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Tuning the range of spatial coupling in electrochemical systems:
From local via nonlocal to global coupling

Nadia Mazouz, Georg Fla¨tgen,* and Katharina Krischer†

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Dahlem), Germany
~Received 01 October 1996!

A specific feature of pattern formation in electrochemical systems is the occurrence of accelerated fronts;
they can be attributed to long-range spatial coupling. In this paper we demonstrate that different coupling
functions can be realized by tuning easily accessible parameters: The range of the coupling crucially depends
on the length scales of the system, and the strength of the coupling is proportional to the conductivity of the
electrolyte. Simulations in the bistable regime are presented which illustrate how the front behavior changes
qualitatively when length scales or conductivity are varied.@S1063-651X~97!12702-7#

PACS number~s!: 64.10.1h, 82.20.Mj, 82.45.1z, 47.54.1r
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INTRODUCTION

Reaction-diffusion equations proved to be well suited
describing many different dynamical regimes of dissipat
systems@1,2#. An implicit assumption when modeling spati
communication by a diffusional process is that only near
neighbors communicate with each other, or, in other wor
that the spatial coupling is local or short range. Evidently t
prerequisite does not always hold, and recently the impac
global coupling on pattern formation has become an ac
area of research.

In a globally coupled system a change of state of
system at a certain location is felt equally by all other pa
of the system. Examples where global coupling turned ou
be essential for the description of the spatiotemporal dyn
ics are CO oxidation at Pt single-crystal surfaces@3–6# as
well as at supported catalysts@7#, semiconductor device
with a load resistor in series@8–10#, or gas discharge tube
@11–13#. The influence of a global feedback on the dynam
of spiral waves was demonstrated with the light-sensit
Belousov-Zhabotinsky reaction@14#. The important role glo-
bal coupling can play for spatiotemporal dynamics was c
firmed in theoretical studies, which proved the influence
the global coupling in a particular system or generally cl
sified patterns that can arise in a certain dynamic regim
global coupling is added@15–22#.

Besides these two extreme cases, local coupling, on
one hand, and global coupling, on the other hand, any va
tion in range and strength of coupling is possible. In fa
nonlocal coupling, defined by a characteristic distance o
which the state of the system at one point influences o
parts of the system with a distance-dependent strength,
be viewed as the general case. From this point of view, lo
and global coupling are the two limits of nonlocal couplin
with the range going to zero and infinity, respectively. Mo
over, long-range coupling is always to be expected when
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spatial coupling occurs via electric fields. This kind of tran
port mechanism is important in a variety of systems, amo
them, e.g., synaptic coupling of neurons.

There are comparatively few investigations of spatiote
poral dynamics of systems with nonlocal coupling. For e
ample, Schimanski-Geier, Zu¨licke, and Scho¨ll described the
growth of domains in the bistable regime in the presence
nonlocal interactions@23#. Elmer considered spatially ex
tended systems with nonlocal dynamics near the soft m
instability of a stable and uniform state@24#. Kuramoto de-
rived the complex Ginzburg-Landau equation for nonlo
coupling in a general form, and obtained some astonish
results on the scaling behavior of turbulent oscillators@25–
27#. Recently it has been shown that spatial coupling in el
trochemical systems occurs via migration currents in
electrolyte, and is intrinsically nonlocal@28,29#. In these sys-
tems an accelerated motion of interfaces was observed in
bistable, excitable, and oscillatory regimes@28,30–32#,
which was attributed to the nonlocal coupling@28,29#.

In this paper, we discuss various aspects of the nonlo
coupling in electrochemical systems. In particular we sh
that the range of the coupling can be varied continuou
and we discuss the effect of the range of the coupling on
dynamic behavior in the bistable regime. As electrochem
systems have many similarities with other systems that se
as models for the study of pattern formation, e.g., semic
ductor and other electronic devices or gas discharge tu
results presented here give a guideline of how to establis
avoid long-range coupling experimentally, and how to adj
its range. In Sec. II we give a short review of the propert
of electrochemical systems which are important in our c
text and how they are modeled. A detailed derivation a
discussion of the model can be found in@29,33#. In Sec. III
the nature of the long-range coupling and its parameter
pendence are elaborated and substantiated by simulat
Finally, we discuss in which range the coupling can be tun
as well as the connection of the model considered here w
another model for electrochemical systems which is of
reaction-diffusion type@34#.

