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Tuning the range of spatial coupling in electrochemical systems:
From local via nonlocal to global coupling
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A specific feature of pattern formation in electrochemical systems is the occurrence of accelerated fronts;
they can be attributed to long-range spatial coupling. In this paper we demonstrate that different coupling
functions can be realized by tuning easily accessible parameters: The range of the coupling crucially depends
on the length scales of the system, and the strength of the coupling is proportional to the conductivity of the
electrolyte. Simulations in the bistable regime are presented which illustrate how the front behavior changes
qualitatively when length scales or conductivity are var{&l063-651X97)12702-7

PACS numbefs): 64.10-+h, 82.20.Mj, 82.45+z, 47.54+r

INTRODUCTION spatial coupling occurs via electric fields. This kind of trans-
port mechanism is important in a variety of systems, among

Reaction-diffusion equations proved to be well suited forthem, e.g., synaptic coupling of neurons. _
describing many different dynamical regimes of dissipative 1here are comparatively few investigations of spatiotem-

IR ; : : | dynamics of systems with nonlocal coupling. For ex-
systemg1,2]. An implicit assumption when modeling spatial PO'@ X A : :
communication by a diffusional process is that only neares mple, Schimanski-Geier, Hcke, and Scht described the

neighbors communicate with each other, or, in other wordsgrowth of domains in the bistable regime in the presence of
9 P nonlocal interactiond23]. Elmer considered spatially ex-

that the _spatial coupling is local or short range. Evid(_antly thissanded systems with nonlocal dynamics near the soft mode
prerequisite does not always hold, and recently the impact gfystapility of a stable and uniform stafg4]. Kuramoto de-
global coupling on pattern formation has become an activgived the complex Ginzburg-Landau equation for nonlocal
area of research. coupling in a general form, and obtained some astonishing
In a globally coupled system a change of state of theesults on the scaling behavior of turbulent oscillaf@s—
system at a certain location is felt equally by all other part27]. Recently it has been shown that spatial coupling in elec-
of the system. Examples where global coupling turned out tdrochemical systems occurs via migration currents in the
be essential for the description of the spatiotemporal dynamelectrolyte, and is intrinsically nonlocf28,29. In these sys-
ics are CO oxidation at Pt single-crystal surfag@s6] as tems an accelerated motion of interfaces was observed in the
well as at supported catalysfg], semiconductor devices bistable, excitable, and oscillatory regim¢&8,30—33,
with a load resistor in serid8—10], or gas discharge tubes Which was attributed to the nonlocal couplifg,29.
[11-13. The influence of a global feedback on the dynamics In this paper, we discuss various aspects of the nonlocal
of spiral waves was demonstrated with the light-sensitivec0upling in electrochemical systems. In particular we show
Belousov-Zhabotinsky reactidi4]. The important role glo-  that the range of the coupling can be varied continuously,
bal coupling can play for spatiotemporal dynamics was con@nd we discuss the effect of the range of the coupling on the

firmed in theoretical studies, which proved the influence Oidynamlc behavior in the.bls'tgble regime. As electrochemical
the global coupling in a particular system or generally clasSystems have many similarities with other_systems that serve
s models for the study of pattern formation, e.g., semicon-

sified patterns that can arise in a certain dynamic regime ig 4 oth I ic devi disch b
global coupling is addefil5—22. uctor and other electronic devices or gas discharge tubes,

Besides these two extreme cases, local coupling, on thr@sults presented here give a guideline of how to establish or

one hand, and global coupling, on the other hand, any varia‘f-‘VOid long-range coupling experimental!y, and how to adjgst
tion in range and strength of coupling is possible. in factts range. In Sec. Il we give a short review of the properties

nonlocal coupling, defined by a characteristic distance ovep! electrochemical systems which are important in our con-

which the state of the system at one point influences othe€Xt anc_i hOV]‘Z trt]ey a(rje lmodetl)ed]; A geé%iled derivation and
parts of the system with a distance-dependent strength, Céﬁscussmn of the model can be found[®,33. In Sec. Ill

be viewed as the general case. From this point of view, locaf'€ nature of the long-range coupling arjd Its parameter.de-
and global coupling are the two limits of nonlocal coupling, pendence are elaborated and substantiated by simulations.

with the range going to zero and infinity, respectively. More_FinaIIy, we discuss in which range the coupling can be tuned

over, long-range coupling is always to be expected when th@S well as the connection of the model considered here with
' another model for electrochemical systems which is of the

reaction-diffusion typg34].

