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Two-dimensional Josephson junction arrays with dc drives: The fixed-point regime
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A fixed-point analysis of two-dimensional Josephson junction arrays subject to dc drives is carried out
analytically, at a zero temperature and in a zero magnetic field. Conditions for the existence and stability of
such behavior are established, by studying in detail, the isolated triangular and square plaquette. The results are
subsequently generalized to Josephson junction ladders and rectangular arrays which could contain linear
defects. We deduce a closed form inductive expression for the critical surface in the space of phase configu-
rations. All the analytic results are checked against numerical simulations.@S1063-651X~97!08402-X#

PACS number~s!: 05.451b, 74.40.1k, 74.50.1r
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I. INTRODUCTION

The dynamical properties of Josephson junction arr
~JJAs! have recently been the focus of experimental@1–7#
and numerical studies@8–15#, which have resulted in severa
insights. To cite an example of interest for this paper, it h
come to be appreciated that in dc-driven JJAs at zero t
perature and zero magnetic field, a transition from superc
ductive to resistive current flow invariably occurs through
flow of vortices perpendicular to the external current@8,12#.
The situation is the same as in continuous superconduc
except for the following differences. Firstly, the self-induc
magnetic field, which plays a crucial role in the continuu
is for all practical purposes absent in a number of experim
tal JJAs. Secondly, the discrete nature of the JJA provid
natural pinning potential for vortices@16#, because of which
the breakdown of superconductive flow occurs only wh
the driving current exceeds the depinning current of the a
at everypoint along the vortex path@17#. This breakdown
can be observed in uniformly driven arrays with defe
@8,14#, as also in uniformly driven perfect arrays at fini
temperatures and/or in nonzero magnetic fields@9,10#. Alter-
natively, we could consider perfect arrays at zero tempe
ture and zero magnetic field, but make the drive nonunifo
@11–13#. Each of these situations contains a natural mec
nism for the injection of vortices as also the current drive
set these into motion. It has, furthermore, been noticed
the critical value of the external drive, for which the tran
tion occurs, depends both on how the drive is applied
how the array boundaries are configured~a missing bond, in
this context, should be thought of as introducing an inter
boundary!.

A fixed-point analysis which could help systematize the
insights and analytically determine some of the associa
dynamical quantities, has, however, not been carried out
JJAs. It is evident that, much as this analysis, for the eq
tions modeling the system, is trivial at the level of a sing
junction, it rapidly grows in complexity as the size of th
network increases and the number of independent degre
freedom proliferate. It is thus,a priori, unclear whether it is
at all possible to describe the fixed points of arbitrary JJ
551063-651X/97/55~3!/2228~7!/$10.00
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through expressions which are in any way tractable.
It is the aim of this paper to show that this can actually

done, at least for dc-driven JJAs at zero temperature and
magnetic field. To demonstrate this, it is expedient to p
ceed in steps. We accordingly study the triangular and squ
plaquettes in detail, before moving onto vertical ladders w
bus-bars at one end, and finally to rectangular arrays wh
could contain linear defects. In each of these cases, we
able to develop a closed-form inductive expression for
critical surface in the space of phase configurations. T
involves the vanishing of a functionalDn($f r%) which as-
signs a real number to a given phase configuration$f r%. The
functionalDn can, as we shall see, be treated as an or
parameter. We shall, furthermore, provide examples of h
Dn can be used to extract analytic information.

We reiterate that our analysis pertains to zero tempe
ture, i.e., to a situation in which thermal fluctuations ha
been frozen out. It is because of this that the equations
motion produce a unique fixed point, once the current dr
has been specified. At finite temperatures, the situation is
longer deterministic and fluctuations occur with well-defin
probabilities, around the ground states we describe. Th
states can be modified further by applying a static magn
field in addition to the current drive. Finally, in the limit o
large arrays our system is a drivenfield defined on a lattice.

The paper is organized as follows. In Sec. II, we put do
the equations describing the time evolution of JJAs and
termine their fixed points for a few simple but instructiv
situations. We carry out generalizations of these results
larger arrays in Sec. III. In the final section, we summar
and discuss our findings.

