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Two-dimensional Josephson junction arrays with dc drives: The fixed-point regime
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A fixed-point analysis of two-dimensional Josephson junction arrays subject to dc drives is carried out
analytically, at a zero temperature and in a zero magnetic field. Conditions for the existence and stability of
such behavior are established, by studying in detail, the isolated triangular and square plaquette. The results are
subsequently generalized to Josephson junction ladders and rectangular arrays which could contain linear
defects. We deduce a closed form inductive expression for the critical surface in the space of phase configu-
rations. All the analytic results are checked against numerical simulafi®h663-651X%97)08402-X]

PACS numbg(s): 05.45+b, 74.40+k, 74.50:+r

. INTRODUCTION through expressions which are in any way tractable.
It is the aim of this paper to show that this can actually be

The dynamical properties of Josephson junction arrayglone, at least for dc-driven JJAs at zero temperature and zero
(JJA9 have recently been the focus of experimeriiat7]  magnetic field. To demonstrate this, it is expedient to pro-
and numerical studid8—15], which have resulted in several ceed in steps. We accordingly study the triangular and square
insights. To cite an example of interest for this paper, it haplaquettes in detail, before moving onto vertical ladders with
come to be appreciated that in dc-driven JJAs at zero terrbus-bars at one end, and finally to rectangular arrays which
perature and zero magnetic field, a transition from supercorncould contain linear defects. In each of these cases, we are
ductive to resistive current flow invariably occurs through aable to develop a closed-form inductive expression for the
flow of vortices perpendicular to the external currgitl2]. critical surface in the space of phase configurations. This
The situation is the same as in continuous superconductoigvolves the vanishing of a functiond&,({#,}) which as-
except for the following differences. Firstly, the self-inducedsigns a real number to a given phase configurafitr}. The
magnetic field, which plays a crucial role in the continuum,functional D,, can, as we shall see, be treated as an order
is for all practical purposes absent in a number of experimenparameter. We shall, furthermore, provide examples of how
tal JJAs. Secondly, the discrete nature of the JJA provides B,, can be used to extract analytic information.
natural pinning potential for vorticd4.6], because of which, We reiterate that our analysis pertains to zero tempera-
the breakdown of superconductive flow occurs only wherture, i.e., to a situation in which thermal fluctuations have
the driving current exceeds the depinning current of the arrapeen frozen out. It is because of this that the equations of
at everypoint along the vortex patfl7]. This breakdown motion produce a unique fixed point, once the current drive
can be observed in uniformly driven arrays with defectshas been specified. At finite temperatures, the situation is no
[8,14], as also in uniformly driven perfect arrays at finite longer deterministic and fluctuations occur with well-defined
temperatures and/or in nonzero magnetic fi¢8J40Q]. Alter-  probabilities, around the ground states we describe. These
natively, we could consider perfect arrays at zero temperastates can be modified further by applying a static magnetic
ture and zero magnetic field, but make the drive nonunifornfield in addition to the current drive. Finally, in the limit of
[11-13. Each of these situations contains a natural mechaarge arrays our system is a drivéald defined on a lattice.
nism for the injection of vortices as also the current drive to  The paper is organized as follows. In Sec. Il, we put down
set these into motion. It has, furthermore, been noticed thahe equations describing the time evolution of JJAs and de-
the critical value of the external drive, for which the transi- termine their fixed points for a few simple but instructive
tion occurs, depends both on how the drive is applied andituations. We carry out generalizations of these results to
how the array boundaries are configufadmissing bond, in larger arrays in Sec. lll. In the final section, we summarize
this context, should be thought of as introducing an internalnd discuss our findings.
boundary.

A fixed-point analysis which could help systematize these Il. PRELIMNARIES
insights and analytically determine some of the associated _ o _ )
dynamical quantities, has, however, not been carried out for The equation describing the dynamics of a single Joseph-
JJAs. It is evident that, much as this analysis, for the equaSOn junction linking superconducting sitesands, is given
tions modeling the system, is trivial at the level of a singleby the resistively and capacitively shunted juncti®tCSJ
junction, it rapidly grows in complexity as the size of the model[18,19 as
network increases and the number of independent degrees of