*Present address: Department of Chemical Engineering, Univer-
sity of Princeton, Princeton, NJ 08544.

TAuthor to whom correspondence should be addressed. Electronic Electrochemical reactions take place at the electrode-
address: krischer@fhi-berlin.mpg.de electrolyte interface, the reaction rate being decisively deter-
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FIG. 2. Equivalent circuit for a spatially extended system.
direction parallel to the electrode: direction perpendicular to the
electrode.

c) passive active
.

nonlinear resistor symbolizes the semiconductor, and the
Ohmic resistor represents an external 16a¢85].

The stability of the circuit with different characteristics of
the nonlinear resistance was studied extensively in the past
[36-38. In electrochemical systems, current-potential
curves that play a role in a large class of reactions exhibiting

FIG. 1. (a) Equivalent circuit of an electrochemical celb)  dynamic instabilities possess an N-shaped characteristic as
N-shaped current-potential characteristic ik, (solid line and  shown in Fig. 1b). Obviously, the steady states of the
load line (dashed curve (c) Schematics of the potential across the equivalent circuit are intersections of the current-potential
cell for the two steady states in the bistable regime. characteristicgi e VS ¢p.) and the load line. Bistable be-

havior can occur if the electrolyte resistanBeis large
mined by the potential drop across the interface, the SOgnough, i.e., ifR>|d¢p, /dI|. The so called passive stable
called double layer. In an electrochemical experiment thi%teady state is characterized by a large potential drop across
potential drop, and thus the reaction rate, is usually conthe double layer which leads to a small current, and hence a
trolled with a potentiostat, i.e., an electronic device thatsmga]||R drop in the electrolyte. The active steady state pos-
keeps constant the potential difference between the workingesses a small potential drop across the double layer causing
electrode and an auxiliary or reference electrode. In the simy high current and hence a lartR drop [Fig. 1(c)].
plest approximation, the electrical properties of an electro- T4 fully describe the electrochemical reaction along
chemical cell can be described by the equivalent circuityith the potential distribution, the concentrations of the re-
shown in Fig. 1a). Here the electrode-electrolyte interface is acting species have to be considered, and in addition to
viewed as a parallel connection of a capacitor and a nonpjstapility, temporally periodic or chaotic behavior can
Ohmic resistor that possesses the current-voltage charactoccur[gg]_ However if the mass transport is efficient, i.e., if
istic of the respective reaction. The Ohmic resistor in serieg js much faster than the reaction rate, changes of the con-
with the interface circuit represents the electrolyte betweeRentrations can be neglected. In this case the concentration
working and reference electrode, and a constant vokage i front of the double layer becomes a parameter, and the
is applied between these two electrodes. This voltage is afotential is the only variable in the system. Experimentally,
important control parameter in electrochemical systems, anghjs situation can be realized with rotating electrofg. In
it is obviously composed of the potential drop across thene following, we restrict our considerations to such condi-
double layergpp_ and the potential drop in the electrolyi®,  tjons.
wherel is the total current flowing through the cell aRahe We are interested in spatial patterns that form in an elec-
electrolyte resistance. Hence the potentiostatic operatiofiochemical cell, and hence the picture has to be expanded by
mode leads to the constrailte,=¢p. +IR, and the equa- the spatial dimensions. Let us consider the simplest case: a
tion governing the circuit is given by one-dimensional electrode with periodic boundary condi-

tions, an idealized description of a ring electrode whose di-

d‘ZSDL Uext_ ¢DL

: ameter is large compared to the thickness of the ring. Figure
dt = ~lread $ou) * R (1) 2 displays the corresponding equivalent circuit. Now, the

electrode is viewed as being composed of an infinite number
wherei .,.iS the(negative reaction current density, ar@,, ~ of infinitesimally small interface circuits which couple to
the specific capacitance of the double layer. The second terthe electrolyte, i.e., an electroneutral medium with the
is often referred to as the load line. It is interesting to notespecific conductivityo, and the whole circuit is described
that the same equivalent circuit also arises in semiconductdyy the following equations for the potential in the electrolyte
physics, where the parallel connection of the capacitance andl [29]:

CDL
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A¢=0, (23 iread $o1) = (0.036543, +17.23p3, +2039.6pp,). (6)
d d 0 P Using Eg. (2d) this ¢p -dependent expression can be ex-
CoL - =lead o)t — |+ Uf — dz pressed as a polynome i with coefficients that are func-
_ z| _ —w OX : . ; ;
z=-w z=0 tions of the dimensionless externally applied voltage
(f)i (o) + % (2b) With given initial conditions for the potential at the elec-
reac. $DL) T T 757 I trode and the boundary conditiofc)—(2e), the solution of
Laplace’s equation is given by the following series:
d(X+L,z,t)=p(x,2,1), (20 o
U o+ b(2= — W), (2d) $(x,2,0)= 2, (An(z,1)cognX]+By(z,D)sin(nx])
B(x,2=01)=0. (20 Aoz, 1), (7a)

Equation(2a) describes the potential distribution inside theW'th z and time-dependent coefficients:

electrolyte, which is due to the electroneutrality of the elec- ~ Clw
trolyte given by Laplace’s equation. Equatioi®b)—(2e) are An(z,t)=sin 2™z
the corresponding boundary conditions, E2c) describing

an(1), (70)

periodic boundary conditions parallel to the electrode where ~ Clw

L is the length of the electrode. Equatici®sl) and (2e) take Bn(z,t)zsmr{t 2mnz|b(t), (79
into account the potentiostatic operation mode and the equi- _

potential plane at the location of the reference electrode, i.e., Ag(z,t)=zay(1), (7d)

atz=0, where the potential is arbitrarily set to zero. Equation

. . . Hence the Fourier functions are the natural basis functions of
(2b) describes the temporal evolution of the potential drop o .
our problem, and it is advantageous to project £&).onto
across the double layer, and results from a current balanc[

through the boundaries of the area elenatw, wherew is Ris basis. Substituting Eq&Za~(7d) into Eq. (5) leads to an

; . infinite number of grdinary differential equations for the co-
the distance between working and reference electrode. The.. . = =
; . . efficientsA;(t)=— A, (z=—1,t) andB,(t)= —B; (z=—1,1)

three terms on the right hand side correspond to the reactio ; ; _ . )
: L " of the Fourier series a&t=—1, i.e., at the electrode:

current density and the migration current densities perpen-

dicular and parallel to the electrode, respectively. Their sum dA, o
equals the capacitive charging of the interface at the location ar fo(Aq,Bi)— W Ao, (83
Xg- This time-dependent boundary condition is the source of
any dynamic structure, or, in other words, patterns are gen- dA, w
erated at the electrode-electrolyte interface. i = fa(Ai,B)— o 27N CO“{I 27-rn)An, (8b)
Using the dimensionless quantities, 4B
, nF n , nF dtn=—fn(Ai,Bi)—027-rn cotk(%an B,, (8¢
d) _R_TQS, V_R_Tuext’ d)DL ﬁgﬁDLv . - .
(33 Wher_e the function$, (A, ,_Bi) represent the_ projection of the
n?F2k,cP 27 1 reaction current ., density onto the coefficient space.
t,:W' X'=x 7'=rz In the numerical simulations Eq$8a—(8c) were inte-
, grated with the livermore solver for ordinary differential
with equations(lsode [41], using 2<150 nontrivial cosine and
x'e[0,27], z'e[—1,0], (3b) sine modes. The functiong, were eval_uated in physical
space, whereby32x150 collocation points were used for
1 o 1 the fast Fourier transform back into the coefficient space
o' = Fkocﬁ E! Irea(:ZWB I'reacr (4) [42].
whereF is Faraday’'s constanh the charge numbek, the RESULTS

reaction ratec® the bulk concentration of the reacting spe- i i
cies,R the gas constant, ariithe absolute temperature, Eq. In order to understand the spatial coupling through the

(2b) becomesd(the primes have been omitted for clajity _ele_ctrolyte, we have to a_nalyze the po'FentiaI distribution and
its impact on the dynamics as a function of the parameters.
d¢ ) L 9o First, consider Eqs(7a—(7d), which describe the potential
It - l:'fea(( P)+o W 9z o ) gistribution in the electrolyte. In the direction perpendicular

to the electrodéthe z direction the coefficients in the Fou-
Note that the specific conductivity in Eq. (2b) enters only rier series are damped proportionally to sink[()2m7nZ]