SYSTEM AND MODEL

Electrochemical reactions take place at the electro
electrolyte interface, the reaction rate being decisively de

r-
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55 2261TUNING THE RANGE OF SPATIAL COUPLING IN . . .
mined by the potential drop across the interface, the
called double layer. In an electrochemical experiment t
potential drop, and thus the reaction rate, is usually c
trolled with a potentiostat, i.e., an electronic device th
keeps constant the potential difference between the wor
electrode and an auxiliary or reference electrode. In the s
plest approximation, the electrical properties of an elec
chemical cell can be described by the equivalent circ
shown in Fig. 1~a!. Here the electrode-electrolyte interface
viewed as a parallel connection of a capacitor and a n
Ohmic resistor that possesses the current-voltage chara
istic of the respective reaction. The Ohmic resistor in se
with the interface circuit represents the electrolyte betw
working and reference electrode, and a constant voltageUext
is applied between these two electrodes. This voltage is
important control parameter in electrochemical systems,
it is obviously composed of the potential drop across
double layerfDL and the potential drop in the electrolyteIR,
whereI is the total current flowing through the cell andR the
electrolyte resistance. Hence the potentiostatic opera
mode leads to the constraintUext5fDL1IR, and the equa-
tion governing the circuit is given by

CDL

dfDL

dt
52 i reac~fDL!1

Uext2fDL

R
, ~1!

wherei reacis the~negative! reaction current density, andCDL
the specific capacitance of the double layer. The second
is often referred to as the load line. It is interesting to n
that the same equivalent circuit also arises in semicondu
physics, where the parallel connection of the capacitance

FIG. 1. ~a! Equivalent circuit of an electrochemical cell.~b!
N-shaped current-potential characteristic ofi reac ~solid line! and
load line ~dashed curve!. ~c! Schematics of the potential across t
cell for the two steady states in the bistable regime.
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nonlinear resistor symbolizes the semiconductor, and
Ohmic resistor represents an external load@8,35#.

The stability of the circuit with different characteristics o
the nonlinear resistance was studied extensively in the
@36–38#. In electrochemical systems, current-potent
curves that play a role in a large class of reactions exhibit
dynamic instabilities possess an N-shaped characteristi
shown in Fig. 1~b!. Obviously, the steady states of th
equivalent circuit are intersections of the current-poten
characteristics~i reac vs fDL! and the load line. Bistable be
havior can occur if the electrolyte resistanceR is large
enough, i.e., ifR.udfDL/dI u. The so called passive stab
steady state is characterized by a large potential drop ac
the double layer which leads to a small current, and henc
small IR drop in the electrolyte. The active steady state p
sesses a small potential drop across the double layer cau
a high current and hence a largeIR drop @Fig. 1~c!#.

To fully describe the electrochemical reaction alo
with the potential distribution, the concentrations of the
acting species have to be considered, and in addition
bistability, temporally periodic or chaotic behavior ca
occur@39#. However if the mass transport is efficient, i.e.,
it is much faster than the reaction rate, changes of the c
centrations can be neglected. In this case the concentra
in front of the double layer becomes a parameter, and
potential is the only variable in the system. Experimenta
this situation can be realized with rotating electrodes@40#. In
the following, we restrict our considerations to such con
tions.

We are interested in spatial patterns that form in an e
trochemical cell, and hence the picture has to be expande
the spatial dimensions. Let us consider the simplest cas
one-dimensional electrode with periodic boundary con
tions, an idealized description of a ring electrode whose
ameter is large compared to the thickness of the ring. Fig
2 displays the corresponding equivalent circuit. Now, t
electrode is viewed as being composed of an infinite num
of infinitesimally small interface circuits which couple t
the electrolyte, i.e., an electroneutral medium with t
specific conductivitys, and the whole circuit is describe
by the following equations for the potential in the electroly
f @29#:

FIG. 2. Equivalent circuit for a spatially extended system.x:
direction parallel to the electrode.z: direction perpendicular to the
electrode.
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Df50, ~2a!

CDL

]f

]t U
z52w

5 i reac~fDL!1s
]f

]zU
z50

1sE
2w

0 ]2f

]x2
dz

5
~2a!

i reac~fDL!1s
]f

]zU
z52w

, ~2b!

f~x1L,z,t !5f~x,z,t !, ~2c!

Uext5fDL1f~z52w!, ~2d!

f~x,z50,t !50. ~2e!