: . L o d’¢drs dors .
freedom proliferate. It is thus priori, unclear whether it is CHF +d—t'5+sm¢>,5=|,5, @

at all possible to describe the fixed points of arbitrary JJAs
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where ¢,s= ¢,— ¢s. The McCumber parameted, is de-  e[0,27]. We note that if¢ is a solution corresponding to a
fined as 2i,CR?/®,, whereR is the shunt resistanc€, is  given value ofi,;, then— ¢ is a solution for a current equal
the shunt capacitancéc is the single junction critical cur- to —i,s. We can, therefore, concentrate ¢re[0,7]. The
rent, and®,=7/2e is the flux quantum. The currents are current carried by the configuration is sigp. When plotted
scaled in terms ofi, and time is measured in units of againstg, this passes through a maximum of 1 ¢t /2.
hl2eRi.. We also recognize this equation as being that of alhe configurations corresponding to a positive slope are
driven damped pendulum. stable whereas those fdi,/d¢$<<0 are unstable. A number

For an arbitary array, Eq1) applies separately to each of these observations generalize to larger arrays.
junction, i,s being the(instantaneoysdimensionless current We next solve this problem in explicit detail for the tri-
it carries andp,s being the phase difference it supports. Con-angular and square plaquette. Several features of these solu-
servation of total current implies that the's must have zero tions will likewise be visible in arbitrarily large arrays.
divergence at each node of the array. Thus, foNax N,
array of superconducting sites, connected by Josephson junc- A. The triangular plaquette
tions, driven by external current™!, the corresponding
equations can be written using total current conservation
(TCC) [20] as

For the triangular plaquette shown in Figa), we choose
0=0. Hencego= ¢, and ¢,0= ¢,. The two independent
phase differences for this configuration, thus, evolve accord-

dos ing to the equations
2 IBC dt2 + dt +Sin¢rs:|$Xt Vr, (2) ¢
35 =i 20— 2sing; —sing, = sin( ¢y = b2) = 1 b1, 2),
where(rs) denotes summation over nearest neighbors. of dt .

Note that ¢, and hence Eq.(2), are invariant under
¢,— ¢+ a, where a is a constant. In solving E@) nu-

merically, it is important to eliminate this freedom. This is 3—— = 2j + ] —Sing 1 — 28N, + SIN(p1— ) =To2(h1, P2).
easily done by setting the phase at an arbitrarily chosen site 3b
to zero. (3b)

Furthermore2 ¢,;=0 identically, for a summation car- These equations can be used to carry out a conventional lin-

ried out around any closed path, or, in particular around
plaquette. If we restrict all phase differences to lie in the Bar r stability ; nralyilz fo\rNtZeSg?ed pm:tbﬁ ¢;|)1 dsz;trlrsfy;ngt
range ( 7] say, this condition must, however, be gener- fr(h1.¢2)=0,(r=1.2). b=t e, IV

alized to readS6,.=2mn(n=—1,0,1). This is used to iden- the equatione, =S Mses, where M, = (f,/19p3)[5, 4.
tify the existence of a vortex in a plaquette. The eigenvalue equation for the matrit,s, has the

In the fixed-point regimeg,s= ¢,s=0Vr, s and, hence, form
iys=Sing,s. Our problem then ig1) To determine under ) —_—— —_— —
what circumstances it is possible to find currents and phases A +b(d1,d2)h+ (1, ¢2)=0, (4)
consistent with the above constraints on tthg and the
irs, such thati,;=sing,, for all junctions.(2) To examine
the stability of the time-independent solutions so obtained.

For a smgle junction, we note thap,=sin %, and
¢.s=m—sin li,; are consistent time-independent solutions
providedi,s=<1. Of these the first is stable, whereas the sec-
ond is not. Foii ,;>1, a value of¢,s, independent of time is 4 ‘ . . .
not possible, i.e.i,s=1 is the critical current for the single
junction. We can reword these statements as follows. There
is a one-to-one correspondence between the static configura- 3
tions of a single junction and the values @f,;=¢

for specific functiondb andc of (¢1,¢,). The fixed point
becomes unstable when one of thks turns positive. The
critical situation clearly corresponds bo>0,c=0. For Egs.
(3), these conditions read

o 9 9 <z |
J J k
04 i+ 1 4
l 9, l 9y 3 l 0 25
(@ (® i
FIG. 1. Figure showing(a) a triangular and(b) a square FIG. 2. Steady-state curve for the triangular plaquette in the

