2. Relaxation function averaged over orbits which did not

F(q,t)={codq[r(t)—r(0)]}). (5) close within the observation timg,,s= 2048.
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FIG. 3. Structure factor averaged over 1150 open orbits for 1 i i
plot after rescaling according to E(L0).

wave numbers betweeng,,,=27/800 and .= 22.8min

(Tops=32768). .
S(q,0)=q 2" "0(wlq?), z=T/4, 7=1/2

which was analyzed earlier as mentioned above. Figure 8 9)

illustrates analogous results for a lattice model.

After the ant walked for a time, on a contour line its
distance from the origin will surmountd.if the extension of
its orbit is large enough. The contribution of these trajectowe find the analytical expressions for the exponents in-
ries to the relaxation function leads to its temporal decayyolved.
and, in particular, to its minimum. One obtains an estimate Figure 4 displays the scaling functigx). In our earlier
onty by noting that the orbits in question for times'ty can  paper[6] we argued that the velocity-autocorrelation func-
be considered open, so that the ant motion is superdiffusivgions ®, and® for the average over open and all trajectories
From Eq.(1) we infer: tqocq™%. Thus we conclude that the are related® = w®®,. This relation can easily be general-
dynamical exponerz=d,,=7/4. ized

Orbits with spatial extension smaller thamg,Lhowever,
provide for a time independent background, as can be read
off Fig. 1. This nonergodic feature of the relaxation function
will be defered to Appendix A. It is absent iRg(q,t) as  whereayis a dimensionless constant of order one. Hence, we
relaxation via open trajectories is ergodic. After subtractingalso depict the curvagx®dy in Fig. 4. After choosing a suit-
this background the relaxation function is negative for timesable value fora, it indeed falls ontog(x).
larger thant,. This is a consequence of the fact that most The low frequency asymptotics of the scaling function we
orbits that contribute to the minimum have a tendency ofread off the same data(x)<x¢ with {=0.28+0.05. From
trying to close on a scale not much larger thag. Whus for  the definition of the exponeny
t>t, we observe anticorrelations rather than correlations.

For the discussion of the long time and scaling features of
the density correlations we switch to the Fourier transformed
we see that the relatiom= 7— ¢z holds true. Within the
numerical accuracy our result fgrsuggests that

So(qw)=q 2" 10 (wlq?), z=TI4, po=1/4

B(x)=aX’0y(X), (10

S(q,0—0)q "7

S(q,0)= J:dt F(a,pe"!, ()

7=10=0.
which we call the structure factor. In Fig. 3 we present our
data for averaging open contour lines. We can observe the power law in the scaling function for
From the discussion of the relaxation function the overalla frequency interval[0.01,0.] roughly. In the regime
structure ofS(q,w) is evident immediately. In particular, for @/q“<1, which we are interested in, the corrections to scal-
the high frequency tail we derive ing are mainly due to the finite wave number. Scaling works
reasonably well only for the smallest wave numbers acces-
sible. Thus going to lower frequencies would imply the
®) simulation of larger trajectories and, hence, much longer ob-
servation times. With the continuum method this cannot be
So(q, @) (q/w) 2w~ ° easily achieved. For the current simulation our observation
time was 327 68. This corresponds to a typical orbital radius
From matching the high frequency behavior on the scalingpf 1000 potential correlation lengths. Calculating a trajectory
form on an ALPHA 3000/400 takes roughly 30 min.

S(q,w)(g/w) 2

W Omax

W Wmax-
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FIG. 5. Scaling function as obtained from the lattice method. g1 6. pissipative part of the complex density correlation func-
The dashed line is meant as a guide to the eye. The noise presentjgy, for four wave numbers. The solidasheilline represents a fit

the data is due to the lattice structure WhICh.ImplleS the Value%ccording to the Cole-Coldiffusion coefficient parametrization.
(=1,0,1) for the components of the ant's velocity vector. The fit for the parameter&, and ¢, orients on the high frequency
Results from a lattice method tail

In a recent publication Wysokinski, Evers, and Brenig
[13] have introduced an effective lattice model which cap- xo(Q,w)=
tures the features of the ant paths essential for the long time
dynamics without refering to the microscopic details. This
model allows for the simulation of larger orbits and thus to Q) =2A0(q,w)/0", (14)
go to lower wave numbers.