II. PRELIMNARIES

The equation describing the dynamics of a single Jose
son junction linking superconducting sitesr ands, is given
by the resistively and capacitively shunted junction~RCSJ!
model @18,19# as

bc

d2f rs

dt2
1
df rs

dt
1sinf rs5 i rs , ~1!
2228 © 1997 The American Physical Society
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55 2229TWO-DIMENSIONAL JOSEPHSON JUNCTION ARRAYS . . .
wheref rs5f r2fs . The McCumber parameterbc is de-
fined as 2eicCR

2/F0, whereR is the shunt resistance,C is
the shunt capacitance,i c is the single junction critical cur-
rent, andF05\/2e is the flux quantum. The currents a
scaled in terms ofi c and time is measured in units o
\/2eRic . We also recognize this equation as being that o
driven damped pendulum.

For an arbitary array, Eq.~1! applies separately to eac
junction, i rs being the~instantaneous! dimensionless curren
it carries andf rs being the phase difference it supports. Co
servation of total current implies that thei rs’s must have zero
divergence at each node of the array. Thus, for anNx3Ny
array of superconducting sites, connected by Josephson
tions, driven by external currentsI ext, the corresponding
equations can be written using total current conserva
~TCC! @20# as

(̂
rs&

bc

d2f

dt2
1
df rs

dt
1sinf rs5I r

ext ;r , ~2!

where^rs& denotes summation over nearest neighbors or .
Note that f rs and hence Eq.~2!, are invariant under
f r→f r1a, wherea is a constant. In solving Eq.~2! nu-
merically, it is important to eliminate this freedom. This
easily done by setting the phase at an arbitrarily chosen
to zero.

Furthermore,(( f rs50 identically, for a summation car
ried out around any closed path, or, in particular aroun
plaquette. If we restrict all phase differences to lie in t
range (2p,p# say, this condition must, however, be gene
alized to read((u rs52pn(n521,0,1). This is used to iden
tify the existence of a vortex in a plaquette.

In the fixed-point regime,f̈ rs5ḟ rs50;r , s and, hence,
i rs5sinfrs . Our problem then is~1! To determine under
what circumstances it is possible to find currents and pha
consistent with the above constraints on thef rs and the
i rs , such thati rs5sinfrs , for all junctions.~2! To examine
the stability of the time-independent solutions so obtaine

For a single junction, we note thatf rs5sin21irs and
f rs5p2sin21irs are consistent time-independent solutio
providedi rs<1. Of these the first is stable, whereas the s
ond is not. Fori rs.1, a value off rs , independent of time is
not possible, i.e.,i rs51 is the critical current for the single
junction. We can reword these statements as follows. Th
is a one-to-one correspondence between the static config
tions of a single junction and the values off rs[f

FIG. 1. Figure showing~a! a triangular and~b! a square
plaquette. For the triangular plaquette,f050 ~by choice!. Hence,
f105f1 and f205f2. For the square plaquette
f125u1 ,f235u2 ,f345u3 andf415u4.
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P@0,2p#. We note that iff is a solution corresponding to a
given value ofi rs , then2f is a solution for a current equal
to 2 i rs . We can, therefore, concentrate onfP@0,p#. The
current carried by thef configuration is sinf. When plotted
againstf, this passes through a maximum of 1 atf5p/2.
The configurations corresponding to a positive slope ar
stable whereas those fordirs /df,0 are unstable. A number
of these observations generalize to larger arrays.

We next solve this problem in explicit detail for the tri-
angular and square plaquette. Several features of these so
tions will likewise be visible in arbitrarily large arrays.

A. The triangular plaquette

For the triangular plaquette shown in Fig. 1~a!, we choose
f050. Hencef105f1 andf205f2. The two independent
phase differences for this configuration, thus, evolve accord
ing to the equations

3
df1

dt
5 i12 j22sinf12sinf22sin~f12f2!5 f 1~f1 ,f2!,

~3a!

3
df2

dt
52i1 j2sinf122sinf21sin~f12f2!5 f 2~f1 ,f2!.

~3b!

These equations can be used to carry out a conventional li
ear stability analysis for the fixed point (f̄1 ,f̄2) satisfying
f r(f̄1 ,f̄2)50,(r51,2). We setf r5f̄ r1e r , and arrive at
the equationė r5(sMrses , whereMrs5(] f r /]fs)uf̄1 ,f̄2

.