Equation~2a! describes the potential distribution inside t
electrolyte, which is due to the electroneutrality of the ele
trolyte given by Laplace’s equation. Equations~2b!–~2e! are
the corresponding boundary conditions, Eq.~2c! describing
periodic boundary conditions parallel to the electrode wh
L is the length of the electrode. Equations~2d! and~2e! take
into account the potentiostatic operation mode and the e
potential plane at the location of the reference electrode,
atz50, where the potential is arbitrarily set to zero. Equat
~2b! describes the temporal evolution of the potential dr
across the double layer, and results from a current bala
through the boundaries of the area elementdx•w, wherew is
the distance between working and reference electrode.
three terms on the right hand side correspond to the reac
current density and the migration current densities perp
dicular and parallel to the electrode, respectively. Their s
equals the capacitive charging of the interface at the loca
x0. This time-dependent boundary condition is the source
any dynamic structure, or, in other words, patterns are g
erated at the electrode-electrolyte interface.

Using the dimensionless quantities,

f85
nF

RT
f, V5

nF

RT
Uext, fDL8

nF

RT
fDL,

~3a!

t85
n2F2k0c

b

CDLRT
, x85

2p

L
x, z85

1

w
z

with

x8P@0,2p#, z8P@21,0#, ~3b!

s8 5
1

RTk0c
b

s

L
, i reac8 5

1

nFk0c
b i reac, ~4!

whereF is Faraday’s constant,n the charge number,k0 the
reaction rate,cb the bulk concentration of the reacting sp
cies,R the gas constant, andT the absolute temperature, E
~2b! becomes~the primes have been omitted for clarity!

]f

]t U
z521

5 i reac~f!1s
L

w

]f

]zU
z521

. ~5!

Note that the specific conductivitys in Eq. ~2b! enters only
~and linearly! in the parameters8 in Eq. ~5!. In order to
emphasize the importance of the conductivity for the beh
ior of the system, we also refer to the parameters as specific
conductivity throughout the text. The dimensionless react
current density was described by the following expressi
which was adjusted for the special case of our experime
-

e

i-
.,
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n
,
:

i reac~fDL!5~0.0365fDL
3 117.23fDL

2 12039.6fDL!. ~6!

Using Eq. ~2d! this fDL-dependent expression can be e
pressed as a polynome inf, with coefficients that are func
tions of the dimensionless externally applied voltageV.

With given initial conditions for the potential at the ele
trode and the boundary conditions~2c!–~2e!, the solution of
Laplace’s equation is given by the following series:

f~x,z,t !5 (
n51

`

„Ãn~z,t !cos@nx#1B̃n~z,t !sin@nx#…

1Ã0~z,t !, ~7a!

with z and time-dependent coefficients:

Ãn~z,t !5sinhFwL 2pnzGan~ t !, ~7b!

B̃n~z,t !5sinhFwL 2pnzGbn~ t !, ~7c!

Ã0~z,t !5za0~ t !, ~7d!

Hence the Fourier functions are the natural basis function
our problem, and it is advantageous to project Eq.~5! onto
this basis. Substituting Eqs.~7a!–~7d! into Eq.~5! leads to an
infinite number of ordinary differential equations for the c
efficientsAi(t)52Ãi ~z521, t! andBi(t)52B̃i ~z521, t!
of the Fourier series atz521, i.e., at the electrode:

dA0
dt

52 f 0~A1 ,Bi !2
sL

w
A0 , ~8a!

dAn
dt

52 f n~Ai ,Bi !2 s 2pn cothSwL 2pnDAn , ~8b!

dBn
dt

52 f n~Ai ,Bi !2s 2pn cothSwL 2pnDBn , ~8c!

where the functionsf n(Ai ,Bi) represent the projection of th
reaction currenti reac density onto the coefficient space.

In the numerical simulations Eqs.~8a!–~8c! were inte-
grated with the livermore solver for ordinary differenti
equations~lsode! @41#, using 23150 nontrivial cosine and
sine modes. The functionsf n were evaluated in physica
space, whereby 3323150 collocation points were used fo
the fast Fourier transform back into the coefficient spa
@42#.