We briefly outline its central idea. The network of contour where we takea=1+ 6=8/7 from matching on the high
lines at a given elevation is represented by a square latticéequency asymptoticg8). This choice automatically re-
The nodes correspond to the saddle points in the landscapgRects the normalization condition X, is assumed to be
the links to the contour lines. An ant moves along the linksconstant. Note that as a consequence of the superdiffusive
of the network. Each node carries an elevatig, whichis ~ motion on extended contour lines>1.
positive (negative with probability “p” (“1 —p” ). At posi- Another parametrization which we will refer to as the
tive nodes the ant turns right, otherwise left. At the percoladiffusion coefficient parametrizatioCP) is
tion threshold ‘p” equals 1/2.

In Fig. 5 we present the scaling function as obtained from Do(q,w)q*
this approach. It clearly shows the asymptotic power law. Xo(g @) =N(4) —iw+Dy(q,w)q?’ (15

T+ (—Twn® (13

IV. DIFFUSION COEFFICIENT

Dy(qw)=w? 197). 16
AND COLE-COLE TYPE RELAXATION o(G@)=0 e o(/q) (16

The structure factor is related to the complex density corAgain the matching procedure leads us to the scaling form
relation function for the diffusion coefficienDy(q,w). To consistently com-
pare with the previous choice we assume hgis simply a
constant and calculat&{8) =1+ 6 from the normalization
condition.

In Fig. 6 we show fits for either choice of the parametri-
asS(qg,w)=2Imy(q, )/ w, which can be considered to be an zation. We have taken, and ¢, to be constants such that
implicit definition of the diffusion constand. We concen- the high frequency tail of the original data is reproduced. The
trate on averages over extended contour lines. In the foregeesulting estimate of the Cole-Cole type formula for the low
ing we have seen that here relaxation is ergodic and thuBequency amplitude is considerably better than the one from
X8(q)=1, which is simply a consequence of the normaliza-the DCP approach.
tion condition Itis instructive to extract the diffusion coefficieDf from

the data. We present our result for the scaling function

[ do ¢eo(X) in Fig. 7. Inverting the parabolic equation yields two

1= Es(q’“’)' (12) branches which touch at a single point. We take the combi-

nation of the low frequency tail of the upper branch and the

In order to capture the scaling structure of E2).we need to  high frequency tail of the lower one as a physical solution.

introduce a more general parametrizationS¢6,w). There  Clearly the deviation from the data in the DCP scheme ex-

are two common choices. The first one is the so called Colepresses itself in a variation of the scaling function of the
Cole form diffusion coefficient by a factor of 3.

2

X(q7w):XO(Q)Tqu, (11
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FIG. 7. Scaling function of the diffusion coefficient. The hori-

zontal branches correspond to the physical solution of the parabolic 1. g pata for(R¥(t)) averaged over opefupped and all
equation. The slight negative slope at large argument is due Qg ey trajectories. The total average is over 7564 of which 2190
corrections to scaling. have been open. The observation time has been 16 384 &bea.

. . . . similar to Ref.[13], Fig. 1.
The simulation results for the total average in the scaling

regime can be understood as a consequence of reldtn
We only mention that the diffusion coefficient has the struc-
ture

{gqhe=—0.19+0.02. In the opposite limit of zero wave num-
ber one obtains a well defined diffusion constant. In other
numerical calculationf7,15] in the lowest Landau level the

D(w) | corresponding conductivity was found to be(x=0..5e2/h o
D(qw)= {2 (170  and is supposed to be independent of microscopic details in

consto*/q” @/ wmax<1. the realization of the disordgf.6]. If the quantum conduc-
tivity is indeed a universal quantity, this is in striking con-
trast to its classical counterpart which, according to our re-
sults, is not.