plaquette. For the triangular plaquetig;=0 (by choice. Hence, (i,A) parameter space. Poirdsb,c,d,e andf are intersections of
b=, and Py=¢,. For the square plaquette, the steady-state curve with lines on which the dynamics of the
BD19= 01, Po3= 05, 34= 05 and ¢41= 0,. system is constrained by symmetry.
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-— COSp, +COS hy — ¢b5) —Cog 1~ o) od
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. A solution to Eqs(7) exists, if and only if(iff ) the matrix
on the left-hand siddlhs) is nonsingular. If it is not, an
increase inédj will necessarily make the flow resistive.

J(®2)

2 r 1 Clearly the determinanf),, of this matrix is just the lhs of
P T R S R W . Eqg. (B5b). It can also be easily checked from E¢6) that
0 40 80 120 160 the slopedj/d¢,=D,/cos(p,—¢,). Thus, D, is zero for

) j=jmax,jmm and is p_ositive a_llon_g the portion of the

2 j(¢,)—curve, drawn with a solid line. The corresponding

_ o _ values of @1,¢,) represent stable configurations while
FIG. 3. A plot showing the variation df(¢,) as a function of  those along the dashed portion represent unstable ones. An
¢, for the triangular plaquette. The solid line portions of the Closedinspection of Fig. 3 further shows thatjat.,, stable and the
curves, shown for various values of correspond to stable fixed unstable fixed points merge and for St?l)l(,larger or smaller
Eﬁ's':;sb?; t(;:aezystem whereas the dashed line sections correspond\ig) o5 ofj  respectively, there is no stationary solution.
: In slightly more intuitive terms, the existence jof,, and
_ jmin €can be explained as follows. If we increajsekeeping
COSph1 + COSp,+COg 1 — ) >0, (58 i fixed, (1<i<2), ¢4 and ¢, both increase ¢,> ¢,). As a
result¢, eventually enters the second quadrant, i.e., we have
COSh1COSh,+ COSH,COS py — o) + COSP,COS py— ¢hy) =0. 2 ; e T
$h1C0Sp2+ COSP1COK by — o) +COS2COL b1~ b2) (5b) P1<7l2<¢,. Once this happens sig starts decreasing
with increasingj while sing; continues to increase, of
We denote all §,,¢,) values satisfying these equations by course. In time, we reach a point at which the decrease in
(d1c,P2c). Such points clearly lie on the critical curve. sing, exactly matches the increase in ginand j can be
Translation from the ¢,,¢,) to the (,j) variables can be raised no further. Similarlyj,,;, comes about whep turns

carried out by means of the equations negative, i.e., we are extracting current, apg begins in-
o ) creasing inside the second quadrant whiileincreases in the
j=sin(¢1— ¢2) +singy, (6a  first.
i =sing,—sin(¢1— ¢2). (6b)

B. The square plaquette

The critical curve Eq{(B5hb) must, of course be plotted We now take up the case of a single square plaquette,
numerically and is shown in Fig. 2. A few points on it can, griven by direct currents j k andl (i + j =k+1) as shown in
however, be identified by inspection. These are Fig. 1(b). The configurational variables for this network are
@ Pre=p=m2(i=j=1), $12= 01, $23= 03, 34= 03, and ¢4=0,, of which only
(b)  @P1c=d2/2=53.13...(i=1.760172..,j=0),

(©  $1c=0,c=m/2(i=2.0j=—1/2),

(d)  P1c=— Py /2=53.13...(i=1.760172..,j=—i),
(€ P1c=—7/2,$p=0(i=1.0,j=—2i),

() P1c=2¢,=—106.26...(i=0,j=1.760 172..).

Equations(5) and (6) can be understood from a different
viewpoint. Let us fixi, such that &i=<2. Then, for every
value of ¢,, we get, from Eq.(6b), two values of
¢1—one in the first quadrant and one in the second. These,
in turn, determine two values each fgr, andj [see Eq.
(6a)]. By current conservation, the permitted range ¢of
extends from sin‘(i—1) to w—sin (i—1) for i>1, while
fori<1, it becomeg 0,7]. It is also useful to observe that
¢1, passes from the first quadrant into the seconéat;,

and from the third to the fourth ap, .« If we now plot

j as a function ofé,, we get a closed curvésee Fig. 3,
which passes through a maximumjgf,, and a minimum of FIG. 4. Figure showing the critical surface in th@,(6,,6)

jmin. Finally, varying Eqs.(6) with i fixed, shows that an space for a square plaguette. The surface lies in between the two
increment §j of j is accommodated by change&, (in  planes representing the boundaries of the positive and negative vir-
¢,) which satisfy tex regions.