(and linearly in the parametew’ in Eg. (5). In order to  which means that short wavelengths are damped more rap-
emphasize the importance of the conductivity for the behavidly into the electrolyte than large wavelengths, leading to
ior of the system, we also refer to the parametas specific  the delocalization of a structure localized at the electrode.
conductivity throughout the text. The dimensionless reactionhe way the modes are damped into the electrolyte also de-
current density was described by the following expressionpends on the ratio of the two length scales of the system, the
which was adjusted for the special case of our experiment:distancew between working electrode and equipotential line
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reaction-diffusion systems and in electrochemical systems

5151 can be seen best. The former gives rise to a term proportional
£ to —n? i.e., a parameter affects the damping of all modes
1 05 equally. In contrast, the latter is proportional to

—2n coth((w/L)2mn) and hencehe ratio of the damping
terms of different modeshanges when the geometric param-

b) . . . .
s eterw/L is varied. This allows us to adjust the range of the
8 coupling: for large valuesv/L the coupling is long range,
S whereas for small values/L it becomes short range or lo-
\ cal.
9} | Simulations of Egs(8a—(8c) in the bistable regime for

ey different ratiosw/L are reproduced in Fig. 4. The initial

conditions, equal in all four cases, were chosen such that a
05 | 1 small portion of the electrode was set in the high-current
steady state, and the remaining electrode in the low-current
steady state. As a variation @f/L alone would alter the
local dynamics and hence the steady states of the system,
was adjusted such that the producflL/w) remained con-
z; in the electrolyte, and three values wfL. (a) 27w/L=4. (b)  stant. From the spatiotemporal pictuFég. 4, top as well as
2mw/L=0.5. (c) 27w/L=0.1. (z=-1, —0.9, —0.8, —0.7, and  from the global currentFig. 4 bottom, it is apparent that the
—0.6; note thaz;=—1is at the electrode, i.e., the potential distri- spatiotemporal behavior is quite different in the four cases.
bution chosen. For smallw/L [Fig. 4a)], the interface is sharp, and seems
to propagate with constant velocity; the global current
and the circumferencé of the electrode. This parameter changes linearly. When increasingL [Figs. 4b) and 4c)]
significantly influences the effectiveness of the delocalizathe interface becomes broader and, more remarkably, it does
tion. In Fig. 3, cuts of the potential are shown at four equallynot move with a constant velocity but with an increasing
spaced distances from the electrode for three different ratiogelocity. This is typical for fronts[43] observed in the
of w/L, wherew/L decreases from Fig.(8 to Fig. 3c). above-cited experiments. If the electrode becomes very short
Obviously, the delocalization of an inhomogeneity at thein comparison to its distance to the equipotential line, the
electrode is suppressed if the equipotential line is locatedhitially inhomogeneous potential distribution disappears in a
very close to the electrode. short transient after which the transition appears to occur
The amount of the delocalization of potential inhomoge-homogeneously over the whole electrdéég. 4(d)].
neities at the electrode affects the temporal dynamics of the Figure 4 suggests that/L, and hence the range of the
coefficients: Due to the interplay of Laplace’s equati@sa) coupling, has a strong influence on the spatiotemporal behav-
and the integral term in Eq2b) a perturbation at a location ior of electrochemical systems in the bistable regime. How-
Xp at the electrode is felt even at a position far away foggn  ever, the interpretation of the simulations is not that straight-
This also becomes apparent in the second term of @fs. forward as two parameters; andw/L, were varied so that
and (8c), which represents this interplay, i.e., it gives thethe homogenous state remained the same. In a computer ex-
spatial coupling term in mode representation. In this form theperiment the local dynamics can be easily decoupled from
different parameter dependence of the spatial coupling ithe spatial coupling term, and in this way it is possible to

I

potential

0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 3. Potential distribution as a functionxfor five locations

FIG. 4. Gray scale representation of the
spatiotemporal evolution of the potential at
z=-1 (above and time series of the global cur-
rent (below) in the bistable regimes for four
values of w/L. (@) w/L=0.0477, ¢=0.477;
(b) w/L=0.477, 0=4.77; (c) w/L=1.5957,
0=15.957;(d) w/L=15.957,0=159.57(remain-
ing parameterV=-—350..
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study the influence of range and strength of the coupling T T
separately.

From the equivalent circuits in Figs(d and 2, as well as
from Egs.(1) and (2a—(2e), it is evident that the homoge-
neous steady states, i.e., the local dynamics, are given by

E

=

do , ol z
at “lread )T~ b : ©) £
z=-1 z=-1 &

Hence the second terms in Eq8b) and (8c) contain a part
that belongs to the local dynamics, namely; ¢L/w)A,.