The eigenvalue equation for the matrix,Mrs , has the
form

l21b~f̄1 ,f̄2!l1c~f̄1 ,f̄2!50, ~4!

for specific functionsb and c of (f1 ,f2). The fixed point
becomes unstable when one of thel ’s turns positive. The
critical situation clearly corresponds tob.0,c50. For Eqs.
~3!, these conditions read

FIG. 2. Steady-state curve for the triangular plaquette in th
( i ,D) parameter space. Pointsa,b,c,d,e and f are intersections of
the steady-state curve with lines on which the dynamics of th
system is constrained by symmetry.
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2230 55DAS, DATTA, SAHDEV, AND MEHROTRA
cosf11cosf21cos~f12f2!.0, ~5a!

cosf1cosf21cosf1cos~f12f2!1cosf2cos~f12f2!50.
~5b!

We denote all (f1 ,f2) values satisfying these equations
(f1c ,f2c). Such points clearly lie on the critical curve
Translation from the (f1 ,f2) to the (i , j ) variables can be
carried out by means of the equations

j5sin~f12f2!1sinf1 , ~6a!

i5sinf22sin~f12f2!. ~6b!

The critical curve Eq.~B5b! must, of course be plotted
numerically and is shown in Fig. 2. A few points on it ca
however, be identified by inspection. These are

~a! f1c5f2c5p/2(i5 j51) ,
~b! f1c5f2c/2553.13° . . . (i51.760 172. . . ,j50),
~c! f1c50,f2c5p/2(i52.0,j52 i /2),
~d! f1c52f2c/2553.13° . . . (i51.760 172. . . ,j52 i ),
~e! f1c52p/2,f2c50 (i51.0,j522i ),
~f! f1c52f2c52106.26° . . . (i50,j51.760 172. . . ).

Equations~5! and ~6! can be understood from a differen
viewpoint. Let us fixi , such that 1< i<2. Then, for every
value of f2, we get, from Eq. ~6b!, two values of
f12—one in the first quadrant and one in the second. Th
in turn, determine two values each forf1 and j @see Eq.
~6a!#. By current conservation, the permitted range off2
extends from sin21(i21) to p2sin21(i21) for i.1, while
for i<1, it becomes@0,p#. It is also useful to observe tha
f12 passes from the first quadrant into the second atf2min
and from the third to the fourth atf2max. If we now plot
j as a function off2, we get a closed curve~see Fig. 3!,
which passes through a maximum ofj max and a minimum of
j min . Finally, varying Eqs.~6! with i fixed, shows that an
incrementd j of j is accommodated by changesdf r ~in
f r) which satisfy

FIG. 3. A plot showing the variation ofj (f2) as a function of
f2 for the triangular plaquette. The solid line portions of the clos
curves, shown for various values ofi , correspond to stable fixed
points of the system whereas the dashed line sections correspo
unstable ones.
e,

S cosf11cos~f12f2! 2cos~f12f2!

2cos~f12f2! cosf21cos~f12f2!D S df1

df2D
5S d j

0 D . ~7!

A solution to Eqs.~7! exists, if and only if~iff ! the matrix
on the left-hand side~lhs! is nonsingular. If it is not, an
increase ind j will necessarily make the flow resistive
Clearly the determinant,D2, of this matrix is just the lhs of
Eq. ~B5b!. It can also be easily checked from Eqs.~6! that
the sloped j /df25D2 /cos(f12f2). Thus,D2 is zero for
j5 j max, j min and is positive along the portion of th
j (f2) –curve, drawn with a solid line. The correspondin
values of (f1 ,f2) represent stable configurations whi
those along the dashed portion represent unstable ones
inspection of Fig. 3 further shows that atj max, stable and the
unstable fixed points merge and for still larger or smal
values ofj , respectively, there is no stationary solution.

In slightly more intuitive terms, the existence ofj max and
j min can be explained as follows. If we increasej , keeping
i fixed, (1, i,2), f1 andf2 both increase (f2.f1). As a
resultf2 eventually enters the second quadrant, i.e., we h
f1,p/2,f2. Once this happens sinf2 starts decreasing
with increasing j while sinf1 continues to increase, o
course. In time, we reach a point at which the decreas
sinf2 exactly matches the increase in sinf1 and j can be
raised no further. Similarly,j min comes about whenj turns
negative, i.e., we are extracting current, andf12 begins in-
creasing inside the second quadrant whilef2 increases in the
first.