T —T
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FIG. 5. The critical surface enclosing the fixed-point region, for Y1) o Y1) 0 ey 81y
the square plaquette, in the,j,k) parameter space. Thie=0, fextn - iaxtn "e R
j=0 andk=0 projections are prominently shown by the shaded T
planes. (a) (b)

three, say;(i=1,2,3), are independent for any given vortex  FIG. 6. (a) The column of a X n array shorted on the right and
sector. It can easily be shown, through the techniques enb) the leftmost column of a rectangular arréifte currents drawn
ployed for the triangular plaquette, that the critical boundary out are not shown
in this case, is given by

Ill. GENERALIZATIONS TO LARGER ARRAYS

€09, C0H,C0H3+ COH,CO0H3C0,+ COH3C0H,CO0H Our next task is to generalize these arguments to larger
arrays. It is expedient to do this by first considering vertical

ladders and only then moving onto rectangular arrays, with
and without missing bonds.

and the Ihs-0, for all points enclosed by the surface so  The fixed-point behavior of a (2n) array, shorted on the

defined. This surface is shown in Fig. 4, and is seen to bgght, i.e., a column of trianglegsee Fig. &, is governed by
well away from from the vortex regions, which now corre- the equations

spond to 6.+ 6,+63>m for positive vortices and

+cos9,cos9,c00,=0 (8)

6,+ 6,+ 03< — 7 for negative ones. lext1=SiNg; +sinyy, (93
Moreover, since a choice off(,6,,6;) automatically _ _ . .
fixes the external currentsj,k, Eq. (8) defines a critical lext2= SINg2+ SiNy, = Sinyy, (9b)

surface in {,j,k) space as well. The=0, j=0, andk=0

sections of this surface are displayed in Fig. 5. In mapping

out this surface, it is helpful to note that there are, as for the

triangular plaquette, a number of special rays inj,k) i extn= SiNd,— SiNYy_1, (90

space for which the critical point is easily determined, e.g.,

wherey,= ¢, — ¢, ,1,VYr. The phaseg,, along the bus-bar

is held fixed at zero and treated as a point of reference.
To find the critical hypersurface for this ladder, we vary

Egs.(9) to get a matrix equation of the form
N MO 8¢p= 6y, and setD,=deM (M= 0. It can be

checked thatD,, is proportional to thedeterminantof the

matrix M which governs the time evolution of small per-

) . . ) turbations,e, (r=1,2,...n), about the fixed point{¢,}:
It is also worth emphasizing that the critical surface in cur--

_sn n : :
rent space capturesl values of external drive for which a GT_E_S=1MES)63- Moreo:er, the prOport!qnallty_constant
transition from superconductive to resistive flow takes plac&ontains a factor of £1)". Now (E]r)‘e stability of{¢} re-
for the given network. What is more, if we extend the singleduires that alin eigenvalues of\*" be negative. Hence, a
plaquette into a horizontdadder, the critical surface re- necessarybut not sufficient condition for the stability of the
mains unaltered provided we takeo be the current, flowing fixed point isD,({¢;})>0. The sufficiency conditions in-
out of the upper corner of the leftmost plaguette. This curren¥olve determinants of submatrices ™. For example, for
k will, of course, now be a function of the external currents,the (2x2) case discussed above, conditigha) and (5b),
which should for clarity be relabeled at this stage asi-e., D>>0 along with the tracelessness 61, taken to-
ioxts] ext aNdKeyt. If We choose to short the current extrac- getherensure sufficiency. This is because eigenvalues chang-
tion edge with a bus-bak,,, ceases to be independently ing signs in pairs kee®, positive. For our purposes, it
adjustable ank(i.x=i,jex=]) defines a two-dimensional suffices to delineate a surface on whith=0 andinside
surface in {,j,k) space, whose intersection with the critical which D, is everywhere positive.
surface produces the curve along which the ladder goes criti- The form ofM(™ can readily be determined inductively.
cal. This curve depends, in principle, on the length of thelndeed, we can clearly pass from thé"" 1 to M by
ladder, but changes, in practice, very little beyand4. adding cos;,_; to the (1—1)'" diagonal element of1("~ 1)