RESULTS

In order to understand the spatial coupling through
electrolyte, we have to analyze the potential distribution a
its impact on the dynamics as a function of the paramet
First, consider Eqs.~7a!–~7d!, which describe the potentia
distribution in the electrolyte. In the direction perpendicu
to the electrode~the z direction! the coefficients in the Fou
rier series are damped proportionally to sinh[(w/L)2pnz]
which means that short wavelengths are damped more
idly into the electrolyte than large wavelengths, leading
the delocalization of a structure localized at the electro
The way the modes are damped into the electrolyte also
pends on the ratio of the two length scales of the system,
distancew between working electrode and equipotential li
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55 2263TUNING THE RANGE OF SPATIAL COUPLING IN . . .
and the circumferenceL of the electrode. This paramete
significantly influences the effectiveness of the delocali
tion. In Fig. 3, cuts of the potential are shown at four equa
spaced distances from the electrode for three different ra
of w/L, wherew/L decreases from Fig. 3~a! to Fig. 3~c!.
Obviously, the delocalization of an inhomogeneity at t
electrode is suppressed if the equipotential line is loca
very close to the electrode.

The amount of the delocalization of potential inhomog
neities at the electrode affects the temporal dynamics of
coefficients: Due to the interplay of Laplace’s equation~2a!
and the integral term in Eq.~2b! a perturbation at a location
x0 at the electrode is felt even at a position far away fromx0.
This also becomes apparent in the second term of Eqs.~8b!
and ~8c!, which represents this interplay, i.e., it gives t
spatial coupling term in mode representation. In this form
different parameter dependence of the spatial coupling

FIG. 3. Potential distribution as a function ofx for five locations
zi in the electrolyte, and three values ofw/L. ~a! 2pw/L54. ~b!
2pw/L50.5. ~c! 2pw/L50.1. ~zi521, 20.9, 20.8, 20.7, and
20.6; note thatzi521 is at the electrode, i.e., the potential dist
bution chosen.!
-
y
os

d

-
e

e
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reaction-diffusion systems and in electrochemical syste
can be seen best. The former gives rise to a term proporti
to 2n2, i.e., a parameter affects the damping of all mod
equally. In contrast, the latter is proportional
22pn coth„(w/L)2pn… and hencethe ratio of the damping
terms of different modeschanges when the geometric param
eterw/L is varied. This allows us to adjust the range of t
coupling: for large valuesw/L the coupling is long range
whereas for small valuesw/L it becomes short range or lo
cal.

Simulations of Eqs.~8a!–~8c! in the bistable regime for
different ratiosw/L are reproduced in Fig. 4. The initia
conditions, equal in all four cases, were chosen such th
small portion of the electrode was set in the high-curr
steady state, and the remaining electrode in the low-cur
steady state. As a variation ofw/L alone would alter the
local dynamics and hence the steady states of the systes
was adjusted such that the products(L/w) remained con-
stant. From the spatiotemporal picture~Fig. 4, top! as well as
from the global current~Fig. 4 bottom!, it is apparent that the
spatiotemporal behavior is quite different in the four cas
For smallw/L @Fig. 4~a!#, the interface is sharp, and seem
to propagate with constant velocity; the global curre
changes linearly. When increasingw/L @Figs. 4~b! and 4~c!#
the interface becomes broader and, more remarkably, it d
not move with a constant velocity but with an increasi
velocity. This is typical for fronts@43# observed in the
above-cited experiments. If the electrode becomes very s
in comparison to its distance to the equipotential line,
initially inhomogeneous potential distribution disappears i
short transient after which the transition appears to oc
homogeneously over the whole electrode@Fig. 4~d!#.

Figure 4 suggests thatw/L, and hence the range of th
coupling, has a strong influence on the spatiotemporal beh
ior of electrochemical systems in the bistable regime. Ho
ever, the interpretation of the simulations is not that straig
forward as two parameters,s andw/L, were varied so that
the homogenous state remained the same. In a compute
periment the local dynamics can be easily decoupled fr
the spatial coupling term, and in this way it is possible
e
t
-
r

FIG. 4. Gray scale representation of th
spatiotemporal evolution of the potential a
z521 ~above! and time series of the global cur
rent ~below! in the bistable regimes for fou
values of w/L. ~a! w/L50.0477, s50.477;
~b! w/L50.477, s54.77; ~c! w/L51.5957,
s515.957;~d! w/L515.957,s5159.57~remain-
ing parameter:V52350!..
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study the influence of range and strength of the coup
separately.

From the equivalent circuits in Figs. 1~a! and 2, as well as
from Eqs.~1! and ~2a!–~2e!, it is evident that the homoge
neous steady states, i.e., the local dynamics, are given b

df

dt U
z521

5 i reac~f!1
sL

w
fU

z521

. ~9!