B. The square plaquette

We now take up the case of a single square plaque
driven by direct currentsi , j ,k andl ( i1 j5k1 l ) as shown in
Fig. 1~b!. The configurational variables for this network a
f125u1 ,f235u2 ,f345u3, and f415u4, of which only

FIG. 4. Figure showing the critical surface in the (u1 ,u2 ,u3)
space for a square plaquette. The surface lies in between the
planes representing the boundaries of the positive and negative
tex regions.
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55 2231TWO-DIMENSIONAL JOSEPHSON JUNCTION ARRAYS . . .
three, sayu i( i51,2,3), are independent for any given vort
sector. It can easily be shown, through the techniques
ployed for the triangular plaquette, that the critical bounda
in this case, is given by

cosu1cosu2cosu31cosu2cosu3cosu41cosu3cosu4cosu1

1cosu4cosu1cosu250 ~8!

and the lhs.0, for all points enclosed by the surface
defined. This surface is shown in Fig. 4, and is seen to
well away from from the vortex regions, which now corr
spond to u11u21u3.p for positive vortices and
u11u21u3,2p for negative ones.

Moreover, since a choice of (u1 ,u2 ,u3) automatically
fixes the external currentsi , j ,k, Eq. ~8! defines a critical
surface in (i , j ,k) space as well. Thei50, j50, andk50
sections of this surface are displayed in Fig. 5. In mapp
out this surface, it is helpful to note that there are, as for
triangular plaquette, a number of special rays in (i , j ,k)
space for which the critical point is easily determined, e.

~a! u15u3 ;u25u450 (i5 j5k),
~b! u252u352u4( i5k50; j5 l ),
~c! u15u4 ;u25u3( j50,k50;i5 l ),
~d! u152u2 ;u352u4( j5k5 l5 i /3),
~e! u15u250;u352u4( j5k5 i /2,l50).

It is also worth emphasizing that the critical surface in c
rent space capturesall values of external drive for which a
transition from superconductive to resistive flow takes pla
for the given network. What is more, if we extend the sing
plaquette into a horizontalladder, the critical surface re-
mains unaltered provided we takek to be the current, flowing
out of the upper corner of the leftmost plaquette. This curr
k will, of course, now be a function of the external curren
which should for clarity be relabeled at this stage
i ext , j ext andkext . If we choose to short the current extra
tion edge with a bus-bar,kext ceases to be independent
adjustable andk( i ext[ i , j ext[ j ) defines a two-dimensiona
surface in (i , j ,k) space, whose intersection with the critic
surface produces the curve along which the ladder goes c
cal. This curve depends, in principle, on the length of
ladder, but changes, in practice, very little beyondn54.

FIG. 5. The critical surface enclosing the fixed-point region,
the square plaquette, in the (i , j ,k) parameter space. Thei50,
j50 andk50 projections are prominently shown by the shad
planes.
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III. GENERALIZATIONS TO LARGER ARRAYS

Our next task is to generalize these arguments to la
arrays. It is expedient to do this by first considering vertic
ladders and only then moving onto rectangular arrays, w
and without missing bonds.

The fixed-point behavior of a (23n) array, shorted on the
right, i.e., a column of triangles~see Fig. 6!, is governed by
the equations

i ext15sinf11sing1 , ~9a!

i ext25sinf21sing22sing1 , ~9b!

A

i extn5sinfn2singn21 , ~9c!

whereg r5f r2f r11 ,;r . The phase,f0, along the bus-bar
is held fixed at zero and treated as a point of reference.

To find the critical hypersurface for this ladder, we va
Eqs. ~9! to get a matrix equation of the form
(s51
n Mrs

(n)dfs5d i extr , and setDn5detM (n)5 0. It can be
checked thatDn is proportional to thedeterminantof the
matrixM(n) which governs the time evolution of small pe
turbations,e r (r51,2, . . . ,n), about the fixed point,$f̄ r%:
ė r5(s51

n Mrs
(n)es . Moreover, the proportionality constan

contains a factor of (21)n. Now the stability of$f̄ r% re-
quires that alln eigenvalues ofM(n) be negative. Hence, a
necessary~but not sufficient! condition for the stability of the
fixed point isDn($f̄ i%).0. The sufficiency conditions in-
volve determinants of submatrices ofM (n). For example, for
the (232) case discussed above, conditions~5a! and ~5b!,
i.e., D2.0 along with the tracelessness ofM(2), taken to-
getherensure sufficiency. This is because eigenvalues cha
ing signs in pairs keepDn positive. For our purposes, i
suffices to delineate a surface on whichDn50 and inside
which Dn is everywhere positive.