(@  01=03;6,=0,=0(=]=k),

(b) 0= — 3= —O4(i=k=05j=1),

(©)  01=04;60,=065(j=0k=0;i=l),

(d)  01=—0;;03=—04(j=k=1=1/3),
@ 0,=0,=0:05=—0,(j=k=i/2,1=0).
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and appending to the matrix so obtained, an extra row an@Xxn ladder is at least as large as that for a@—1) lad-

column, with all elements set to zero other than der. We have numerically checked that this range, in fact,
increases slowly.
MY =M =—cosy,_1, It is also worth mentioning that in some cases induction

allows us to extract nontrivial information from Eq&L0).
We can show, for instance, that if the ladder is subjected to a
monotonically decreasing current profile(i.e., to
: - . i1>i,>--->i,, which ensures thatp,>¢,>--->¢,),
We note tham Isa tridiagonal 'matr'lx. . . time dependence sets in long bef@fe reaches the value of

D, can be easily checked to likewise have the mductlvem i.e., before a vortex can form in the top plaquette of the
form array. Indeed, ifp,>¢,>- - - >¢,, then at criticality only
the first few¢’s can be in the second quadraffhis can be
deduced by arguments analogous to those given in Sec. Il for
the triangular plaquette. Furthermore, with ¢;=,

An=Dp_1+A,-1C08y, 1, (10D p,=—cog¢, and A,=cosy,—1<0. Consequentlyg, and
vn—1 Will be in the first quadrant. If we now assume that
D,=(cosp,+cosy,_1)D,_1+A,_1COSH,COSy,,_1. D,-, and A,_; are both nonpositive, then E¢BOb and
(100 (109 straightaway imply thaD,,A,<0 (but are notboth
zero simultaneous)y We have already seen that,>0 is a
These equations accord a recursive evaluatidd,oih linear  necessargondition for stability. Thus for all ladders, regard-
order. We note thah=1 corresponds to a single junction less of length, the statement we set out to prove, holds.
and that forn=2, Eq. (100 reduces to the Ihs of Edq5h). It is interesting that the critical hypersurface for arbi-
Furthermore, when written out explicity,, is the sum of all  trary dc-driven rectangular array can be determined by only
products ofn cosines of phase differences, chosen such thaa slight extension of the arguments pertaining to the vertical
the corresponding bonds daot form closed curves. For ladder. It is sufficient to observe that the column at the drive
iexr=0VTr, i.e., at what is, in some sense, the most stableedge bears the full brunt of the external current input. If it
point in parameter spac®,, has its maximum value af, remains nonresistive, then the rest of the array finds itself
whereas on the critical surfad®@,=0. We can thus view driven by direct currents, each of value less than usiiyce
D, as an order parameter for the superconductive to resistivdiese must be thginesof some angle or othgrSuch drives
transition and usefully incorporate it into a program for thecan, of course, be handled without introducing any time de-
numerical integration of Eqg2), as a sensitive measure of pendence. Thus the stability of the entire array depends on
the distance from criticalityinsidethe fixed-point regime. Its  that of the leftmost columrisee Fig. 6. The determinant
utility persists even in the time-dependent dom@imere it ~ describing the critical hypersurface of this column can, as
is initially negative, since it varies more rapidly in the above, be readily put down by induction
neighborhood of the critical hypersurface than the magnitude
of de/dt, which is another obvious measure of deviation A1=1, Di=cosy, (113
from criticality.