The spatial coupling without the contribution to the local , ,
dynamics is obviously given by

oL 0.5
+—A,.
w

w
— o 2mn COtI’( EZ’?Tn

Thus, when writing Eqs(8b) and (8c) in the form

spatial coupling
o
>

dA,
dt

oL
:_fn(Aini)_WAn 0.5

~ W oL
o 2mn cot T 27n | — = A, (10

it is possible to separate the contributionc®faind (w/L) to . . _
the local dynamics from their contribution to the spatial cou- F!G- 5. (8 Spatial coupling term in Eqs(8b) and (8¢c) for
pling, and the effect of the parameters on range and strengfﬁree values ofv/L. (solid curve: 2rw/L =4; Iong-da;hed curve:
can be studied separately by varyingL and o, respec- 27W/L=0.5; dashed curve:2w/L=0.1). (b) Comparison of the
tively. spatial coup_llng_ln an elgctrochemlcgl systésolid Iln_e: 2_77W/L
First, let us look at thex dependence of the spatial cou- 02 @d diffusive couplingdashed ling The potential distribu-
. . . ) . tion at the electrode was chosen rectangytmilar to the one
pling term. Figure 8a) displays the spatial coupling term for shown in Fig. 3 in both cases
a rectangularnthough differentiable inC") perturbation of ' ’
the potential at the electrode for different valuesagf., the
coupling strengthr being set to 1. Although the potential has a pronounced effect on the width of the interface as well
distribution possesses two sharp interfaces, their influence &s on the velocity of the fronts, the latter also being found
felt at every point for large values &¥/L, though with de- experimentally{28,30,44,4%
creasing intensity for increasing distance, as is typical of
nonlocal or long-range coupling. The range of the coupling
decreases withi/L until the interface affects only its nearest DISCUSSION
neighbors. Hence in this case the coupling is short range or
local, as it is also characteristic of diffusional coupling. For In the previous section it was shown that the range of the
comparison, the diffusional coupling with the same initial coupling in an electrochemical system depends crucially on
conditions is shown in Fig. (6) together with the middle the ratio of the two length scales which come into play in
curve of Fig. %a). every electrochemical experiment: the size of the electtode
The effect that different range and strength of the spatiahnd the distance between working and reference electwode
coupling have on the motion of interfaces in the bistableln order to understand in which range the coupling function
regime is shown in Fig. 6. In all examples the local dynamicscan be tuned by changing/L, it is instructive to investigate
is identical; the range of the coupling/L increases from left the limits of very short and very large distances between
to right within one row, and the strength of the couplimg working and reference electrode.
increases from top to bottom within one column. It can be For smallw/L the spatial coupling is short rand€ig.
seen clearly that it is the range that determines the qualitativ(c)], and the simulations show that fronts move with con-
behavior of the transition, i.e., whether the fronts move withstant velocity[Figs. 4a) and 6, first columh which is in
constant velocity or whether they are accelerated. Its influaccordance with the behavior of reaction diffusion systems,
ence on the width of the interface is comparatively small,and we call this limit the diffusive limit. This view can be
and the average velocity, though of course being larger in theubstantiated if we consider the limit/L—0, a case in
case of the accelerated fronts, is not changed significantly. lwhich the coth term in Eqg8b) and (8c) can be expanded
contrast, and not surprisingly, the strength of the couplindeading to the following expression for the coupling term:
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w
lim | —o 27N cotl’(— 27-rn) ~—g 2mn. (12
w/L— L
In this case the range of the coupling is maximum, and it
becomes apparent that global couplifig a sense that the
\ coupling affects all space locations equaléannot be real-
‘ ‘ ized by changingw/L, where the coupling would depend

only on the homogenous mog¢e=0). The right hand side of

Eqg. (12) is already a good approximation from/L~0.5 on,
which means that in typical electrochemical experiments the
coupling range is nearly maximum.