The form ofM (n) can readily be determined inductively
Indeed, we can clearly pass from theM (n21) to M (n) by
adding cosgn21 to the (n21)th diagonal element ofM (n21)

r

FIG. 6. ~a! The column of a 23n array shorted on the right an
~b! the leftmost column of a rectangular array~the currents drawn
out are not shown!.
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2232 55DAS, DATTA, SAHDEV, AND MEHROTRA
and appending to the matrix so obtained, an extra row
column, with all elements set to zero other than

Mn21,n
~n! 5Mn,n21

~n! 52cosgn21 ,

Mn,n
~n!5cosgn211cosfn .

We note thatM (n) is a tridiagonal matrix.
Dn can be easily checked to likewise have the induct

form

A151, D15cosf1 , ~10a!

An5Dn211An21cosgn21 , ~10b!

Dn5„cosfn1cosgn21…Dn211An21cosfncosgn21 .
~10c!

These equations accord a recursive evaluation ofDn in linear
order. We note thatn51 corresponds to a single junctio
and that for,n52, Eq. ~10c! reduces to the lhs of Eq.~5b!.
Furthermore, when written out explicitlyDn is the sum of all
products ofn cosines of phase differences, chosen such
the corresponding bonds donot form closed curves. Fo
i extr50;r , i.e., at what is, in some sense, the most sta
point in parameter space,Dn has its maximum value ofn,
whereas on the critical surfaceDn50. We can thus view
Dn as an order parameter for the superconductive to resis
transition and usefully incorporate it into a program for t
numerical integration of Eqs.~2!, as a sensitive measure o
the distance from criticality,insidethe fixed-point regime. Its
utility persists even in the time-dependent domain~where it
is initially negative!, since it varies more rapidly in the
neighborhood of the critical hypersurface than the magnit
of df/dt, which is another obvious measure of deviati
from criticality.

We reemphasize that the critical hypersurface we h
defined bounds the entire set of fixed points of Eqs.~9!,
provided the drive keeps the equations autonomous. Thn
dimensionality of this surface is the unavoidable price
keeping the external drive completely general: Any rest
tion on the latter, quite generally tends to lower the dime
sionality of the former and is effectively equivalent to view
ing the surface along specific sections. To make analytic
of or, in fact, to just meaningfully interpret Eqs.~10!, the
importance of such and other sections cannot be overem
sized.

For example, by considering the criticalfn5p/2 sec-
tions, we can straightforwardly deduce from Eqs.~10! that a
configuration stable for a 23(n21) ladder, can always be
stably embedded into a 23n ladder. Indeed, assume, fo
simplicity, that the configuration is critical, i.e.,Dn2150. If
we choosefn5p/2 or fn5fn212p/2, thenDn50 trivi-
ally. In other words, thefn5p/2 andgn215p/2 sections of
the 23n critical surface coincide with the 23(n21) critical
surface. The external current must be appropriately adjus
of course, but since these are not constrained in any way,
is always possible. This further implies that the range
(f1 ,f2) values ~i.e., those defining configurations of th
first plaquette!, lying inside the fixed-point regime of a
d
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f

23n ladder is at least as large as that for a 23(n21) lad-
der. We have numerically checked that this range, in fa
increases slowly.

It is also worth mentioning that in some cases induct
allows us to extract nontrivial information from Eqs.~10!.
We can show, for instance, that if the ladder is subjected
monotonically decreasing current profile~i.e., to
i 1. i 2.•••. i n , which ensures thatf1.f2.•••.fn),
time dependence sets in long beforef1 reaches the value o
p, i.e., before a vortex can form in the top plaquette of t
array. Indeed, iff1.f2.•••.fn , then at criticality only
the first fewf ’s can be in the second quadrant.~This can be
deduced by arguments analogous to those given in Sec. I
the triangular plaquette.! Furthermore, with f15p,
D252cos2f2 andA25cosg121,0. Consequently,fn and
gn21 will be in the first quadrant. If we now assume th
Dn21 and An21 are both nonpositive, then Eqs.~10b! and
~10c! straightaway imply thatDn ,An<0 ~but are notboth
zero simultaneously!. We have already seen thatDn.0 is a
necessarycondition for stability. Thus for all ladders, regard
less of length, the statement we set out to prove, holds.