Hence the second terms in Eqs.~8b! and ~8c! contain a part
that belongs to the local dynamics, namely, (2sL/w)An .
The spatial coupling without the contribution to the loc
dynamics is obviously given by

F2 s 2pn cothSwL2pnD1
sL

w GAn .

Thus, when writing Eqs.~8b! and ~8c! in the form

dAn
dt

52 f n~Ai ,Bi !2
sL

w
An

2F s̃ 2pn cothS w̃L 2pnD2
s̃L

w̃ GAn , ~10!

it is possible to separate the contribution ofs and ~w/L! to
the local dynamics from their contribution to the spatial co
pling, and the effect of the parameters on range and stre
can be studied separately by varyingw̃/L and s̃, respec-
tively.

First, let us look at thex dependence of the spatial co
pling term. Figure 5~a! displays the spatial coupling term fo
a rectangular~though differentiable inCn! perturbation of
the potential at the electrode for different values ofw̃/L, the
coupling strengths̃ being set to 1. Although the potentia
distribution possesses two sharp interfaces, their influenc
felt at every point for large values ofw̃/L, though with de-
creasing intensity for increasing distance, as is typical
nonlocal or long-range coupling. The range of the coupl
decreases withw̃/L until the interface affects only its neare
neighbors. Hence in this case the coupling is short rang
local, as it is also characteristic of diffusional coupling. F
comparison, the diffusional coupling with the same init
conditions is shown in Fig. 5~b! together with the middle
curve of Fig. 5~a!.

The effect that different range and strength of the spa
coupling have on the motion of interfaces in the bista
regime is shown in Fig. 6. In all examples the local dynam
is identical; the range of the couplingw̃/L increases from left
to right within one row, and the strength of the couplings̃
increases from top to bottom within one column. It can
seen clearly that it is the range that determines the qualita
behavior of the transition, i.e., whether the fronts move w
constant velocity or whether they are accelerated. Its in
ence on the width of the interface is comparatively sm
and the average velocity, though of course being larger in
case of the accelerated fronts, is not changed significantly
contrast, and not surprisingly, the strength of the coupl
g
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has a pronounced effect on the width of the interface as w
as on the velocity of the fronts, the latter also being fou
experimentally@28,30,44,45#.

DISCUSSION

In the previous section it was shown that the range of
coupling in an electrochemical system depends crucially
the ratio of the two length scales which come into play
every electrochemical experiment: the size of the electrodL
and the distance between working and reference electrodw.
In order to understand in which range the coupling funct
can be tuned by changingw/L, it is instructive to investigate
the limits of very short and very large distances betwe
working and reference electrode.

For smallw/L the spatial coupling is short range@Fig.
3~c!#, and the simulations show that fronts move with co
stant velocity@Figs. 4~a! and 6, first column# which is in
accordance with the behavior of reaction diffusion system
and we call this limit the diffusive limit. This view can b
substantiated if we consider the limitw/L→0, a case in
which the coth term in Eqs.~8b! and ~8c! can be expanded
leading to the following expression for the coupling term:

FIG. 5. ~a! Spatial coupling term in Eqs.~8b! and ~8c! for
three values ofw/L. ~solid curve: 2pw/L54; long-dashed curve
2pw/L50.5; dashed curve: 2pw/L50.1!. ~b! Comparison of the
spatial coupling in an electrochemical system~solid line: 2pw/L
50.5! and diffusive coupling~dashed line!. The potential distribu-
tion at the electrode was chosen rectangular~similar to the one
shown in Fig. 3! in both cases.
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lim
w/L→0

F2s 2pn cothSwL 2pnD G
'2

sL

w
2

~2p!2

3

sw

L
n21

~2p!4

45

sw3

L3
n4

2
2~2p!6

945

sw5

L5
n61O~n8! ~11!

~This expansion is valid for arguments,p.! The first term in
the series can be identified as the electrolyte contributio
the local dynamics. The remaining terms formally repres
contributions of second, fourth, sixth, etc. spatial derivativ
to the rate equations of the mode coefficients. Hence
second term can be considered as originating from a di
sional process. Forw/L→0 the higher-order terms@being
proportional to (w/L) i21ni# can be neglected, and hence t
coupling can be described by a diffusional process with
fusion constantD54p2sw/(3L). Note that in this case the
apparent diffusion constant is proportional tow/L. The de-
pendence ofD on w tells us that although the coupling
strictly local in the direction parallel to the electrode, it
global in the direction perpendicular to it. This dependen
also implies that forw50 the spatial coupling vanishes a
the diffusion constant becomes zero.