¢ At this point it is important to emphasize again the differ-
ence between the effects that increasing the strength and in-
creasing the range have on the dynamics. Increasing the
strength of the coupling changes the ratio of the rates of
reaction and diffusion. Hence the faster the diffusion, or,

N

Now consider the limitv/L —c, which we realize by set-
ting the equipotential line ak to infinity. From Eq.(9) it is
apparent that the contribution of the electrolyte to the local
dynamics disappears, and as cotifl()27n] approaches 1
asymptotically for large arguments, the contribution of the
coupling to the dynamics of the individual mode coefficients
is proportional ton, with the proportional constantzier:

more generally, the faster the spatial communication com-
pared to the reaction rate, the larger the diffusion length on
the time scale of the reaction. It is well known that this leads
FIG. 6. Gray scale representation of the spatiotemporal evoluEO mcrgasmgly broader interfacgs.?] an.d t.WO fronts(e.q.,
tion of the potential az=—1 for different values ofv ando. Top emerging from a nupleus of one $tate within the_other sta_te as
row: $=0565 middle row: 3=00565 and bottom row: N Figs. 4 and & will eventually interact attractively. This

= 0.00565. Left columni=0.003: middle,columnv~v=0.03; and also leads to an apparent acceleration in the spatiotemporal
right column: w=0.3. (The remaining parameters aké=—350, p'Ctu'_’F'f' Up(_)n a furt_her increas_,e in the coupling strength,
w=0.03,0=1.596 and_=0.188. The gray scale given at the bot- transitions in the b!stabl_e regime occur nearly homoge-
tom was chosen nonmonotonically for clarity. neously, and from this point of view the system can be con-
sidered to be globally coupled. This is, e.g., the case in Fig.
4(d). On the other hand, when altering the range of the cou-
pling, the relative rates between reaction and spatial coupling
stay constant, and the transition between constant and in-

W
— o 27h cotl‘( — 277n>

lim
w/L—0 L creasing velocity of fronts occurs at the same width of the
oL (2m)?% ow (2m)* ow? interface. In this case the acceleration cannot be traced back
~ 2 _ A4 . . . .
~Tw 3 L " 25 13" to front interaction, but is due to the form of the coupling
2(2)8 WS function. From these considerations it is also clear that long-
— —— n®+0(nd) (11)  range coupling can best be studied if the reaction rate is fast,

5 . . . .
945 L compared to the rate of spatial communication, or in other

words, if the strength of the coupling is weésee the last
(This expansion is valid for argumentss.) The firsttermin  row in Fig. 6.
the series can be identified as the electrolyte contribution to Koper and Sluyters derived a model for pattern formation
the local dynamics. The remaining terms formally represenin electrochemical systems on the assumption that the poten-
contributions of second, fourth, sixth, etc. spatial derivativedial distribution inside the electrolyte can be described by a
to the rate equations of the mode coefficients. Hence thénearz dependence up to a diffusion lay&ftypically on the
second term can be considered as originating from a diffuerder of 10—-100um), beyond which it is homogeneous.
sional process. Fow/L—0 the higher-order termfbeing  From a physical point of view, this ansatz has to be criticized
proportional to (/L)' ~1n'] can be neglected, and hence thebecause it is well known that potential inhomogeneities
coupling can be described by a diffusional process with difreach far into the electrolyte and are still measurable in some
fusion constanD =4x?0w/(3L). Note that in this case the mm distancg46]. Despite this, it is interesting to note that
apparent diffusion constant is proportionalwdL. The de- the ansatz leads to a reaction-diffusion system with a diffu-
pendence oD on w tells us that although the coupling is sion constant proportional t6, or, if one extends the linear
strictly local in the direction parallel to the electrode, it is dependence up to the equipotential line, proportionalto
global in the direction perpendicular to it. This dependenceConsequently for smail/L this reaction-diffusion model is
also implies that fow=0 the spatial coupling vanishes as adequate, and merges with the model used here. For larger
the diffusion constant becomes zero. distances between working and reference electrode the
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model fails to capture the long-range coupling and, in addielectrode. The coupling strength can be adapted by varying
tion, overestimates the strength of the couplfiighe linear  the conductivity of the solution. In the bistable regime an

dependence is assumed upwn increase of the coupling range leads from constantly moving
to accelerated fronts. The results presented here form a basis
CONCLUSION for the further study of effects of long-range coupling on

Electrochemical systems provide an easy experimental ag_|fferent dynamic regimes, as, e.g., excitable or oscillatory

cess to study the impact of the coupling range on patter ynamics. Furthermore, th? modell presenteq ShOUId. be
formation: the range of the coupling can be tuned by simleead”y transferable to electrical continuum devices consist-
changing the geometry of the system, especially by adjusting]g of materials with nonlinear and linear characteristics, for
the distance between working and refererice countey xample, those discussed[ii7].
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