It is interesting that the critical hypersurface for anarbi-
trary dc-driven rectangular array can be determined by o
a slight extension of the arguments pertaining to the vert
ladder. It is sufficient to observe that the column at the dr
edge bears the full brunt of the external current input. If
remains nonresistive, then the rest of the array finds it
driven by direct currents, each of value less than unity~since
these must be thesinesof some angle or other!. Such drives
can, of course, be handled without introducing any time
pendence. Thus the stability of the entire array depends
that of the leftmost column~see Fig. 6!. The determinant
describing the critical hypersurface of this column can,
above, be readily put down by induction

A151, D15cosu1 , ~11a!

An5~cosgn211cosdn21!Dn211An21cosgn21cosdn21 ,
~11b!

Dn5„cosuncosgn211cosgn21cosdn211cosdn21cosun…]

3Dn211An21cosuncosgn21cosdn21 ~11c!

where um5f (m)
1 2f (m)

2 , gm215f (m21)
1 2f (m)

1 , dm215

f (m21)
2 2f (m)

2 , andf (m)
r are the phases along themth row of

the array. We note that the central defect corridor of an ar
with a linear defect~the central column of an array with
number of broken row bonds! represents a special case
Eqs.~10!. In this case, the phases along the right edge of
corridor are the negatives of those along the left ed
whencegm2152dm21.

Analytic information can be extracted from Eqs.~11! by
using projections and induction in much the same way
above. Rather than discussing further illustrations of su
projections taken in terms ofphases, we end this section with
a projection taken in terms of the externalcurrents. Since
these currents are what we manipulate in experiments, s
projections are clearly the ones which are more direc
physical. The case we consider is that of a drive, vary
linearly between a maximum ofi and a minimum of j
( i. j ). This clearly corresponds to a two-dimensional pr
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55 2233TWO-DIMENSIONAL JOSEPHSON JUNCTION ARRAYS . . .
jection of then-dimensional critical surface defined in Eq
~10! and Eqs.~11!. It leads to a family of critical curves
some members of which have been displayed in Fig.
These curves reflect the following properties of ladders
rectangular arrays:

~1! If currents (i , j ) can flow nonresistively through a
array then (i 8, i , j 8, j ) can flow nonresistively as well
Since i5 j51 can always be passed through the array,
region to the left of linei51 ~Fig. 7! always lies in the
steady state for all arrays.~2! The largest time-independen
flow of current through an array occurs fori5 j51. Thus all
critical curves lie to the left of thei1 j52 line and meet it at
i51. ~3! If ( i , j ) is a fixed point of a row ofm plaquettes
then it is also a fixed point of a row ofn plaquettes,n.m.
The critical curve,Cn32 of an n32 array therefore lies to
the right of Cm32. We shall denote this by writing
Cn32.Cm32.

To get some feeling for this property, we note that fo
(n32) array (n arbitrary!, the gradient in they direction
reduces as we move rightwards, i.e., away from the d
edge . However, the gradient never becomes exactly zero
if it did at some plaquettel , the phase differences around th
latter would read (g l ,f l ,05g l11 ,2f l5b l) and would not
sum to zero.

If we now add an extra plaquette on the right,gn11,
which was earlier zero~being the phase difference across t
shorted junction! assumes a positive value and forces all
phases to readjust themselves. We could, equivalently
gn11 its nonzero value by injecting at the site (n,0) a current
2 i 8, satisfying sin21(in2i8)2sin21(jn1i8)5gn11, and with-
drawing it from site (n,1). In going from source to sink
2 i 8, could reasonably be expected to cycle through all
vertical bonds, in amounts which decrease monotonically
we move away from the point of injection. This would pu
up all theg i( i5(n11), . . . ,2) such thatng i11.ng i and,
furthermore, would raise theb i and depress thef i , to
achieve consistency withn(f i2b i)5n(g i2g i11).