How does the different low frequency asymptotics in the
scaling function for the classical contour line approach and
the wave function calculations come about? First we discuss

D(w)=Dy—consfe|+- - -. the average over extended trajectories. As contour lines

never intersecfexcept for the possibility of touching at a

It leads to pronounced deviations from a perfect scaling besaddle pointthey constitute a special kind of self-avoiding
havior of the structure factor as can be seen, e.g., in Fig. 6random walk. In particular, if the ant has been at a place

In the current study we have concentrated on the finitssome timet ago and wants to go back, it has to find a path
q behavior. For comparison with quantum calculations in thewhich does not cross the path defined by the steps taken at
context of the quantum Hall effect it is also instructive to times earlier thah. With increasing this becomes more and
consider the dc conductivities in the classical models. In thenore difficult. In other words, ants have difficulties, after
lattice model the conductivity equals the diffusion constanieaving a certain area, returning to their origin. Thus in the
[13], which can easily be read in Fig. 8. Here we report asector ofw/q?<1 density fluctuations are suppressed.
more precise estimate than in a previous publicafib8] If we average over all paths these considerations still ap-
which is o, = (0.45+ 0.01)e2/h. In the continuum model the ply. However, the fraction of large orbits having small fre-
conductivity iso®=0.5e?/h, independent of the microscopic quency components in the relaxation function is reduced, so
parameters of the random potentiél]l. As both models be- that S(q,») decays faster thaiBy(g,»). The trajectories
long to the same universality class we conclude that the dissmaller than If lead to thes(w) spike inS(q,w) which we

sipative conductivitysS, in the classical model cannot be a treat in Appendix A.
universal quantity. We believe that the different features of the structure fac-

tors at criticallity and low frequency are due to the possibil-
ity of tunneling in a wave function picture. Interference ef-
fects present in quantum mechanical calculations, coupled to
Chalker and Daniel[14] have calculated the structure potential disorder, lead to pronounced resonances. If the po-
factor of wave functions for noninteracting electrons undertential fluctuations are sufficiently strong and of long range
guantum Hall conditions. They observe a similar anomaly inthese can support evéquasij classical substructures in the
the diffusion coefficient Eq.(17) and the corresponding wave function[17]. In the classical contour line approach
structure in the spectral scaling functigg,«»/q?). How-  there is a fast decay channel for the density correlations via
ever, they find a divergency in the asymptotics of the latter atransport along the classical trajectories. We speculate that a
small arguments and correspondingly a negative exponersimilar fast channel also is present in the quantum system.

Here (= 2/7 andw ., q* refers to the position of the maxi-
mum in the structure factor. In a previous wd&d we dem-
onstrated that in the limit of vanishing wave numisgrthe
diffusion constanD (w) has a nontrivial frequency depen-
dence

V. RELATION TO THE QUANTUM HALL EFFECT
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5 lar anomaly in the quantum Hall effect. However, whereas
' ' ' ' here the conductivity is believed to be a universal quantity,
our calculations show that it is not universal in the classical
models.
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FIG. 9. Structure factor for “hopping”ant&iverging curves at

w—0,Tops=209 7152, W=200) and “nonhopping” ants The contribution of closed orbits with a spatial extension
(Tops=131072, W=x) for two different wave numbers smaller than X inhibits the relaxation of density fluctua-
(Qmin=27/1600). tions back into the homogenous equilibrium state. Conse-

quently the decay of the relaxation function

However, in addition there is a possibility for the slower
decay of sharp resonances. This provides the main amplitude F(q,t)={codqr(t)—r(0)1})
in the w/q*<1 section of the structure factor. If correspond- ) _ o
ing classical orbits exist—as in the case of strong, londgS not completely down to zero. Instead it attains a finite
ranged random potentials—these are inert and caught in tH&imber even at very large times
S(w) peak ofS(q,w). .

Figure 9 further illustrates this point. The data curves di- tlm Flat)=1-1(a). (A1)
verging at zero frequency are obtained from a slightly modi-

fied vers_iqn of the lattice mod¢l7] constituting_ a“weakly Here as a consequence of the normalization conditi@
self-avoiding random walk.” We have destablized the closedne nonergodicity parametéfq) is related to the quasistatic,
ant paths by zaJI\(?Wlng the ant to move ldfight) with @ jsqjated susceptibilitw°(q). One can easily determine how
probability Toce™¥sp (or1-T, r_espectlve|_§' even at positive ¢ (q) must depend on its argument: The contribution of orbits
(negative nodes. The elevations we pick from a homog-n,ch smaller than @' to the average in Eq5) is 1. This
enous distributiorj —W,W]. This “ant hopping” is meant jnpjies that 1 f(g) is the ratio of all contour lines smaller
as a crude caricature of the agtual resonance decay. It COMBRn 14 or equivalently thaf(q) is the ratio of orbits larger
with a power law divergency in the low frequency sectiony,,, 14 |t is straightforward to derive from analogy to per-
which is produced by a broad distribution of decay times 0f¢,|ation theory that the fraction of lines with length larger
the originally stable classical orbits. Of course, our oversiMipan L obey a power law with an exponent1/7 [6]. The