FIG. 6. Gray scale representation of the spatiotemporal ev
tion of the potential atz521 for different values ofw̃ and s̃. Top
row: s̃50.565; middle row: s̃50.0565; and bottom row:
s̃50.00565. Left column:w̃50.003; middle column:w̃50.03; and
right column: w̄50.3. ~The remaining parameters areV52350,
w50.03,s51.596 andL50.188!. The gray scale given at the bo
tom was chosen nonmonotonically for clarity.
to
t
s
e
-

f-

e

Now consider the limitw/L→`, which we realize by set-
ting the equipotential line atw to infinity. From Eq.~9! it is
apparent that the contribution of the electrolyte to the lo
dynamics disappears, and as coth[(w/L)2pn] approaches 1
asymptotically for large arguments, the contribution of t
coupling to the dynamics of the individual mode coefficien
is proportional ton, with the proportional constant 2ps:

lim
w/L→`

F2s 2pn cothSwL 2pnD G'2s 2pn. ~12!

In this case the range of the coupling is maximum, and
becomes apparent that global coupling~in a sense that the
coupling affects all space locations equally! cannot be real-
ized by changingw/L, where the coupling would depen
only on the homogenous mode~n50!. The right hand side of
Eq. ~12! is already a good approximation fromw/L;0.5 on,
which means that in typical electrochemical experiments
coupling range is nearly maximum.

At this point it is important to emphasize again the diffe
ence between the effects that increasing the strength an
creasing the range have on the dynamics. Increasing
strength of the coupling changes the ratio of the rates
reaction and diffusion. Hence the faster the diffusion,
more generally, the faster the spatial communication co
pared to the reaction rate, the larger the diffusion length
the time scale of the reaction. It is well known that this lea
to increasingly broader interfaces@1,2# and two fronts~e.g.,
emerging from a nucleus of one state within the other stat
in Figs. 4 and 6! will eventually interact attractively. This
also leads to an apparent acceleration in the spatiotemp
picture. Upon a further increase in the coupling streng
transitions in the bistable regime occur nearly homo
neously, and from this point of view the system can be c
sidered to be globally coupled. This is, e.g., the case in F
4~d!. On the other hand, when altering the range of the c
pling, the relative rates between reaction and spatial coup
stay constant, and the transition between constant and
creasing velocity of fronts occurs at the same width of
interface. In this case the acceleration cannot be traced b
to front interaction, but is due to the form of the couplin
function. From these considerations it is also clear that lo
range coupling can best be studied if the reaction rate is f
compared to the rate of spatial communication, or in ot
words, if the strength of the coupling is weak~see the last
row in Fig. 6!.

Koper and Sluyters derived a model for pattern format
in electrochemical systems on the assumption that the po
tial distribution inside the electrolyte can be described b
linearz dependence up to a diffusion layerd ~typically on the
order of 10–100mm!, beyond which it is homogeneous
From a physical point of view, this ansatz has to be criticiz
because it is well known that potential inhomogeneit
reach far into the electrolyte and are still measurable in so
mm distance@46#. Despite this, it is interesting to note tha
the ansatz leads to a reaction-diffusion system with a di
sion constant proportional tod, or, if one extends the linea
dependence up to the equipotential line, proportional tow.
Consequently for smallw/L this reaction-diffusion model is
adequate, and merges with the model used here. For la
distances between working and reference electrode
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model fails to capture the long-range coupling and, in ad
tion, overestimates the strength of the coupling~if the linear
dependence is assumed up tow!.

CONCLUSION

Electrochemical systems provide an easy experimenta
cess to study the impact of the coupling range on pat
formation: the range of the coupling can be tuned by sim
changing the geometry of the system, especially by adjus
the distance between working and reference~or counter!
n
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electrode. The coupling strength can be adapted by vary
the conductivity of the solution. In the bistable regime
increase of the coupling range leads from constantly mov
to accelerated fronts. The results presented here form a b
for the further study of effects of long-range coupling o
different dynamic regimes, as, e.g., excitable or oscillat
dynamics. Furthermore, the model presented should
readily transferable to electrical continuum devices cons
ing of materials with nonlinear and linear characteristics,
example, those discussed in@47#.
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