Thus as far as the plaquette next to the drive edge

FIG. 7. Typical transition curves, in the (i ,D) space bounding
the steady-state regions for various array sizes marked agains
curves. The dotted and the dashed lines represent thej50 and
i1 j52 lines, respectively. All curves lie betweenC23` and
C`32.
.
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concerned, adding a plaquette tends to enhanceg2, while
removing one depresses it. For fixed (i , j ),
g25sin21@i1j2sinf1#1sin21@i2sinf1#2f1. If we plot
g2(f1) versusf1, we find that it goes through a minimum
Thus a larger value ofg2 is always possible while a smalle
value may or may not be. Hence, the above results.

It follows thatC`325 limn→`Cn32.Cm32;m. Conver-
gence to the limiting curve is very rapid, e.g., forj50, the
point of maximal separation between curves,i max5 1.7601,
1.7782, 1.7787, and 1.778 78 forn52,3, 4, and 6, respec
tively. For all arrays withn.6, changes ini max are confined
to the fifth place of decimal or beyond. For most purpos
n54 is large enough.

~4! C23n,C23m if n.m and limn→`C23nis the line
i51. To prove the latter, let us suppose th
limn→`i max(23n; j50)511e, e.0. Then for an arbitary
numberm.0, any column of lengthn.m(111/e) would
havem input currents exceeding unity. The (m11)th verti-
cal bond will then carry a current equal t
(p51
m ( i extp2sinfp), wherefp5f12( i51

p21g i for g i.0,; i .
This current can be made to exceed unity form sufficiently
large. This argument also indicates thate must decrease con
tinuously as we increase the size of the column.~5!
C23m,Cn3m,Cn32 for n,m.2.

IV. SUMMARY AND DISCUSSION

To summarize, we have carried out, from first principle
the fixed-point analysis of dc-driven Josephson junction
rays at zero temperature and zero magnetic field. We h
discussed isolated triangular and square plaquettes in exh
tive detail and understood their fixed-point behaviors fro
several viewpoints. We have, moreover, put down clos
form inductive expressions for the critical surfaces of ladd
of arbitrary length, as also of rectangular arrays of arbitr
size. The latter was made possible by the fact that the ti
independent behavior of a two-dimensional JJA is de
mined by that of a single column, namely, the one at
drive edge for a perfect array, and the defect corridor
arrays with linear defects. A reduction of the problem
anything smaller than this column is not possible because
external currents can be adjusted independently and ju
tions driven by them are, moreover, globally coupled.
nally, we have provided illustrations of how various proje
tions of the critical surface can be made to yield use
information about the system. We have considered pro
tions in terms of both phases and currents. In discussing
latter, we plotted, for a drive with a linearly varying profile
the curves in (i ,D) space, along which a transition to tim
dependent, resistive current flow occurs.

We emphasize that our analysis has been carried out
tirely in terms ofphaseas opposed tovortex variables~in
terms of which, JJAs enjoy an alternative description!. To
the extent that vortices can be checked numerically to
unstable inside ladders with bus-bars~i.e., the repulsion by
the latter exceeds the pinning potential of the lattice! and
inside isolated square plaquettes, our treatment of these
figurations is essentially complete. For the multivortex s
tors of large arrays, with and without missing bonds, ho
ever, the effective description may actually be quite use
Developing this approach to the point where it yields prec
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quantitative information about the stability of vortices is
important direction for future research.

It is further worth mentioning that the inclusion of indu
tances and capacitances for the junctions of the array d
not, for obvious reasons, alter the fixed points of the syst
However, as pointed out in the introduction, switching on
magnetic fieldwould. The ground states in the presence
such fields, of an external current-free systemhave been
studied extensively. The results of this paper can now
combined with those studies, to analyze what happens in
presence ofbothexternal current drives and magnetic field

As for a finite temperature, this will introduce thermal
o
e
J

B

ys

J

es
.

f

e
he
.

generated vortex antivortex pairs. As soon as these are
into motion by an external current drive, they will cause
breakdown of superconductive flow. A quantitative study
these fluctuations, through the introduction of noise or
Monte Carlo techniques, is yet another investigation wh
can now be meaningfully undertaken.

To conclude, the straightforward analysis carried out
this paper has not only accorded us several qualitative
sights into the time-independent behavior of JJAs, but
also shown that despite the large number of variables c
acterizing these systems, their quantitative fixed-point beh
ior is quite tractable.
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