We reemphasize that the critical hypersurface we have
defined bounds the entire set of fixed points of E(,
provided the drive keeps the equations autonomous.nThe
dimensionality of this surface is the unavoidable price of
keeping the external drive completely general: Any restric- XDp_1t+A,_1C089,C08y,,_1C0S5,,_ 1 (119
tion on the latter, quite generally tends to lower the dimen-
sionality of the former and is effectively equivalent to view- where 6= (=i Ym-1=im-1~ Bm: Om-1=
ing the surface along specific sections. To make analytic us¢(2m_1)— qS(Zm) , and¢[m) are the phases along theh row of
of or, in fact, to just meaningfully interpret Eg&l0), the  the array. We note that the central defect corridor of an array
importance of such and other sections cannot be overemphaith a linear defectthe central column of an array with a
sized. number of broken row bonglsepresents a special case of

For example, by considering the critical,= /2 sec- Eqgs.(10). In this case, the phases along the right edge of this
tions, we can straightforwardly deduce from E(K)) thata  corridor are the negatives of those along the left edge,
configuration stable for a:2(n—1) ladder, can always be whencey,_1=— 6n-1.
stably embedded into a>n ladder. Indeed, assume, for  Analytic information can be extracted from Ed41) by
simplicity, that the configuration is critical, i.eD,,_,=0. If  using projections and induction in much the same way as
we choosep,=m/2 or ¢p,= ¢,_1— w2, thenD,=0 trivi- above. Rather than discussing further illustrations of such
ally. In other words, theb,,= w/2 andy,_,= m/2 sections of  projections taken in terms ghaseswe end this section with
the 2x n critical surface coincide with the>2(n—1) critical ~ a projection taken in terms of the extermalrrents Since
surface. The external current must be appropriately adjustethese currents are what we manipulate in experiments, such
of course, but since these are not constrained in any way, thjzrojections are clearly the ones which are more directly
is always possible. This further implies that the range ofphysical. The case we consider is that of a drive, varying
(¢1,,) values (i.e., those defining configurations of the linearly between a maximum of and a minimum ofj
first plaguette lying inside the fixed-point regime of a (i>]). This clearly corresponds to a two-dimensional pro-

M{T)=cosyn -+C03py.

A;=1, Dji=cospy, (10a

An=(c0Syp-1+€085,-1)Dp_1+A,_1€C0Sy,-1COS5 -1,
(11b

D,= (cos9,,coSsy,,_ 1+ COSy,,_ 1€0S5,,_ 1+ COSS,,_1COH,))]
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2.0 — . . . — concerned, adding a plaquette tends to enhapgewhile
2x2 removing one depresses it. For fixed i,jj,
x4 N yo=sin {i+j—sing,]+sin i—sing,]—¢;. If we plot
16 oxa \. ' \ ) v2(¢1) versuse,, we find that it goes through a minimum.
S 7 axe Thus a larger value of, is always possible while a smaller
121 value may or may not be. Hence, the above results.

N
X

It follows that C.,«,=1im,_,..C,x>>Cx2¥m. Conver-
/ gence to the limiting curve is very rapid, e.g., for 0, the
0.8 - i point of maximal separation between curvgs,,= 1.7601,
’ 1.7782, 1.7787, and 1.778 78 fa=2,3, 4, and 6, respec-

04 L 4 a tively. For all arrays witm>6, changes in,,, are confined

to the fifth place of decimal or beyond. For most purposes
n=4 is large enough.
0.0 ' ' . ' (4) Couxn<Coxpm if Nn>m and lim,_,..Cyy,is the line
o 12 14 16 18 20 i=1. To prove the latter, let us suppose that
i My oimad2Xn;j=0)=1+¢, €>0. Then for an arbitary

numberm>0, any column of lengtm>m(1+ 1/e) would

FIG. 7. Typical transition curves, in thé,A) space bounding havem input currents exceeding unity. Then¢ 1)th verti-
the steady-state regions for various array sizes marked against tikal bond will then carry a current equal to

curves. The dotted and the dashed lines represenf @ and 2;":1(|extp— sing,), where d)p:(bl—Eip:llyi for y;>0\Vi.

i+j=2 lines, respectively. All curves lie betwee@,... and  This current can be made to exceed unity fiosufficiently
Coxa: large. This argument also indicates tleahust decrease con-

o ) ) N ] _ tinuously as we increase the size of the colunib)
jection of then-dimensional critical surface defined in Egs. ¢, <C, . . <C, ., for n,m>2.