pI|f||e_? modlel does notfprhoperly a(]icour]t :;Osr thedcc;]mpllcate ractal dimension of the hulll,, relates the length of a con-
multifractal structure of the wave functidd8] and the cor- tour line to its spatial extensioR%L. Taking all the in-

responding decay statistics. S0 =0.75+0.05 turns out to formation together we conclude
be twice as large as the correct valye 0.38+0.04.
f(q)ocq™ (A2)
VI. SUMMARY
] ) ] ) This is in good agreement with our numerical data shown in
We have simulated the density correlation function forgjg 10.
directed propagation on contour lines in a random landscape gq far we have discussed the relaxation function only. As

at criticality. The structure factor is of a scaling form but hasg consequence of its nonergodic character the full structure
a special feature in that the scaling function vanishes at smallf the spectral function is

arguments. This anomaly is a consequence of the superdif-

fusive motion on extended contour lines inherently described S(qw)=2m[1— f(q)]g(w)+§(q'w)' (A3)

by the fractal dimension of the hull,,. Under the assump-

tion that the scaling function of the diffusion coefficient ob- Whereg(q'wﬂo)zol

tained when averaging extended contour lines can be ap-

proximated by a constant number, the anomaly can APPENDIX B: SLOWING DOWN AT SADDLE POINTS
qualitatively be understood. Furthermore, all scaling expo-

nents can be traced back w),. In particular, we find Consider an ant moving on an infinitely extended trajec-
7=0. The anomaly changes its character completely if onegory. During its walk it comes close to certain saddle points
allows for the hopping of ants walking on a closed contouralong its path. At these particular instances the velocity of
line across saddle points to other lines. In this case the stru¢the ant becomes very small. More precisely, for a given tiny
ture factor diverges with a power law, reminiscent to a simi-velocity, we can always observe the ant approaching a saddle
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X+ \/xﬁ—xg)

Xo

1.0

(B1)

y 1
tio(Xo) = In
/:,; IO( O) \/%

e An ant heading straight to the saddle pdicdrresponding to
o Xo=0) would need a logarithmically infinite time to actually
~ get there and thus stop altogether.
e Next we estimate the impact of this effect on the mean
~< velocity measured on a piece of a contour line of length
S When traveling the ant passég(Xy) saddle points located a
distanceX, from its path. A measure for the tinile, spend
----- f(q)=aq", a=1.55 10.02 near these locations is

f(a)
\

0.3

0.01 0.10
q Tio= fodXOZL(XO)tiO(X 0)-

etelr:]!((Bq.)lo. Wave number dependence of the nonergodicity paraml-ntroducing the distribution function

L—o

point where its speed is even smaller than the given one,
provided that we wait for a sufficiently large amount of time.

Thus one concludes that the average ant velocity we measusg,q the total timeT, spend for traveling in between the
should depend on the observation time: the longer we obzgqgie points we define a mean veloaity

serve, the lower the mean valuewill be. This effect is of
relevance for our analysis of the long time dynamics of the 1,471,
b — = Ty + deXOP(Xo)tiO(XO)) / L.
Pn a numerical study we found th&(Xy) vanishes linearly

ants ifv vanishes in the limit of infinite observation time. In v L
this appendix we demonstrate that slowing down at critical

At small arguments. Thus it completely suppresses the weak
logarithmic divergency of;, in the integrand and the mean

saddle points is an effect too weak to diminish the ants meal
velocity is finite. We did an independent check on this result

velocity considerably.
Near the saddle points of interest to us the potential cal
be parametrized in a parabolic approximation

V(x,y)=Vsp—(a/2)x2+(b/2)y2. by investigating the mean velocity of ants living on closed

orbits as a function of the length of this orbit. We found

As the ant moves at constant elevation its positinY) can  v(L)=0.96 essentially independent bf Thus we conclude
be parametrized by a single coordinate, ¥ayWe integrate that assuming a finite mean velocity for the traveling ants
the equations of motio(8) to find the timet;, needed for the independent of their orbital extension is very well justified
ant to walk from some spoX; near the saddle point to the and slowing down near saddle points can safely be ignored

position X, where its distance is minimal for our purposes.
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