(10) and Egs.(11). It leads to a family of critical curves,
some members of which have been displayed in Fig. 7.
These curves reflect the following properties of ladders and IV. SUMMARY AND DISCUSSION

rectangular arrays: . o To summarize, we have carried out, from first principles,
(1) If currents (,j) can flow nonresistively through an  ne fixed-point analysis of dc-driven Josephson junction ar-
array then ('<i,j’<j) can flow nonresistively as well. rays at zero temperature and zero magnetic field. We have
Sincei=j=1 can always be passed through the array, thejiscussed isolated triangular and square plaquettes in exhaus-
region to the left of linei=1 (Fig. 7) always lies in the e detail and understood their fixed-point behaviors from
steady state for all arrays2) The largest time-independent seyeral viewpoints. We have, moreover, put down closed-
flow of current through an array occurs forj=1. Thus all  form inductive expressions for the critical surfaces of ladders
critical curves lie to the left of thet+ j=2 line and meetitat of arbitrary length, as also of rectangular arrays of arbitrary
i=1.(3) If (i,j) is a fixed point of a row ofn plaquettes  sjze. The latter was made possible by the fact that the time-
then it is also a fixed point of a row of plaquettesn>m.  independent behavior of a two-dimensional JJA is deter-
The critical curve,Cy, of annXx2 array therefore lies to mined by that of a single column, namely, the one at the
the right of C,. We shall denote this by writing drive edge for a perfect array, and the defect corridor for
Chx2>Cmxa- arrays with linear defects. A reduction of the problem to
To get some feeling for this property, we note that for aanything smaller than this column is not possible because the
(nx2) array @ arbitrary), the gradient in they direction  external currents can be adjusted independently and junc-
reduces as we move rightwards, i.e., away from the drivgions driven by them are, moreover, globally coupled. Fi-
edge . However, the gradient never becomes exactly zero, ferally, we have provided illustrations of how various projec-
if it did at some plaquetté, the phase differences around the tions of the critical surface can be made to yield useful
latter would read {;,¢,,0=y,.1,— ¢ =0) and would not information about the system. We have considered projec-
sum to zero. tions in terms of both phases and currents. In discussing the
If we now add an extra plaquette on the right,,1, latter, we plotted, for a drive with a linearly varying profile,
which was earlier zer¢being the phase difference across thethe curves in (,A) space, along which a transition to time
shorted junctionassumes a positive value and forces all thedependent, resistive current flow occurs.
phases to readjust themselves. We could, equivalently give We emphasize that our analysis has been carried out en-
Yn+1 its nonzero value by injecting at the site,0) a current tirely in terms of phaseas opposed taortex variables(in
—i’, satisfying sim(i,—i")—sin"Y(j,+i’)=7:1 and with-  terms of which, JJAs enjoy an alternative descriptiofo
drawing it from site 6,1). In going from source to sink, the extent that vortices can be checked numerically to be
—i’, could reasonably be expected to cycle through all thainstable inside ladders with bus-bdi®., the repulsion by
vertical bonds, in amounts which decrease monotonically athe latter exceeds the pinning potential of the lajtiaed
we move away from the point of injection. This would push inside isolated square plaquettes, our treatment of these con-

up all they;(i=(n+1),...,2) suchthatny;,,>Avy; and, figurations is essentially complete. For the multivortex sec-
furthermore, would raise thg; and depress theb;, to  tors of large arrays, with and without missing bonds, how-
achieve consistency with (i — B))=A(vi— i+ 1)- ever, the effective description may actually be quite useful.

Thus as far as the plaquette next to the drive edge i®eveloping this approach to the point where it yields precise
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guantitative information about the stability of vortices is angenerated vortex antivortex pairs. As soon as these are set
important direction for future research. into motion by an external current drive, they will cause a
It is further worth mentioning that the inclusion of induc- breakdown of superconductive flow. A quantitative study of
tances and capacitances for the junctions of the array dodkese fluctuations, through the introduction of noise or by
not, for obvious reasons, alter the fixed points of the systemMonte Carlo techniques, is yet another investigation which
However, as pointed out in the introduction, switching on acan now be meaningfully undertaken.
magnetic fieldwould The ground states in the presence of To conclude, the straightforward analysis carried out in
such fields, of an external current-free systbawve been this paper has not only accorded us several qualitative in-
studied extensively. The results of this paper can now bsights into the time-independent behavior of JJAs, but has
combined with those studies, to analyze what happens in thelso shown that despite the large number of variables char-
presence oboth external current drives and magnetic fields. acterizing these systems, their quantitative fixed-point behav-
As for a finite temperature, this will introduce thermally ior is quite tractable.
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